
Single-Use Automata and Transducers for Infinite
Alphabets
Mikołaj Bojańczyk
Institute of Informatics, University of Warsaw, Poland
bojan@mimuw.edu.pl

Rafał Stefański
Institute of Informatics, University of Warsaw, Poland
rafal.stefanski@mimuw.edu.pl

Abstract
Our starting point are register automata for data words, in the style of Kaminski and Francez. We
study the effects of the single-use restriction, which says that a register is emptied immediately after
being used. We show that under the single-use restriction, the theory of automata for data words
becomes much more robust. The main results are: (a) five different machine models are equivalent
as language acceptors, including one-way and two-way single-use register automata; (b) one can
recover some of the algebraic theory of languages over finite alphabets, including a version of the
Krohn-Rhodes Theorem; (c) there is also a robust theory of transducers, with four equivalent models,
including two-way single use transducers and a variant of streaming string transducers for data
words. These results are in contrast with automata for data words without the single-use restriction,
where essentially all models are pairwise non-equivalent.

2012 ACM Subject Classification Theory of computation→ Formal languages and automata theory

Keywords and phrases Automata, semigroups, data words, orbit-finite sets

Digital Object Identifier 10.4230/LIPIcs.ICALP.2020.113

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version A full version of the paper is available at https://arxiv.org/abs/1907.10504.

Funding Supported by the European Research Council under the European Unions Horizon 2020
research and innovation programme (ERC consolidator grant LIPA, agreement no. 683080).

1 Introduction

One of the appealing features of regular languages for finite alphabets is the robustness of the
notion: it can be characterised by many equivalent models of automata (one-way, two-way,
deterministic, nondeterministic, alternating, etc.), regular expressions, finite semigroups, or
monadic second-order logic. A similar robustness appears for transducers, see [11] for a survey;
particularly for the class of regular string-to-string functions, which can be characterised
using deterministic two-way transducers, streaming string transducers, or mso transductions.

This robustness vanishes for infinite alphabets. We consider infinite alphabets that are
constructed using an infinite set A of atoms, also called data values. Atoms can only be
compared for equality. The literature for infinite alphabets is full of depressing diagrams
like [15, Figure 1] or [6, p. 24], which describe countless models that satisfy only trivial
relationships such as deterministic ⊆ nondeterministic, one-way ⊆ two-way, etc.

This lack of robustness has caused several authors to ask if there is a notion of “regular
language” for infinite alphabets; see [3, p. 703] or [4, p. 2]. This question was probably
rhetorical, with the assumed answer being “no”. In this paper, we postulate a “yes” answer.
The main theme is register automata, as introduced by Kaminski and Francez [13], but with

EA
T

C
S

© Mikołaj Bojańczyk and Rafał Stefański;
licensed under Creative Commons License CC-BY

47th International Colloquium on Automata, Languages, and Programming (ICALP 2020).
Editors: Artur Czumaj, Anuj Dawar, and Emanuela Merelli; Article No. 113; pp. 113:1–113:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bojan@mimuw.edu.pl
mailto:rafal.stefanski@mimuw.edu.pl
https://doi.org/10.4230/LIPIcs.ICALP.2020.113
https://arxiv.org/abs/1907.10504
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

113:2 Single-Use Automata and Transducers for Infinite Alphabets

the single-use restriction, which says that immediately after a register is used, its value is
destroyed. As we show in this paper, many automata constructions, which fail for unrestricted
register automata, start to work again in the presence of the single-use restriction.

Before describing the results in the paper, we illustrate the single-use restriction.

I Example 1. Consider the language “there are at most three distinct letters in the input
word, not counting repetitions”, over alphabet A. There is a natural register automaton
which recognises this language: use three registers to store the distinct atoms that have been
seen so far, and if a fourth atom comes up, then reject. This automaton, however, violates
the single-use restriction, because each new input letter is compared to all the registers.

letter a is stored in 3 copies
letter b is stored in 2 copies

letter c is stored in 1 copya
a b

ba c

Here is a solution that respects the single-use restriction. The idea is that once the
automaton has seen three distinct letters a, b, c, it stores them in six registers as explained in
the picture on the right. Assume that a new input letter d is read. The behaviour of the
automaton (when it already has three atoms in its registers) is explained in the flowchart in
Figure 1.

A similar flowchart is used for the corner cases when the automaton has seen less than
three letters so far.

Our first main result, Theorem 6 (in Section 3), says that the following models recognise
the same languages over infinite alphabets:
1. deterministic one-way single-use automata;
2. deterministic two-way single-use automata;
3. orbit-finite monoids [5];
4. rigidly guarded mso∼ [9];
5. string-to-boolean regular list functions with atoms.
The equivalence of the models in items 3 and 4 was shown in [9]; the remaining models and
their equivalences are new (item 5 is an extension of the regular list functions from [7]).

