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Abstract
In this paper we study a wide range of variants for computing the (discrete and continuous) Fréchet
distance between uncertain curves. We define an uncertain curve as a sequence of uncertainty regions,
where each region is a disk, a line segment, or a set of points. A realisation of a curve is a polyline
connecting one point from each region. Given an uncertain curve and a second (certain or uncertain)
curve, we seek to compute the lower and upper bound Fréchet distance, which are the minimum and
maximum Fréchet distance for any realisations of the curves.

We prove that both problems are NP-hard for the continuous Fréchet distance, and the upper
bound problem remains hard for the discrete Fréchet distance. In contrast, the lower bound discrete
Fréchet distance can be computed in polynomial time using dynamic programming. Furthermore,
we show that computing the expected discrete or continuous Fréchet distance is #P-hard when the
uncertainty regions are modelled as point sets or line segments.

On the positive side, we argue that in any constant dimension there is a FPTAS for the lower
bound problem when ∆/δ is polynomially bounded, where δ is the Fréchet distance and ∆ bounds the
diameter of the regions. We then argue there is a near-linear-time 3-approximation for the decision
problem when the regions are convex and roughly δ-separated. Finally, we study the setting with
Sakoe–Chiba bands, restricting the alignment of the two curves, and give polynomial-time algorithms
for upper bound and expected (discrete) Fréchet distance for point-set-modelled uncertainty regions.
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20:2 Fréchet Distance for Uncertain Curves

1 Introduction

In this paper we investigate the well-studied topic of curve similarity in the context of the
burgeoning area of geometric computing under uncertainty. While classical algorithms in
computational geometry typically assume the input point locations are known exactly, in
recent years there has been a concentrated effort to adapt these algorithms to uncertain
inputs, which can more faithfully model real-world inputs. The need to model such uncertain
inputs is perhaps no more clear than for the location data of a moving object obtained from
physical devices, which is inherently imprecise due to issues such as measurement error,
sampling error, and network latency [42, 43]. Moreover, to ensure location privacy, one may
purposely add uncertainty to the data by adding noise or reporting positions as geometric
regions rather than points. (See the survey by Krumm [35] and the references therein.)

Here we consider both the continuous and discrete Fréchet distance for uncertain curves.
Given the applications above, our uncertain input is given as a sequence of compact regions,
from which a polygonal curve is realised by selecting one point from each region. Our goal is
to find, for a given pair of uncertain curves, the upper bound, lower bound, and expected
Fréchet distance, where the upper (resp. lower) bound Fréchet distance is the maximum
(resp. minimum) distance over any realisation. For the expected Fréchet distance we assume
a probability distribution is provided that describes how each vertex on a curve is chosen
from the compact region. Previously, Ahn et al. [5] considered the lower bound problem
for the discrete Fréchet distance, giving a polynomial-time algorithm for points in constant
dimension. The authors also gave efficient approximation algorithms for the discrete upper
bound Fréchet distance for uncertain inputs, where the approximation factor depends on
the spread of the region diameters or how well-separated they are. Subsequently, Fan and
Zhu showed that the discrete upper bound Fréchet distance is NP-hard for uncertain inputs
modelled as thin rectangles [25]. To our knowledge, we are the first to consider either variant
for the continuous Fréchet case, and the first to consider the expected Fréchet distance.

1.1 Previous Work
Geometric computing under uncertainty. The two most common models of geometric
uncertainty are the locational model [36] and the existential model [46, 48]. In the existential
model the location of an uncertain point is known, but the point may not be present; in the
locational model we know that each uncertain point exists, but not its exact location.

In this paper we consider the locational model. Each uncertain point is a set of potential
locations. We call an uncertain point indecisive if the set of potential locations is finite, or
imprecise if the set is not finite but is a convex region. A realisation of a set of uncertain
points is a selection of one point from each uncertain point. The goal is typically to
compute the realisation of a set of uncertain points that minimises or maximises some
quantity (e.g. area, distance, perimeter) of some underlying geometric structure (e.g. convex
hull, MST) [1, 7, 14, 17, 21, 23, 28, 34, 37, 38, 39, 45, 47]. By assigning a probability
distribution to uncertain points, one can also consider the expectation or distribution of
various measures [2, 4, 32, 41].

Fréchet distance. Computing the Fréchet distance between two precise curves can be done
in near-quadratic time [3, 6, 12], and assuming the Strong Exponential Time Hypothesis
(SETH) it cannot be computed or even approximated well in strongly subquadratic time [9, 15].
However, for several restricted versions the Fréchet distance can be calculated more quickly,
for example for c-packed curves [20], when the edges are long [29], or when the alignment of



K. Buchin, C. Fan, M. Löffler, A. Popov, B. Raichel, and M. Roeloffzen 20:3

Table 1 Hardness results for the decision problems in this paper. Ahn et al. [5] solve the lower
bound problem for disks, but their algorithm extends to the indecisive curves as well as line segment
imprecision.

indecisive imprecise
disks line segments

discrete Fréchet distance
LB Polynomial [5] Polynomial [5] Polynomial [5]
UB NP-complete NP-complete NP-complete
Exp #P-hard — #P-hard

Fréchet distance
LB Polynomial — NP-complete
UB NP-complete NP-complete NP-complete
Exp #P-hard — —

curves is restricted [11, 40]. Many variants of the problem have been considered: Fréchet
distance with shortcuts [16, 19], weak Fréchet distance [6], discrete Fréchet distance [3, 22],
Fréchet gap distance [24], Fréchet distance under translations [10, 26], and more.

1.2 Our Contributions
In this paper we present an extensive study of the Fréchet distance for uncertain curves. We
provide a wide range of hardness results and present several approximations and polynomial-
time solutions to restricted versions. We are the first to consider the continuous Fréchet
distance in the uncertain setting, as well as the first to consider the expected Fréchet distance.

On the negative side, we present a plethora of hardness results (Table 1; details follow
in Section 2). The hardness of the lower bound case is curious: while the variants discrete
Fréchet distance on imprecise inputs [5] and, as we prove, continuous Fréchet distance on
indecisive inputs both permit a simple dynamic programming solution, the variant continuous
Fréchet distance on imprecise input has just enough (literal) wiggle room to show NP-hardness
by reduction from SubsetSum.

