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—— Abstract

We introduce a syntactic translation of Godel’s System T parametrized by a weak notion of a monad,
and prove a corresponding fundamental theorem of logical relation. Our translation structurally
corresponds to Gentzen’s negative translation of classical logic. By instantiating the monad and
the logical relation, we reveal the well-known properties and structures of T-definable functionals
including majorizability, continuity and bar recursion. Our development has been formalized in the
Agda proof assistant.
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1 Introduction

Via a syntactic translation of Gédel’s System T, Oliva and Steila [17] construct functionals of
bar recursion whose terminating functional is given by a closed term in System T. The author
adapts their method to compute moduli of (uniform) continuity of functions (N — N) — N
that are definable in System T [27]. Inspired by the generalizations of negative translations
which replace double negation by an arbitrary nucleus [8, 12, 25], we introduce a monadic
translation of System T into itself which unifies those in [17, 27]. This monadic translation
structurally corresponds to Gentzen’s negative translation.

Our translation is parametrized by a monad-like structure, which we call a nucleus, but
without the restriction of satisfying the monad laws. We adopt the standard technique of
logical relations to show the soundness of the translation in the sense that each term of T
is related to its translation. Because the translation is parametrized by a nucleus, we have
to assume that the logical relation holds for the nucleus. Such a soundness theorem is an
instance of the fundamental theorem of logical relation [21] stating that if a logical relation
holds for all constants then so does it for all terms.

Monadic translations have been widely used for assigning semantics to impure languages.
Our goal is instead to reveal properties enjoyed by terms of T and to extract witnesses of
these properties. For this purpose, the nuclei we work with are not extensions of T, but
just simple structures given by types and terms of T, so that the translation remains in T
and the extracted witnesses are terms of T. The Gentzen-style translation looks simpler
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than the other variants [19, 24]. But we demonstrate its power and elegance via its various
applications including majorizability, (uniform) continuity and bar recursion. Of course these
properties of T-definable functionals are well known [5, 7, 11, 13, 17, 19, 27]. The main
contribution of the paper, however, is in obtaining these results in a single framework simply
by choosing a suitable nucleus that satisfies the logical relation for the target property.

All the results in the paper are formalized in the Agda proof assistant [2], except the
introductory section on negative translations of predicate logic. There are some differences
in the Agda development. Firstly, it works with de Bruijn indices when representing the
syntax of T to avoid handling variable names. Moreover, all the logical relations are defined
between the Agda (or type-theoretic) interpretations of T-types. What we have proved in
Agda is that the interpretation of any T-term is related to the one of its translation. In this
way, we avoid dealing with the computation rules of T because they all hold judgmentally in
the Agda interpretation. The Agda development is available at the author’s GitHub page to
which the link is given above the introduction.

1.1 Proof-theoretic translations

Recall that Gentzen’s translation' simply places a double negation in front of atomic formulas,
disjunctions and existential quantifiers [22]. One can replace double negation with a nucleus,
that is, an endofunction j on formulas such that for any formulas A, B the following statements
are provable:

A— jA (A—jB)— jA— jB (JA)[t/x] < j(A[t/x]).

Nuclei are also known as lax modalities [1] and strong monad [8]. But in this paper we adopt
the terminology and definition from [25] which brought the technical motivation to this work.
Each nucleus determines a proof-theoretic translation of intuitionistic predicate logic IQL
into itself, consisting of a formula translation A A]G defined as follows

(A— B)]G = AJG — BjG PjG =jP for primitive P
(AAB)§ = A A BS (AV B)§ = j(A§ v BY)
(VmA)jG = V:EA]G (EI:UA)JG = jEI;UA?

and a soundness theorem stating that IQL F A implies IQL + A]G. Working with different
nuclei, one embed a logic system into another:

if jJA=(A— 1) — 1, then CQLF A implies MQL + A?;

if jA= (A — R) — R for some predicate variable R, then CQL A implies IQL A?;

if JA=AV L, then IQL - A implies MQL + AJG;
where CQL stands for classical predicate logic and MQL for minimal predicate logic. These
results are well-known (see e.g. [12, 25]) and various instances of the translation have been
applied in term extraction (see e.g. [8, 14])

Under the viewpoint of the proofs-as-programs correspondence, our translation of Gédel’s
System T presented in Section 2 is exactly a term/program version of the above proof-theoretic
translation on minimal propositional logic.

! Nowadays it is known as the Godel-Gentzen negative translation. Godel’s translation places a double
negation also in front of the clause for implication, which makes it different from Gentzen’s one in affine
logic [3].