Just like their classical versions, one-way and two-way single-use automata are equivalent
as language acceptors, but they are no longer equivalent as transducers. For example, a
two-way single-use transducer can reverse the input string, which is impossible for a one-way
single-use transducer. In Sections 4 and 5 we develop the theory of single-use transducers:

In Section 4, we investigate single-use one-way transducers. For finite alphabets, one of
the most important results about one-way transducers is the Krohn-Rhodes Theorem [14],
which says that every Mealy machine (which is a length preserving one-way transducer)
can be decomposed into certain “prime” Mealy machines. We show that the same can be
done for infinite alphabets, using a single-use extension of Mealy machines. The underlying
prime machines are the all the machines from the original Krohn-Rhodes theorem, plus one
additional register machine which moves atoms to later positions.

In Section 5, we investigate single-use two-way transducers, and show that the correspond-
ing class of string-to-string functions enjoys similar robustness properties as the languages
discussed in Theorem 6, with four models being equivalent:

M. Bojańczyk and R. Stefański 113:3

the input letter is a,
so it can be used

to make 3 copies of a

the input letter is b,
so it can be used

to make 3 copies of b

the input letter is c,
so it can be used

to make 3 copies of c

a
a b

ba c

a
a b

ba c

a = d?
no a b

ba c

ab
b

ab c

b = d?
no a

ba c

ac
c

c

a b

c = d?

yes

no

reject

yesyes

Figure 1 Updating the six registers.

1. single-use two-way transducers;
2. an atom extension of streaming string transducers [2];
3. string-to-string regular list functions with atoms;
4. compositions of certain “prime two-way machines” (Krohn & Rhodes style).
We also show other good properties of the string-to-string functions in the above items,
including closure under composition (which follows from item 4) and decidable equivalence.

Summing up, the single-use restriction allows us to identify languages and string-to-string
functions with infinite alphabets, which share the robustness and good mathematical theory
usually associated with regularity for finite alphabets.

Due to space constraints, and a large number of results, virtually all of the proofs are in
an appendix. We use the available space to explain and justify the many new models that
are introduced.

2 Automata and transducers with atoms

For the rest of the paper, fix an infinite set A, whose elements are called atoms. Atoms will
be used to construct infinite alphabets. Intuitively speaking, atoms can only be compared
for equality. It would be interesting enough to consider alphabets of the form A × Σ, for
some finite Σ, as is typically done in the literature on data words [4, p. 1]. However, in the
proofs, we use more complicated sets, such as the set A2 of pairs of atoms, the set A+ {`,a}
obtained by adding two endmarkers to the atoms, or the co-product (i.e. disjoint union)
A2 + A3. This motivates the following definition.

I Definition 2. A polynomial orbit-finite set1 is any set that can be obtained from A and
singleton sets by means of finite products and co-products (i.e. disjoint unions).

We only care about properties of such sets that are stable under atom automorphisms, as
described below. Define an atom automorphism to be any bijection A→ A. (This notion
of automorphism formalises the intuition that atoms can only be compared for equality).
Atom automorphisms form a group. There is a natural action of this group on polynomial

1 The name “orbit-finite” is used because the above definition is a special case of orbit-finite sets discussed
later in the paper, and the name “polynomial” is used to underline that the sets are closed under
products and co-products.

ICALP 2020

113:4 Single-Use Automata and Transducers for Infinite Alphabets

orbit-finite sets: for elements of A we apply the atom automorphism, for singleton sets the
action is trivial, and for other polynomial orbit-finite sets the action is lifted inductively
along + and × in the natural way. Let Σ and Γ be sets equipped with an action of the
group of atom automorphisms – in particular, these could be polynomial orbit-finite sets.
A function f : Σ→ Γ is called equivariant if f(π(x)) = π(f(x)) holds for every x ∈ Σ and
every atom automorphism π. The general idea is that equivariant functions can only talk
about equality of atoms. In the case of polynomial orbit-finite sets, equivariant functions can
also be finitely represented using quantifier-free formulas [6, Lemma 1.3].

The model. We now describe the single-use machine models discussed in this paper. There
are four variants: machines can be one-way or two-way, and they can recognise languages
or compute string-to-string functions. We begin with the most general form – two-way
string-to-string functions – and define the other models as special cases.

The machine reads the input string, extended with left and right endmarkers `,a. It uses
registers to store atoms that appear in the input string. A register can store either an atom,
or the undefined value ⊥. The single-use restriction, which is highlighted in bold below, says
that a register is set to ⊥ immediately after being used.

I Definition 3. The syntax of a two-way single-use transducer2 consists of
input and output alphabets Σ and Γ, both polynomial orbit-finite sets;
a finite set of states Q, with a distinguished initial state q0 ∈ Q;
a finite set R of register names;
a transition function which maps each state q ∈ Q to an element of:

questions︸ ︷︷ ︸
question that is asked

× (Q× actions)︸ ︷︷ ︸
what to do if the

question has a yes answer

× (Q× actions)︸ ︷︷ ︸
what to do if the

question has a no answer

where the allowed questions and actions are taken from the following toolkit:
1. Questions.

a. Apply an equivariant function f : Σ + {`,a} → {yes, no} to the letter under the
head, and return the answer.

b. Are the atoms stored in registers r1, r2 equal and defined? If any of these registers
is undefined, then the run immediately stops and rejects3. This question has the
side effect of setting the values of r1 and r2 to ⊥.