We complement the lower bound hardness result by two approximation algorithms
(Section 3). The first is a FPTAS for general uncertain curves in constant dimension when
the ratio between the diameter of the uncertain points and the lower bound Fréchet distance
is polynomially bounded. The second is a 3-approximation for separated imprecise curves,
but uses a simpler greedy approach that runs in near-linear time.

The NP-hardness of the upper bound by a reduction from CNF-SAT is less surprising,
but requires a careful set-up and analysis of the geometry to then extend it to a reduction
from #CNF-SAT to the expected (discrete or continuous) Fréchet distance. However, by
adding the common constraint that the alignment between the curves needs to stay within
a Sakoe–Chiba [44] band of constant width (see Section 4 for definition and results), we
can solve these problems in polynomial time for indecisive curves. Sakoe–Chiba bands are
frequently used for time-series data [8, 33, 44] and trajectories [11, 18], when the alignment
should (or is expected to) not vary too much from a certain “natural” alignment.

1.3 Preliminaries
Curves. Denote [n] ≡ {1, 2, . . . , n}. Consider a sequence of d-dimensional points π =
〈p1, p2, . . . , pn〉. A polygonal curve π is defined by these points by linearly interpolating
between the successive points and can be seen as a continuous function: π(i + α) = (1 −
α)pi + αpi+1 for i ∈ [n − 1] and α ∈ [0, 1]. The length of such a curve is the number of

ICALP 2020
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Figure 1 Left: Discrete Fréchet distance, where an optimal coupling is shown in dashed red lines.
Middle: Fréchet distance, dashed green lines indicate specific values for δ for optimal functions φ1,
φ2. Right: Free-space diagram for threshold δ = 2.15. One can draw a monotonous path from
the lower left corner to the upper right corner of the diagram, so the Fréchet distance between
trajectories is below the threshold.

its vertices, |π| = n. Where we deem important to distinguish between points that are a
part of the curve and other points, we denote the polygonal curve by π = 〈π1, π2, . . . , πn〉.
We denote the concatenation of two polygonal curves π and σ of lengths n and m by π ‖ σ;
the new curve follows π, then has a segment between π(n) and σ(1), and then follows σ.
Similarly, p ‖ q (or simply pq) denotes the line segment between points p and q. We can
generalise this notation:∥∥∥

i∈[n]

pi ≡ p1 ‖ p2 ‖ · · · ‖ pn ≡ π .

We denote a subcurve from vertex i to j of curve π as π[i : j] ≡ pi ‖ pi+1 ‖ · · · ‖ pj .

Metrics definitions. Given two points x, y ∈ Rd, denote their Euclidean distance by ‖x−y‖.
For two compact sets X,Y ⊂ Rd, denote their distance by ‖X − Y ‖ = minx∈X,y∈Y ‖x− y‖.
Throughout we treat the dimension d as a small constant.

Let Φn denote the set of all reparametrisations of length n, defined as continuous non-
decreasing functions φ : [0, 1]→ [1, n] where φ(0) = 1 and φ(1) = n. Given a pair of curves π
and σ of lengths n and m, respectively, and corresponding reparametrisations φ1 ∈ Φn and
φ2 ∈ Φm, define widthφ1,φ2(π, σ) = maxt∈[0,1]‖π(φ1(t))− σ(φ2(t))‖.

The width represents the maximum distance between two points traversing the curves from
start to end according to φ1 and φ2 (which allow varying speed, but no backtracking). The
Fréchet distance dF(π, σ) is defined as the minimum possible width over all such traversals:

dF(π, σ) = inf
φ1∈Φn,φ2∈Φm

width
φ1,φ2

(π, σ) = inf
φ1∈Φn,φ2∈Φm

max
t∈[0,1]

‖π(φ1(t))− σ(φ2(t))‖ .

The discrete Fréchet distance ddF(π, σ) is defined similarly, except that we do not traverse
edges of the curves, but must jump from one vertex to the next on either or both curves.
We define a valid coupling as a sequence c = 〈(p1, q1), . . . , (pr, qr)〉 of pairs from [n] × [m]
where (p1, q1) = (1, 1), (pr, qr) = (n,m), and, for any i ∈ [r − 1] we have (pi+1, qi+1) ∈
{(pi + 1, qi), (pi, qi + 1), (pi + 1, qi + 1)} . Let C be the set of all valid couplings on curves of
lengths n and m, then

ddF(π, σ) = inf
c∈C

max
s∈[|c|]

‖π(ps)− σ(qs)‖ ,

where cs = (ps, qs) for all s ∈ [|c|]. Both distances, as well as a common approach to
computing Fréchet distance, are illustrated in Figure 1.
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(0, 0) at 10:01

(1, 1) at 10:05

(0, 2) at 10:07

(2, 4) at 10:12

Figure 2 Left: Trajectory data. Middle: Polygonal curve on the data. Right: Imprecise curve
with disks as imprecision regions and real curve.

Uncertainty model. An uncertain point is commonly represented as a compact region
U ⊂ Rd. Usually, it is a finite set of points, a disk, a rectangle, or a line segment. The
intuition is that only one point from this region represents the true location of the point;
however, we do not know which one. A realisation p of such a point is one of the points
from the region U . When needed we assume the realisations are drawn from U according
to a known probability distribution P. We denote the diameter of any compact set (e.g. an
uncertain point) U ⊂ Rd by diam(U) = maxp,q∈U‖p− q‖. An indecisive point is a special
case of an uncertain point: it is a set of points U = {p1, . . . , pk}, where each point pi ∈ Rd
for i ∈ [k]. Similarly, an imprecise point is a compact convex region U ⊂ Rd. We will often
use disks or line segments as such regions. Note that a precise point is a special case of an
indecisive point (set of size one) and an imprecise point (disk of radius zero).

