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Abstract
Metaprogramming is the art of writing programs that produce or manipulate other programs. This
opens the possibility to eliminate boilerplate code and exploit domain-specific knowledge to build
high-performance programs. Unfortunately, designing language extensions to support type-safe
multi-staged metaprogramming remains very challenging.

In this talk, we outline a modal type-theoretic foundation for multi-staged metaprogramming
which supports the generation and the analysis of polymorphic code. It has two main ingredients:
first, we exploit contextual modal types to describe open code together with the context in which
it is meaningful; second, we model code as a higher-order abstract syntax (HOAS) tree within a
context. These two ideas provide the appropriate abstractions for both generating and pattern
matching on open code without committing to a concrete representation of variable binding and
contexts.

Our work is a first step towards building a general type-theoretic foundation for multi-staged
metaprogramming which on the one hand enforces strong type guarantees and on the other hand
makes it easy to generate and manipulate code. This will allow us to exploit the full potential
of metaprogramming without sacrificing reliability of and trust in the code we are producing and
running.
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1 Summary

Metaprogramming provides programmers with the ability to write programs that generate
specialized and optimized code. This makes it possible to design and implement domain-
specific program optimizations that complement general compiler optimizations yielding
substantial performance gains. Unfortunately, designing language extensions to support
writing type-safe meta-programs remains very challenging.

One widely used approach to metaprogramming going back to Lisp/Scheme is using
quasiquotation which allows programmers to generate and compose code fragments. For
example, the quasiquotation d2 + 2e is representing an abstract syntax tree (AST) of the
expression 2 + 2. We can embed and compose code fragments using unquote, written as b c.
Assuming that the function square 2 generates code d2 * 2e, the expression d2 + bsquare 2ce
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evaluates to the code d2 + 2 * 2e where we splice in the generated code. There are two
immediate questions that arise:
1. Can we express and reason statically about open code, i.e. code that may contain and

refer to variables?
2. Can we analyze and further manipulate code via pattern matching?

A milestone in developing a logical foundation for characterizing code and reasoning about
code generation is the work by Davies and Pfenning [2]. Davies and Pfenning distinguish
between code and programs using the necessity modality. For example, the code d2 + 2e
has the modal type dinte, while the program square has type int → dinte. This allows us
to statically reason about different stages of computation. However, Pfenning and Davies’
work has two limitations: first, it only allows us to generate and reason about closed code
and second, it does not support analysis of code via pattern matching. Subsequent work by
Nanevski, Pfenning and Pientka [3] suggests to characterize open code 2 + x together with
the context x:int, ascribing the code dx. 2 + xe the contextual type dx:int ` inte thereby
removing the first restriction. Yet, a type-safe multi-staged metaprogramming foundation
that supports both the generation of and pattern matching on open code remains elusive.

In this talk, we outline a modal type-theoretic foundation for polymorphic multi-staged
metaprogramming that brings together the generation and the analysis of open code within
the same framework. In particular, we draw on the theory and practice of contextual types
and first-class contexts in the Beluga proof and programming environment [4, 7, 8, 1, 6, 5]
and adapt two main ideas to the metaprogramming setting: first, we exploit contextual
modal types to describe open polymorphic code together with the context in which it is
meaningful; second, we model code as a higher-order abstract syntax (HOAS) tree within
a context. These two ideas provide the appropriate abstractions for both generating and
pattern matching on open code without committing to a concrete representation of variable
binding and contexts which is left open to the implementor of the language.

Our work is a first step towards building a general type-theoretic foundation for multi-
staged metaprogramming which enforces strong type guarantees and whose provided abstrac-
tions make it easy to generate and manipulate code. This will allow us to exploit the full
potential of metaprogramming without sacrificing reliability of and trust in the code we are
producing and running.
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