
The Online Min-Sum Set Cover Problem
Dimitris Fotakis
National Technical University of Athens, Greece
fotakis@cs.ntua.gr

Loukas Kavouras
National Technical University of Athens, Greece
lukaskavouras@gmail.com

Grigorios Koumoutsos
Université libre de Bruxelles, Belgium
gregkoumoutsos@gmail.com

Stratis Skoulakis
Singapore University of Technology and Design, Singapore
efstratios@sutd.edu.sg

Manolis Vardas
ETH Zurich, Switzerland
evardas@student.ethz.ch

Abstract
We consider the online Min-Sum Set Cover (MSSC), a natural and intriguing generalization of the
classical list update problem. In Online MSSC, the algorithm maintains a permutation on n elements
based on subsets S1, S2, . . . arriving online. The algorithm serves each set St upon arrival, using its
current permutation πt, incurring an access cost equal to the position of the first element of St in
πt. Then, the algorithm may update its permutation to πt+1, incurring a moving cost equal to the
Kendall tau distance of πt to πt+1. The objective is to minimize the total access and moving cost
for serving the entire sequence. We consider the r-uniform version, where each St has cardinality r.
List update is the special case where r = 1.

We obtain tight bounds on the competitive ratio of deterministic online algorithms for MSSC
against a static adversary, that serves the entire sequence by a single permutation. First, we show
a lower bound of (r + 1)(1 − r

n+1) on the competitive ratio. Then, we consider several natural
generalizations of successful list update algorithms and show that they fail to achieve any interesting
competitive guarantee. On the positive side, we obtain a O(r)-competitive deterministic algorithm
using ideas from online learning and the multiplicative weight updates (MWU) algorithm.

Furthermore, we consider efficient algorithms. We propose a memoryless online algorithm, called
Move-All-Equally, which is inspired by the Double Coverage algorithm for the k-server problem. We
show that its competitive ratio is Ω(r2) and 2O(

√
log n·log r), and conjecture that it is f(r)-competitive.

We also compare Move-All-Equally against the dynamic optimal solution and obtain (almost) tight
bounds by showing that it is Ω(r

√
n) and O(r3/2√n)-competitive.

2012 ACM Subject Classification Theory of computation → Online algorithms

Keywords and phrases Online Algorithms, Competitive Analysis, Min-Sum Set Cover

Digital Object Identifier 10.4230/LIPIcs.ICALP.2020.51

Category Track A: Algorithms, Complexity and Games

Related Version The full version of the paper is available at https://arxiv.org/abs/2003.02161.

Funding Dimitris Fotakis: Partially supported by the Hellenic Foundation for Research and Innova-
tion (H.F.R.I.) under the “First Call for H.F.R.I. Research Projects to support Faculty members
and Researchers’ and the procurement of high-cost research equipment grant”, project: BALSAM
(id: 1424).
Loukas Kavouras: Partially supported by a scholarship from the State Scholarships Foundation.

EA
T

C
S

© Dimitris Fotakis, Loukas Kavouras, Grigorios Koumoutsos, Stratis Skoulakis, and
Manolis Vardas;
licensed under Creative Commons License CC-BY

47th International Colloquium on Automata, Languages, and Programming (ICALP 2020).
Editors: Artur Czumaj, Anuj Dawar, and Emanuela Merelli; Article No. 51; pp. 51:1–51:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-6864-8960
mailto:fotakis@cs.ntua.gr
mailto:lukaskavouras@gmail.com
mailto:gregkoumoutsos@gmail.com
mailto:efstratios@sutd.edu.sg
mailto:evardas@student.ethz.ch
https://doi.org/10.4230/LIPIcs.ICALP.2020.51
https://arxiv.org/abs/2003.02161
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

51:2 The Online Min-Sum Set Cover Problem

Grigorios Koumoutsos: Supported by Fonds de la Recherche Scientifique-FNRS Grant no MISU F 6001.
Part of this work was carried out while visiting the National Technical University of Athens, suppor-
ted by FNRS Mobility Grant no 35282070.
Stratis Skoulakis: Partially supported by NRF 2018 Fellowship NRF-NRFF2018-07. Part of this
research was carried out while the author was a PhD student at the National Technical University
of Athens.
Manolis Vardas: This research was carried out while the author was an undergraduate student at
the National Technical University of Athens.

1 Introduction

In Min-Sum Set Cover (MSSC), we are given a universe U on n elements and a collection of
subsets S = {S1, . . . , Sm}, with St ⊆ U , and the task is to construct a permutation (or list)
π of elements of U . The cost π(St) of covering a set St (a.k.a. the cover time of St) with a
permutation π is the position of the first element of St in π, i.e., π(St) = min{i |π(i) ∈ St}.
The goal is to minimize the overall cost

∑
t π(St) of covering all subsets of S.

The MSSC problem generalizes various NP-hard problems such as Min-Sum Vertex Cover
and Min-Sum Coloring and it is well-studied. Feige, Lovasz and Tetali [25] showed that the
greedy algorithm, which picks in each position the element that covers the most uncovered
sets, is a 4-approximation (this was also implicit in [11]) and that no (4− ε)-approximation
is possible, unless P = NP. Several generalizations have been considered over the years with
applications in various areas (we discuss some of those problems and results in Section 1.2).

Online Min-Sum Set Cover. In this paper, we study the online version of Min-Sum Set
Cover. Here, the sets arrive online; at time step t, the set St is revealed. An online algorithm
is charged the access cost of its current permutation πt(St); then, it is allowed to change
its permutation to πt+1 at a moving cost equal to the number of inversions between πt and
πt+1, known as the Kendall tau distance dKT(πt, πt+1). The goal is to minimize the total
cost, i.e.,

∑
t

(
πt(St) + dKT(πt, πt+1)

)
. This is a significant generalization of the classic list

update problem, which corresponds to the special case where |St| = 1 for all sets St ∈ S.