1.2 Godel’s System T

Recall that the term language of Godel’s System T can be given by the following grammar
Type o,7:=N|oc—=T1
Term t,ux=x | Ax?.t|tu] 0] suc|rec,

where N is the base type of natural numbers and o — 7 the type of functions from ¢ to 7. A
typing judgment takes the form I' ¢ : 7, where I is a context (i.e. a list of distinct typed
variables z : o), t is a term and 7 is a type. Here are the typing rules:

Pz ockba:o Fx:okt:7 'Ft:o—=T 'Fu:o
T ' X t:o—T Pk-tu:r
'-0:N '-suc:N— N I'krec,:0—+(N—»o—0)>N—=o

We call T -t : 7 a well-typed term if it is derivable. We may omit the context I" and simply
write ¢ : 7 or t7 if it is unambiguous. When mentioning terms of T in the paper, we refer to
only the well-typed ones. We often omit superscript and subscript types if they can be easily
inferred, and may write:

AT X - - - Tyt instead of Ax1.Axo. - - Az, 1,

flar,as,--- ,a,) instead of (((fa1)az) -+ )an,

n + 1 instead of sucn,

77 instead of o — 7, and

f o g instead of \z.f(gx).
Using the primitive recursor, we can for instance define the function max : N —+ N — N that
returns the greater argument as follows:

max = recy_n (A" ., AN 7N recy(sucn, MmN gt 7N suc(fm))).
One can easily verify that the usual defining equations of max

max(0,n) =n max(m,0) =m max(sucm,sucn) = suc(max(m,n))
hold using the computation rules of rec

recy(a, f,0) = a recy (a, f,sucn) = f(n,rec,(a, f,n))

where a : 0 and f : N — 0 — 0. For the ease of understanding, we will use defining equations
rather than T-terms involving rec in the paper.

2 A monadic translation of System T

Our syntactic translation of System T is parametrized by a nucleus, that is, a monad-like
structure without the restriction of satisfying the monad laws.

» Definition 1 (nuclei). A nucleus relative to T is a triple (JN,n, k) consisting of a type JN
and two terms

n:N— JN k:(N— JN) — JN = JN

of System T.
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Note that a nucleus is not an extension of T, but instead a simple structure given by a
type and two terms of T. Therefore, our translation of any term of T remains in T rather than
some monadic metatheory such as in [19, 24]. The simplest example is the identity nucleus
where JN is just N and 7, k are the identity functions of suitable types. More examples are
available in Section 3. Though the first component of a nucleus is just a type, we denote it
as JN because in the generalized notion of a nucleus discussed in Section 4 it will be a map J
on all the types of T.

We are now ready to construct a syntactic translation of T into itself:

» Definition 2 (J-translation). Given a nucleus (JN,n, k), we assign to each type p of T a
type p? as follows:

N = JN

(0 =1 =0 =7

Each term T+t : p is translated to a term T3 =t : p?, where T is a new context assigning
each x : o €T to a fresh variable x : o, and t* is translated inductively as follows:

(z)) =2’ 0! =170
(Az.t)) = At suc? :== k(1 o suc)
(tu)? = t?u’ (rec,)? = Az piN=ol = ko (rec,s (z, fon))

where ke, : (N — ¢?) = IN — o7 is an estension of r defined inductively on o

key == &k

key_yr == )\gNH”JHTJaJNx”J.keT ()\nN.g(n, x)7a) .
We often write J to denote the nucleus (JN,n, k) and call the above the J-translation of T.

Thanks to the inductive translation of function types into function types, the translation of
the simply-typed-A-calculus fragment of T is straightforward. There is no need of introducing
a nonstandard, monadic notion of function application which plays an essential role in the
other monadic translations [19, 24] as discussed in Section 4.

The more interesting part is the translation of the constants. Viewing n as a unit operator
and k as a bind operator in a monad J on N may reveal some intuition behind the translation
of 0 and suc: Tt is natural to expect n’ = nn for each numeral n := suc™(0). This is indeed
the case if the monad laws are satisfied, because x(no —) : (N — N) — JN — JN which is
used to translate suc recovers exactly the “functoriality” of J. It is also natural to expect
(rec,)? to preserve the computation rules, i.e.

(rec,,)J(fzz,f7 OJ) =x (rch)J(a:,f, (sucn)J) = f(nJ, (recc,)J(:zz,f7 nJ))

A promising candidate of such (rec,)’(z, f) : JN — o7 is rec,s (2, f o) : N — 0. Hence, we
extend k to ke, : (N — 0’) — JN — o7 to complete the translation of rec,.

We adopt the standard technique of logical relations to show that the above translation is
sound in the sense that each term of T is related to its translation?. Because the translation is
parametrized by a nucleus, we have to assume that the logical relation holds for the nucleus.

2 'We owe the idea of proving a unified theorem of logical relation to Thomas Powell.