2. Actions.
a. Apply an equivariant function f : Σ + {`,a} → A +⊥ to the letter under the head,

and store the result in register r ∈ R.
b. Apply an equivariant function f : Ak → Γ to the contents of distinct registers

r1, . . . , rk ∈ R, and append the result to the output string. If any of the registers
is undefined, stop and reject. This action has the side effect of setting the
values of r1, r2, . . . , rk to ⊥.

c. Move the head to the previous/next input position.
d. Accept/reject and finish the run.

2 Unless otherwise noted, all transducers and automata considered in this paper are deterministic. The
theory of nondeterministic single-use models seems to be less appealing.

3 By remembering in the state which registers are defined, one can modify an automaton so that this
never happens.

M. Bojańczyk and R. Stefański 113:5

The semantics of the transducer is a partial function from strings over the input alphabet
to strings over the output alphabet. Consider a string of the form `wa where w ∈ Σ∗. A
configuration over such a string consists of (a) a position in the string; (b) a state; (c) a
register valuation, which is a function of type R → A + ⊥; (d) an output string, which is
a string over the output alphabet. A run of the transducer is defined to be a sequence
of configurations, where consecutive configurations are related by applying the transition
function in the natural way. The output of a run is defined to be the contents of the output
string in the last configuration. An accepting configuration is one which executes the accept
action from item 2d – accepting configurations have no successors. The initial configuration
is a configuration where the head is over the left endmarker `, the state is the initial state,
the register valuation maps all registers to the undefined value, and the output string is
empty. An accepting run is a run that begins in the initial configuration and ends in an
accepting one. By determinism, there is at most one accepting run. The semantics of the
transducer is defined to be the partial function Σ∗ → Γ∗, which inputs w ∈ Σ∗ and returns
the output of the accepting run over `wa. If there is no accepting run, f(w) has no value.

Special cases. A one-way single-use transducer is the special case of Definition 3 which
does not use the “previous” action from item 2c. A two-way single-use automaton is the
special case which does not use the output actions from item 2b. The language recognised
by such an automaton is defined to be the set of words which admit an accepting run. A
one-way single-use automaton is the special case of a two-way single-use automaton, which
does not use the “previous” action from item 2c.

3 Languages recognised by single-use automata

In this section we discuss languages recognised by single-use automata. The main result is
that one-way and two-way single-use automata recognise the same languages, and furthermore
these are the same languages that are recognised by orbit-finite monoids [5], the logic rigidly
guarded mso∼ [9], and a new model called regular list functions with atoms, that will be
defined in Section 5.

Orbit-finite monoids. We begin by defining orbit-finite sets and orbit-finite monoids, which
play an important technical role in this paper. For more on orbit-finite sets, see the lecture
notes [6]. For a tuple ā ∈ A∗, an ā-automorphism is defined to be any atom automorphism
that maps ā to itself. Consider set X equipped with an action of the group of atom
automorphisms. We say that x ∈ X is supported by a tuple of atoms ā ∈ A∗ if π(x) = x holds
for every ā-automorphism π. We say that a subset of X is ā-supported if it is an ā-supported
element of the powerset of X; similarly we define supports of relations and functions. We
say that x is finitely supported if it is supported by some tuple ā ∈ A∗. Define the ā-orbit of
x to be its orbit under the action of the group of ā-automorphisms.

I Definition 4 (Orbit-finite sets). Let X be a set equipped with an action of atom automor-
phisms. A subset Y ⊆ X is called orbit-finite if (a) every element of Y is finitely supported;
and (b) there exists some ā ∈ A∗ such that Y is a union of finitely many ā-orbits.

ICALP 2020

113:6 Single-Use Automata and Transducers for Infinite Alphabets

An equivariant orbit-finite set is the special case where the tuple ā in item (b) is empty.
The polynomial orbit-finite sets from Section 2 are a special case of equivariant orbit-finite
sets4. The following notion was introduced in [5, Section 3].

I Definition 5 (Orbit-finite monoid). An orbit-finite monoid is a monoid where the underlying
set is orbit-finite, and the monoid operation is finitely supported. If Σ is an orbit-finite set,
then we say that a language L ⊆ Σ∗ is recognised by an orbit-finite monoid M if there is
a finitely supported monoid morphism h : Σ∗ → M and a finitely supported accepting set
F ⊆M such that L contains exactly the words whose image under h belongs to F .

In this paper, we are mainly interested in the case where both the morphism and the
accepting set are equivariant. In this case, it follows that the alphabet Σ, the image of the
morphism, and the recognised language all also have to be equivariant.

The structural theory of orbit-finite monoids was first developed in [5], where it was shown
how the classical results about Green’s relations for finite monoids extend to the orbit-finite
setting. This theory was further investigated in [9], including a lemma stating that every
orbit-finite group is necessarily finite. In the full version of this paper we build on these
results, to prove an orbit-finite version of the Factorisation Forest Theorem of Simon [17,
Theorem 6.1], which is used in proofs of Theorems 6 and 12.

Main theorem about languages. We are now ready to state Theorem 6, which is our main
result about languages.