Motivation. Consider a web search engine, such as Google. Each query asked might have
many different meanings depending on the user. For example, the query “Python” might
refer to an animal, a programming language or a movie. Given the pages related to “Python”,
a goal of the search engine algorithm is to rank them such that for each user, the pages of
interest appear as high as possible in the ranking (see e.g., [23]). Similarly, news streams
include articles covering different reader interests each. We want to rank the articles so that
every reader finds an article of interest as high as possible. The MSSC problem serves as a
theoretical model for practical problems of this type, where we want to aggregate disjunctive
binary preferences (expressed by the input sets) into a total order. E.g., for a news stream,
the universe U corresponds to the available articles and the sets St correspond to different
user types. The cost of a ranking (i.e., permutation on U) for a user type is the location of
the first article of interest. Clearly, in such applications, users arrive online and the algorithm
might need to re-rank the stream (i.e., change the permutation) based on user preferences.

Benchmarks. For the most part, we evaluate the performance of online algorithms by
comparing their cost against the cost of an optimal offline solution that knows the input
in advance and chooses an optimal permutation π. Note that this solution is static, in the

D. Fotakis, L. Kavouras, G. Koumoutsos, S. Skoulakis, and M. Vardas 51:3

sense that it does not change permutations over time. This type of analysis, called static
optimality, is typical in online optimization and online learning. It was initiated in the
context of adaptive data structures by the landmark result of Sleator and Tarjan [44], who
showed that splay trees are asymptotically as fast as any static tree. Since then, it has been
an established benchmark for various problems in this area (see e.g. [13, 30]); it is also a
standard benchmark for several other problems in online optimization (e.g., online facility
location [26,37], minimum metric matching [28,33,39], Steiner tree [38], etc.).

A much more general benchmark is the dynamic Min-Sum Set Cover problem, where
the algorithm is compared against an optimal solution allowed to change permutations over
time. This problem has not been studied even in the offline case. In this work, we define the
problem formally and obtain first results for the online case.

We remark that the online dynamic MSSC problem belongs to a rich class of problems
called Metrical Task Systems (MTS) [15]. MTS is a far-reaching generalization of several
fundamental online problems and provides a unified framework for studying online problems
(we discuss this in more detail in Section 1.2). Indeed, our results suggest that solving the
online dynamic MSSC requires the development of powerful generic techniques for online
problems, which might have further implications for the broader setting of MTS.

Throughout this paper, whenever we refer to online problems, like Min-Sum Set Cover or
list update, we assume the static case, unless stated otherwise.

Previous Work on List Update. Prior to our work, the only version of online MSSC studied
is the special case where |St| = 1 for all sets; this is the celebrated list update problem and it
has been extensively studied (an excellent reference is [14]). It is known that the deterministic
competitive ratio it least 2 − 2

n+1 and there are several 2-competitive algorithms known;
most notably, the Move-to-Front (MTF) algorithm, which moves the (unique) element of St
to the first position of the permutation, and the Frequency Count algorithm, which orders
the elements in decreasing order according to their frequencies.

The dynamic list update problem has also been extensively studied. MTF is known to be
2-competitive [43] and there are several other 2-competitive algorithms [1, 24].

1.1 Our Results
In this work, we initiate a systematic study of the online Min-Sum Set Cover problem. We
consider the r-uniform case, where all request sets have the same size |St| = r. This is
without loss of generality, as we explain in Section 1.3.

The first of our main results is a tight bound on the deterministic competitive ratio of
Online MSSC. We show that the competitive ratio of deterministic algorithms is Ω(r).

I Theorem 1. Any deterministic online algorithm for the Online Min-Sum Set Cover problem
has competitive ratio at least (r + 1)(1− r

n+1).

Note that for r = 1, this bound evaluates to 2− 2
n+1 , which is exactly the best known

lower bound for the list update problem.
We complement this result by providing a matching (up to constant factors) upper bound.

I Theorem 2. There exists a (5r + 2)-competitive deterministic online algorithm for the
Online Min-Sum Set Cover problem.

Interestingly, all prior work on the list update problem (case r = 1) does not seem to
provide us with the right tools for obtaining an algorithm with such guarantees! As we
discuss in Section 2, virtually all natural generalizations of successful list update algorithms

ICALP 2020

51:4 The Online Min-Sum Set Cover Problem

(e.g., Move-to-Front, Frequency Count) end up with a competitive ratio way far from the
desired bound. In fact, even for r = 2, most of them have a competitive ratio depending on
n, such as Ω(

√
n) or even Ω(n).

This suggests that online MSSC has a distinctive combinatorial structure, very different
from that of list update, whose algorithmic understanding calls for significant new insights.
The main reason has to do with the disjunctive nature of the definition of the access cost
π(St). In list update, where r = 1, the optimal solution is bound to serve a request St by
its unique element. The only question is how fast an online algorithm should upgrade it
(and the answer is “as fast as possible”). In MSSC, the hard (and crucial) part behind the
design of any competitive algorithm is how to ensure that the algorithm learns fast enough
about the element et used by the optimal solution to serve each request St. This is evident
in the highly adaptive nature of the deceptively simple greedy algorithm of [25] and in the
adversarial request sequences for generalizations of Move-to-Front, in Section 2.

To obtain the asymptotically optimal ratio of Theorem 2, we develop a rounding scheme
and use it to derandomize the multiplicative weights update (MWU) algorithm. Our analysis
bounds the algorithm’s access cost in terms of the optimal cost, but it does not account for
the algorithm’s moving cost. We then refine our approach, by performing lazy updates to
the algorithm’s permutation, and obtain a competitive algorithm for online MSSC.

We also observe (in Section 1.3) that based on previous work of Blum and Burch [12],
there exists a (computationally inefficient) randomized algorithm with competitive ratio
1 + ε, for any ε ∈ (0, 1/4). This implies that no lower bound is possible, if randomization is
allowed, and gives a strong separation between deterministic and randomized algorithms.