» Theorem 3 (Fundamental Theorem of Logical Relation). Let (JN, 7, k) be a nucleus. Given
a binary relation Ry C N x JN between terms of T, we extend it to R, C p x o’ for arbitrary

type p of T by defining
fRor g = Ve a® (x Ry a = fz R; ga).
If Ry satisfies
Wi (nRym)  and VNN (0 (fn Ry gn) < f Ras kg) (1)
thent R, t! for any closed term t : p of T.
Proof. We prove a more general statement that

for any teem 't : p of T, if T R I'Y thentRth

where (71 :01,...,2, :0,) R (2] 1 01,...,2) : o)) stands for z; Ry, 1 A... Az, Ry, 7)),
by structural induction over t.
t = x. By the assumption I' R T,
t = Az.u. Assume I' R IY and z R, 2. We have u R u’ by induction hypothesis.
t = uwv. By induction hypothesis we have © Ry_,, u? and v R, v7. Then, by the definition
of Ry_~, we have uv R, wlv’.
t = 0. By the assumption (1) of 7.
t = suc. By the assumption (}) of n, we have suc(n) Ry n(suc(n)) for all n : N. Then by
the assumption (}) of k, we have suc Ry #(n o suc).
t = rec. We prove rec R rec? with the following claims:

1. For any type o of T, the term ke, preserves the logical relation in the following sense:
VTG (v (fn Ry gn) = f Riso keo(g)) -

Proof. By induction on o. <
2. For any z? and y"J with z R y, and any fN797% and gJN_“’J_"’J with f R g,

vnN (reco'(x’ f’ n) R’O' recO'J (y7g o 777 n)) N

Proof. By induction on n. |

We get a proof of rec R rec? simply by applying (1) to (2). <

» Remark 4. The above proof can be carried out in the intuitionistic Heyting arithmetic in
finite types HA® [23], with the theorem formulated as

if HAY proves () then, for each closed term ¢ of T, HA“ proves ¢t R t7.

So are all the results in Section 3. Hence, the verification system here can be HA”. We leave
it unspecified in the theorem for several reasons. Firstly, we hope to study other properties
whose verification may require a stronger system as in [19]. Moreover, what we have proved
in the Agda formalization is a version of the theorem for the Agda embedding of System T,
namely that the Agda interpretations of any T-term and its translation are related. But that
is only an implementation choice as explained in the introduction.
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3 Applications of the monadic translation

We now apply the above framework to reveal various properties and structures of T-definable
functions including majorizability, (uniform) continuity and bar recursion. Each example
consists of an algorithm to construct the desired structure given by the monadic translation,
and a correctness proof of the algorithm given by the fundamental theorem of logical relation.
For this, one only needs to choose a suitable nucleus that satisfies the logical relation for the
target property.

3.1 Majorizability

Our first application is to recover Howard’s majorizability proof of System T [11]. Majoriz-
ability plays an important role in models of higher-order calculi and more recently in the
proof mining program [14]. Howard’s majorizability relation extends the usual ordering <
on natural numbers to the one <, on functionals of arbitrary finite type p in the same way
as in Theorem 3. Specifically <, is defined inductively on p as follows:

nym:=n<m
[ osr g =27y (< y — fr <, gy).

We say t is majorized by u if t < u, and call u a majorant of t. Howard shows that each closed
term of T is majorized by some closed term of T, which fits perfectly into our framework:
Let us take JN = N and define n: N — Nand x: (N—- N) = N — N by

%(g,0) := g(0)

n(n) =n r(g,n + 1) == max (k(g,n),g(n +1)).

The max function can be defined in T using rec as shown in Section 1.2, and thus so is k.
Intuitively (g, n) is the maximum of the values ¢0,¢1,...,gn. Therefore, it satisfies the
following property:

» Lemma 5. For any g : N — N, we have gm < k(g,n) whenever m < n.

Proof. By induction on n. If n = 0, we are done because m has to be 0. If m <n + 1, we
have two cases: (i) If m = n + 1, then g(n + 1) < k(g,n + 1) by definition. (ii) If m < n,
then g(m) < k(g,n) < k(g,n + 1) by induction hypothesis and definition. <

» Corollary 6. Each closed term t : p of T is majorized by its translation t7.

Proof. We only need to check that the two conditions (}) are fulfilled. The first one holds
because the ordering < is reflexive. For the second, let us assume Vn (fn < gn) and n < m.
We have gn < k(g, m) by Lemma 5, and thus fn < (g, m) by the transitivity of <. <

We draw the reader’s attention to this simple example also because the nucleus defined
above does not satisfy the monad laws: Here 7 is the identity function on N. If the left-identity
law #(f,nx) = fx holds, then x has to be the identity function on NV, which is not the case.

3.2 Lifting to higher-order functionals

In the previous example, we extend a relation on natural numbers to arbitrary finite types
and then show that the resulting logical relation holds for all terms of T. However, if one
wants to prove a certain property P of functions X — N, the above syntactic method may



not work directly, because the property P may not be captured by the inductively defined
logical relation. Our monadic translation can serve a preliminary step to solve the problem
by lifting natural numbers to functions X — N so that the desired property P becomes the
base case of the logical relation.

Let X be a type of T. Consider the nucleus (JN, 7, ) with JIN=X — Nand n: N — JN
and k : (N — JN) — JN — JN defined by

n(n) = Az.n k(g, f) = Ax.g(fz, ).

Clearly n maps a natural number n to a constant function with value n. The intuition of
k(g, f) : X = N is the following: Given an input x, we have an index fz to get a function
g(fz) from the sequence g. Then we apply it to the input z to get the final value.

