
Graph Isomorphism in Quasipolynomial Time
Parameterized by Treewidth
Daniel Wiebking
RWTH Aachen University, Germany
wiebking@informatik.rwth-aachen.de

Abstract
We extend Babai’s quasipolynomial-time graph isomorphism test (STOC 2016) and develop a
quasipolynomial-time algorithm for the multiple-coset isomorphism problem. The algorithm for
the multiple-coset isomorphism problem allows to exploit graph decompositions of the given input
graphs within Babai’s group-theoretic framework.

We use it to develop a graph isomorphism test that runs in time npolylog(k) where n is the number
of vertices and k is the minimum treewidth of the given graphs and polylog(k) is some polynomial
in log(k). Our result generalizes Babai’s quasipolynomial-time graph isomorphism test.

2012 ACM Subject Classification Mathematics of computing → Combinatorial algorithms; Math-
ematics of computing → Hypergraphs; Mathematics of computing → Graph algorithms; Theory of
computation → Graph algorithms analysis

Keywords and phrases Graph isomorphism, canonization, treewidth, hypergraphs

Digital Object Identifier 10.4230/LIPIcs.ICALP.2020.103

Category Track A: Algorithms, Complexity and Games

Related Version A full version of the paper is available at https://arxiv.org/abs/1911.11257.

1 Introduction

The graph isomorphism problem asks for a structure preserving bijection between two given
graphs G and H, i.e., a bijection ϕ ∶ V (G) → V (H) such that vw ∈ E(G) if and only if
ϕ(v)ϕ(w) ∈ E(H). One central open problem in theoretical computer science is the question
whether the graph isomorphism problem can be solved in polynomial time. There are a
few evidences that the problem might not be NP-hard. For example, NP-hardness of the
problem implies a collapse of the polynomial hierarchy [32]. Moreover, NP-hardness of the
graph isomorphism problem would refute the exponential time hypothesis since the problem
can be decided in quasipolynomial time [1].

The research of the graph isomorphism problem started with two fundamental graph
classes, i.e., the class of trees and the class of planar graphs. In 1970, Zemlyachenko gave a
polynomial-time isomorphism algorithm for trees [37]. One year later, Hopcroft and Tarjan
extended a result of Weinberg and designed a polynomial-time isomorphism algorithm for
planar graphs [16],[34]. In 1980, Filotti, Mayer and Miller extended the polynomial-time
algorithm to graphs of bounded genus [24],[10]1. The genus is a graph parameter that
measures how far away the graph is from being planar.

In Luks’s pioneering work in 1982, he gave a polynomial-time isomorphism algorithm
for graphs of bounded degree [22]. His group-theoretic approach laid the foundation of
many other algorithms that were developed ever since. It turns out that the research in the

1 Myrvold and Kocay pointed out an error in Filotti’s techniques [26]. However, different algorithms have
been given which show that the graph isomorphism problem for graphs of bounded genus is indeed
decidable in polynomial time [25, 11, 17].

EA
T

C
S

© Daniel Wiebking;
licensed under Creative Commons License CC-BY

47th International Colloquium on Automata, Languages, and Programming (ICALP 2020).
Editors: Artur Czumaj, Anuj Dawar, and Emanuela Merelli; Article No. 103; pp. 103:1–103:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:wiebking@informatik.rwth-aachen.de
https://doi.org/10.4230/LIPIcs.ICALP.2020.103
https://arxiv.org/abs/1911.11257
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

103:2 Graph Isomorphism in Quasipolynomial Time Parameterized by Treewidth

graph isomorphism problem for restricted graph classes was a promising approach in tackling
the graph isomorphism problem in general. Shortly after Luks’s result, a combinatorial
partitioning lemma by Zemlyachenko was combined with Luks’s framework. This resulted in
an isomorphism algorithm for graphs with n vertices in general that runs in time 2O(

√

n logn)

[38],[4]. This algorithm was the fastest for decades.
In 1983, the seminal work of Robertson and Seymour in graph minors started a new era

of graph theory [30]. At the same time, Miller extended Luks’s group-theoretic framework to
hypergraphs [25]. It turned out that the study of general structures such as hypergraphs was
also a promising approach in tackling the graph isomorphism problem. In 1991, Ponomarenko
could in fact use Miller’s hypergraph algorithm to design a polynomial-time isomorphism
algorithm for graphs excluding a minor [29].

The work of Robertson and Seymour also rediscovered the notion of treewidth [8], a
graph parameter that measures how far away the graph is from being a tree. The treewidth
parameter was reborn and has been studied ever since. So, researchers went back to the
roots and studied the isomorphism problem for graphs of bounded treewidth. In 1990,
Bodlaender gave a simple isomorphism-algorithm for graphs of treewidth k with n vertices
that runs in time nO(k) [5]. However, no FPT-algorithm was known, i.e., an isomorphism
algorithm with a running time of the form f(k) ⋅ nO(1). The search of a FPT-algorithm
occupied researchers over years and this open problem was explicitly stated by several
authors [36, 6, 18, 19, 28, 7, 9, 12]. In 2017, Lokshtanov, Pilipczuk, Pilipczuk and Saurabh
finally solved this open problem and designed a FPT-algorithm for the graph isomorphism
problem [21]. Their algorithm runs in time 2O(k5 logk)nO(1) where n is the number of vertices
and k is the minimum treewidth of the given graphs.

At the same time, Babai made a breakthrough and designed a quasipolynomial-time
algorithm for the graph isomorphism problem in general [1]. His algorithm runs in time
npolylog(n) where n is the number of vertices and polylog(n) is some polynomial in log(n)
(according to Helfgott’s analysis the function polylog(n) can chosen to be quadratic in
log(n) [15]). To achieve this result, Babai built on Luks’s group-theoretic framework, which
actually solves the more general string isomorphism problem. One of the main questions
is how to combine Babai’s group-theoretic algorithm with the graph-theoretic techniques
that have been developed. For example, it is unclear how to exploit a decomposition of the
given graphs within Babai’s framework since his algorithm actually processes strings rather
than graphs.

Recently, Grohe, Neuen and Schweitzer were able to extend Babai’s algorithm to graphs of
maximum degree d and an isomorphism algorithm was developed that runs in time npolylog(d)

[13]. They suggest that their techniques might be useful also for graphs parameterized by
treewidth and conjectured that the isomorphism problem for graphs of treewidth k can be
decided in time npolylog(k).

In [14], the graph-theoretic FPT-algorithm of Lokshtanov et al. was improved by using
Babai’s group-theoretic algorithm and the extension given by Grohe et al. as a black box.
They decomposed a graph of bounded treewidth into subgraphs with particular properties.
They were able to design a faster algorithm that computes the isomorphisms between these
subgraphs. However, they pointed out a central problem that arises when dealing with graph
decompositions: When the isomorphisms between these subgraphs are already computed, how
can they be efficiently merged in order to compute the isomorphisms between the entire graphs?
This problem was named as multiple-coset isomorphism problem and is formally defined as
follows. Given two sets J = {ρ1∆Can

1 , . . . , ρt∆Can
t } and J ′ = {ρ′1∆′Can

1 , . . . , ρ′t∆′Can
t } where

ρi ∶ V → n, ρ′i ∶ V ′ → n are bijections and ∆Can
i ,∆′Can

i ≤ Sym([n]) are permutation groups for

D. Wiebking 103:3

all i ∈ [t], the problem is to decide whether there are bijections ϕ ∶ V → V ′, ψ ∶ [t] → [t] such
that ∆Can

i = ∆′Can
ψ(i) and ϕ ∈ ρi∆Can

i (ρ′ψ(i))−1 for all i ∈ [t]. By applying the group-theoretic
black box algorithms, they achieved an improved isomorphism test for graphs of treewidth k
that runs in time 2k⋅polylog(k)nO(1). However, for further improvements, it did not seem to
be enough to use the group-theoretic algorithms as a black box only. The question of an
isomorphism algorithm that runs in time npolylog(k) remained open.