Uncertain curves and distances. Define an uncertain curve as a sequence of uncertain
points U = 〈U1, . . . , Un〉. A realisation π b U of an uncertain curve is a polygonal curve
π = 〈p1, . . . , pn〉, where each pi is a realisation of the corresponding uncertain point Ui. We
denote the set of all realisations of an uncertain curve U by Real(U) (see Figure 2). In a
probabilistic setting, we write π bP U to denote that each point of π gets drawn from the
corresponding uncertainty region independently according to distribution P.

For uncertain curves U and V , define the upper bound, lower bound, and expected discrete
Fréchet distance (and extend to continuous Fréchet distance dmax

F , dmin
F , dE(P)

F using dF) as:

dmax
dF (U ,V) = max

πbU,σbV
ddF(π, σ) , dmin

dF (U ,V) = min
πbU,σbV

ddF(π, σ) ,

d
E(P)
dF (U ,V) = EπbPU,σbPV [ddF(π, σ)] .

If the distribution is clear from the context, we write dE
F and dE

dF. The definitions above also
apply if one of the curves is precise, as a precise curve is a special case of an uncertain curve.

2 Hardness Results

In this section, we first discuss the hardness results for the upper bound and expected value
of the continuous and discrete Fréchet distance for indecisive and imprecise curves. We then
show hardness of finding the lower bound continuous Fréchet distance on imprecise curves.

ICALP 2020
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2.1 Upper Bound and Expected Fréchet Distance
We present proofs of NP-hardness and #P-hardness for the upper bound and expected Fréchet
distance for both indecisive and imprecise curves by showing polynomial-time reductions from
CNF-SAT and #CNF-SAT (counting version). We consider the upper bound problem for
indecisive curves and then illustrate how the construction can be used to show #P-hardness
for the expected Fréchet distance (both discrete and continuous). We then illustrate how the
construction can be adapted to show hardness for imprecise curves. All our constructions
are in two dimensions. The missing proofs can be found in the full version [13].

2.1.1 Upper Bound Fréchet Distance on Indecisive Curves
Define the following problem and its continuous counterpart, using dmax

F instead:

I Problem 1. Upper Bound Discrete Fréchet: Given two uncertain curves U and V
and a threshold δ ∈ R+, decide if dmax

dF (U ,V) > δ.

Suppose we are given a CNF-SAT formula C with n clauses, C1 to Cn, on m boolean
variables, x1 to xm. We pick some value 0.12 ≤ ε < 0.25.1 Construct a variable curve, where
each variable corresponds to an indecisive point with locations (0, 0.5 + ε) and (0,−0.5− ε);
the locations are interpreted as assigning the variable True and False. Any realisation of
the curve corresponds to a variable assignment. Each indecisive point is followed by a precise
point that is far away, to force synchronisation with the other curve:

VGj = {(0, 0.5 + ε), (0,−0.5− ε)} ‖ (2, 0) .

Consider a specific clause Ci of the formula. We define an assignment gadget AGi,j for
each variable xj and clause Ci depending on how the variable occurs in the clause.

AGi,j =


(0,−0.5) ‖ (1, 0) if xj is a literal of Ci,
(0, 0.5) ‖ (1, 0) if ¬xj is a literal of Ci,
(0, 0) ‖ (1, 0) otherwise.

Note that if assignment xj = True makes a clause Ci true, then the first precise point of the
corresponding assignment gadget appears at distance 1 +ε from the realisation corresponding
to setting xj = True of the indecisive point in VGj . We can repeat the construction, yielding
a variable clause gadget and an assignment clause gadget:

VCG = (−2, 0) ‖
∥∥∥

j∈[m]

VGj , ACGi = (−1, 0) ‖
∥∥∥

j∈[m]

AGi,j .

Consider the Fréchet distance between the two gadgets. Observe that matching a synchron-
isation point from one gadget with a non-synchronisation point in the other yields a distance
more than 1 + ε, whereas matching synchronisation points pairwise and non-synchronisation
points pairwise will yield the distance at most 1+ε. So we only consider one-to-one couplings,
i.e. we match point i on one curve to point i on the other curve, for all i.

Now, if a realisation corresponds to a satisfying assignment, then for some xj we have
picked the realisation that is opposite from the coupled point on the clause curve, yielding
the bottleneck distance of 1 + ε. If the realisation corresponds to a non-satisfying assignment,
then the synchronisation points establish the bottleneck, yielding the distance 1. So, we can
clearly distinguish between a satisfying and a non-satisfying assignment for a clause.

1 This range is determined by the relative distances in the construction.
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Next, we define the variable curve and the clause curve as follows:

VC = (0, 0) ‖VCG ‖ (0, 0) , CC =
∥∥∥

i∈[n]

ACGi .

Observe that the synchronisation points at (−2, 0) and (−1, 0) ensure that for any optimal
coupling we match up VCG with some ACGi as described before. Also note that all the
points on CC are within distance 1 from (0, 0). Therefore, we can always pick any one of n
clauses to align with VCG, and couple the remaining points to (0, 0); the bottleneck distance
will then be determined by the distance between VCG and the chosen ACGi.

Now consider a specific realisation of VCG. If the corresponding assignment does not
satisfy C, then we can synchronise VCG with a clause that is false to obtain a distance of 1.
If the assignment corresponding to the realisation satisfies all clauses, we must synchronise
VCG with a satisfied clause, which yields a distance of 1 + ε. The construction is shown in
Figures 3 and 4.

We can use similar reasoning to arrive at the same conclusion if we compute the Fréchet
distance instead. The necessary adaptations are presented in the full version [13].

I Theorem 2. The problems Upper Bound Discrete Fréchet and Upper Bound
Continuous Fréchet for indecisive curves are NP-hard.

2.1.2 Expected Fréchet Distance on Indecisive Curves
We show that finding expected discrete Fréchet distance is #P-hard by providing a polynomial-
time reduction from #CNF-SAT, i.e. the problem of finding the number of satisfying
assignments to a CNF-SAT formula. Missing details can be found in the full version [13].
Define the following problem and its continuous counterpart:

I Problem 3. Expected Discrete Fréchet: Find dE(U)
dF (U ,V) for uncertain curves U ,V.