Memoryless Algorithms. While the bounds of Theorems 1 and 2 are matching, our
algorithm from Theorem 2 is computationally inefficient since it simulates the MWU algorithm,
which in turn, maintains a probability distribution over all n! permutations. This motivates
the study of trade-offs between the competitive ratio and computational efficiency. To this
end, we propose a memoryless algorithm, called Move-All-Equally (MAE), which moves all
elements of set St towards the beginning of the permutation at the same speed until the
first reaches the first position. This is inspired by the Double Coverage algorithm from
k-server [20,21]. We believe that MAE achieves the best guarantees among all memoryless
algorithms. We show that this algorithm can not match the deterministic competitive ratio.

I Theorem 3. The competitive ratio of the Move-All-Equally algorithm is Ω(r2).

Based on Theorem 3, we conjecture that an O(r) guarantee cannot be achieved by a
memoryless algorithms. We leave as an open question whether MAE has a competitive ratio
f(r), or a dependence on n is necessary. To this end, we show that the competitive ratio of
MAE is at most 2O(

√
logn·log r) (see Section 4 for details).

Dynamic Min-Sum Set Cover. We also consider the dynamic version of online MSSC.
Dynamic MSSC is much more general and the techniques developed for the static case do
not seem adequately powerful. This is not surprising, since the MWU algorithm is designed
to perform well against the best static solution. We investigate the performance of the MAE
algorithm. First, we obtain an upper bound on its competitive ratio.

I Theorem 4. The competitive ratio of the Move-All-Equally algorithm for the dynamic
online Min-Sum Set Cover problem is O(r3/2√n).

Although this guarantee is not very strong, we show that, rather surprisingly, it is
essentially tight and no better guarantees can be shown for this algorithm.

D. Fotakis, L. Kavouras, G. Koumoutsos, S. Skoulakis, and M. Vardas 51:5

I Theorem 5. For any r ≥ 3, the competitive ratio of the Move-All-Equally algorithm for
the dynamic online Min-Sum Set Cover problem is Ω(r

√
n).

This lower bound is based on a carefully crafted adversarial instance; this construction
reveals the rich structure of this problem and suggests that more powerful generic techniques
are required in order to achieve any f(r) guarantees. In fact, we conjecture that the lower
bound of Theorem 1 is the best possible (ignoring constant factors) even for the dynamic
problem and that using a work-function based approach such a bound can be obtained.

1.2 Further Related Work
Multiple Intents Re-ranking. This is a generalization of MSSC where for each set St, there
is a covering requirement K(St), and the cost of covering a set St is the position of the K(St)-
th element of St in π. The MSSC problem is the special case where K(St) = 1 for all sets
St. Another notable special case is the Min-Latency Set Cover problem, which corresponds
to the other extreme case where K(St) = |St| [29]. Multiple Intents Re-ranking was first
studied by Azar et. al. [5], who presented a O(log r)-approximation; later O(1)-approximation
algorithms were obtained [10,32,42]. Further generalizations have been considered, such as
the Submodular Ranking problem, studied by Azar and Gamzu [4], which generalizes both
Set Cover and MSSC, and the Min-Latency Submodular Cover, studied by Im et.al [31].

Prediction from Expert Advice and Randomized MSSC. In prediction from expert advice,
there are N experts and expert i incurs a cost cti in each step. A learning algorithm decides
which expert it to follow (before the cost vector ct is revealed) and incurs a cost of ctit . The
landmark technique for solving this problem is the multiplicative weights update (MWU -
a.k.a. Hedge) algorithm. For an in-depth treatment of MWU, we refer to [3, 27,35].

In the classic online learning setting, there is no cost for moving probability mass between
experts. However, in a breakthrough result, Blum and Burch [12] showed that MWU is
(1 + ε)-competitive against the best expert, even if there is a cost D for moving probability
mass between experts. By adapting this result to online MSSC (regarding permutations as
experts), we can get an (inefficient) randomized algorithm with competitive ratio (1 + ε), for
any constant ε ∈ (0, 1/4). A detailed description is deferred to the full version of this paper.

Metrical Task Systems and Online Dynamic MSSC. The online dynamic Min-Sum Set
Cover problem belongs to a rich family of problems called Metrical Task Systems (MTS). In
MTS, we are given a set of N states and a metric function d specifying the cost of moving
between the states. At each step, a task arrives; the cost of serving the task at state i is
ci. An algorithm has to choose a state to process the task. If it switches from state i to
state j and processes the task there, it incurs a cost d(i, j) + cj . Given an initial state and a
sequence of requests, the goal is to process all tasks at minimum cost.

It is easy to see that the online version of dynamic MSSC problem is a MTS, where the
states correspond to permutations, thus N = n!, and the distance between two states is their
Kendall tau distance. For a request set St, the request is a vector specifying the cost π(St)
for every permutation π.

Several other fundamental online problems (e.g., k-server, convex body chasing) are
MTS. Although there has been a lot of work on understanding the structure of MTS
problems [2,8,9,15,16,22,34,40,41], there is not a good grasp on how the structure relates to
the hardness of MTS problems. Getting a better understanding on this area is a long-term
goal, since it would lead to a systematic framework for solving online problems.

ICALP 2020

51:6 The Online Min-Sum Set Cover Problem

1.3 Preliminaries
Notation. Given a request sequence S = {S1, . . . , Sm}, for any algorithm ALG we denote
Cost(ALG(S)) or simply Cost(ALG) the total cost of ALG on S. Similarly we denote
AccessCost(ALG) the total access cost of ALG and MovingCost(ALG) the total movement
cost of ALG. For a particular time step t, an algorithm using permutation πt incurs an
access cost AccessCost(ALG(t)) = πt(St). We denote by πt[j] the position of element j ∈ U
in the permutation πt.

Online Min-Sum Set Cover. We focus on the r-uniform case, i.e., when all sets St have size
r � n. This is essentially without loss of generality, because we can always let r = maxt |St|
and add the r − |St| last unrequested elements in the algorithm’s permutation to any set St
with |St| < r. Assuming that r ≤ n/2, this modification cannot increase the optimal cost
and cannot decrease the online cost by more than a factor of 2.