In [31], the study of the multiple-coset isomorphism problem continued. Rather than
using group-theoretic algorithms as a black box, they were able to extend Luks’s group-
theoretic framework to the multiple-coset isomorphism problem. In order to facilitate their
recursion, they introduced the class of combinatorial objects. Their class of combinatorial
objects contains hypergraphs, colored graphs, relational structures, explicitly given codes
and more. However, the key idea in order to handle the involved structures recursively,
was to add so-called labeling cosets to their structures. By doing so, they could combine
combinatorial decomposition techniques with Luks’s group-theoretic framework. This led to
a simply-exponential time algorithm for the multiple-coset isomorphism problem. Although
the achieved running time was far away from being quasipolynomial, their result led to
improvements of several algorithms. For example, it led to the currently best algorithm for
the normalizer problem (a central problem in computational group theory) [35]. However,
they were not able to extend also Babai’s techniques to their framework and the question of
a graph isomorphism algorithm running in time npolylog(k) remained open.

Our Contribution. In this paper, we give a quasipolynomial-time algorithm for the multiple-
coset isomorphism problem. This leads to an answer of the conjecture in [13] mentioned
above.

I Theorem (Theorem 10). The graph isomorphism problem can be decided in time npolylog(k)

where n is the number of vertices and k is the minimum treewidth of the input graphs.

When k = polylog(n), our algorithm runs in time nO(log(logn)c
) (for some constant c)

and is significantly faster than Babai’s algorithm and existing FPT-algorithms for graphs
parameterized by treewidth.

For the present work, we exploit the fact that Babai’s algorithm was recently extended to
canonization [3]. A canonical labeling of a graph is a function that labels the vertices V of
the graph with integers 1, . . . , ∣V ∣ in such a way that the labeled versions of two isomorphic
graphs are equal (rather than isomorphic). The computation of canonical forms and labelings,
rather than isomorphism testing, is an important task in the area of graph isomorphism and
is especially useful for practical applications. Also the framework given in [31] is actually
designed for the canonization problem. The present paper is based on these works and our
algorithms provide canonical labelings as well. Only the algorithm given in the last section
depends on the bounded-degree isomorphism algorithm of Grohe et al. for which no adequate
canonization version is known.

The first necessary algorithm that we provide in our work is a simple canonization
algorithm for hypergraphs.

I Theorem (Theorem 6). Canonical labelings for hypergraphs (V,H) can be computed in
time (∣V ∣ + ∣H ∣)polylog ∣V ∣.

There is a simple argument why this algorithm is indeed necessary for our main result. It is
well-known that a hypergraphX = (V,H) can be encoded as a bipartite graphGX = (V ⊍H,E)
(the bipartite graph GX has an edge (v,S) ∈ E, if and only if v ∈ S). It is not hard to show

ICALP 2020

103:4 Graph Isomorphism in Quasipolynomial Time Parameterized by Treewidth

that the treewidth k of this bipartite graph GX is at most ∣V ∣. The bipartite graph GX
uniquely encodes the hypergraph X, in particular, two hypergraphs are isomorphic if and
only if their corresponding bipartite graphs are isomorphic. This means that an isomorphism
algorithm for graphs of treewidth k running in time npolylog(k) would imply an isomorphism
algorithm for hypergraphs running in time (∣V ∣ + ∣H ∣)polylog ∣V ∣. However, applying Babai’s
algorithm to the bipartite graph would lead to a running time of (∣V ∣ + ∣H ∣)polylog(∣V ∣+∣H ∣).
Instead of applying Babai’s algorithm to the bipartite graph directly, we decompose the
hypergraph and canonize the substructures recursively. To merge the canonical labelings of
all subhypergraphs, we use a canonical version of the multiple-coset isomorphism problem.
However, for the hypergraph algorithm, it suffices to use Babai’s algorithm as a black
box only.

Our decomposition technique for hypergraphs can also be used to design a simple
canonization algorithm for k-ary relations.

I Theorem (Theorem 5). Canonical labelings for k-ary relations R ⊆ V k can be computed in
time 2polylog ∣V ∣∣R∣O(1).

The algorithm improves the currently best algorithm from [13]. As graphs can be seen
as binary relations, our algorithm generalizes the quasipolynomial-time bound for graphs.
The achieved running time is the best one can hope for as long as the graph isomorphism
problem has no solution better than quasipolynomial time.

Our main algorithm finally solves the multiple-coset isomorphism problem. In fact, the
algorithm computes canonical labelings as well.

I Theorem (Theorem 7). Canonical labelings for a set J consisting of labeling cosets can be
computed in time (∣V ∣ + ∣J ∣)polylog ∣V ∣.

This result is actually of independent interest as it also implies a faster canonization
algorithm for the entire class of combinatorial objects.

To solve this problem, the simple hypergraph canonization algorithm can be used as a
subroutine in some places. However, we do not longer use Babai’s and Luks’s techniques
as a black box only. To extend their methods, we follow the route of [31] and consider
combinatorial objects that allows to combine combinatorial structures with permutation
group theory. In particular, we can extend Luks’s subgroup reduction and Babai’s method
and aggregation of local certificates to our framework. All these methods were designed for
the string isomorphism problem and need non-trivial extensions when dealing with a set of
labeling cosets rather than a string.

Related Work. Another extension of Babai’s quasipolynomial time algorithm has been
independently proposed by Daniel Neuen [27] who provided another algorithm for the
isomorphism problem of hypergraphs. However, Neuen can exploit groups with restricted
composition factors that are given as additional input in order to speed up his algorithm.
This can be exploited in the setting of graphs of bounded Euler genus. He provides a graph
isomorphism algorithm that runs in time npolylog(g) where n is the number of vertices and g
is the minimum genus of the given graphs.

On the other hand, his algorithm is not able to handle labeling cosets occurring in the
combinatorial structures. In particular, his algorithm is not able to solve the multiple-coset
isomorphism problem in the desired time bound, which we require for our isomorphism
algorithm for graphs parameterized by treewidth. Moreover, his techniques do not provide
canonical labelings.

D. Wiebking 103:5

We hope that both algorithms can be combined to give a faster isomorphism test for the
large class of graphs excluding a topological subgraph. This large class of graphs includes the
graphs of bounded treewidth, graphs of bounded genus, graphs of bounded degree and graphs
excluding a minor. In fact, Grohe and Marx provide a structure theorem which shows that
the graph classes mentioned above also characterize graphs excluding a topological subgraph.
Informally, they showed that graphs excluding a topological subgraph can be decomposed
into almost bounded-degree parts and minor-free parts which in turn can be decomposed
into almost-embeddable parts [12]. Therefore, we hope that the improved algorithms for the
isomorphism problem for bounded-degree graphs and bounded-genus graphs can be combined
with our algorithm to exploit the occurring graph decomposition.

Organization of the Paper. In Section 3, we show how (sufficiently small) instances of
the multiple-coset isomorphism and canonization problem can be processed with Babai’s
algorithm. In Section 4, we present a partitioning technique to reduce the canonization
problem for k-ary relations to instances of small size in each decomposition level. In
Section 5, we extend our technique to canonization of hypergraphs, which is an important
subroutine used in the next section. In Section 6, we finally present our main algorithm
which canonizes a set of labeling cosets and is divided into five subroutines. In the first
subroutine, we extend the partitioning technique to families of partitions. The second
and third subroutine extends Luks’s subgroup reduction to our framework and reduces the
problem to the barrier configuration characterized by a giant representation. The fourth and
fifth subroutine extend Babai’s method and aggregation of local certificates to our framework.
In Section 7, a straightforward application of the multiple-coset isomorphism problem leads
to an isomorphism algorithm that runs in time npolylog(k) where n is the number of vertices
and k is the treewidth of the given graphs.