Given z : X, we define a logical relation R C p x p? inductively as in Theorem 3:

nRY f=n=fz
ng;;Th::Vy",z"J (yRY z — gy R? hz).

Clearly the conditions (f) hold; thus by Theorem 3 we have t Ry ) for any closed term ¢
of T. In particular, for any closed term f : X — N of T, we have

VoY (2 R% Q= fo = f(Q,2)).

For some type X of T, we may be able to construct a closed term € : X? such that  R%
for all z : X, by unfolding the statement  R% €. For example, if X = NV, then x R% Q is
unfolded to VN, fN =N (n = for — an = Q(f,)); we thus define Q(f,z) == z(fz) as fr =n
by assumption and then have = R% € by definition. Once we construct such a term Q : X7,
we have f = f'Q (up to pointwise equality). The term Q : X? which preserves the logical
relation in the sense of z R% € for all z : X is known as a generic element [6, 7).

Given a property P of functions X — N, we define a predicate ), C p’ on elements of
the translated type p’ inductively on p:

Qn(f) = P(f)
Qoosr(h) =27 (Qy(2) = Qr(h2)).

Note that @ is just an instance of the binary relation defined in Theorem 3. Once we prove
the conditions (}) for @, i.e.

v Qn(nn) and g XN (VnNQN(gn) — QN%N(KZQ))

we have Q(t?) for any closed term ¢ of T. If we prove also Qx (£2), then we have P(f) for all
closed terms f : N — X of T because Qn(f?Q2) and f = f'Q.

All the remaining examples are about properties of T-definable functions NN — N which
can be proved following the above steps. We instead enrich the “lifting” nucleus to reflect the
computational content of the properties so that witnesses of the properties can be obtained
as terms of T directly via the translation.

3.3 Continuity

The next applications of our monadic translation are to recover the well-known results that
every T-definable function NN — N is pointwise continuous and its restriction to any compact
subspace is uniformly continuous [5].
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There are various approaches to continuity: Kohlenbach [13] extracts a term from the
extensionality proof via the Dialectica interpretation, and then uses the majorant of this
term to construct a modulus of uniform continuity. Coquand and Jaber [6] extend type
theory with a new constant for a generic element, decorate the operational semantics with
forcing information, and then extract continuity information of a functional by applying it to
the generic element. Escardé [7] also employs a generic element to compute continuity but
in his model of dialogue trees, which is closely related to our syntactic approach as discussed
in Remark 8. There are also various sheaf models [9, 10, 26] in which all functionals from the
Baire space NN are continuous and those from the Cantor space 2V are uniformly continuous.
Powell [19] introduces a monadic translation for some call-by-value functional languages,
one of whose instantiations tackles also continuity of T-definable functionals. His method
corresponds to Kuroda’s negative translation as discussed in Section 4.3.

We enrich the “lifting” nucleus (Section 3.2) so that moduli of (uniform) continuity are
obtained directly from the translation. For the sake of convenience, we extend System T
with products. Such extension can be avoided by working with sequences of types and terms
as in the literature of functional interpretations such as [15].

3.3.1 Translating products
We extend System T with product type o x 7 and constants
pair:c -7 —>0XT pri:oX7T—0o pro : 0 X T — T

satisfying the usual computation rules. Similarly to Gentzen’s translation of conjunction, we

translate product type component-wise, i.e. (o x 7)) := 07 x 7). Then the above constants

are translated into themselves but of the translated types, e.g. pr{ == pr; : 0’ x 70 — o”.
Recall that the primitive recursor is translated using ke, : (N — o) — JN — o which is

defined inductively on ¢. So we have to add the following case
keor = AgN 77 %™ @ pair (kes (pry 0 g,a),ke-(pry 0 g,a))

into the definition of ke in order to complete the translation. For the fundamental theorem of
logical relation, when extending a relation Ry € N x JNto R, C p x p?, we add the following
case for product type

u Roxr v = (priu Ry priv) A (prou R; pryv) .

and can easily show that the constants of product types are related to their translations. We
often write (a, b) instead of pair(a, b) for the sake of readability.

3.3.2 Pointwise continuity

Recall that a function M : NN — N is a modulus of continuity of f : NN — N if
¥ B (@ =ua B — fa = fB)

where o =, 8 stands for Vi<m (ai = pi). Our goal is to find a suitable nucleus J so that we
can obtain such a functional M from the J-translation of f and then verify its correctness
using the fundamental theorem of logical relation.

Let JN = (NN — N) x (NN — N). For w : JN we write V,, to denote its first component
and M, the second, due to the intuition that M, is a modulus of continuity of the value
component V,,. Then we define n: N — JN by

n(n) = (Aa.n, Aa.0)



and k : (N = JN) = JN = JN by

k(g,w) == <)\a.Vg(vw(a))(a), )\a.max(Mg(Vw(a))(a),Mw(a))>.