The main idea is to derive an expression for the number of satisfying assignments in terms
of dE(U)

dF (VC,CC). This works, since there is a one-to-one correspondence between boolean
variable assignment and a choice of realisation of VC, so counting the number of satisfying
assignments corresponds to finding the proportion of realisations yielding large Fréchet
distance. We can establish the result for Expected Continuous Fréchet similarly.

I Theorem 4. The problems Expected Discrete Fréchet and Expected Continuous
Fréchet for indecisive curves are #P-hard.

2.1.3 Imprecise Curves
We have so far considered indecisive points; instead, we can look at imprecise points, namely,
line segments or disks. We can show similar hardness results in that setting. We alter the
construction – instead of the point {(0, 0.5+ε), (0,−0.5−ε)}, we either have the disk centred
at (0, 0) with radius 0.5 + ε or the line segment connecting (0,−0.5 − ε) and (0, 0.5 + ε).
Observe that the locations of the indecisive point are still on the disk or the line segment.
We can show that the upper bound decision problem is NP-hard by showing that we can
always consider only the extreme locations on the imprecise points that coincide with the
locations of the indecisive points.

I Theorem 5. The problems Upper Bound Discrete Fréchet and Upper Bound
Continuous Fréchet for imprecise curves modelled as line segments or disks are NP-hard.

ICALP 2020
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ACGAG

(0, 0)

(0, 0.5)

(0,−0.5)

(1, 0)(−1, 0)

VCGVG(0, 0.5 + ε)

(0,−0.5− ε)

(2, 0)(−2, 0)

Figure 3 Illustration of gadgets used in the basic construction.

(0, 0)
(−2, 0)
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(−1, 0)
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(1, 0)
(0, 0)

(1, 0)
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(1, 0)

(−1, 0)

(0, 0.5)

(1, 0)

(0,−0.5)

(1, 0)
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(1, 0)
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(1, 0)

C1

C1

C1
C2

C2

C2

C3

C3

C3

VC

Figure 4 Realisation of VC for assignment x1 = True, x2 = True, x3 = False and the CC for
formula C = (x1 ∨ x3)∧ (¬x1 ∨ x2 ∨¬x3)∧ (x1 ∨¬x2). Note that C = True with the given variable
assignment. Also note that we can choose any of C1, C2, C3 to align with VC; we always get the
bottleneck distance of 1 + ε, as all three are satisfied, so here ddF(VC,CC) = 1 + ε.
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We can also consider the value of expected Fréchet distance on imprecise points. We show
the result only for points modelled as line segments; in principle, we believe that for disks a
similar result holds, but the specifics of our reduction do not allow for clean computations.

We cannot immediately use our construction: we treat subsegments at the ends of the
imprecision segments as True and False, but we have no interpretation for points in the
centre part of a segment. So, we want to separate the realisations that pick any such invalid
points. To that aim, we introduce extra gadgets to the clause curve that act as clauses,
but catch these invalid realisations, so each of them yields the distance of 1. Now we have
three distinct cases: realisation is satisfying, non-satisfying, or invalid. We can derive the
expression connecting dE(U)

dF and the number of satisfying assignments.

I Theorem 6. The problem Expected Discrete Fréchet for imprecise curves modelled
as line segments is #P-hard.

2.2 Lower Bound Fréchet Distance
In this section, we prove that computing the lower bound Fréchet distance is NP-hard. The
missing proofs can be found in the full version [13]. Unlike the upper bound proofs, this
reduction uses the NP-hard problem Subset-Sum. Consider the following problems.

I Problem 7. Lower Bound Continuous Fréchet: Given a polygonal curve π with n
vertices, an uncertain curve U with m vertices, and a threshold δ > 0, decide if dmin

F (π,U) ≤ δ.

I Problem 8. Subset-Sum: Given a set S = {s1, . . . , sn} of n positive integers and a target
integer τ , decide if there exists an index set I such that

∑
i∈I si = τ .

2.2.1 An Intermediate Problem
We start by reducing Subset-Sum to a more geometric intermediate curve-based problem.

I Definition 9. Let α > 0 be some value, and let σ = 〈σ1, . . . , σ2n+1〉 be a polygonal curve.
Call σ an α-regular curve if for all 1 ≤ i ≤ 2n + 1, the x-coordinate of σi is i · α. Let
Y = {y1, . . . , yn} be a set of n positive integers. Call σ a Y -respecting curve if:
1. For all 1 ≤ i ≤ n, σ passes through the point ((2i+ 1/2)α, 0).
2. For all 1 ≤ i ≤ n, σ either passes through the point ((2i− 1/2)α, 0) or ((2i− 1/2)α,−yi).
Intuitively, the above definition requires σ to pass through ((2i+ 1/2)α, 0) as it reflects the
y-coordinate about the line y = 0 (see Figure 5). Thus, if the curve also passes through
((2i− 1/2)α, 0), the two reflections cancel each other. If it passes through ((2i− 1/2)α,−yi),
the lemma below argues that yi shows up in the final vertex height.

I Lemma 10. Let σ be a Y -respecting α-regular curve, and let I be the subset of indices i such
that σ passes through ((2i− 1/2)α,−yi). If σ1 = (α, 0), then σ2n+1 = ((2n+ 1)α, 2

∑
i∈I yi).

The following is needed in the next section, and follows from the proof of the above.

I Corollary 11. For a set Y = {y1, . . . , yn}, let M =
∑n
i=1 yi. For any vertex σi of a

Y -respecting α-regular curve, its y-coordinate is at most 2M and at least −2M .

I Problem 12. RR-Curve: Given a set Y = {y1, . . . , yn} of n positive integers, a value
α = α(Y ) > 0, and an integer τ , decide if there is a Y -respecting α-regular curve σ =
〈σ1, . . . , σ2n+1〉 such that σ1 = (α, 0) and σ2n+1 = ((2n+ 1)α, 2τ).
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0

Figure 5 Passing through ((2i − 1/2)α, 0) does not change the height, and passing through
((2i− 1/2)α,−yi) adds 2yi.