2 Preliminaries

For an integer t, we write [t] for {1, . . . , t}. For a set S and an integer k, we write (S
k
) for

the k-element subsets of S and 2S for the power set of S. The composition of two functions
f ∶ V → U and g ∶ U →W is denoted by fg and is defined as the function that first applies f
and then applies g.

Labeling Cosets. A labeling of a set V is a bijection ρ ∶ V → {1, . . . , ∣V ∣}. A labeling coset of
a set V is a set of bijections Λ such that Λ = ∆ρ = {δρ ∣ δ ∈ ∆} for some subgroup ∆ ≤ Sym(V)
and some labeling ρ ∶ V → {1, . . . , ∣V ∣}. We write Label(V) to denote the labeling coset
Sym(V)ρ = {σρ ∣ σ ∈ Sym(V)} where ρ is an arbitrary labeling of V . Analogous to subgroups,
a set Θτ is called a labeling subcoset of ∆ρ, written Θτ ≤ ∆ρ, if the labeling coset Θτ is a
subset of ∆ρ.

Generating Sets. For the basic theory of handling permutation groups given by generating
sets, we refer to [33]. Indeed, most algorithms are based on strong generating sets. However,
given an arbitrary generating set, the Schreier-Sims algorithm is used to compute a strong
generating set (of size quadratic in the degree) in polynomial time.

Hereditarily Finite Sets and Combinatorial Objects. Inductively, we define hereditarily
finite sets, denoted by HFS(V), over a ground set V .

A vertex v ∈ V is an atom and a hereditarily finite set v ∈ HFS(V),
a labeling coset ∆ρ ≤ Label(V) is an atom and a hereditarily finite set ∆ρ ∈ HFS(V),
if X1, . . . ,Xt ∈ HFS(V), then also X = {X1, . . . ,Xt} ∈ HFS(V) where t ∈ N ∪ {0}, and
if X1, . . . ,Xt ∈ HFS(V), then also X = (X1, . . . ,Xt) ∈ HFS(V) where t ∈ N ∪ {0}.

ICALP 2020

103:6 Graph Isomorphism in Quasipolynomial Time Parameterized by Treewidth

A (combinatorial) object is a pair (V,X) consisting of a ground set V and a hereditarily finite
set X ∈ HFS(V). The ground set V is usually apparent from context and the combinatorial
object (V,X) is identified with the hereditarily finite set X . The set Obj(V) denotes the set
of all objects over V . The transitive closure of an object X , denoted by TC(X), is defined
as all objects that recursively occur in X . All labeling cosets that occur in X are succinctly
represented via generating sets. The encoding size of an object X can be chosen polynomial
in ∣TC(X)∣ + ∣V ∣ + tmax where tmax is the maximal length of a tuple in TC(X).

Isomorphisms and Automorphisms of Objects. The image of an object X ∈ Obj(V) (where
V is disjoint from N) under a bijection µ ∶ V → V ′ is an object X µ ∈ Obj(V ′) that is defined as
follows. Define vµ ∶= µ(v) for an atom X = v and define (∆ρ)µ ∶= µ−1∆ρ for an atom X = ∆ρ,
and inductively define {X1, . . . ,Xt}µ ∶= {Xµ

1 , . . . ,X
µ
t } and (X1, . . . ,Xt)µ ∶= (Xµ

1 , . . . ,X
µ
t).

The set of all isomorphisms from an object X ∈ Obj(V) and to an object X ′ ∈ Obj(V ′) is
denoted by Iso(X ;X ′) ∶= {ϕ ∶ V → V ′ ∣ Xϕ = X ′}. The set of all automorphisms of an object
X is denoted by Aut(X) ∶= Iso(X ;X).

I Definition 1 ([31]). Let C be an isomorphisms-closed class of (unordered) objects, i.e., for
all X ∈ C over a set V and all bijections ϕ ∶ V → V ′ it holds that Xϕ ∈ C. A canonical labeling
function CL is a function that assigns each object in C a labeling coset CL(X) = Λ ≤ Label(V)
such that:
(CL1) CL(X) = ϕCL(Xϕ) for all ϕ ∈ Iso(V ;V ′) (the set of bijections from V to V ′), and
(CL2) CL(X) = Aut(X)π for some (and thus for all) π ∈ CL(X).
In this case, the labeling coset Λ is also called a canonical labeling for X .

3 Handling Small Objects via String Canonization

Next, we define the central problem of this paper which is introduced in [14],[31]. This
problem is a canonical version of the multiple-coset isomorphism problem.

I Problem 2. Compute a function CLSet with the following properties:
Input J ∈ Obj(V) where J = {∆1ρ1, . . . ,∆tρt}, ∆iρi ≤ Label(V), i ∈ [t] and V is an (un-

ordered) set.
Output A labeling coset CLSet(J) = Λ ≤ Label(V) such that:
(CL1) CLSet(J) = ϕCLSet(J

ϕ
) for all ϕ ∈ Iso(V ;V ′).

(CL2) CLSet(J) = Aut(J)π for some (and thus for all) π ∈ Λ.

Following the definition of the automorphism group for objects in general, we have that
Aut(J) = {σ ∈ Sym(V) ∣ ∃ψ ∈ Sym(t)∀i ∈ [t] ∶ σ−1∆iρi = ∆ψ(i)ρψ(i)}.

To clarify the complexity status of Problem 2, it is important to note that the problem
is actually polynomial-time equivalent to the string canonization problem. The string
canonization problem in turn can be solved in quasipolynomial-time with Babai’s algorithm [3].
However, the reduction increases the permutation domain V by a factor ∣J ∣, which leads to a
running time of 2polylog(∣V ∣+∣J ∣) as stated in the following lemma.

I Lemma 3. Canonical labelings for sets J can be computed in time 2polylog(∣V ∣+∣J ∣).

The main task in this work is to remove the dependency of ∣J ∣ in the exponent. The
main algorithm (Theorem 7) solves Problem 2 in a running time of (∣V ∣ + ∣J ∣)polylog ∣V ∣ and is
presented in Section 6. This improvement will finally lead to an improved algorithm for the
graph isomorphism problem from npolylog(n) to npolylog(k) where n is the number of vertices
and k is the minimum treewidth of the input graphs. However, Lemma 3 is still used in our
algorithms. Especially, when ∣J ∣ is bounded by some quasipolynomial in ∣V ∣, the algorithm
from Lemma 3 already runs in the desired time bound.

D. Wiebking 103:7

Figure 1 We see a graph G decomposed into 3 isomorphic subgraphs H1,H2,H3 ⊆ G shown in
distinct colors.

The Intuition Behind this Central Problem. We explain why Problem 2 is the central
problem when dealing with graph decompositions. We want to keep this subsection as simple
as possible and do not want to introduce tree decompositions yet. For our purpose, we consider
a simplified formulation of a graph decomposition. In this subsection, a graph decomposition
of a graph G = (V,E) is a family of subgraphs {Hi}i∈[t] that covers the edges of the entire
graph, i.e., E(G) = E(H1) ∪ . . . ∪ E(Ht). We say that a graph decomposition is defined
in an isomorphism-invariant way if for two isomorphic graphs G,G′ the decompositions
{Hi}i∈[t],{H ′

i}i∈[t] are defined in such a way that each isomorphism ϕ ∈ Iso(G;G′) also maps
each subgraph Hi of the decomposition of G to a subgraph H ′

j of the decomposition of G′.
In particular, such a decomposition has to be invariant under automorphisms of the graph.
A prime example of such a isomorphism-invariant decomposition in the setting of bounded-
treewidth graphs is the decomposition into clique-separator-free parts. The clique-separator
decomposition goes back to Leimer [20] and is also used in our final isomorphism algorithm.