I Theorem 6. Let Σ be a polynomial orbit-finite set. The following conditions are equivalent
for every language L ⊆ Σ∗:
1. L is recognised by a single-use one-way automaton;
2. L is recognised by a single-use two-way automaton;
3. L is recognised by an orbit-finite monoid, with an equivariant morphism and an equivariant

accepting set;
4. L can be defined in the rigidly guarded mso∼ logic;
5. L’s characteristic function Σ∗ → {yes, no} is an orbit-finite regular list function.
The equivalence of items 4 and 3 has been proved in [9, Theorems 4.2 and 5.1], and since we
do not use rigidly guarded mso∼ outside of the this theorem, we do not give a definition
here (see [9, Section 3]). The orbit-finite regular list functions from item 5 will be defined in
Section 5. The proof outline for Theorem 6 is given in the following diagram

regular
list functionsOO

Section 5
��

one-way
single-usespecial

case

tt

rigidly guarded
mso∼
OO
Theorems 4.2
and 5.1 in [9]
��

two-way
single-use Section 3.1

// orbit-finite
monoid

in the appendix,
using

factorisation
forests

jj

All equivalences in the theorem are effective, i.e. there are algorithms implementing the
conversions between any of the models.

The single-use restriction is crucial in the theorem. Automata without the single-use
restriction – call them multiple-use – only satisfy the trivial inclusions:

4 The converse does not hold – there exist sets that are equivariant orbit finite but not polynomial orbit
finite e. g. the set of unordered pairs of atoms: {{a, b} | a, b ∈ A, a 6= b}.

M. Bojańczyk and R. Stefański 113:7

single-use

first letter appears again
[6, Exercise 91]

(one-way multiple-use

some letter appears twice
[13, Example 11]

(two-way multiple-use.

Two-way multiple-use automata have an undecidable emptiness problem [15, Theorem 5.3].
For one-way (even multiple-use) automata, emptiness is decidable and even tractable in a
suitable parametrised understanding [6, Corollary 9.12]. We leave open the following question:
given a one-way multiple-use automaton, can one decide if there is an equivalent automaton
that is single-use (by Theorem 6, it does not matter whether one-way or two-way)?

3.1 From two-way automata to orbit-finite monoids
In this section, we show the implication 2 ⇒ 3 of Theorem 6. (This is the only proof
presented in the conference version of the paper – we chose it, because it illustrates the
importance of the single-use restriction). The implication states that the language of every
single-use two-way automaton can also be recognised by an equivariant homomorphism
into an orbit-finite monoid. In the proof, we use the Shepherdson construction for two-way
automata [16] and show that, thanks to the single-use restriction, it produces monoids which
are orbit-finite.

Consider a two-way single-use automaton, with k registers and let Q be the set of its states.
For a string over the input alphabet (extended with endmarkers), define its Shepherdson
profile to be the function of the type

state and register
valuation at the
start of the run︷ ︸︸ ︷
Q× (A +⊥)k ×

does the run
enter from the
left or right︷ ︸︸ ︷
{←,→} → {accept, loop}+ (

state and register
valuation at the
end of the run︷ ︸︸ ︷
Q× (A +⊥)k ×

does the run
exit from the
left or right︷ ︸︸ ︷
{←,→})

that describes runs of the automaton in the natural way (see [16, Proof of Theorem 2]). The
run is taken until the automaton either exits the string from either side, accepts, or enters
an infinite loop. By the same reasoning as in Shepherdson’s proof, one can equip the set of
Shepherdson profiles with a monoid structure so that the function which maps a word to
its Shepherdson profile becomes a monoid homomorphism. We use the name Shepherdson
monoid for the resulting monoid (it only contains the “achievable” profiles – the image of Σ∗).
It is easy to see that whether a word is accepted depends only on an equivariant property
of its Shepherdson profile, and therefore the language recognised by the automaton is also
recognised by the Shepherdson monoid.

It remains to show that the Shepherdson monoid is orbit-finite, which is the main part
of the proof. Unlike the arguments so far, this part of the proof relies on the single-use
restriction. To illustrate this, we give an example of a one-way automaton that is not
single-use and whose Shepherdson monoid is not orbit-finite.

I Example 7. Consider the language over A of words whose first letter appears again. This
language is not recognised by any orbit-finite monoid [6, Exercise 91], but it is recognised
by a multiple-use one-way automaton, which stores the first letter in a register, and then
compares this register with all remaining letters of the input word. For this automaton, the
Shepherdson profile needs to remember all of the distinct letters that appear in the word. In
particular, if two words have different numbers of distinct letters, then their Shepherdson
profiles cannot be in the same orbit. Since input strings can contain arbitrarily many distinct
letters, the Shepherdson monoid of this automaton is not orbit-finite.

ICALP 2020

113:8 Single-Use Automata and Transducers for Infinite Alphabets

I Lemma 8. For every single-use two-way automaton there is some N ∈ N such that every
Shepherdson profile is supported by at most N atoms.

Before proving the lemma, we use it to show that the Shepherdson monoid is orbit-finite.
In the full version of the paper, we show that if an equivariant set consists of functions from
one orbit-finite set to another orbit-finite set (as is the case for the underling set in the
Shepherdson monoid) and all functions in the set have supports of bounded size (as is the
case thanks to Lemma 8), then the set is orbit-finite. This leaves us with proving Lemma 8.