By Lemma 10, Subset-Sum immediately reduces to the above problem by setting Y = S.
Note that for this reduction it suffices to use any positive constant for α; however, we allow
α to depend on Y , as this will ultimately be needed in our reduction to Problem 7.

I Theorem 13. For any α(Y ) > 0, RR-Curve is NP-hard.

2.2.2 Reduction to Lower Bound Fréchet Distance
Let α, τ , Y = {y1, . . . , yn} be an instance of RR-Curve. In this section, we show how to
reduce it to an instance δ, π, U of Problem 7, where the uncertain regions in U are vertical
line segments. The main idea is to use U to define an α-regular curve, and use π to enforce
that it is Y -respecting. Specifically, let M =

∑n
i=1 yi. Then U = 〈v1, . . . , v2n+1〉, where each

vi is a vertical segment whose horizontal coordinate is iα and whose vertical extent is given
by the interval [−2M, 2M ]. By Corollary 11, we have the following simple observation.

I Observation 14. The set of all Y -respecting α-regular curves is a subset of Real(U).

Thus, the main challenge is to define π to enforce that the realisation is Y -respecting. To
that end, we first describe a gadget forcing the realisation to pass through a specified point.

I Definition 15. For any point p = (x, y) ∈ R2 and value δ > 0, let the δ gadget at p,
denoted gδ(p), be the curve: (x, y) ‖ (x, y + δ) ‖ (x, y − δ) ‖ (x, y + δ) ‖ (x, y). See Figure 6a.

I Lemma 16. Let p = (x, y) ∈ R2 be a point, and let ` be any line segment. Then if
dF(`, gδ(p)) ≤ δ, then ` must pass through p.

For our uncertain curve to be Y -respecting, it must pass through all points of the form
((2i + 1/2)α, 0). This condition is satisfied by the lemma above by placing a δ gadget at
each such point. The second condition of a Y -respecting curve is that it passes through
((2i− 1/2)α, 0) or ((2i− 1/2)α,−yi). This condition is much harder to encode, and requires
putting several δ gadgets together to create a composite gadget, which we now describe.

I Definition 17. For any point p = (x, y) ∈ R2 and value δ > 0, let plδ = (x− δ/2, y) and
prδ = (x+ δ/2, y). Define the δ lower composite gadget at p, denoted lcgδ(p), to be the curve
gδ(p) ‖ prδ ‖ gδ(p) ‖ plδ ‖ prδ. See Figure 6b. Define the δ upper composite gadget at q, denoted
ucgδ(q), to be the curve gδ(q) ‖ qlδ ‖ gδ(q). See Figure 6c. Define the δ composite gadget of p
and q, denoted cgδ(p, q), to be the curve lcgδ(p) ‖ ucgδ(q).
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p

δ

δ

(a) gδ(p).

p
plδ prδ

(b) lcgδ(p).

q
qlδ

(c) ucgδ(q).

Figure 6 Depiction of gadgets gδ(p), lcgδ(p), and ucgδ(p). Circles represent zero-area points. For
the right two figures, the red / blue square represents the starting / ending point.

To use this composite gadget, we centre the lower gadget at height −yi and the upper gadget
directly above it at height zero. As the two gadgets are on top of each other, ultimately
we require our uncertain curve to go back and forth once between consecutive vertical line
segments, for which we have the following key property.

I Lemma 18. Let p = (xp,−yp) and q = (xp, 0) be points in R2. Let σ = 〈a, b, c, d〉 be a
three-segment curve such that bx > xp + δ and cx < xp − δ. If dF(σ, cgδ(p, q)) ≤ δ, then:
(i) the segment ab must pass through p,
(ii) the segment cd must pass through q, and
(iii) the segment bc must either pass through p or through q.
In particular, either ab and bc are on the same line, or cd and bc are on the same line.

Let vl, vr be vertical segments lying to the left and right of cgδ(p, q) further than δ away,
and let zl, zr be the points on vl and vr at the same height as q. Consider the uncertain
curve U = 〈U1, U2, U3, U4〉, where U1 = U3 = vl and U2 = U4 = vr. By Lemma 18, if there is
a curve σ b U such that dF(σ, zl ‖ cgδ(p, q) ‖ zr) ≤ δ, then implicitly it defines a single edge
from vl to vr either passing through p or passing through q (see Figure 7b, whose notation is
defined below). The following lemma acts as a rough converse of Lemma 18.

I Lemma 19. Let p = (xp,−yp) and q = (xp, 0) be points in R2, with yp ≤ δ/4. Let
σ = 〈p, b, c, q〉 be a curve such that xp + δ < bx ≤ xp + 1.1δ, xp − 1.1δ ≤ cx < xp − δ, and
−δ/2 ≤ by, cy ≤ δ/2. If bc passes through either p or q, then dF(σ, cgδ(p, q)) ≤ δ.

We now give the reduction from RR-Curve to Problem 7, whose correctness follows
from the lemmas and discussion above. (See the full version [13] for details.) Let α(Y ), τ ,
Y = {y1, . . . , yn} be an instance of RR-Curve. For the reduction to Problem 7, we set
δ = 4M , where M =

∑n
i=1 yi. Theorem 13 allows us to choose how to set α(Y ), and we
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(a) Pictorial representation of λi.
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(b) The two solutions.

Figure 7 On the left, λi. On the right, the two possible solutions with Fréchet distance at most
δ. The top (resp. bottom) corresponds to an α-regular curve passing through q (resp. p).

set α = 2.1δ = 8.4M . Let V = {v1, . . . , v2n+1} be a set of vertical line segments where
all upper (resp. lower) endpoints of the segments have height 2M (resp. −2M), and for
all i, the x-coordinate of vi is iα. Let U = 〈U1, . . . , U4n+1〉 be the uncertain curve such
that U4n+1 = v2n+1, and for all 1 ≤ i ≤ n, U4i−3 = v2i−1, U4i−2 = v2i, U4i−1 = v2i−1, and
U4i = v2i. For 1 ≤ i ≤ 2n + 1, define the points zi = (iα, 0), and for 1 ≤ i ≤ n, define
qi = ((2i− 1/2)α, 0), q′i = ((2i+ 1/2)α, 0), and pi = ((2i− 1/2)α,−yi). For a given value
1 ≤ i ≤ n, consider the curve λi = z2i−1 ‖ cgδ(pi, qi) ‖ z2i ‖ gδ(q′i) (see Figure 7a). Let
s = (α, 0) and t = ((2n+ 1)α, 2τ). Then π = gδ(s) ‖ λ1 ‖ λ2 ‖ · · · ‖ λn−1 ‖ λn ‖ gδ(t).