Note that the “value” components form a “lifting” nucleus in the sense of Section 3.2 so that
natural numbers are lifted to functions NN — N. And the “modulus” components will allow
the translation to equip a continuity structure to the values. Reasonably n(n) equips the
constantly zero function as a modulus of continuity to the constant function Aa.n since its
input is never accessed. As to k(g,w), its value at a point « has two possible moduli: one

given by g(V(a)) and the other by w; thus the greater one is a modulus of continuity at «.

We work with a logical relation R C p x p? which is parametrized by o : NN, Specifically,
its base case Ry C N x JN is defined by

n Ry w:=n=Vy,(a) AVS (a =My (a) B = Vu(a) = Vw(ﬂ)) .

The first component of n Ry w states that the value of w at o is n, while the second explains
exactly the intuition of the type JN, namely that M, («) is a modulus of continuity of V,,
at a. We leave the proof of (1) to the reader. By Theorem 3, we have ¢ Ry td for any o : NN
and for any closed term ¢ : p of T. In particular, we have f Rgn_, f? for every closed term
f:NY 5 NofT.

The last step is to construct the generic element 2 : JN — JN such that o Ry 2 for all
a : NN, Once we unfold « R ©, we can see that, for any w : JN, the value of Q(w) has to
be Aa.a(V,(a)) as discussed in Section 3.2. Then we also need to construct its modulus of
continuity. There are two possible moduli at a: one is V,,(«) 4+ 1 because the modulus of
continuity of Aa.an at v is n + 1, and the other is M,, (). We just take the greater one and
then end up with the following definition:

Qw) = Aa.a(Vy(a)), Aa. max(Vy,(a) + 1, My, (a))) .

One may have noticed that the above is highly similar to the definition of k. Indeed, we have
Q = k(An. da.an, Aa.n + 1)).

» Theorem 7. Every closed term f : NN — N of T has a modulus of continuity given by the
term My (q)-

Proof. Because f R{u_ f? and a Riw 2, we have fa Rg Q) for any a : NN, which
implies (i) f = Vi) up to pointwise equality, and (ii) Mgy is a modulus of continuity of
V). Therefore, Mgy is also a modulus of continuity of f. <

» Remark 8. The above development can be viewed as a syntactic (and simplified) version of
Escardd’s approach via dialogue trees [7]. The algorithms to construct moduli of continuity
in these two methods are exactly the same. On the other hand, though Powell works also
with a monadic translation [19], his algorithm is different because he translates terms in the
call-by-value manner. We will look into this in more detail in Section 4.3.

3.3.3 Uniform continuity

The objective here is to, for each closed term f : N¥ — N of T, construct a modulus of
uniform continuity M : NN = N, i.e.

Vo o BN (a <P SAB < S A =5 B— fa= fB)

where a <! 3 stands for Vi(ai < (i). The value M is called a modulus of uniform continuity
of fon {a: NN |a <!§}. The following fact of uniform continuity plays an important role
in the construction:

25:9
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» Lemma 9. If f : N — N is uniformly continuous on {a : NN | a <! 6} with a modulus m,
then it has a mazimum image on {a : NV | a <! 6}.

Proof. We compute the maximum image ©(m, f,d) by induction on the modulus m:

©(0, f,0) = fo
O(m+1,f,8) =& (Ni.© (m, Aa.f(i * ), d o suc), §0)
where i * o is an infinite sequence with head i and tail o, and ® : NY¥ — N — N defined by
®(a,0) :==al
®(a,n + 1) := max (P(a, n),a(n + 1))

i.e. ®(a,n) is the greatest ai for ¢ < n (note that ® is the x of the “majorizability” nucleus
introduced in Section 3.1). In the base case of ©, the modulus is 0 and thus f is constant
with the value f§. To compute ©(m + 1, f,d), by induction hypothesis we have for each i : N
the maximum image © (m, Aa. f(i * «), § o suc)) of the function Ae. f(i*a) with a modulus m
on the inputs bounded by § o suc. Because the inputs of f are bounded by J, the greatest
O (m, Aa.f(i x @),d osuc)) for i < §0 is the maximum image of f, and we use ® to find it.
Note that both ® and © can be defined in T using rec. <

We are now ready to construct the nucleus. Let JN = (NN — N) x (N¥ — N). The ieda
is exactly the same as in the previous treatment to pointwise continuity: For any w : JN,
its second component M,, is (expected to be) a modulus of uniform continuity of the first
component V,,. Then we define n: N — JN by

n(n) = (Aa.n, Aa.0)
and k : (N — JN) — JN — JN by
(g, w) = (Aa.Vyv, (o)) (@), Ad. max(P(Ni.Mg;(6), O(Mqy(6), Vuy, 8)), My (6)))

where ® and © are defined in the proof of Lemma 9. Specifically, we construct a modulus of
uniform continuity for the value of x(g,w) as follows: Given § : N¥, we have two possible
moduli given by those of g and w at § and thus we choose the larger one. Actually the only
complication comes from the calculation of the modulus given by g. For each ¢ : N we have a
modulus Mg;(6). In the value of k(g, w), we apply ¢ to V,,(a) for input . Because V,, has
a maximum image computed using O, we only need to find the greatest modulus Mg, (d) for
1 not greater than the maximum image of V,,, and we use ® for this purpose.
Given 6 : N¥, the base case R% C N x JN of the logical relation is defined by

nREwi=n=V,(6) AVa,B(a<' SAB < S A=y, 6) B Vula) = Vu(B)).