Proof. Define a transition in a run to be a pair of consecutive configurations. Each transition
has a corresponding question and action. A transition in a run is called important if its
question or action involves a register that has not appeared in any action or question of the
run. The number of important transitions is bounded by k – the number of registers. The
crucial observation, which relies on the single-use restriction, is that if the input word, head
position, and state are fixed (but not the register valuation), then the sequence of actions
in the corresponding run depends only on the answers to the questions in the important
transitions. This is described in more detail below.

Fix a choice of the following parameters: (a) a string over the input alphabet that might
contain endmarkers; (b) an entry point of the automaton – either the left or the right end of
the word; (c) a state of the automaton. We do not fix the register valuation. For a register
valuation η, define ρ(η) to be the run which begins in the configuration described by the
parameters (abc) together with η, and which is maximal, i.e. it ends when the automaton
either accepts, rejects, or tries to leave the fixed string. For i ∈ {0, 1, . . . , k} define αi(η)
to be the sequence of actions that are performed in the maximal prefix of the run ρ(η)
which uses at most i important transitions. The crucial observation that was stated at the
beginning of this proof is that once the parameters (abc) are fixed, then the sequence of
actions αi(η) depends only on the answers to the questions asked in the first i important
transitions. In particular, the function αi has at most 2i possible values. Furthermore, by a
simple induction on i, one can show the following claim.

B Claim 9. The function αi is supported by at most 2i+1 atoms.

Since there are at most k important transitions in a run, the above claim implies that,
for every fixed choice of parameters (abc), at most 2k+1 atoms are needed to support the
function which maps η to the sequence of actions in the run ρ(η). In the arguments for
the Shepherdson profile for a fixed word w, parameter (b) can have two values (first or last
position) and parameter (c) can have at most |Q| values. Therefore, at most 2|Q|2k+1 atoms
are needed to support the function which takes an argument as in the Shepherdson profile,
and returns the sequence of actions in the corresponding run. The lemma follows. J

4 A Krohn-Rhodes decomposition of one-way transducers with atoms

In this section, we present a decomposition result for single-use one-way transducers, which
is a version of the celebrated Krohn-Rhodes Theorem [14, p. 454]. We think that this result
gives further evidence for the good structure of single-use models. In the next section, we
give a similar decomposition result for two-way single-use transducers which will be used to
prove the equivalence of several other characterisations of the two-way model.

We begin by describing the classical Krohn-Rhodes Theorem. A Mealy machine is a
deterministic one-way length-preserving transducer, which is obtained from a deterministic
finite automaton by labelling transitions with output letters and ignoring accepting states.

M. Bojańczyk and R. Stefański 113:9

The Krohn-Rhodes Theorem says that every function computed by a Mealy machine is
a composition of functions computed by certain prime Mealy machines (which are called
reversible and reset in [1, Chapter 6]). In this section, we prove a version of this theorem for
orbit-finite alphabets; this version relies crucially on the single-use restriction. To distinguish
the original model of Mealy machines from the single-use model described below, we will
use the name classical Mealy machine for the Mealy machines in the original Krohn-Rhodes
Theorem, i.e. the alphabets and state spaces are finite.

Define a single-use Mealy machine to have the same syntax as in Definition 3, with the
following differences: there are no “next/previous” actions from item 2c, but the output
action from item 2b has the side effect of moving the head to the next position. A consequence
is that a Mealy machine is length-preserving, i.e. it outputs exactly one letter for each input
position. Furthermore, there are no endmarkers and no “accept” or “reject” actions from
item 2d; the automaton begins in the first input position and accepts immediately once its
head leaves the input word from the right.

I Example 10. Define atom propagation to be the following length-preserving function. The
input alphabet is A + {ε, ↓} and the output alphabet is A +⊥. If a position i in the input
string has label ↓ and there is some (necessarily unique) position j < i with an atom label
such that all positions strictly between j and i have label ε, then the output label of position
i is the atom in input position j. For all other input positions, the output label is ⊥. Here is
an example of atom propagation:

input 1 2 ε ε ↓ ↓ 3 ε ε ↓ ε ↓
output ⊥ ⊥ ⊥ ⊥ 2 ⊥ ⊥ ⊥ ⊥ 3 ⊥ ⊥

Atom propagation is computed by a single-use Mealy machine, which stores the most recently
seen atom in a register, and outputs the register at the nearest appearance of ↓.

The following example illustrates some of the technical difficulties with single-use Mealy
machines: It is often useful to consider a Mealy machine that computes the run of another
Mealy machine i. e. decorate every input position with the state and the register valuation
that the Mealy machine will have after reading the input up to (but not including) that
position. As shown in the following example the single-use restriction makes this construction
impossible.

I Example 11. Consider the single-use Mealy machine that implements the atom propagation
function from Example 10. This machine has only one register. Every time it sees an atom
value, it stores the value in the register and every time it sees ↓, and the register is non-empty,
the machine outputs the register’s content. We claim that the run of this machine cannot
be computed by a Mealy machine. If it could, we would be able to use it to construct a
Mealy machine that given a word over A, equips every position with the atom from the first
position. This would easily lead to a construction of a single-use automaton for the language
“the first letter appears again” (from Example 7) which, as we already know, is impossible.