2 Lower Bounds on the Deterministic Competitive Ratio

We start with a lower bound on the deterministic competitive ratio of online MSSC.
I Theorem 1. Any deterministic online algorithm for the Online Min-Sum Set Cover
problem has competitive ratio at least (r + 1)(1− r

n+1).
For the proof, we employ an averaging argument, similar to those in lower bounds for

list update and k-server [36, 43]. In each step, the adversary requests the last r elements
in the algorithm’s permutation. Hence, the algorithm’s cost is at least (n− r + 1). Using
a counting argument, we show that for any fixed set St of size r and any i ∈ [n − r + 1],
the number of permutations π with access cost π(St) = i is

(
n−i
r−1
)
r!(n − r)! . Summing

up over all permutations and dividing by n!, we get that the average access cost for St is(
n+1
r+1
) r!(n−r)!

n! = n+1
r+1 . Therefore, the cost of the optimal permutation is a most (n+1)

r+1 , and
the competitive ratio of the algorithm at least (n−r+1)(r+1)

n+1 . The details can be found in the
full version of this paper.

Lower Bounds for Generalizations of Move-to-Front. For list update, where r = 1, simple
algorithms like Move-to-Front (MTF) and Frequency Count achieve an optimal competitive
ratio. We next briefly describe several such generalizations of them and show that their
competitive ratio depends on n, even for r = 2. Missing details can be found in the full
version.
MTFfirst: Move to the first position (of the algorithm’s permutation) the element of St

appearing first in πt . This algorithm is Ω(n)-competitive when each request St consists
of the last two elements in πt. Then, the last element in the algorithm’s permutation
never changes and is used by the optimal permutation to serve the entire sequence!

MTFlast: Move to the first position the element of St appearing last in πt .
MTFall: Move to the first r positions all elements of St (in the same order as in πt).
MTFrandom: Move to the first position an element of St selected uniformly at random.

MTFlast, MTFall and MTFrandom have a competitive ratio of Ω(n) when each request St
consists of a fixed element e (always the same) and the last element in πt, because they all
incur an (expected for MTFrandom) moving cost of Θ(n) per request.

The algorithms seen so far fail for the opposite reasons: MTFfirst cares only about the
first element and ignores completely the second, and the others are very aggressive on using
the second (rth) element. A natural attempt to balance those two extremes is the following.

D. Fotakis, L. Kavouras, G. Koumoutsos, S. Skoulakis, and M. Vardas 51:7

MTFrelative: Let i be the position of the first element of St in πt. Move to the first positions
of the algorithm’s permutation (keeping their relative order) all elements of St appearing
up to the position c · i in πt, for some constant c. The bad instance for this algorithm is
when each request St consists of the last element and the element at position bn/cc − 1
in πt; it never uses the nth element and the adversary serves all requests with it at a cost
of 1.

All generalizations of MTF above are memoryless and they all fail to identify the element
by which optimal serves St. The following algorithm tries to circumvent this by keeping
memory and in particular the frequencies of reqested elements.
MTFcount: Move to the first position the most frequent element of St (i.e., the element of St

appearing in most requested sets so far).

This algorithm behaves better in easy instances, however with some more work we
can show a lower bound of Ω(

√
n) on its competitive ratio. Let e1, . . . , en be the ele-

ments indexed according to the initial permutation π0 and b =
√
n. The request sequence

proceeds in m/n phases of length n each. The first n − b requests of each phase are
{e1, e2}, {e1, e3}, . . . , {e1, en−b}, and the last b requests consist of en−b+i and the element at
position n− b at the current algorithm’s permutation, for i = 1, . . . , b. An optimal solution
can cover all the requests by the elements e1, en−b+1, . . . , en with total cost Θ(m + n

√
n).

The elements en−b+1, . . . , en are never upgraded by MTFcount. Hence, the algorithm’s cost
is Θ(m

√
n).

3 An Algorithm with Asymptotically Optimal Competitive Ratio

Next, we present algorithm Lazy-Rounding (Algorithm 2) and analyze its competitive ratio.
The following is the main result of this section:

I Theorem 2. Deterministic online algorithm Lazy-Rounding, presented in Algorithm 2, is
(5r + 2)-competitive for the static version of the Online Min-Sum Set Cover problem.

The remainder of this section is devoted to the proof of Theorem 2. At a high-level, our
approach is summarized by the following three steps:
1. We use as black-box the multiplicative weights update (MWU) algorithm with learning

rate 1/n3. Using standard results from learning theory, we show that its expected access
cost is within a factor 5/4 of OPT, i.e., AccessCost(MWU) ≤ 5

4 Cost(OPT) (Section 3.1).
2. We develop an online rounding scheme, which turns any randomized algorithm A into a

deterministic one, denoted Derand(A), with access cost at most 2r · E[AccessCost(A)]
(Section 3.2). However, our rounding scheme does not provide any immediate guarantee
on the moving cost of Derand(A).

3. Lazy-Rounding is a lazy version of Derand(MWU) that updates its permutation only
if MWU’s distribution has changed a lot. A phase corresponds to a time interval that
Lazy-Rounding does not change its permutation. We show that during a phase:
(i) The upper bound on the access cost increases, compared to Derand(MWU), by a

factor of at most 2, i.e., AccessCost(Lazy-Rounding) ≤ 4r · E[AccessCost(MWU)]
(Lemma 11).

(ii) The (expected) access cost of MWU is at least n2. Since our algorithm moves only
once per phase, its movement cost is at most n2. Thus we get that (Lemma 12):

MovingCost(Lazy-Rounding) ≤ E[AccessCost(MWU)] .

ICALP 2020

51:8 The Online Min-Sum Set Cover Problem

For the upper bound on the moving cost above, we relate how much MWU’s distribution
changes during a phase, in terms of the total variation distance, to the cost of MWU and
the cost of our algorithm.

Based on the above properties, we compare the access and the moving cost of Lazy-
Rounding against the access cost of MWU and to get the desired competitive ratio:

Cost(Lazy-Rounding) ≤ (4r + 1)E[AccessCost(MWU)] ≤ (5r + 2) Cost(OPT) .