In words, n RY w means that n is the value of w at § and that M, (8) is a modulus of uniform
continuity of V,, on {a : N¥ | a <! §}. It is routine to check that both i and & preserve the
logical relation in the sense of (f), which we again leave to the reader. By Theorem 3 we
have ¢t Rg ) for any § : NN and for any closed term ¢ : p of T. Moreover, the generic element
Q : JN — JN defined by

Q = k(An. Aa.an, Aa.n + 1))

also preserves the logical relation in the sense of § Rl‘im, Q for all § : NN,
With a proof similar to the one of Theorem 7, we get the following result:

» Theorem 10. Every closed term f : NN — N of T has a modulus of uniform continuity
given by the term My (q).



3.4 General bar recursion

To prove Schwichtenberg’s theorem [20] that the System T definable functionals are closed
under a rule-like version Spector’s bar recursion of type levels 0 and 1, Oliva and Steila [17]
introduce a notion of general bar recursion whose termination condition is given by decidable
monotone predicates on finite sequences. As the last example, we recover their construction
of general-bar-recursion functionals ([17, Definitions 3.1 & 3.3]) via an instantiation of our
translation. For this, we need the following notations:

We represent decidable predicates as functions N* — 2, where N* is the type of finite

sequences of natural numbers and 2 = {0, 1} is the type of booleans.

For any S : N* — 2 and s : N*, we write S(s) instead of S(s) = 1.

For any s : N*, we write |s| : N to denote its length and 3 : N the extension of s with

infinitely many 0’s.

For any s : N* and n : N, we write s x n : N* to denote appending n to s.

For any s : N* and o : NV, we write s * o : N¥ to denote their concatenation.
Note that the treatment of N* and 2 is not essential. For instance, we can represent a finite
sequence s by a pair (o, n) and consider s as the prefix of the infinite sequence « of length n
as in our Agda implementation. All the above operations on sequences are definable in T.
We also need the following definitions:

We call £ : (N* = o) — (N* = o — o) — N* — o a functional of general bar recursion

for §: N* — 2 if GBR (&) holds where GBRg(€) is defined by

. . N . S(S) _>§(G7H’S) :G(s)
GBRs(&) = v QN —o gN'—o =0 N A
-S(s) = &(G,H,s) = H(s,)\nN,g(G’ H,s%n))

A predicate S is monotone if S(s) implies S(s*n) for all s : N* and n : N.
For Y : NN = N, we say S secures Y if

VsV (S(s) — Vo' Y(s*xa)= Y(§)> .

Let Y : N¥ — N be a closed term of T. Oliva and Steila show (i) for any S securing Y,
from a functional of general bar recursion for S we can construct a functional of Spector’s
bar recursion for Y [17, Theorem 2.4], and (ii) we can construct a monotone predicate S
that secures Y and a functional of general bar recursion for S [17, Theorem 3.4]. In this way,
they give a new proof of Schwichtenberg’s bar recursion closure theorem with an explicit
construction of Spector’s bar-recursion functionals.

We firstly construct a nucleus for general bar recursion. Fix a type o of T. Let JN =
(NV = N) x (N* = 2) x (N* = 0) = (N* = o = )= N* — o). Given w : JN, we write
Vw, Sw, By to denote its three components. The intuition is that S,, is a monotone predicate
securing V,, and B,, is a functional of general bar recursion for S,,. We define  : N — JN by

n(n) = (Aa.n, A\s.1, \GH.G)
and  : (N — JN) — JN — JN by

(g, w) = (Aa.Vyv,a)a, As.min(Sy(s), Sg(v,s)(s)), AGH.By(As.Byv, 5 (G, H,s), H))

w

where min : N — N — N returns the smaller argument. Lastly, we define the generic element
Q:JN — JN by

Q = k(An. (Aa.an, As.Le(n, |s|), ¥n))

25:11
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where Le : N — N — 2 has value 1 iff its first argument is strictly smaller than the second,
and Un : (N* — o) = (N* = o = 0) = N* — 0 is a T-definable functional of bar recursion
for the constant function Y = Aa.n [17, Lemma 2.1], i.e.

. n < |s| = ¥n(G, H,s) = G(s)
VGN*%UHN*%O' *}USN* A

n > |s| = ¥n(G, H,s) = H(s, \m.¥n(G, H, s xm))

For any n : N, it is clear that As.Le(n, |s|) is a monotone predicate that secures Aa.an, and
that Un is a functional of general bar recursion for As.Le(n, |s]).

» Theorem 11. For any closed term Y : NN — N of T,
1. Sysuq is a monotone predicate securing Y, and
2. Byiq is a functional of general bar recursion of Syiq.