I Theorem 20. Lower Bound Continuous Fréchet (Problem 7) is NP-hard, even
when the uncertain regions are all equal-length vertical segments with the same height and
the same horizontal distance (to the left or right) between adjacent uncertain regions.

3 Algorithms for Lower Bound Fréchet Distance

In the previous section, we have shown that the decision problem for dmin
F is hard, given a

polygonal curve and an uncertain curve with line-segment-based imprecision model. Interest-
ingly, the same problem is solvable in polynomial time for indecisive curves. The key idea is
that we can use a dynamic programming approach similar to that for computing Fréchet
distance [6] and only keep track of realisations of the last indecisive point considered so
far. (Note that one can also reduce the problem to Fréchet distance between paths in DAG
complexes, studied by Har-Peled and Raichel [31], but this yields a slower running time.)

Consider the setting with an indecisive curve V = 〈V1, . . . , Vn〉 of n points and a precise
curve π = 〈p1, . . . , pm〉 with m points; each indecisive point has k possible realisations,
Vi = {q1

i , . . . , q
k
i }. We can propagate reachability column by column. Define Feas(i, `) to be

the feasibility column for realisation q`i of Ui. This is a set of intervals on the vertical cell
boundary line in the free-space diagram (see Figure 1), corresponding to the subintervals
of one curve within distance δ from a point on the other curve. It is computed exactly the
same way as for the precise Fréchet distance – it depends on the distance between a point
and a line segment and gives a single interval on each vertical cell boundary.
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Represent the standard dynamic program for computing Fréchet distance so that it
operates column by column, grouping propagation of reachable intervals between vertically
aligned cells. Call that procedure Prop(R), where R is the reachability column for point i
and the result is the reachability column for point i+ 1 on one of the curves. The reachability
column is a set of intervals on a vertical line, indicating the points in the free-space diagram
that are reachable from the lower left corner with a monotone path.

Define Reach(i, s) to be the reachability column induced by qsi , where a point is in a
reachability interval if it can be reached by a monotone path for some realisation of the
previous points. Then we iterate over all the realisations of the previous column, getting
precise cells, and propagate the reachable intervals as in the precise Fréchet distance algorithm:

Reach(i+ 1, `) = Feas(i+ 1, `) ∩
⋃
`′∈[k]

Prop(Reach(i, `′)) .

For the column corresponding to U1, we set one reachable interval of a single point at the
bottom for all realisations ps1 for which ‖qs1 − p1‖ ≤ δ.

I Theorem 21. Given an indecisive curve V = 〈V1, . . . , Vn〉 with k options per point, a
precise curve π = 〈p1, . . . , pm〉, and a threshold δ > 0, we can decide if dmin

F (π,V) ≤ δ in
time Θ(mnk2) in the worst case, using Θ(mk) space. We can also report the realisation of V
realising Fréchet distance at most δ, using Θ(mnk) space instead. Call the algorithm that
solves the problem and reports a fitting realisation Decider(δ, π,V).

We can extend this result to two indecisive curves. This result highlights a distinction
between dmin

F and dmax
F and between different uncertainty models. To tackle dmin

F with
general uncertain curves, we develop approximation algorithms.

3.1 Approximation by Grids
Given a polygonal curve π and a general uncertain curve U , in this section we show how to
find a curve σ b U such that dF(π, σ) ≤ (1 + ε)dmin

F (π,U). This is accomplished by carefully
discretising the regions, in effect approximately reducing the problem to the indecisive case,
for which we then can use Theorem 21. Missing proofs can be found in the full version [13].

For simplicity we assume the uncertain regions have constant complexity. Throughout,
we assume dmin

F (π,U) > 0, as justified by the following lemma.

I Lemma 22. Let π be a polygonal curve with n vertices, and U an uncertain curve with m
vertices. Then one can determine whether dmin

F (π,U) = 0 in O(mn) time.

We call an algorithm a (1 + ε)-decider for Problem 7, if when dmin
F (π,U) ≤ δ, it returns

a curve σ b U such that dF(π, σ) ≤ (1 + ε)δ, and when dmin
F (π,U) > (1 + ε)δ, it returns

False (in between either answer is allowed). In this section, we present a (1 + ε)-decider for
Problem 7. We make use of the following standard observation.

I Observation 23. Given a curve π = 〈π1, . . . , πn〉, call a curve σ = 〈σ1, . . . , σn〉 an
r-perturbation of π if ‖πi − σi‖ ≤ r for all i. Since ‖πi − σi‖, ‖πi+1 − σi+1‖ ≤ r, all
points of the segment σiσi+1 are within distance r of πiπi+1. For segments this implies that
dF(πiπi+1, σiσi+1) ≤ r, which implies that dF(π, σ) ≤ r by composing the mappings for all i.

The high-level idea is to replace U with the set of grid points it intersects, however, as our
uncertain regions may avoid the grid points, we need to include a slightly larger set of points.
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I Definition 24. Let U be a compact subset of Rd. We now define the set of points EGr(U)
which we call the expanded r-grid points of U .

Let B(
√
dr) denote the ball of radius

√
dr, centred at the origin. Let Thick(U, r) =

U ⊕B(
√
dr), where ⊕ denotes Minkowski sum. Let Gr be the regular grid of side length r,

and let GTr(U) be the subset of grid vertices from Gr that fall in Thick(U, r). Finally, define

EGr(U) = {p | p = arg min
q∈U

‖q − x‖ for x ∈ GTr(U)} .