Assume we have given a graph G for which we can construct a graph decomposition
{Hi}i∈[t] in an isomorphism-invariant way and our task is the computation of a canonical
labeling for G. A priori, it is unclear how to exploit our graph decomposition. In a first
step, we could compute canonical labelings ∆iρi ∶= CL(Hi) for each subgraph Hi recursively.
The central question is how to merge these labeling cosets ∆iρi for Hi in order to obtain a
canonical labeling ∆ρ for the entire graph G.

The easy case occurs when all subgraphs Hi,Hj are pairwise non-isomorphic. In this case,
the subgraphs cannot be mapped to each other and indeed Aut(G) = Aut(H1)∩ . . .∩Aut(Ht).
Therefore, the computation of ∆ρ reduces to a canonical intersection-problem. In fact, Babai’s
quasipolynomial-time algorithm [3] can be used to intersect labeling cosets canonically.

We consider the second extreme case in which all subgraphsHi,Hj are pairwise isomorphic,
see Figure 1.

In such a case, we have that Aut(G) = {σ ∈ Sym(V) ∣ ∃ψ(t)∀i ∈ [t] ∶ σ ∈ Iso(Hi;Hψ(i))}.
Equivalently, we have that Aut(G) = Aut({∆1ρ1, . . . ,∆tρt}). Therefore, by the definition of
Problem 2, the canonical labeling ∆ρ ∶= CLSet({∆1ρ1, . . . ,∆tρt}) defines a canonical labeling
for the entire graph G.

Alternatively, one can use the following lemma which intuitively says that for the purpose
of canonization the subgraphs Hi can be replaced with their labeling cosets ∆iρi while
preserving all symmetry information. Formally, it says the following.

ICALP 2020

103:8 Graph Isomorphism in Quasipolynomial Time Parameterized by Treewidth

I Lemma 4 ([31], Object Replacement Lemma). Let X = {X1, . . . ,Xt} be an object and
let CL and CLSet be canonical labeling functions. Define X Set ∶= {∆1ρ1, . . . ,∆tρt} where
∆iρi ∶= CL(Xi) is a canonical labeling for Xi ∈ X . Assume that Xi,Xj ∈ X are pairwise
isomorphic. Then, CLObject(X) ∶= CLSet(X Set) defines a canonical labeling for X .

Roughly speaking, Problem 2 can be seen as the task of merging the given labeling cosets.
The mixed case in which some (but not all) subgraphs Hi,Hj are isomorphic can be handled
by a mixture of the above cases.

In Section 7, we apply this problem to graphs G with n vertices of treewidth k. By
exploiting that the subgraphs in our application can only intersect in cliques of size at most
k, we are able to restrict our attention to vertex sets of size ∣V ∣ ≤ k (with at most ∣J ∣ ≤ n
labeling cosets). This finally leads to the desired running time of npolylog(k).

Application to Combinatorial Objects. A second application of Problem 2 is the canoniz-
ation framework for combinatorial objects in general given in [31]. In fact, our algorithms
build on this canonization framework as it allows a recursive approach to solve the problem.
Our improved running time for Problem 2 then implies an improved canonization algorithm
for combinatorial objects in general that runs in time npolylog ∣V ∣ (Corollary 8).

4 Canonization of k-ary Relations

In this section, we provide an algorithm for canonical labeling of k-ary relations R ⊆ V k. As
graphs can be seen as binary relations, this problem clearly generalizes the graph canonization
problem. One way to canonize k-ary relations is by using a well-known reduction to the
graph canonization problem [23]. However, this approach leads to a running time that is
quasipolynomial in ∣V ∣ + ∣R∣. In this section, we will give a polynomial-time reduction to the
canonization problem for objects that are of input size polynomial in ∣V ∣ (which does not
depend on ∣R∣). With this reduction, we obtain an improved algorithm that runs in time
2polylog ∣V ∣∣R∣O(1). Our bound improves the currently best algorithm from [13]. Moreover, our
time bound is also optimal (when measured in ∣V ∣ and ∣R∣) as long as the graph isomorphism
problem can not be solved faster than quasipolynomial time.

A partition of a set X ∈ Obj(V) is a set P = {P1, . . . , Pp} such that X = P1 ⊍ . . . ⊍ Pp
where ∅ ≠ Pi ⊆ X for all Pi ∈ P. We suggest a general technique for exploiting partitions.

The Partitioning Technique. In this setting, we assume that we are given some object
X ∈ Obj(V) for which we can construct a partition P = {P1, . . . , Pp} in an isomorphism-
invariant way such that 2 ≤ ∣P∣ ≤ 2polylog ∣V ∣. The goal is the computation of a canonical
labeling for X by using an efficient recursion.

For example, X = R ⊆ V k might be a k-ary relation for which we can easily construct
a partition in an isomorphism-invariant way, as seen next. Assume ∣R∣ ≥ 2 (otherwise the
canonization problem is easy to solve) and let r be the first position in which R differs, i.e.,
the smallest r ∈ [k] such that there are (x1, . . . , xk), (y1, . . . , yk) ∈ R with xr ≠ yr. Then,
we partition R = P1 ⊍ . . . ⊍ Pp by saying that two tuples (x1, . . . , xk), (y1, . . . , yk) are in the
same part Pi if and only if xr = yr. This gives a non-trivial partition P = {P1, . . . , Pp} with
2 ≤ ∣P∣ ≤ ∣V ∣ ≤ 2polylog ∣V ∣ which is preserved under automorphisms and isomorphisms.

Using recursion, we compute a canonical labeling ∆iρi for each part Pi ⊆ X recursively
(assumed that we can define a partition for each part again). In our example, Pi ⊆ R is a
subrelation and therefore we can apply our approach recursively.

D. Wiebking 103:9

So far, we computed canonical labelings for each part Pi ⊆ X independently. The main
idea is to use our central problem (Problem 2) to merge all these labeling cosets. Let us
restrict our attention to the case in which the parts Pi, Pj ∈ P are pairwise isomorphic. In this
case, we define the set PSet ∶= {∆iρi ∣ Pi ∈ P} consisting of the canonical labelings ∆iρi for
each part. Moreover, by object replacement (Lemma 4), a canonical labeling for PSet defines
a canonical labeling for P as well. A canonical labeling for P in turn defines a canonical
labeling for X since we assume the partition to be defined in an isomorphism-invariant
way. Therefore, it is indeed true that a canonical labeling for PSet would define a canonical
labeling for X . For this reason, we can use the algorithm from Lemma 3 to compute a
canonical labeling for PSet. Intuitively, this algorithm merges all the labeling cosets in PSet

into one single canonical labeling. In our example, this single labeling coset is a canonical
labeling for the relation R. The algorithm Lemma 3 runs in the desired time bound since
∣PSet∣ = ∣P∣ ≤ 2polylog ∣V ∣ is bounded by some quasipolynomial.

Let us consider the number of recursive calls R(X) of this approach for a given object X .
Since we recurse on each part Pi ∈ P , we have a recurrence of R(X) = 1+∑Pi∈P

R(Pi) leading
to at most ∣X ∣O(1) recursive calls. The running time for one single recursive call is bounded
by 2polylog ∣V ∣. For this reason, the total running time is bounded by 2polylog ∣V ∣∣X ∣O(1).

I Theorem 5. Canonical labelings for k-ary relations R ⊆ V k can be computed in time
2polylog ∣V ∣∣R∣O(1).