The Krohn-Rhodes Theorem, both in its original version and in our orbit-finite version
below, says that every Mealy machine can be decomposed using two types of composition:

Σ∗ f−→ Γ∗ Γ∗ g−→ ∆∗

Σ∗ g◦f−→ ∆∗
sequential

Σ∗1
f1−→ Γ∗1 Σ∗2

f2−→ Γ∗2
(Σ1 × Σ2)∗ f1|f2−→ (Γ1 × Γ2)∗

parallel

The sequential composition is simply function composition. The parallel composition –
which only makes sense for length preserving functions – applies the function fi to the i-th
projection of the input string.

ICALP 2020

113:10 Single-Use Automata and Transducers for Infinite Alphabets

I Theorem 12. Every total function computed by a single-use Mealy machine can be obtained,
using sequential and parallel composition, from the following prime functions:
1. Length-preserving homomorphisms. Any function of type Σ∗ → Γ∗, where Σ and Γ

are polynomial orbit-finite, obtained by lifting to strings an equivariant function of type
Σ→ Γ.

2. Classic Mealy machines. Any function computed by a classical Mealy machine.
3. Atom propagation. The atom propagation function from Example 10.
By the original Krohn-Rhodes theorem, classical Mealy machines can be further decomposed.

Define a composition of primes to be any function that can be obtained from the prime
functions by using a parallel and sequential composition. In this terminology, Theorem 12
says that every function computed by a single-use Mealy machine is a composition of primes.
In the full version of the paper we show that the converse is also true: every prime function
is computed by a single-use Mealy machine, and single-use Mealy machines are closed under
both kinds of composition.

Decomposition of single-use one-way transducers. A Mealy machine is the special case
of a single-use one-way transducer which is length preserving, and does not see an endmarker.
A corollary of Theorem 12 is that, in order to generate all total functions computed by
single-use one-way transducers, it is enough to add two items to the list of prime functions
from Theorem 12: (a) a function w 7→ wa which appends an endmarker5, and (b) equivariant
homomorphisms over polynomial orbit-finite alphabets that are not necessarily length-
preserving.

5 Two-way single-use transducers

In this section, we turn to two-way single-use transducers. For them, we show three other
equivalent models: (a) compositions of certain two-way prime functions; (b) an atom variant
of the streaming string transducer (sst) model of Alur and Černý from [2]; and (c) an atom
variant of the regular string functions from [7]. We believe that the atom variants of items (b)
and (c), as described in this section, are the natural atom extensions of the original models;
and the fact that these extensions are all equivalent to single-use two-way transducers is a
further validation of the single-use restriction.

We illustrate the transducer models using the functions from the following example.

I Example 13. Consider some polynomial orbit-finite alphabet Σ. The input and output
alphabets are the same, namely Σ extended with a separator symbol |. Define map reverse
(respectively, map duplicate) to be the function which reverses (respectively, duplicates) every
string between consecutive separators, as in the following examples:

12||345|678|9 7→ 21||543|876|9︸ ︷︷ ︸
map reverse

12||345|678|9 7→ 1212||345345|678678|99︸ ︷︷ ︸
map duplicate

Both functions can be computed by single-use two-way transducers. These functions will be
included in the prime functions for two-way single-use transducers, as discussed in item (a)
at the beginning of this section.

5 This function accounts for the fact that a one-way transducer (contrary to a Mealy machine) may
perform some computation and produce some output at the end of the input word.

M. Bojańczyk and R. Stefański 113:11

Streaming string transducers with atoms. A streaming string transducer with atoms has
two types of registers: atom registers r, s, . . . which are the same as in Definition 3, and
string registers A,B,C, . . . which are used to store strings over the output alphabet. Both
kinds of registers are subject to the single-use restriction, which is highlighted in bold in the
following definition.

I Definition 14 (Streaming string transducer with atoms). Define the syntax of a streaming
string transducer (sst) with atoms in the same way as a one-way single-use transducer
(variant of Definition 3), except that the model is additionally equipped with a finite set
of string registers, with a designated output string register. The actions are the same as
for one-way single-use transducers except that the output action is replaced by two kinds of
actions:
1. Apply an equivariant function f : Ak → Γ to the contents of distinct registers r1, . . . , rk ∈

R, and put the result into string register A (overwriting its previous contents). If any
of these registers is undefined, then the run immediately stops and rejects. This action
has the side effect of setting the values of r1, r2, . . . , rkj to ⊥.

2. Concatenate string registers A and B, and put the result into string register C. This
action has the side effect of setting A and B to the empty string.

The output of a streaming string transducer is defined to be the contents of the designated
output register when the “accept” action is performed. In the atomless case, when no atom
registers are allowed and the input and output alphabets are finite, the above definition is
equivalent to the original definition of streaming string transducers from [2].

I Example 15. Consider the map reverse function from Example 13, with alphabet A. To
compute it, we use two string registers A and B, with the output register being B. When
reading an atom a ∈ A, the transducer executes an action A := aA. (This action needs to
be broken into simpler actions as in Definition 14 and requires auxiliary registers). When
reading a separator symbol, the automaton executes action B := B|A, which erases the
content of register A. Similar idea works for map duplicate – it uses two copies of register A.