The following lemma argues that one can build a decider by using grids as hinted above.
Using this decider, we can solve the corresponding optimisation problem.

I Lemma 25. There is a (1 + ε)-decider for Problem 7 with running time O(mn · (1 +
(∆/(εδ))2d)), for 1 ≥ ε > 0, where ∆ = maxi diam(Ui) is the maximum diameter of an
uncertain region.

I Theorem 26. Let π be a polygonal curve with n vertices, U an uncertain curve with
m vertices, and δ = dmin

F (π,U). Then for any 1 ≥ ε > 0, there is an algorithm which
returns a curve σ b U such that dF(π, σ) ≤ (1 + ε)δ, whose running time is O(mn(log(mn) +
(∆/(εδ))2d)), where ∆ = maxi diam(Ui) is the maximum diameter of an uncertain region.

If the polygonal curve π is replaced with an uncertain curve W, it easy to argue that this
approach extends to approximating dmin

F (W,U).

3.2 Greedy Algorithm
Here we argue that there is a simple 3-decider for Problem 7, running in near-linear time in
the plane. The idea is to greedily and iteratively pick σi ∈ Ui so as to allow us to get as far
as possible along π. Without any assumptions on U , this greedy procedure may walk too
far ahead and get stuck. Thus, here we assume that consecutive Ui are separated to ensure
that optimal solutions do not lag too far behind. Here we also assume the Ui are convex, i.e.
imprecise, and have constant complexity, as it simplifies certain definitions. In this section,
let π = 〈π1, . . . , πn〉 be a polygonal curve and let U = 〈U1, . . . , Um〉 be an imprecise curve.

I Definition 27. Call U γ-separated if for all 1 ≤ i < m, ‖Ui − Ui+1‖ > γ and each Ui is
convex. Define an r-visit of Ui to be any maximal-length contiguous portion of π∩(Ui⊕B(2r))
which intersects Ui ⊕B(r), where ⊕ denotes Minkowski sum. If U is γ-separated for γ ≥ 4r,
then any r-visit of Ui is disjoint from any r-visit of Uj for i 6= j, in which case define the
true r-visit of Ui to be the first visit of Ui which occurs after the true r-visit of Ui−1. (For
U1 it is the first r-visit.)

I Lemma 28. If U is γ-separated for γ ≥ 4r, then for any curve σ b U and any reparamet-
risations f and g such that widthf,g(π, σ) ≤ r, σi must map to a point on the true r-visit of
Ui for all i.

For two points α and β on π, let α ≤ β denote that α occurs before β, and for any points
α ≤ β let π(α, β) denote the subcurve between α and β.

I Definition 29. The δ-greedy sequence of π with respect to U , denoted gs(π,U , δ), is the
longest possible sequence α = 〈α1, . . . , αk〉 of points on π, where α1 = π1, and for any i > 1,
αi is the point furthest along π such that ‖αi − Ui‖ ≤ δ and dF(αi−1αi, π(αi−1, αi)) ≤ 2δ.

I Observation 30. For any i ≤ k, let αi = 〈α1, . . . , αi〉 be the ith prefix of gs(π,U , δ). Then
dF(αi, π(α1, αi)) ≤ 2δ, and αi b Ui ⊕B(δ), where Ui ⊕B(δ) = 〈U1 ⊕B(δ), . . . , Ui ⊕B(δ)〉.
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The following is the main lemma used to argue the correctness of our greedy approach,
and it makes use of helper Lemma 28.

I Lemma 31. If U is 10δ-separated and dmin
F (π,U) ≤ δ, then gs(π,U , δ) has length m and

αm = πn.

The following lemma is the only place where we require the points to be in R2. The proof
is interesting and uses a result from Guibas et al. [30].

I Lemma 32. For π and U in R2, where U is 10δ-separated, gs(π,U , δ) is computable in
O(m+ n logn) time.

I Theorem 33. Let U be 10r-separated for some r > 0. There is a 3-decider for Problem 7
with running time O(m+ n logn) in the plane that works for any query value 0 < δ ≤ r.

Proof. Compute gs(π,U , δ). If it has length m, then let σ = 〈σ1, . . . , σm〉 be any curve in
Real(U) such that ‖σi − αi‖ ≤ δ for all i. If this occurs and if αm = πn, we output σ as our
solution, and otherwise we output False. Thus, the running time follows from Lemma 32.

Observe that if we output a curve σ, then dF(σ, π) ≤ 3δ, using the triangle inequality:

dF(σ, π) ≤ dF(σ, α) + dF(α, π) ≤ δ + 2δ = 3δ .

Thus, we only need to argue that when dmin
F (π,U) ≤ δ, a curve is produced, which is

immediate from Lemma 31. J

4 Algorithms for Upper Bound and Expected Fréchet Distance

As shown in Section 2.1, finding the upper bound and expected discrete and continuous
Fréchet distance is hard even for simple uncertainty models. However, restricting the possible
couplings between the curves makes the problem solvable in polynomial time. In this section,
we use indecisive curves. Define a Sakoe–Chiba time band [44] in terms of reparametrisations
of the curves: for a band of width w and all t ∈ [0, 1], if φ1(t) = x, then φ2(t) ∈ [x−w, x+w].
In the discrete case we only couple point i on one curve to points i± w on the other curve.

4.1 Upper Bound Discrete Fréchet Distance
First of all, let us discuss a simple setting. Suppose we are given a curve σ = 〈q1, . . . , qn〉 of
n precise points and U = 〈U1, . . . , Un〉 of n indecisive points, each of them having ` options,
so for all i ∈ [n] we have Ui = {p1

i , . . . , p
`
i}. We would like to answer the following decision

problem: “If we restrict the couplings to a Sakoe–Chiba band of width w, is it true that
dmax

dF (U , σ) ≤ δ for some given threshold δ > 0?” So, we want to solve the decision problem
for the upper bound discrete Fréchet distance between a precise and an indecisive curve.