5 Canonization of Hypergraphs

In this section, we provide an algorithm for canonical labeling of hypergraphs (V,H) where
H ⊆ 2V .

We want to extend the previous partitioning technique to hypergraphs. However, for
hypergraphs a non-trivial isomorphism-invariant partition H =H1 ⊍ . . . ⊍Hs of the edge set
does not always exist, e.g., the hypergraph (V,{S ⊆ V ∣ ∣S∣ = 2}) does not have a non-trivial
partition of the edge set that is preserved under automorphisms. Therefore, we can not
apply the partitioning technique to this setting. For this reason, we introduce a generalized
technique in order to solve this problem. This generalized technique results in a slightly
weaker time bound of (∣V ∣ + ∣H ∣)polylog ∣V ∣ (where the dependency on ∣H ∣ is not polynomial).
Indeed, it is an open problem whether the running time for the hypergraph isomorphism
problem can be improved to 2polylog ∣V ∣ ⋅ ∣H ∣O(1) [2].

A cover of a set X ∈ Obj(V) is a set C = {C1, . . . ,Cc} such that X = C1 ∪ . . . ∪Cc where
∅ ≠ Ci ⊆ X for all Ci ∈ C. In contrast to a partition, the sets Ci,Cj are not necessarily
disjoint for i ≠ j. A cover C of X is called sparse if ∣Ci∣ ≤ 1

2 ∣X ∣ for all Ci ∈ C. Extending the
partitioning technique, we suggest a technique to handle covers.

The Covering Technique. In this setting, we assume that we have given some object
X ∈ Obj(V) for which we can define a cover C = {C1, . . . ,Cc} in an isomorphism-invariant
way. Also here, we assume that 2 ≤ ∣C∣ ≤ 2polylog ∣V ∣. The goal is the computation of a
canonical labeling of X using an efficient recursion.

For example, X = H is a hypergraph for which we can easily define a cover in an
isomorphism-invariant way, as seen next. We assume that ∣H ∣ ≥ 2 (otherwise the canonization
problem is easy to solve) and that ∅ ∉H (otherwise we remove the empty set from H). Then,
we cover H = ⋃v∈V Cv by setting Cv ∶= {S ∈ H ∣ v ∈ S} and define a cover C ∶= {Cv ∣ v ∈ V }.
Since each hyperedge S ∈H contains at least one vertex v ∈ V , each hyperedge S is contained
in at least one set Cv ∈ C. Moreover, the cover C is preserved under automorphisms and
isomorphisms.

ICALP 2020

103:10 Graph Isomorphism in Quasipolynomial Time Parameterized by Treewidth

First, we reduce to the setting in which C is a sparse cover of X . This can be done
as follows. We define C∗

i ∶= Ci if ∣Ci∣ ≤ 1
2 ∣X ∣ and we define C∗

i ∶= X ∖ Ci if ∣Ci∣ > 1
2 ∣X ∣. By

definition, we ensured that ∣C∗

i ∣ ≤ 1
2 ∣X ∣ for all i ∈ [c]. Let X ∗ ∶= ⋃i∈[c]C∗

i . Next, we consider
two cases.

If X ∗ (X , then we have found a non-trivial partition X = X ∗ ⊍X ○ where X ○ ∶= X ∖ X ∗.
In the hypergraph example, we would have a non-trivial partition of the hyperedges defined in
an isomorphism-invariant way (which can be exploited very easily). We proceed analogously
as in the partitioning technique explained in Section 4.

Otherwise, if X ∗ = X , then C∗ ∶= {C∗

1 , . . . ,C
∗

c } is also a cover of X . But more importantly,
the cover C∗ is indeed sparse. In the case of a sparse cover, we also proceed analogously
as in the partition technique explained in Section 4. However, the key difference of the
covering technique compared to the partitioning technique lies in the recurrence for the
number of recursive calls since the sets C∗

i ,C
∗

j ∈ C∗ are not necessarily pairwise disjoint. The
recurrence we have is R(X) = 1 + ∑C∗

i ∈C
∗ R(C∗

i). By using that ∣C∗∣ = ∣C∣ ≤ 2polylog ∣V ∣ and
that ∣C∗

i ∣ ≤ 1
2 ∣X ∣, we obtain at most ∣X ∣polylog ∣V ∣ recursive calls. This is exactly the reason

why the algorithm for relations is faster than the algorithm for hypergraphs.

I Theorem 6. Canonical labelings for hypergraphs (V,H) can be computed in time (∣V ∣ +
∣H ∣)polylog ∣V ∣.

6 Canonization of Sets and Objects

Our main theorem provides an algorithm that canonizes a set J = {∆1ρ1, . . . ,∆tρt} consisting
of labelings cosets ∆iρi ≤ Label(V), i ∈ [t].

I Theorem 7. A function CLSet solving Problem 2 can be computed in time (∣V ∣+∣J ∣)polylog ∣V ∣.

I Corollary 8. Canonical labelings for combinatorial objects can be computed in time
npolylog ∣V ∣ where n is the input size and V is the ground set of the object.

Proof Outline. For the purpose of recursion, our main algorithm CLSet needs some ad-
ditional input parameters. The input of the main algorithm is a tuple (J,A,∆Can, gCan)
consisting of the following input parameters.

J is a set consisting of labeling cosets,
A ⊆ V is a subset which is ∆i-invariant for all ∆iρi ∈ J . We require that Property (A)
holds: (∆iρi)∣V ∖A = (∆jρj)∣V ∖A for all ∆iρi,∆jρj ∈ J (initially, we set A ∶= V),
∆Can ≤ Sym(V Can) is a group over the linearly ordered set V Can = {1, . . . , ∣V ∣}. We
require that for all ∆iρi ∈ J it holds that ρ−1

i ∆iρi = ∆Can (if this would not be the case,
in can be shown that J can be partitioned such that progress can be measured), and
gCan ∶ ∆Can → Sym(WCan) is a giant representation where WCan = {1, . . . , ∣WCan∣} is a
linearly ordered set (a homomorphism h ∶ ∆→ Sym(W) is called a giant representation if
the image of ∆ under h is a giant, i.e., Alt(W) ≤ h(∆) ≤ Sym(W)). It is allowed that
gCan is undefined (gCan = �).

The Subgroup Recursion. First of all we design a subgroup reduction that, given a tuple
(J,A,∆Can,�) and a subgroup ΨCan ≤ ∆Can, reduces the canonical labeling problem of
(J,A,∆Can,�) to s-many instances (Ĵi,A,ΨCan,�) where ∣Ĵi∣ ≤ ∣J ∣. Here, s corresponds to
the index of ΨCan in ∆Can. In contrast to Luks’s subgroup reduction, the present reduction
splits all labeling cosets in J simultaneously. We describe the idea of this algorithm.

D. Wiebking 103:11

Main algorithm CLSet

gCan is
defined?

reduceToJohnson produceCertificates

aggregateCertificates

No Yes Certificate
of Fullness

found

Progress Progress

Progress

Figure 2 Flowchart of the algorithm for Theorem 7.

We consider the decomposition into left cosets of ∆Can = ⋃`∈[s] δCan
` ΨCan and define

Ĵ ∶= {ρiδCan
` ΨCan ∣ i ∈ [t], ` ∈ [s]}. Surprisingly, we can show that Aut(Ĵ) = Aut(J). This

means that a canonical labeling for Ĵ defines a canonical labeling for J as well and vice
versa. Therefore, the first idea that comes to mind would be a recursion on the instance
(Ĵ ,A,ΨCan,�). However, there are two problems when recursing on Ĵ . First, the instance
Ĵ does not necessarily preserve Property (A) that we have for the subset A ⊆ V (this
requirement is important for the subroutines that follow).