Throughout this section we denote by dTV(δ, δ′) the total variation distance of two discrete
probability distributions δ, δ′ : [N]→ [0, 1], defined as dTV(δ, δ′) =

∑N
i=1 max{0, δ(i)− δ′(i)}.

3.1 Using Multiplicative Weights Update in Online Min-Sum Set Cover
In this section, we explain how the well-known MWU algorithm [27,35] is used in our context.

The MWU Algorithm. Given n! permutations of elements of U , the algorithm has a
parameter β ∈ [0, 1] and a weight wπ for each permutation π ∈ [n!], initialized at 1.
At each time step the algorithm chooses a permutation according to distribution Ptπ =
wtπ/(

∑
π∈[n!] w

t
π). When request St arrives, MWU incurs an expected access cost of

E[AccessCost(MWU(t))] =
∑
π∈[n!]

Ptπ · π(St)

and updates its weights wt+1
π = wtπ · βπ(St), where β = e−1/n3 ; this is the so-called learning

rate of our algorithm. Later on, we discuss the reasons behind choosing this value.

On the Access Cost of MWU. Using standard results from learning theory [27, 35] and
adapting them to our setting, we get that the (expected) access cost of MWU is bounded by
Cost(OPT). This is formally stated in Lemma 6 (and is proven in the full version).

I Lemma 6. For any request sequence σ = (S1, . . . , Sm) we have that

E[AccessCost(MWU)] ≤ 5
4 · Cost(OPT) + 2n4 lnn .

On the Distribution of MWU. We now relate the expected access cost of the MWU
algorithm to the total variation distance among MWU’s distributions. More precisely, we
show that if the total variation distance between MWU’s distributions at times t1 and t2 is
large, then MWU has incurred a sufficiently large access cost. The proof of the following
makes a careful use of MWU’s properties and is deferred to the full version of this paper.

I Lemma 7. Let Pt be the probability distribution of the MWU algorithm at time t. Then,

dTV(Pt,Pt+1) ≤ 1
n3 · E[AccessCost(MWU(t))].

The following is useful for the analysis of Lazy-Rounding. Its proof follows from Lemma 7
and the the triangle inequality and is deferred to the full version of this paper.

I Lemma 8. Let t1 and t2 two different time steps such that dTV(Pt1 ,Pt2) ≥ 1/n. Then,
t2−1∑
t=t1

E[AccessCost(MWU(t))] ≥ n2 .

D. Fotakis, L. Kavouras, G. Koumoutsos, S. Skoulakis, and M. Vardas 51:9

3.2 Rounding
Next, we present our rounding scheme. Given as input a probability distribution δ over
permutations, it outputs a fixed permutation ρ such that for each possible request set S of
size r, the cost of ρ on S is within a O(r) factor of the expected cost of the distribution δ on
S. For convenience, we assume that n/r is an integer. Otherwise, we use dn/re.

Algorithm 1 Greedy-Rounding (derandomizing probability distributions over the permutations).
Input: A probability distribution δ over [n!].
Output: A permutation ρ ∈ [n!].
1: R ← U

2: for i = 1 to n/r do
3: Si ← arg minS∈{R}r Eπ∼δ[π(S)]
4: Place the elements of Si (arbitrarily) from positions (i− 1) · r + 1 to i · r of ρ.
5: R← R \ Si
6: end for
7: return ρ

Our rounding algorithm is described in Algorithm 1. At each step, it finds the request S
with minimum expected covering cost under the probability distribution δ and places the
elements of S as close to the beginning of the permutation as possible. Then, it removes
those elements from set R and iterates. The main claim is that the resulting permutation
has the following property: any request S of size r has covering cost at most O(r) times of
its expected covering cost under the probability distribution δ.

I Theorem 9. Let δ be a distribution over permutations and let ρ be the permutation output
by Algorithm 1 on δ. Then, for any set S, with |S| = r,

ρ(S) ≤ 2r · E
π∼δ

[π(S)] .

Proof Sketch. The key step is to show that if the element used by ρ to serve the request
S was picked during the kth iteration of the rounding algorithm, then Eπ∼δ[π(S)] ≥ k/2.
Clearly, ρ(S) ≤ k · r and the theorem follows. Full proof is in the full version. J

3.3 The Lazy Rounding Algorithm
Lazy-Rounding, presented in Algorithm 2, is essentially a lazy derandomization of MWU.
At each step, it calculates the distribution on permutations maintained by MWU. At the
beginning of each phase, it sets its permutation to that given by Algorithm 1. Then, it sticks
to the same permutation for as long as the total variation distance of MWU’s distribution at
the beginning of the phase to the current MWU distribution is at most 1/n. As soon as the
total variation distance exceeds 1/n, Lazy-Rounding starts a new phase.

The main intuition behind the design of our algorithm is the following. In Section 3.2 we
showed that Algorithm 1 results in a deterministic algorithm with access cost no larger than
2rE[AccessCost(MWU)]. However, such an algorithm may incur an unbounded moving cost;
even small changes in the distribution of MWU could lead to very different permutations
after rounding. To deal with that, we update the permutation of Lazy-Rounding only if
there are substantial changes in the distribution of MWU. Intuitively, small changes in
MWU’s distribution should not affect much the access cost (this is formalized in Lemma 10).
Moreover, Lazy-Rounding switches to a different permutation only if it is really required,
which we use to bounds Lazy-Rounding’s moving cost.

ICALP 2020

51:10 The Online Min-Sum Set Cover Problem

Bounding the Access Cost. We first show that the access cost of Lazy-Rounding is within
a factor of 4r from the expected access cost of MWU (Lemma 11). To this end, we first
show that if the total variation distance between two distributions is small, then sampling
from those distributions yields roughly the same expected access cost for any request S. The
proof of the following is based on the optimal coupling lemma and can be found in the full
version of this paper.

I Lemma 10. Let δ and δ′ be two probability distributions over permutations. If that
dTV(δ, δ′) ≤ 1/n, for any request set S of size r, we have that

E
π∼δ′

[π(S)] ≤ 2 · E
π∼δ

[π(S)].

We are now ready to upper bound the access cost of our algorithm.