In a fully precise setting the discrete Fréchet distance can be computed using dynamic
programming [22]. We create a table where the rows correspond to vertices of one curve, say
σ, and columns correspond to vertices of the other curve, say π. Each table entry (i, j) then
contains a True or False value indicating if there is a coupling between σ[1 : j] and π[1 : i]
with maximum distance at most δ. We use a similar approach.

Suppose we position U to go horizontally along the table, and σ to go vertically. Consider
an arbitrary column in the table and suppose that we fix the realisation of U up to the
previous column. Then we can simply consider the new column ` times, each time picking a
different realisation for the new point on U , and compute the resulting reachability. As we
do this for the entire column at once, we can ensure consistency of our choice of realisation.
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Figure 8 Left: An indecisive and a precise curve. Middle: Distance matrix. “T T” in the bottom
left cell means ‖1− 1a‖ ≤ δ and ‖1− 1b‖ ≤ δ. Right: Computing reachability matrix, column by
column. Note two reachability vectors for the second column.

This procedure will give us a set of binary reachability vectors for the new column, each
vector corresponding to a realisation. The reachability vector is a boolean vector that, for
the cell (i, j) of the table, states whether for a particular realisation π of U [1 : i] the discrete
Fréchet distance between π and σ[1 : j] is below some threshold δ.

An important observation is that we do not need to distinguish between the realisations
that give the same reachability vector: once we start filling out the next column, all we care
about is the existence of some realisation leading to that particular reachability vector. So,
we can keep a set of binary vectors corresponding to reachability in the column.

This procedure was suggested for a specific realisation. However, we can also repeat this
for each previous reachability vector, only keeping the unique results. As all the realisation
choices happen along U , by treating the table column-by-column we ensure that we do not
have issues with inconsistent choices. Therefore, repeating this procedure n times, we fill out
the last column of the table. At that point, if any vector has False in the top right cell,
then there is some realisation π b U such that ddF(π, σ) > δ, and hence dmax

dF (U , σ) > δ.
In more detail, we use two tables, distance matrix D and reachability matrix R. First

of all, we initialise the distance matrix D and the reachability of the first column for all
possible locations of U1. Then we fill out R column-by-column. We take the reachability of
the previous column and note that any cell can be reached either with the horizontal step or
with the diagonal step. We need to consider various extensions of the curve U with one of
the ` realisations of the current point: the distance matrix should allow the specific coupling.
Assume we find that a certain cell is reachable; if allowed by the distance matrix, we can
then go upwards, marking cells above the current cell reachable, even if they are not directly
reachable with a horizontal or diagonal step. Then we remember the newly computed vector;
we only add distinct vectors. The computation is illustrated in Figure 8; missing details can
be found in the full version [13]. We use the following loop invariant to show correctness.

I Lemma 34. Consider column i. Every reachability vector of this column corresponds to at
least one realisation of U [1 : i] and the discrete Fréchet distance between that realisation and
σ[1 : min(n, i+ w)]; and every realisation corresponds to some reachability vector.

I Theorem 35. Problem Upper Bound Discrete Fréchet restricted to a Sakoe–Chiba
time band of width w on a precise curve and an uncertain curve on indecisive points with `
options, both of length n, can be solved in time Θ(4w`n

√
w) in the worst case.

Now we extend our previous result to the setting where both curves are indecisive, so
instead of σ we have V = 〈V1, . . . , Vn〉, with, for each j ∈ [n], Vj = {q1

j , . . . , q
`
j}. Suppose

we pick a realisation for curve V. Then we can apply the algorithm we just described. We
cannot run it separately for every realisation; instead, note that the part of the realisation
that matters for column i is the points from i− w to i+ w, since any previous or further
points are outside the time band. So, we can fix these 2w+ 1 points and compute the column.
We do so for each possible combination on these 2w + 1 points.
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Figure 9 Reachability adjustments. Left: Although the dotted interval is free according to the
distance matrix, only the solid interval is reachable from the cell on the left with a monotone path,
assuming the cell on the left is free. Right: The full interval that is marked as free is reachable.

I Theorem 36. Suppose we are given two indecisive curves of length n with ` options per
indecisive point. Then we can compute the upper bound discrete Fréchet distance restricted
to a Sakoe–Chiba band of width w in time Θ(4w`2w+1n

√
w).

4.2 Expected Discrete Fréchet Distance
To compute the expected discrete Fréchet distance with time bands, we need two observations:
1. For any two precise curves, there is a single threshold δ where the answer to the decision

problem changes – a critical value; it is the distance between two points on the curves.
2. We can modify our algorithm to store associated counts with each reachability vector,

obtaining the fraction of realisations that yield the answer True for a given threshold δ.
We can execute our algorithm for each critical value and get the cumulative distribution
function P(ddF(π, σ) > δ) for π, σ bU U ,V. Using the fact that the cumulative distribution
function is a step function, we compute dE

dF.

I Theorem 37. Suppose we are given two indecisive curves of length n with ` options per
indecisive point. Then we can compute the expected discrete Fréchet distance when constrained
to a Sakoe–Chiba band of width w in time Θ(4w`2w+3n2w2) in the worst case.

4.3 Continuous Fréchet Distance
We can adapt our time band algorithms to handle continuous Fréchet distance. Instead of
the boolean reachability vectors, we use vectors of free space cells, introduced by Alt and
Godau [6, 27]. We need to now store reachability intervals on cell borders (see Figure 9).
The number of these intervals is limited: for any cell, the upper value of the interval is
defined by the distance matrix, so yielding at most `2 values; the lower value of the interval is
defined by the distance matrix or by one of the cells from the same row, yielding exponential
dependency on w. However, the algorithm is still polynomial-time in n.

We can also store the associated counts. We then find critical values, in line with those
arising in precise curve Fréchet distance [6]. This way we adapt our algorithm for computing
expected distance to continuous case, and it runs in time polynomial in n for fixed w and `,
as desired. Further details are provided in the full version [13].

I Theorem 38. Suppose we are given two indecisive curves of length n with ` options per
indecisive point. Then we can compute upper bound Fréchet distance and expected Fréchet
distance restricted to a Sakoe–Chiba band of fixed width w in time polynomial in n.
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