Proof. Given o : N¥| we define the base case R§ C N x JN of the logical relation by
n R w=n=V,(a)AS, is monotone A S,, secures V,, A GBRs,, (By,).

To apply the fundamental theorem of logical relation, we need to check the conditions ():
It is trivial to prove n Rg nn for all n : N.
As to k, given f: N — Nand g: N — JN such that fi R§ g¢ for all 7 : N, our goal is to
prove f R§_y xg. Let n: N and w : JN with n R§ w be given.
We have fn = Vg,(a) = Vg, () (@) = Vi(gw) (@) as in the previous examples.
Because Sy, is monotone and so is Sy; for all 7 : N by assumption, the predicate S,;(y, )
is also monotone.
If Syo(g,u)(8), then Sy, (s) and Sy(v,, 5)(s) by definition. Given o : N, we have V,, (sxa) =
V. (8) because S, secures V,,. Then we have V(g .,)(5* @) = Vv, (sxa)) (s ¥ @) =
Va8 *a) = Vg, (5)(8) = Vigw)(8) because S,y ) secures Vy(y, 5. Hence
Sk(g,w) secures Vg -
Lastly we show that By . is a functional of general bar recursion for S,y ). Let
G:N* =0, H:N* = o" — o and s : N* be given. (1) If S,;(4.4)(s), then S, (s) and
Sg(v,s)(s), and thus we have By (g..)(G, H,s) = G(s). (2) If =8,;4,w)(s), then we
have two cases to check: (2.1) If Sy, (s), then =Sy, ) (s) by definition. It is not hard
to show By(g,u)(G, H,s) = H(s, \n.By(g,u)(G, H,5n)). (2.2) If 7(Sw(s)), then we
always have B, (y,u)(G, H,s) = H(s,\n.Byg.,)(G, H,s *n)) no matter if Sy, 4 (s)
holds or not.
Hence, we have fn R k(g,w).
Given a closed term Y : NN — N of T, for any a : NN we have YV RN YJ by Theorem 3.
For any n : N, we have n R (Aa.an, As.Le(n, |s|), Un) by definition; thus, a RY_, € holds
by (1) for x which we have just proved. Hence we have Ya RY Y7Q for any o : N¥. From
this, we get (i) Y = Vyuq up to pointwise equality, (ii) Sy is a monotone predicate securing
Vyiq and thus also Y, and (iii) By.q is a functional of general bar recursion for Syiq. <

The above development is just a restructuring of the work of Oliva and Steila [17] that
fits into our framework. But there are some small differences (or simplifications):

[17] requires the predicate S to satisfy the bar condition Vo' InN g (an), where an : N* is

the prefix of a of length n. As pointed out by Makoto Fujiwara in a personal discussion,

this condition is not needed for the result. So we remove it in the above development.



[17] assumes that the closed terms Y : NY¥ — N are of the form Aa.t where o : NV is the

only free variable in ¢ : N, and treats « as a special constant (for the generic element).

Motivated by a version of Escardd’s Agda development of [7], we avoid such extension by
using the lifting nucleus that is introduced in Section 3.2.

The syntactic translation of T in [17, Definitions 3.1 & 3.3] contains only the construction
of general-bar-recursion functionals while the one of monotone securing predicates is given
in the proof of the main theorem [17, Theorem 3.4]. We combine both in the translation
in order to split the constructions from the correctness proof.

As pointed out by an anonymous reviewer, this section unifies the results in Section 3.3
in the sense that moduli of (uniform) continuity can be defined from monotone securing bars
and general-bar-recursion functionals: Let Y : N¥ — N be a closed term of T. The monotone
predicate Syuq is a bar, i.e. Yo 3nNSy.q(an), as shown in [17, Theorem 3.4]. This together
with the fact that it secures Y implies the pointwise continuity of Y. The witness of the fact

that Sy.q is a bar obtained via e.g. modified realizability [14] is a continuity modulus of Y.

Our translation in Section 3.3 is just an explicit procedure to get these witnesses that are
blurred in the proof of [17, Theorem 3.4]. On the other hand, the reviewer points out that
we can construct a modulus M : NN — N of uniform continuity of Y by

M (8) := By (G, H®, nil)

where G(s) = 0, H(s, f) :== 1 + max{fn | n < §(|s|)} and nil : N* is the empty sequence.

The idea is that if s is a prefix of § then By (G, H, s) is a modulus of uniform continuity
of the function Aa.Y (s x a) on {a : N¥ | a <! §}: If Syiq(s), we know Aa.Y (s * ) is a
constant function because Syq secures Y. Then By (G, H®,s) = G(s) = 0 is a proper
modulus. If =Sy (s), then the step functional H° finds the greatest value of the moduli of
.Y (s #n * ) given by Byio(G, H?, s % n) for n < §(|s|) and then adds 1 to get a modulus
of Aa.Y (s * a).