I Lemma 11. AccessCost(Lazy-Rounding) ≤ 4r · E[AccessCost(MWU)].

Proof. Consider a phase of Lazy-Rounding starting at time t1. We have that at any round
t ≥ t1, πt = Greedy-Rounding(Pt1), as long as dTV(Pt,Pt1) ≤ 1/n. By Theorem 9 and
Lemma 10, we have that,

AccessCost(Lazy-Rounding(t)) = πt(St) ≤ 2r · E
π∼Pt1

[π(St)] ≤ 4r E
π∼Pt

[π(St)].

Overall we get, AccessCost(Lazy-Rounding) =
∑m
t=1 πt(St) ≤ 4rE[AccessCost(MWU)]. J

Bounding the Moving Cost. We now show that the moving cost of Lazy-Rounding is upper
bounded by the expected access cost of MWU.

I Lemma 12. MovingCost(Lazy-Rounding) ≤ E[AccessCost(MWU)].

Proof. Lazy-Rounding moves at the end of a phase incurring a cost of at most n2. Let t1
and t2 be the starting times of two consecutive phases. By the definition of Lazy-Rounding,
dTV(P t1 , P t2) > 1/n. By Lemma 8, we have that the access cost of MWU during t1 and t2
is at least n2. We get that

MovingCost(ALG)
E[AccessCost(MWU)] ≤

n2# different phases
n2#different phases = 1. J

Theorem 2 follows from lemmas 11, 12 and 6. The details can be found in the full version.

Algorithm 2 Lazy Rounding.
Input: Sequence of requests (S1, . . . , Sm) and the initial permutation π0 ∈ [n!].
Output: A permutation πt at each round t, which serves request St.
1: start-phase← 1
2: P1 ← uniform distribution over permutations
3: for each round t ≥ 1 do
4: if dtv(Pt,Pstart-phase) ≤ 1/n then
5: πt ← πt−1
6: else
7: πt ← Greedy-Rounding(Pt)
8: start-phase← t

9: end if
10: Serve request St using permutation πt.
11: wt+1

π = wtπ · e−π(St)/n3 , for all permutations π ∈ [n!].
12: Pt+1 ← Distribution on permutations of MWU, Pt+1

π = wtπ/(
∑
π∈[n!] w

t
π).

13: end for

D. Fotakis, L. Kavouras, G. Koumoutsos, S. Skoulakis, and M. Vardas 51:11

Algorithm 3 Move-All-Equally.
Input: A request sequence (S1, . . . , Sm) and the initial permutation π0 ∈ [n!]
Output: A permutation πt at each round t.
1: for each round t ≥ 1 do
2: kt ← min{i |πt−1[i] ∈ St}
3: Decrease the index of all elements of St by kt − 1.
4: end for

Remark. Note that to a large extent, our approach is generic and can be used to provide
static optimality for a wide range of online problems. The only requirement is that there is
a maximum access cost Cmax and a maximum moving cost D; then, we should use MWU
with learning rate 1/(D · Cmax) and move when dTV ≥ 1/Cmax. Here we used D = n2 and
Cmax = n. The only problem-specific part is the rounding of Section 3.2. We believe it is an
interesting direction to use this technique for generalizations of this problem, like multiple
intents re-ranking or interpret known algorithms for other problems like the BST problem
using our approach.

4 A Memoryless Algorithm

In this section we focus on memoryless algorithms. We present an algorithm, called Move-All-
Equally (MAE), which seems to be the “right” memoryless algorithm for online MSSC. MAE
decreases the index of all elements of the request St at the same speed until one of them
reaches the first position of the permutation (see Algorithm 3). Note that MAE belongs to
the Move-to-Front family, i.e., it is a generalization of the classic MTF algorithm for the list
update problem. MAE admits two key properties that substantially differentiate it from the
other algorithms in the Move-to-Front family presented in Section 2.

(i) Let et denote the element used by OPT to cover the request St. MAE always moves
the element et towards the beginning of the permutation.

(ii) It balances moving and access costs: if the access cost at time t is kt, then the moving
cost of MAE is roughly r · kt (see Algorithm 3). The basic idea is that the moving cost
of MAE can be compensated by the decrease in the position of element et. This is why
it is crucial all the elements to be moved with the same speed.

Lower Bound. First, we show that this algorithm, besides its nice properties, fails to achieve
a tight bound for the online MSSC problem.

I Theorem 3. The competitive ratio of the Move-All-Equally algorithm is Ω(r2).

In the lower bound instance, the adversary always requests the last r elements of the
algorithm’s permutation. Since MAE moves all elements to the beginning of the permutation,
we end up in a request sequence where n/r disjoint sets are repeatedly requested. Thus the
optimal solution incurs a cost of Θ(n/r) per request, while MAE incurs a cost of Ω(n · r)
per request (the details are in the full version) . Note that in such a sequence, MAE loses
a factor of r by moving all elements, instead of one. However, this extra movement seems
to be the reason that MAE outperforms all other memoryless algorithms and avoids poor
performance in trivial instances, like other MTF-like algorithms.

ICALP 2020

51:12 The Online Min-Sum Set Cover Problem

Upper Bounds. Let L denote the set of elements used by the optimal permutation on a
request sequence such that |L| = `. That means, OPT has those ` elements in the beginning of
its permutation, and it never uses the remaining n−` elements. Consider a potential function
Φ(t) being the number of inversions between elements of L and U \ L in the permutation of
MAE (an inversion occurs when an element of L is behind an element of U \ L). Consider
the request St at time t and let kt be the access cost of MAE.

Let et be the element used by OPT to serve St. Clearly, in the permutation of MAE, et
passes (i.e., changes relative order w.r.t) kt − 1 elements. Among them, let L be the set of
elements of L and R the elements of U \ L. Clearly, |L| + |R| = kt − 1 and |L| ≤ |L| = `.
We get that the move of et changes the potential by −|R|. The moves of all other elements
increase the potential by at most (r − 1) · `. We get that

kt + Φ(t)− Φ(t− 1) ≤ |L|+ |R| − |R|+ (r − 1) · ` ≤ |L|+ (r − 1) · ` ≤ r · `.