Regular list functions with atoms. Our last model is based on the regular list functions
from [7]. Originally, the regular list functions were introduced to characterise two-way
transducers (over finite alphabets), in terms of simple prime functions and combinators [7,
Theorem 6.1]. The following definition extends the original definition6 in only two ways: we
add an extra datatype A and an equality test eq : A2 → {yes,no}.

I Definition 16 (Regular list functions with atoms). Define the datatypes to be sets which can
be obtained from A and singleton sets, by applying constructors for products τ×σ, co-products
τ + σ and lists τ∗. The class of regular list functions with atoms is the least class which:
1. contains all equivariant constant functions;
2. contains all functions from Figure 2, and an equality test eq : A2 → {yes,no};
3. is closed under applying the following combinators:

a. comp function composition (f, g) 7→ f ◦ g;
b. pair function pairing (f0, f1) 7→ (x 7→ (f0(x), f1(x)));
c. cases function co-pairing (f0, f1) 7→ ((i, a) 7→ fi(a));
d. map lifting functions to lists f 7→ ([a1, . . . , an] 7→ [f(a1), . . . , f(an)]).

6 In [7], the group product operation has output type G∗, while this paper uses (G× σ)∗. This difference
is due to an error in [7].

ICALP 2020

113:12 Single-Use Automata and Transducers for Infinite Alphabets

projecti : (σ0 × σ1)→ σi

projection (a0, a1) 7→ ai

coprojecti : σi → (σ0 + σ1)
coprojection ai 7→ (i, ai)

distr : (σ1 + σ2)× τ → (σ1 × τ) + (σ2 × τ)
distribution ((i, a), b) 7→ (i, (a, b))

reverse : σ∗ → σ∗

list reverse [a1, . . . , an] 7→ [an, . . . , a1]
concat : (σ∗)∗ → σ∗

list concatenation, defined by [] 7→ [] and [a] · l 7→ a · concat(l)
append : (σ × σ∗)→ σ∗

append, defined by (a, l) 7→ [a] · l
coappend : σ → (σ × σ∗) +⊥

the opposite of append, defined by [] 7→ (1,⊥) and [a] · l 7→ (0, (a, l))
block : (σ + τ)∗ → (σ∗ + τ∗)∗

group the list into maximal connected blocks from σ∗ or τ∗

group : (G× σ)∗ → (G× σ)∗

[(g1, a1), . . . , (gn, an)] 7→ [(1, a1), (g1, a2), (g1g2, a3), . . . , (g1 · · · gn−1, an)]

Figure 2 For every datatypes τ, τ0, τ1, σ, every finite group G, and every i ∈ {0, 1} the above
functions are regular list functions with atoms.

Every polynomial orbit-finite set is a datatype (actually, polynomial orbit-finite sets are
exactly the datatypes that do not use lists), and therefore it makes sense to talk about regular
list functions with atoms that describe string-to-string functions with input and output
alphabets that are polynomial orbit-finite sets. Also, one can consider string-to-boolean
functions – they describe languages, and are the model mentioned in item 5 of Theorem 6.

I Example 17. We show that map reverse from Example 13 is a regular list function with
atoms. Consider an input string, say

[1, 2, |, |, 3, 4, 5, |, 6, 7, 8, |, 9] ∈ (A + |)∗.

Apply the prime block function, yielding

[[1, 2], [|, |], [3, 4, 5], [|], [6, 7, 8], [|], [9]] ∈ (A∗ + |∗)∗.

Using the cases and map combinators, apply reverse to all list items, yielding

[[2, 1], [|, |], [5, 4, 3], [|], [8, 7, 6], [|], [9]] ∈ (A∗ + |∗)∗.

To get the final output, apply concat. A similar idea works for map duplicate, except we
need to derive the string duplication function:

w
pair(...)7→ (w, [w]) append7→ [w,w] concat7→ ww

Equivalence of the models. The main result of this section is that all models described
above are equivalent, and furthermore admit a decomposition into prime functions in the
spirit of the Krohn-Rhodes theorem. Since the functions discussed in this section are no
longer length-preserving, the Krohn-Rhodes decomposition uses only sequential composition.

M. Bojańczyk and R. Stefański 113:13

I Theorem 18. The following conditions are equivalent for every total function f : Σ∗ → Γ∗,
where Σ and Γ are polynomial orbit-finite sets:
1. f is computed by a two-way single-use transducer;
2. f is computed by a streaming string transducer with atoms;
3. f is a regular list function with atoms;
4. f is a sequential composition of functions of the following kinds:

a. single-use Mealy machines;
b. equivariant homomorphisms that are not necessarily length-preserving;
c. map reverse and map duplicate functions from Example 13.

