
A Modal Analysis of Metaprogramming, Revisited
Brigitte Pientka
McGill University, Montreal, QC, Canada
http://www.cs.mcgill.ca/~bpientka
bpientka@cs.mcgill.ca

Abstract
Metaprogramming is the art of writing programs that produce or manipulate other programs. This
opens the possibility to eliminate boilerplate code and exploit domain-specific knowledge to build
high-performance programs. Unfortunately, designing language extensions to support type-safe
multi-staged metaprogramming remains very challenging.

In this talk, we outline a modal type-theoretic foundation for multi-staged metaprogramming
which supports the generation and the analysis of polymorphic code. It has two main ingredients:
first, we exploit contextual modal types to describe open code together with the context in which
it is meaningful; second, we model code as a higher-order abstract syntax (HOAS) tree within a
context. These two ideas provide the appropriate abstractions for both generating and pattern
matching on open code without committing to a concrete representation of variable binding and
contexts.

Our work is a first step towards building a general type-theoretic foundation for multi-staged
metaprogramming which on the one hand enforces strong type guarantees and on the other hand
makes it easy to generate and manipulate code. This will allow us to exploit the full potential
of metaprogramming without sacrificing reliability of and trust in the code we are producing and
running.

2012 ACM Subject Classification Theory of computation → Type theory; Theory of computation
→ Type structures; Theory of computation → Lambda calculus; Theory of computation → Modal
and temporal logics

Keywords and phrases Type systems, Metaprogramming, Modal Type System

Digital Object Identifier 10.4230/LIPIcs.FSCD.2020.2

Category Invited Talk

Funding Brigitte Pientka: This work has been funded by the Natural Sciences and Engineering
Research Council of Canada (NSERC).

Acknowledgements I would like to thank my collaborators: Wilson Cheang, Samuel Gélineau,
Junyoung Jang, and Stefan Monnier.

1 Summary

Metaprogramming provides programmers with the ability to write programs that generate
specialized and optimized code. This makes it possible to design and implement domain-
specific program optimizations that complement general compiler optimizations yielding
substantial performance gains. Unfortunately, designing language extensions to support
writing type-safe meta-programs remains very challenging.

One widely used approach to metaprogramming going back to Lisp/Scheme is using
quasiquotation which allows programmers to generate and compose code fragments. For
example, the quasiquotation d2 + 2e is representing an abstract syntax tree (AST) of the
expression 2 + 2. We can embed and compose code fragments using unquote, written as b c.
Assuming that the function square 2 generates code d2 * 2e, the expression d2 + bsquare 2ce

© Brigitte Pientka;
licensed under Creative Commons License CC-BY

5th International Conference on Formal Structures for Computation and Deduction (FSCD 2020).
Editor: Zena M. Ariola; Article No. 2; pp. 2:1–2:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-2549-4276
http://www.cs.mcgill.ca/~bpientka
mailto:bpientka@cs.mcgill.ca
https://doi.org/10.4230/LIPIcs.FSCD.2020.2
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


2:2 A Modal Analysis of Metaprogramming, Revisited

evaluates to the code d2 + 2 * 2e where we splice in the generated code. There are two
immediate questions that arise:
1. Can we express and reason statically about open code, i.e. code that may contain and

refer to variables?
2. Can we analyze and further manipulate code via pattern matching?

A milestone in developing a logical foundation for characterizing code and reasoning about
code generation is the work by Davies and Pfenning [2]. Davies and Pfenning distinguish
between code and programs using the necessity modality. For example, the code d2 + 2e
has the modal type dinte, while the program square has type int → dinte. This allows us
to statically reason about different stages of computation. However, Pfenning and Davies’
work has two limitations: first, it only allows us to generate and reason about closed code
and second, it does not support analysis of code via pattern matching. Subsequent work by
Nanevski, Pfenning and Pientka [3] suggests to characterize open code 2 + x together with
the context x:int, ascribing the code dx. 2 + xe the contextual type dx:int ` inte thereby
removing the first restriction. Yet, a type-safe multi-staged metaprogramming foundation
that supports both the generation of and pattern matching on open code remains elusive.

In this talk, we outline a modal type-theoretic foundation for polymorphic multi-staged
metaprogramming that brings together the generation and the analysis of open code within
the same framework. In particular, we draw on the theory and practice of contextual types
and first-class contexts in the Beluga proof and programming environment [4, 7, 8, 1, 6, 5]
and adapt two main ideas to the metaprogramming setting: first, we exploit contextual
modal types to describe open polymorphic code together with the context in which it is
meaningful; second, we model code as a higher-order abstract syntax (HOAS) tree within
a context. These two ideas provide the appropriate abstractions for both generating and
pattern matching on open code without committing to a concrete representation of variable
binding and contexts which is left open to the implementor of the language.

Our work is a first step towards building a general type-theoretic foundation for multi-
staged metaprogramming which enforces strong type guarantees and whose provided abstrac-
tions make it easy to generate and manipulate code. This will allow us to exploit the full
potential of metaprogramming without sacrificing reliability of and trust in the code we are
producing and running.

References
1 Andrew Cave and Brigitte Pientka. Programming with binders and indexed data-types. In 39th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’12),
pages 413–424. ACM Press, 2012.

2 Rowan Davies and Frank Pfenning. A modal analysis of staged computation. Journal of the
ACM, 48(3):555–604, 2001. doi:10.1145/382780.382785.

3 Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual modal type theory.
ACM Transactions on Computational Logic, 9(3):1–49, 2008.

4 Brigitte Pientka. A type-theoretic foundation for programming with higher-order abstract
syntax and first-class substitutions. In 35th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL’08), pages 371–382. ACM Press, 2008.

5 Brigitte Pientka, Andreas Abel, Francisco Ferreira, David Thibodeau, and Rebecca Zucchini.
A type theory for defining logics and proofs. In 34th IEEE/ ACM Symposium on Logic in
Computer Science (LICS’19), pages 1–13. IEEE Computer Society, 2019.

6 Brigitte Pientka and Andrew Cave. Inductive Beluga:Programming Proofs (System Descrip-
tion). In 25th International Conference on Automated Deduction (CADE-25), Lecture Notes
in Computer Science (LNCS 9195), pages 272–281. Springer, 2015.

https://doi.org/10.1145/382780.382785


B. Pientka 2:3

7 Brigitte Pientka and Joshua Dunfield. Programming with proofs and explicit contexts. In ACM
SIGPLAN Symposium on Principles and Practice of Declarative Programming (PPDP’08),
pages 163–173. ACM Press, 2008.

8 Brigitte Pientka and Joshua Dunfield. Beluga: a framework for programming and reasoning
with deductive systems (System Description). In Jürgen Giesl and Reiner Haehnle, editors,
5th International Joint Conference on Automated Reasoning (IJCAR’10), Lecture Notes in
Artificial Intelligence (LNAI 6173), pages 15–21. Springer, 2010.

FSCD 2020


	Summary