Second, it holds that ∣Ĵ ∣ > ∣J ∣ (assumed that ΨCan < ∆Can is a proper subgroup). Also
this blow-up in the instance size would not lead to the desired recursion. However, we are
able to construct a decomposition of Ĵ = Ĵ1 ⊍ . . . ⊍ Ĵr such that r ≤ s and ∣Ĵi∣ ≤ ∣J ∣ and such
that Property (A) holds for each instance (Ĵi,A,ΨCan,�).

The Johnson Reduction. We design an algorithm that, given an instance (J,A,∆Can,�),
either finds a giant representation gCan ∶ ∆Can → Sym(WCan) or reduces the canonical
labeling problem of (J,A,∆Can,�) to instances that are smaller (according to some function
that measures progress).

First of all, we want to reduce to the case in which all ∆i ≤ Sym(V) are transitive on
A ⊆ V . To achieve transitivity, Babai’s algorithm uses Luks’s idea of orbit-by-orbit processing.
However, the orbit-by-orbit recursion is a tool that is developed for strings and needs a
non-trivial adaption when dealing with a set of labeling cosets J . To achieve transitivity,
the present algorithm uses an extension of the orbit-by-orbit recursion that was developed
in [31]. In the transitive case, we follow Babai’s idea. First, we define a block system BCan

on which ∆Can acts primitively. If the primitive group acting on BCan is small, we use the
subgroup reduction to reduce to a subgroup ΨCan ≤ ∆Can that is defined as the kernel of
that action. In case that the primitive group is large, we use Cameron’s classification of large
primitive groups which implies that the primitive group is a Cameron group. We reduce the
Cameron group to a Johnson group by using the subgroup reduction again. The Johnson
group (acting on subsets of a set WCan) in turn can be used to define a giant representation
gCan ∶ ∆Can → Sym(WCan).

I Definition 9 (Certificates of Fullness). A group G ≤ Sym(V) is called certificate of fullness
for an instance (J,A,∆Can, gCan) if
1. G ≤ Aut(J),
2. GCan ∶= Gρi ≤ ∆Can does not depend on the choice of ∆iρi ∈ J , and
3. gCan ∶ GCan → Sym(WCan) is still a giant representation.

The Certificate Producing Algorithm. We design an algorithm that, given an instance
(J,A,∆Can, gCan) (where gCan is defined), either finds a certificate of fullness or makes
progress (according to some function that measures progress).

ICALP 2020

103:12 Graph Isomorphism in Quasipolynomial Time Parameterized by Treewidth

The algorithm picks a subset TCan ⊆WCan of logarithmic size. We call this set TCan a
canonical test set. Next, we define the group ∆Can

T ≤ ∆Can which stabilizes TCan in the image
under gCan. By doing so, we can define a giant representation gCan

T ∶ ∆Can
T → Sym(TCan). We

say that vCan ∈ V Can is affected by gCan
T if gCan

T is not a giant representation when restricted
to (∆Can

T)(vCan). Let SCan, UCan ⊆ V Can be set of elements affected and unaffected by gCan
T ,

respectively. We have a technical difference in our algorithm in contrast to Babai’s method.
In Babai’s method of local certificates, he processes a giant representation g ∶ ∆→ Sym(W)
and considers multiple test sets T ⊆W (one test set for each subset of logarithmic size). In
our framework, we define the giant representation for a group ∆Can over a linearly ordered
set V Can. This allows us to choose one single (canonical) test set TCan ⊆WCan only. Here,
canonical means that the subset is chosen minimal with respect to the ordering of the natural
numbers. However, when we translate the ordered structures V Can to unordered structures
over V , we implicitly consider multiple test sets and giant representations. More precise, by
applying inverses of labelings in ∆iρi ∈ J to the ordered group ∆Can

T ≤ Sym(V Can), we obtain
a set of groups over V , i.e., {λi∆Can

T λ−1
i ∣ λi ∈ ∆iρi}. Similarly, we can define a set of giant

representations {(gCan
T)λ−1

i ∣ λi ∈ ∆iρi} (where (gCan
T)λ−1

i (δi) ∶= gCan
T (λ−1

i δiλi) for δi ∈ ∆i)
and a set of affected points Hi ∶= {S ⊆ V ∣ Sλi = SCan for some λi ∈ ∆iρi}. Therefore, when
dealing over unordered structures, we need to consider multiple groups and homomorphisms.
It becomes even more complex, since we are dealing with a set J consisting of labeling cosets
rather than one single group only. In fact, we obtain a set of affected point sets Hi for each
labeling coset ∆iρi ∈ J . However, it turns out that the hardest case occurs when Hi =Hj for
all ∆iρi,∆jρj ∈ J . Roughly speaking, we will apply the following strategy.

We restrict each labeling coset in J to some set of affected points S ∈ Hi and define a
set of local restrictions J∗S that ignore the vertices outside S. The precise definition of J∗S is
given in our algorithm. Intuitively, the algorithms tries to analyze the labeling cosets locally.

Case 1: The local restrictions J∗S are pairwise distinct. In this case, we canonize the local
restrictions J∗S recursively. Observe that a canonical labeling ∆ρ for J∗S does not necessarily
define a canonical labeling for J . However, we can define a function α ∶ J∗S → J that assigns
each local restriction its corresponding labeling coset ∆iρi ∈ J . This function is well-defined
since we assumed the local restrictions to be pairwise distinct. Now, each automorphism
in Aut(J∗S) induces a permutation of J∗S which in turn induces a permutation of J . We are
able to use the permutations on J to canonize the set J efficiently (without even applying
further recursive calls).

Case 2: Some local restrictions in J∗S are pairwise different and some local restrictions in
J∗S are pairwise equal. In this case, we can define a non-trivial partition of J in the following
way. We say that two labeling cosets ∆iρi,∆jρj are in the same part, if and only if the
corresponding local restrictions in J∗S coincide. Actually, this leads to a family of partitions
since we obtain one partition for each choice of an affected set S ∈ Hi. We exploit this
partition family by using an extension of the partitioning techniques from Sections 4 and 5.

Case 3: The local restrictions J∗S are pairwise equal. In this case, it is possible to find
automorphisms GS ≤ Sym(V) of J which fix the unaffected points V ∖S. In fact, we can find
such automorphisms for all choices of S ∈Hi, otherwise we are in a situation of a previous
case. Finally, we consider the group of automorphisms G ≤ Aut(J) generated by all GS for
S ∈Hi. We can show that G is indeed a certificate of fullness.

The Certificate Aggregation. We finally design an algorithm that, given an instance
(J,A,∆Can, gCan) and a certificate of fullness G ≤ Sym(V) makes progress (according to
some function that measures progress).

D. Wiebking 103:13

Let us consider the less technical case in which gCan(GCan) is the symmetric group (rather
than the alternating group). In this case, it holds that GCanΨCan = ∆Can where ΨCan is
the kernel of gCan. Similarly to the subgroup recursion, we consider the decomposition of
∆Can = ⋃`∈[s] δCan

` ΨCan into left cosets of the kernel and define Ĵ ∶= {ρiδCan
` ΨCan ∣ i ∈ [t], ` ∈

[s]}. Again, we have Aut(Ĵ) = Aut(J). The key observation is that G is transitive on Ĵ
since (ρiδCan

` ΨCan)g−1 = ρigρiδCan
` ΨCan for all g ∈ G and GCanΨCan = ∆Can.