In the future, we plan to extend the above theorem with one more item, namely a variant
of mso transductions based on rigidly guarded mso∼. The models in items 3 and 4 are
closed under sequential composition, and therefore the same is true for the models in items 1
and 2; we do not know any direct proof of composition closure for items 1 and 2, which
contrasts the classical case without atoms [8, Theorem 2]. The Krohn-Rhodes decomposition
from item 4, in the case without atoms, was present implicitly in [7]; in this paper we make
the decomposition explicit, extend it to atoms, and leverage it to get a relatively simple
proof of Theorem 18. Even for the reader interested in transducers but not atoms, our
Krohn-Rhodes-based proof of Theorem 18 might be of some independent interest.

Here are some immediate corollaries of Theorem 18:
1. Every function in item 4 is computed by a two-way single-use transducer which is reversible

in the sense of [10, p. 2]; hence two-way single-use transducers can be translated into
reversible ones.

2. Since the equivalence in Theorem 18 also works for functions with yes/no outputs, it
follows that items 2 and 5 in Theorem 6 are equivalent.

3. If f is a transducer from the class described in Theorem 18, then the language class
described in Theorem 6 is preserved under inverse images of f .

All conversions between the models in Theorem 18 are effective. Our last result concerns
the equivalence problem for these models, which is checking if two transducers compute the
same function. Using a reduction to the equivalence problem for copyful streaming string
transducers without atoms [12, p. 81], we prove the following result:

I Theorem 19. Equivalence is decidable for streaming string transducers with atoms (and
therefore also for every other of the equivalent models from Theorem 18).

References
1 Ginzburg Abraham. Algebraic Theory of Automata. Elsevier, 1968.
2 Rajeev Alur and Pavol Černý. Expressiveness of streaming string transducers. In Foundations

of Software Technology and Theoretical Computer Science, FSTTCS 2010, Chennai, India,
volume 8 of LIPIcs, pages 1–12. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010.

3 Henrik Björklund and Thomas Schwentick. On notions of regularity for data languages.
Theoretical Computer Science, 411(4):702–715, January 2010.

4 Mikołaj Bojańczyk. Automata for Data Words and Data Trees. In Christopher Lynch, editor,
Rewriting Techniques and Applications, RTA, Edinburgh, Scottland, UK, volume 6 of LIPIcs,
pages 1–4. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010.

5 Mikołaj Bojańczyk. Nominal Monoids. Theory Comput. Syst., 53(2):194–222, 2013.
6 Mikołaj Bojańczyk. Slightly infinite sets, 2019. URL: https://www.mimuw.edu.pl/~bojan/

paper/atom-book [cited version of September 11, 2019].

ICALP 2020

https://www.mimuw.edu.pl/~bojan/paper/atom-book
https://www.mimuw.edu.pl/~bojan/paper/atom-book

113:14 Single-Use Automata and Transducers for Infinite Alphabets

7 Mikołaj Bojańczyk, Laure Daviaud, and Shankara Narayanan Krishna. Regular and First-
Order List Functions. In Logic in Computer Science, LICS, Oxford, UK, pages 125–134. ACM,
2018.

8 Michal Chytil and Vojtech Jákl. Serial Composition of 2-Way Finite-State Transducers and
Simple Programs on Strings. In International Colloquium on Automata, Languages and
Programming, ICALP, Turku, Finland, volume 52 of Lecture Notes in Computer Science,
pages 135–147. Springer, 1977.

9 Thomas Colcombet, Clemens Ley, and Gabriele Puppis. Logics with rigidly guarded data
tests. Logical Methods in Computer Science, 11(3), 2015.

10 Luc Dartois, Paulin Fournier, Ismaël Jecker, and Nathan Lhote. On reversible transducers.
In International Colloquium on Automata, Languages and Programming, ICALP, Warsaw,
Poland, volume 80 of LIPIcs, pages 113:1–113:12. Schloss Dagstuhl – Leibniz-Zentrum fuer
Informatik, 2017.

11 Emmanuel Filiot and Pierre-Alain Reynier. Transducers, logic and algebra for functions of
finite words. SIGLOG News, 3(3):4–19, 2016.

12 Emmanuel Filiot and Pierre-Alain Reynier. Copyful Streaming String Transducers. In Matthew
Hague and Igor Potapov, editors, Reachability Problems, RP , London, UK, volume 10506 of
Lecture Notes in Computer Science, pages 75–86. Springer, 2017.

13 Michael Kaminski and Nissim Francez. Finite-Memory Automata. Theor. Comput. Sci.,
134(2):329–363, 1994.

14 Kenneth Krohn and John Rhodes. Algebraic theory of machines. i. prime decomposition
theorem for finite semigroups and machines. Transactions of the American Mathematical
Society, 116:450–450, 1965.

15 Frank Neven, Thomas Schwentick, and Victor Vianu. Finite state machines for strings over
infinite alphabets. ACM Trans. Comput. Log., 5(3):403–435, 2004.

16 J. C. Shepherdson. The reduction of two-way automata to one-way automata. IBM Journal
of Research and Development, 3(2):198–200, April 1959.

17 Imre Simon. Factorization forests of finite height. Theoretical Computer Science, 72(1):65–94,
1990.

	Introduction
	Automata and transducers with atoms
	Languages recognised by single-use automata
	From two-way automata to orbit-finite monoids

	A Krohn-Rhodes decomposition of one-way transducers with atoms
	Two-way single-use transducers