4  Generalization and variants of the monadic translation

We have developed a self-translation of System T in the spirit of Gentzen’s negative translation.

We conclude the paper by generalizing it to translate sums and comparing it with another
two monadic translations.

4.1 Translating sums

We generalize our Gentzen-style translation to translate also sums. Let us extend T with
sum type o + 7 and the following constants

injy:0—>o0+7 injg:7T—=>0+T case: (0 = p) > (T—=p)—o+T7—p.

In his translation, Gentzen places a double negation in front of disjunctions (see Section 1.1).

Following this inspiration, the sum type o + 7 should be translated into J(¢? + 77). But the
simple notion of a nucleus given by a type and two terms does not suffice. We have to work
with the following more general notion: A nucleus (J,7, k) consists of an endofunction J on
types of (the extension of) T, and terms

n:o—Jo k:(c—=Jr)—=Jo—Jr

25:13
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for any types o, 7 of (the extension of) T. Then we add the following clauses to Definition 2
to complete the translation:

(o +7) =1 +77) inj,? :== n oinj; for i € {1,2}
ket =K case’ .= \fg.ke(case(f,g)).

Generalizing the fundamental theorem of logical relation to cover sums is remained as a
future task. Both natural numbers and sums, as instances of inductive types, are translated
in a very similar way. Another future task is to generalize the translation to cover all (strictly
positive) inductive and coinductive types.

4.2 The Kolmogorov-style monadic translation

Barthe and Uustalu’s call-by-name continuation passing style transformation [4] corresponds
to Kolmogorov’s negative translation. By replacing the continuation monad with a nucleus,
one obtains a Kolmogorov-style monadic translation which is studied in [24]. Kolmogorov
places a double negation in front of every subformula. Similarly we place the nucleus in front
of every subtype. Hence we have to work with the more general notion of a nucleus (J, 7, )
where J is an endofunction on types. Specifically, each type p of T is translated to J{(p) where
(p) is defined inductively as follows

(Ny =N
(e O7) = No) O Nr1) for 0 € {—, x,+}.
Each term ¢ : p is translated to a term (t) : J(p). In order to translate function application,

we have to consider a monadic notion of application. Given f : J(c — J7r) and a : o, we
“apply” f to a as

foa:=r(Ag" I ga, f).

Then for any terms ¢ : 0 — 7 and u : o, we define (tu) := (t) o (u). The rest of the translation
can be found in the appendix.

4.3 The Kuroda-style monadic translation

There is also a Kuroda-style monadic translation of System T which has been studied by
Powell in [18, 19], where each type p is translated to J[p] with [p] defined by

[N] =N [0 x 7] = [o] X [7]
[0 = 7] = [o] = J[7] [0 + 7] = [o] + [7].

Note that it actually corresponds to the variant of Kuroda’s negative translation where
double negations are placed also in front of conclusions of implications (see [16, Section 6]).
Here we need another notion of application for the term translation: Given f : J(o — J7)
and a : Jo, we “apply” f to a as

fea:=r(\g" I .k(g,0a), ).

The complete translation can be found in the appendix.

Powell makes use of the Kuroda-style translation to extract moduli of continuity [19,
Section 5], similarly to our development in Section 3.3. However, our algorithms are different
because the Kuroda-style translation is call-by-value while our Gentzen-style one is call-by-
name. Consider the following example. Let ¢t = Aa.rec(a0, Anm.0,1) : NN — N which is a



. Xu

constant function. If we apply the Kuroda-style translation to ¢ with the continuity nucleus
(similar to the one given in Section 3.3 but generalized to arbitrary types of T), then we get
a modulus Aa.1, because in the call-by-value strategy all the inputs of rec including a0 are
evaluated. With the Gentzen-style translation, we get Aa.0 because a0 is never evaluated in

the call-by-name strategy.
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where rec® : 0 — (JN — J(Jo — Jo)) = N = Jo is defined by
rec®(a, f,0) = n(a)
rec’(a, f,n + 1) == f(nn) o rec®(a, f,n).

» Definition 13 (Kuroda-style monadic translation). We assign to each type p a type J[p]
where [p] is defined as follows

[N] =N [0 x 7] = [0]

X
[c = 7] = [o] = J[7] [0+ 7] =[o] +

Each term T Ft : p is translated to a term [T'] F [t] : J[p], where [I'] is a new context assigning
each x : 0 €T to a fresh variable T : [o], and [t] is defined inductively as follows:

[2] == n(2) [0] == n(0)
[Az.t] == n(\z.[t]) [suc] :== n(n o suc)
[tu] := [t] ® [u] [rec] = n(Aa.n(Af.n(rec(a, f))))
[pair] := n(Aa.n(Ab.n(pair(a,b)))) [inj;] == n(n o inj;)
[pr;] = n(nopr;) [case] == n(Af.n(Ag.n(case(f, g))))

where rec® : 0 — (N = J(o = Jo)) = N — Jo is defined by

rec®(a, f,0) == n(a)
rec®(a, f,n+ 1) == fnerec®(a, f,n).
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