Since the cost of MAE at step t is no more than (r + 1) · kt, we get that the amortized cost
of MAE per request is O(r2 · `). This implies that for all sequences such that OPT uses
all elements of L with same frequencies (i.e, the OPT pays on average Ω(`) per request),
MAE incurs a cost within O(r2) factor from the optimal. Recall that all other MTF-like
algorithms are Ω(

√
n) competitive even in instances where OPT uses only one element!

While this simple potential gives evidence that MAE is O(r2)-competitive, it is not
enough to provide satisfactory competitiveness guarantees. We generalize this approach and
define the potential function Φ(t) =

∑n
j=1 αj · πt(j), where πt(j) is the position of element j

at round t and αj are some non-negative coefficients. The potential we described before is
the special case where αj = 1 for all elements of L and αj = 0 for elements of U \ L.

By refining further this approach and choosing coefficients αj according to the frequency
that OPT uses element j to serve requests (elements of high frequency are “more important”
so they should have higher values αj), we get an improved upper bound.

I Theorem 14. The competitive ratio of MAE algorithm is at most 2O(
√

logn·log r).

Note that this guarantee is o(nε) and ω(logn). The proof is based on the ideas sketched
above but the analysis is quite involved and is deferred to the full version of this paper.

5 Dynamic Online Min-Sum Set Cover

In this section, we turn our attention to the dynamic version of online MSSC. In online
dynamic MSSC, the optimal solution maintains a trajectory of permutations π∗0 , π∗1 , . . . , π∗t , . . .
and use permutation π∗t to serve each request St. The cost of the optimal dynamic solution
is OPTdynamic =

∑
t(π∗t (St) + dKT(π∗t−1, π

∗
t)), where {π∗t }t denotes the optimal permutation

trajectory for the request sequence that minimizes the total access and moving cost.
We remark that the ratio between the optimal static solution and the optimal dynamic

solution can be as high as Ω(n). For example, in the sequence of requests {1}b{2}b . . . {n}b, the
optimal static solution pays Θ(n2b), whereas the optimal dynamic solution pays Θ(n2 + n · b)
by moving the element that covers the next n · b requests to the first position and then
incurring access cost 1. The above example also reveals that although Algorithm 2 is
Θ(r)-competitive against the optimal static solution, its worst-case ratio against a dynamic
solution can be Ω(n).

MAE Algorithm. As a first study of the dynamic problem, we investigate the competitive
ratio of Move-All-Equally (MAE) algorithm from Section 4. We begin with an upper bound.

I Theorem 4. The competitive ratio of the Move-All-Equally algorithm for the dynamic
online Min-Sum Set Cover problem is O(r3/2√n).

D. Fotakis, L. Kavouras, G. Koumoutsos, S. Skoulakis, and M. Vardas 51:13

The approach for proving Theorem 4 is generalizing that exhibited in Section 4 for the static
case. We use a generalized potential function Φ(t) =

∑n
j=1 α

t
j · πt(j); i.e, the multipliers αj

may change over time so as to capture the moves of OPTdynamic. To select coefficients αtj we
apply a two-level approach. We observe that there is always a 2-approximate optimal solution
that moves an element of St to the front (similar to classic MTF in list update). We call
this MTFOPT . We compare the permutation of the online algorithm with the permutation
maintained by this algorithm; at each time, elements the beginning of the offline permutation
are considered to be “important” and have higher coefficients αtj . The formal proof is in the
full version.

Next, we show an almost matching lower bound.

I Theorem 5. For any r ≥ 3, the competitive ratio of the Move-All-Equally algorithm for
the dynamic online Min-Sum Set Cover problem is Ω(r

√
n).

Sketch of the Construction. The lower bound is based on a complicated adversarial request
sequence; we sketch the main ideas. Let k be an integer. During a phase we ensure that:
(i) There are 2k “important” elements used by OPT; we call them e1, . . . , e2k. In the

beginning of the phase, those elements are ordered in the start of the optimal permutation
π∗, i.e., π∗[ej] = j. The phase contains k consecutive requests to each of them, in order;
thus the total number of requests is ≈ 2k2. OPT brings each element ej at the front
and uses it for k consecutive requests; thus the access cost of OPT is 2k2 (1 per request)
and the total movement cost of OPT of order Θ(k2). Over a phase of 2k2 requests,
OPT incurs an overall cost Θ(k2), i.e., an average of O(1) per request.

(ii) The first k + r − 2 positions of the online permutation will be always occupied by the
same set of “not important” elements; at each step the r − 2 last of them will be part
of the request set and MAE will move them to the front. Thus the access cost will
always be k + 1 and the total cost more than (r + 1) · k.

The two properties above are enough to provide a lower bound Ω(r · k); the optimal cost
is O(1) per request and the online cost Ω(r · k). The goal of an adversary is to construct a
request sequence with those two properties for the largest value of k possible.

The surprising part is that although MAE moves all requested elements towards the
beginning of the permutation, it never manages to bring any of the “important” elements in
a position smaller than r+ k− 2. While the full instance is complex and described in the full
version, at a high-level, we make sure that whenever a subsequence of k consecutive requests
including element ej begins, ej is at the end of the online permutation, i.e., πt[ej] = n. Thus,
even after k consecutive requests where MAE moves it forward by distance k, it moves by k2

positions; by making sure that n− k2 > r + k − 2 (which is true for some k = Ω(
√
n)), we

can make sure that ej does not reach the first r + k − 2 positions of the online permutation.

6 Concluding Remarks

Our work leaves several intriguing open questions. For the (static version of) Online MSSC,
it would be interesting to determine the precise competitive ratio of the MAE algorithm;
particularly whether it depends only on r or some dependency on n is really necessary. More
generally, it would be interesting to determine the best possible performance of memoryless
algorithms and investigate trade-offs between competitiveness and computational efficiency.