First, consider an easy case in which J = {∆1ρ1} consists of one single labeling coset.
In this case, we have a set of automorphisms G acting transitively on the subcosets Ĵ =
{ρ1δ

Can
` ΨCan ∣ ` ∈ [s]}. Moreover, each subcoset satisfies Aut(ρ1δ

Can
` ΨCan) ≤ Aut(J) and

can be seen as an individualization of J . This means, we can choose (arbitrarily) a subcoset
ρ1δ

Can
` ΨCan ≤ ∆1ρ1 and recurse on that. Since the automorphisms in G can map each

subcoset to each other subcoset it does not matter which subcoset we choose. By recursing
on one single subcoset only, we can measure significant progress. At the end, we return GΛ̂
where Λ̂ is a canonical labeling for the (arbitrarily) chosen subcoset and G is the group of
automorphisms (acting transitively on the set of all subcosets).

However, the situation becomes more difficult when dealing with more labeling cosets J =
{∆1ρ1, . . . ,∆tρt} for t ≥ 2. The first idea that comes to mind is the following generalization.
We choose (arbitrarily) some ` ∈ [s] and define the set of subcosets Ĵ` ∶= {ρiδCan

` ΨCan ∣ i ∈
[t]} ⊆ Ĵ . The set Ĵ` contains exactly one subcoset ρiδCan

` ΨCan ≤ ∆iρi of each ∆iρi ∈ J .
However, the partition Ĵ ∶= {Ĵ` ∣ ` ∈ [s]} might not be G-invariant and G might not be
transitive on it. In fact, we are able to find a suitable partition Ĵ ∶= {Ĵ1, . . . , Ĵr} of the
subcosets Ĵ on which G is transitive.

7 Isomorphism of Graphs Parameterized by Treewidth

I Theorem 10. Let G1,G2 be two connected graphs. There is an algorithm that, given a
pair (G1,G2), computes the set of isomorphisms Iso(G1;G2) in time ∣V (G1)∣polylog(twG1).

Proof Outline. We follow the graph decomposition approach from [14] building on [21].
It was shown that graphs of treewidth k can be decomposed in an isomorphism-invariant
way into parts that have restrictions on their automorphism groups. More precisely, the
automorphism group of each part has composition-width at most k after fixing one vertex
(the composition-width of a group ∆ is the smallest integer k such that all composition factors
of ∆ are isomorphic to a subgroup of Sym(k)). This fact allows us to use the bounded-degree
graph isomorphism algorithm given in [13] to compute the isomorphisms between the parts.
Finally, we use our main theorem (Theorem 7) to merge the isomorphisms.

Since Grohe, Neuen and Schweitzer provide an isomorphism algorithm, rather than a
canonization algorithm, our final algorithm from the previous theorem does not lead to
canonical forms. However, this is the only part that depends on their isomorphism algorithm.

8 Outlook and Open Questions

One could ask the question whether our isomorphism algorithm for graphs can be improved
to a FPT-algorithm that runs in time 2polylog(k)nO(1) where n is the number of vertices and k
is the maximum treewidth of the given graphs. There are various reasons why this might be
difficult. One reason is that our approach would require a FPT-algorithm for the isomorphism
problem of graphs of maximum degree d that runs in time 2polylog(d)nO(1). However, it is an
open question whether any FPT-algorithm for the graph isomorphism problem parameterized

ICALP 2020

103:14 Graph Isomorphism in Quasipolynomial Time Parameterized by Treewidth

by maximum degree exists. Another reason is that an algorithm for graphs running in time
2polylog(k)nO(1) would imply an isomorphism algorithm for hypergraphs (V,H) running in
time 2polylog ∣V ∣∣H ∣O(1). It is also an open question, whether such a hypergraph isomorphism
algorithm exists [2]. If this were indeed the case, one could hope for an improvement
of our canonization algorithm for a set J consisting of labeling cosets that runs in time
2polylog ∣V ∣∣J ∣O(1).

Recently, Babai extended his quasipolynomial-time algorithm to the canonization problem
for graphs [3]. With Babai’s result, it is a natural question whether the bounded-degree
isomorphism algorithm of [13] extends to canonization as well. The present isomorphism
algorithm for graphs parameterized by treewidth should then be amenable to canonization
as well.

Another question that arises is about permutation groups G ≤ Sym(V). The canonical
labeling problem for permutation groups is of great interest because it also solves the
normalizer problem. In our recent work, we gave a canonization algorithm for explicitly
given permutation groups running in time 2O(∣V ∣)∣G∣O(1) [31]. Recently, the framework
was extended to permutation groups that are implicitly given and the running time was
improved to 2O(∣V ∣) [35]. The present work implies a canonization algorithm running in
time (∣V ∣ + ∣G∣)polylog ∣V ∣. An important question is whether the present techniques can be
combined with the canonization techniques for implicitly given permutation groups to obtain
a canonization algorithm running in time 2polylog ∣V ∣.

Finally, we ask whether the isomorphism problem can be solved in time npolylog(∣V (H)∣)

where n is the number of vertices and H is an excluded topological subgraph H of the given
graphs. Even for excluded minors H, we do not have such an algorithm.

References

1 László Babai. Graph isomorphism in quasipolynomial time [extended abstract]. In Daniel
Wichs and Yishay Mansour, editors, Proceedings of the 48th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 684–697.
ACM, 2016. doi:10.1145/2897518.2897542.

2 László Babai. Groups, graphs, algorithms: The graph isomorphism problem. In Proc. ICM,
pages 3303–3320, 2018.

3 László Babai. Canonical form for graphs in quasipolynomial time: preliminary report. In
Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC
2019, Phoenix, AZ, USA, June 23-26, 2019., pages 1237–1246, 2019. doi:10.1145/3313276.
3316356.

4 László Babai and Eugene M. Luks. Canonical labeling of graphs. In Proceedings of the 15th
Annual ACM Symposium on Theory of Computing, 25-27 April, 1983, Boston, Massachusetts,
USA, pages 171–183, 1983. doi:10.1145/800061.808746.

5 Hans L. Bodlaender. Polynomial algorithms for graph isomorphism and chromatic index on
partial k-trees. J. Algorithms, 11(4):631–643, 1990. doi:10.1016/0196-6774(90)90013-5.

6 Hans L. Bodlaender, Leizhen Cai, Jianer Chen, Michael R. Fellows, Jan Arne Telle, and Dániel
Marx. Open problems in parameterized and exact computation-iwpec 2006. UU-CS, 2006,
2006.

7 Adam Bouland, Anuj Dawar, and Eryk Kopczynski. On tractable parameterizations of
graph isomorphism. In Parameterized and Exact Computation - 7th International Symposium,
IPEC 2012, Ljubljana, Slovenia, September 12-14, 2012. Proceedings, pages 218–230, 2012.
doi:10.1007/978-3-642-33293-7_21.

8 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1145/3313276.3316356
https://doi.org/10.1145/3313276.3316356
https://doi.org/10.1145/800061.808746
https://doi.org/10.1016/0196-6774(90)90013-5
https://doi.org/10.1007/978-3-642-33293-7_21

D. Wiebking 103:15

9 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

10 I. S. Filotti and Jack N. Mayer. A polynomial-time algorithm for determining the isomorphism
of graphs of fixed genus (working paper). In Proceedings of the 12th Annual ACM Symposium
on Theory of Computing, April 28-30, 1980, Los Angeles, California, USA, pages 236–243,
1980. doi:10.1145/800141.804671.

11 Martin Grohe. Isomorphism testing for embeddable graphs through definability. In Proceedings
of the Thirty-Second Annual ACM Symposium on Theory of Computing, May 21-23, 2000,
Portland, OR, USA, pages 63–72, 2000. doi:10.1145/335305.335313.

12 Martin Grohe and Dániel Marx. Structure theorem and isomorphism test for graphs with
excluded topological subgraphs. SIAM J. Comput., 44(1):114–159, 2015. doi:10.1137/
120892234.

13 Martin Grohe, Daniel Neuen, and Pascal Schweitzer. A faster isomorphism test for graphs of
small degree. In 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2018, Paris, France, October 7-9, 2018, pages 89–100, 2018. doi:10.1109/FOCS.2018.00018.

14 Martin Grohe, Daniel Neuen, Pascal Schweitzer, and Daniel Wiebking. An improved iso-
morphism test for bounded-tree-width graphs. In 45th International Colloquium on Automata,
Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, pages
67:1–67:14, 2018. doi:10.4230/LIPIcs.ICALP.2018.67.

15 Harald Andrés Helfgott. Isomorphismes de graphes en temps quasi-polynomial (d’après babai
et luks, weisfeiler-leman...), 2017. arXiv:1701.04372.

16 John E. Hopcroft and Robert Endre Tarjan. A v2 algorithm for determining isomorphism of
planar graphs. Inf. Process. Lett., 1(1):32–34, 1971. doi:10.1016/0020-0190(71)90019-6.

17 Ken-ichi Kawarabayashi. Graph isomorphism for bounded genus graphs in linear time. CoRR,
abs/1511.02460, 2015. arXiv:1511.02460.

18 Ken-ichi Kawarabayashi and Bojan Mohar. Graph and map isomorphism and all polyhedral
embeddings in linear time. In Proceedings of the 40th Annual ACM Symposium on Theory
of Computing, Victoria, British Columbia, Canada, May 17-20, 2008, pages 471–480, 2008.
doi:10.1145/1374376.1374443.

19 Stefan Kratsch and Pascal Schweitzer. Isomorphism for graphs of bounded feedback vertex set
number. In Algorithm Theory - SWAT 2010, 12th Scandinavian Symposium and Workshops
on Algorithm Theory, Bergen, Norway, June 21-23, 2010. Proceedings, pages 81–92, 2010.
doi:10.1007/978-3-642-13731-0_9.

20 Hanns-Georg Leimer. Optimal decomposition by clique separators. Discrete Mathematics,
113(1-3):99–123, 1993. doi:10.1016/0012-365X(93)90510-Z.

21 Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Fixed-parameter
tractable canonization and isomorphism test for graphs of bounded treewidth. SIAM J.
Comput., 46(1):161–189, 2017. doi:10.1137/140999980.

22 Eugene M. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial time.
J. Comput. Syst. Sci., 25(1):42–65, 1982. doi:10.1016/0022-0000(82)90009-5.

23 Gary L. Miller. Graph isomorphism, general remarks. J. Comput. Syst. Sci., 18(2):128–142,
1979. doi:10.1016/0022-0000(79)90043-6.

24 Gary L. Miller. Isomorphism testing for graphs of bounded genus. In Proceedings of the 12th
Annual ACM Symposium on Theory of Computing, April 28-30, 1980, Los Angeles, California,
USA, pages 225–235, 1980. doi:10.1145/800141.804670.

25 Gary L. Miller. Isomorphism of k-contractible graphs. A generalization of bounded valence and
bounded genus. Information and Control, 56(1/2):1–20, 1983. doi:10.1016/S0019-9958(83)
80047-3.

26 Wendy Myrvold and William L. Kocay. Errors in graph embedding algorithms. J. Comput.
Syst. Sci., 77(2):430–438, 2011. doi:10.1016/j.jcss.2010.06.002.

ICALP 2020

https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1145/800141.804671
https://doi.org/10.1145/335305.335313
https://doi.org/10.1137/120892234
https://doi.org/10.1137/120892234
https://doi.org/10.1109/FOCS.2018.00018
https://doi.org/10.4230/LIPIcs.ICALP.2018.67
http://arxiv.org/abs/1701.04372
https://doi.org/10.1016/0020-0190(71)90019-6
http://arxiv.org/abs/1511.02460
https://doi.org/10.1145/1374376.1374443
https://doi.org/10.1007/978-3-642-13731-0_9
https://doi.org/10.1016/0012-365X(93)90510-Z
https://doi.org/10.1137/140999980
https://doi.org/10.1016/0022-0000(82)90009-5
https://doi.org/10.1016/0022-0000(79)90043-6
https://doi.org/10.1145/800141.804670
https://doi.org/10.1016/S0019-9958(83)80047-3
https://doi.org/10.1016/S0019-9958(83)80047-3
https://doi.org/10.1016/j.jcss.2010.06.002

103:16 Graph Isomorphism in Quasipolynomial Time Parameterized by Treewidth

27 Daniel Neuen. Hypergraph isomorphism for groups with restricted composition factors. In
47th International Colloquium on Automata, Languages, and Programming, ICALP 2020, July
8-11, 2020, Saarbrücken, Germany (virtual conference), 2020. To appear.

28 Yota Otachi. Isomorphism for graphs of bounded connected-path-distance-width. In Algorithms
and Computation - 23rd International Symposium, ISAAC 2012, Taipei, Taiwan, December
19-21, 2012. Proceedings, pages 455–464, 2012. doi:10.1007/978-3-642-35261-4_48.

29 I. N. Ponomarenko. The isomorphism problem for classes of graphs closed under contraction.
Journal of Soviet Mathematics, 55(2):1621–1643, June 1991. doi:10.1007/BF01098279.

30 Neil Robertson and Paul D. Seymour. Graph minors. i. excluding a forest. J. Comb. Theory,
Ser. B, 35(1):39–61, 1983. doi:10.1016/0095-8956(83)90079-5.

31 Pascal Schweitzer and Daniel Wiebking. A unifying method for the design of algorithms
canonizing combinatorial objects. In Proceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019., pages 1247–1258,
2019. doi:10.1145/3313276.3316338.

32 Uwe Schöning. Graph isomorphism is in the low hierarchy. J. Comput. Syst. Sci., 37(3):312–323,
1988. doi:10.1016/0022-0000(88)90010-4.

33 Ákos Seress. Permutation group algorithms, volume 152 of Cambridge Tracts in Mathematics.
Cambridge University Press, Cambridge, 2003. doi:10.1017/CBO9780511546549.

34 Louis Weinberg. A simple and efficient algorithm for determining isomorphism of planar triply
connected graphs. IEEE Transactions on Circuit Theory, 13(2):142–148, 1966.

35 Daniel Wiebking. Normalizes and permutational isomorphisms in simply-exponential time. In
Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake
City, UT, USA, January 5-8, 2020, pages 230–238, 2020. doi:10.1137/1.9781611975994.14.

36 Koichi Yamazaki, Hans L. Bodlaender, Babette de Fluiter, and Dimitrios M. Thilikos.
Isomorphism for graphs of bounded distance width. Algorithmica, 24(2):105–127, 1999.
doi:10.1007/PL00009273.

37 Viktor N. Zemlyachenko. Canonical numbering of trees. In Proc. Seminar on Comb. Anal. at
Moscow State University, page 55, 1970.

38 Viktor N. Zemlyachenko, Nickolay M. Korneenko, and Regina I. Tyshkevich. Graph isomorph-
ism problem. Journal of Soviet Mathematics, 29(4):1426–1481, 1985.

https://doi.org/10.1007/978-3-642-35261-4_48
https://doi.org/10.1007/BF01098279
https://doi.org/10.1016/0095-8956(83)90079-5
https://doi.org/10.1145/3313276.3316338
https://doi.org/10.1016/0022-0000(88)90010-4
https://doi.org/10.1017/CBO9780511546549
https://doi.org/10.1137/1.9781611975994.14
https://doi.org/10.1007/PL00009273

	Introduction
	Preliminaries
	Handling Small Objects via String Canonization
	Canonization of k-ary Relations
	Canonization of Hypergraphs
	Canonization of Sets and Objects
	Isomorphism of Graphs Parameterized by Treewidth
	Outlook and Open Questions
	Bibliography