For the online dynamic MSSC problem, the obvious question is whether a f(r)-competitive
algorithm is possible. Here, we showed that techniques developed for the list update problem
seem to be too problem-specific and are not helpful in this direction. This calls for the

ICALP 2020

51:14 The Online Min-Sum Set Cover Problem

use of more powerful and systematic approaches. For example, the online primal-dual
method [18] has been applied successfully for solving various fundamental problems [6,7,17,19].
Unfortunately, we are not aware of a primal-dual algorithm even for the special case of list
update; the only attempt we are aware of is in [45], but this analysis basically recovers
known (problem-specific) algorithms using dual-fitting. Our work gives further motivation
for designing a primal-dual algorithm for list-update: this could be a starting point towards
solving the online dynamic MSSC.

In a broader context, the online MSSC is the first among a family of poorly understood
online problems such as the multiple intents re-ranking problem described in Section 1.2. In
this problem, when a set St is requested, we need to cover it using s ≤ r elements; MSSC is
the special case s = 1. It is natural to expect that the lower bound of Theorem 1 can be
generalized to Ω(r/s), i.e., as s grows, we should be able to achieve a better competitive
ratio. It will be interesting to investigate this and the applicability of our technique to obtain
tight bounds for this problem.

References
1 Susanne Albers. Improved randomized on-line algorithms for the list update problem. SIAM

J. Comput., 27(3):682–693, 1998. doi:10.1137/S0097539794277858.
2 C. J. Argue, Anupam Gupta, Guru Guruganesh, and Ziye Tang. Chasing convex bodies with

linear competitive ratio. In SODA, pages 1519–1524, 2020. doi:10.1137/1.9781611975994.93.
3 Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a

meta-algorithm and applications. Theory of Computing, 8(1):121–164, 2012. doi:10.4086/
toc.2012.v008a006.

4 Yossi Azar and Iftah Gamzu. Ranking with submodular valuations. In SODA, pages 1070–1079,
2011. doi:10.1137/1.9781611973082.81.

5 Yossi Azar, Iftah Gamzu, and Xiaoxin Yin. Multiple intents re-ranking. In STOC, pages
669–678, 2009. doi:10.1145/1536414.1536505.

6 Nikhil Bansal, Niv Buchbinder, Aleksander Madry, and Joseph Naor. A polylogarithmic-
competitive algorithm for the k-server problem. J. ACM, 62(5):40:1–40:49, 2015. doi:
10.1145/2783434.

7 Nikhil Bansal, Niv Buchbinder, and Joseph Naor. A primal-dual randomized algorithm for
weighted paging. J. ACM, 59(4):19:1–19:24, 2012. doi:10.1145/2339123.2339126.

8 Nikhil Bansal, Marek Eliáš, and Grigorios Koumoutsos. Weighted k-server bounds via
combinatorial dichotomies. In FOCS, pages 493–504, 2017. doi:10.1109/FOCS.2017.52.

9 Nikhil Bansal, Marek Eliáš, Grigorios Koumoutsos, and Jesper Nederlof. Competitive
algorithms for generalized k-server in uniform metrics. In SODA, pages 992–1001, 2018.
doi:10.1137/1.9781611975031.64.

10 Nikhil Bansal, Anupam Gupta, and Ravishankar Krishnaswamy. A constant factor approx-
imation algorithm for generalized min-sum set cover. In SODA, pages 1539–1545, 2010.
doi:10.1137/1.9781611973075.125.

11 Amotz Bar-Noy, Mihir Bellare, Magnús M. Halldórsson, Hadas Shachnai, and Tami Tamir.
On chromatic sums and distributed resource allocation. Inf. Comput., 140(2):183–202, 1998.
doi:10.1006/inco.1997.2677.

12 Avrim Blum and Carl Burch. On-line learning and the metrical task system problem. Machine
Learning, 39(1):35–58, 2000.

13 Avrim Blum, Shuchi Chawla, and Adam Kalai. Static optimality and dynamic search-optimality
in lists and trees. Algorithmica, 36(3):249–260, 2003.

14 Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis. Cambridge
University Press, 1998.

https://doi.org/10.1137/S0097539794277858
https://doi.org/10.1137/1.9781611975994.93
https://doi.org/10.4086/toc.2012.v008a006
https://doi.org/10.4086/toc.2012.v008a006
https://doi.org/10.1137/1.9781611973082.81
https://doi.org/10.1145/1536414.1536505
https://doi.org/10.1145/2783434
https://doi.org/10.1145/2783434
https://doi.org/10.1145/2339123.2339126
https://doi.org/10.1109/FOCS.2017.52
https://doi.org/10.1137/1.9781611975031.64
https://doi.org/10.1137/1.9781611973075.125
https://doi.org/10.1006/inco.1997.2677

D. Fotakis, L. Kavouras, G. Koumoutsos, S. Skoulakis, and M. Vardas 51:15

15 Allan Borodin, Nathan Linial, and Michael E. Saks. An optimal on-line algorithm for metrical
task system. J. ACM, 39(4):745–763, 1992. doi:10.1145/146585.146588.

16 Sébastien Bubeck, Michael B. Cohen, James R. Lee, and Yin Tat Lee. Metrical task systems
on trees via mirror descent and unfair gluing. In SODA, pages 89–97. SIAM, 2019.

17 Niv Buchbinder and Joseph Naor. Improved bounds for online routing and packing via a
primal-dual approach. In FOCS, pages 293–304, 2006. doi:10.1109/FOCS.2006.39.

18 Niv Buchbinder and Joseph Naor. The design of competitive online algorithms via a primal-
dual approach. Foundations and Trends in Theoretical Computer Science, 3(2-3):93–263, 2009.
doi:10.1561/0400000024.

19 Niv Buchbinder and Joseph Naor. Fair online load balancing. J. Scheduling, 16(1):117–127,
2013. doi:10.1007/s10951-011-0226-0.

20 Marek Chrobak, Howard J. Karloff, T. H. Payne, and Sundar Vishwanathan. New results on
server problems. SIAM J. Discrete Math., 4(2):172–181, 1991. doi:10.1137/0404017.

21 Marek Chrobak and Lawrence L. Larmore. An optimal on-line algorithm for k-servers on trees.
SIAM J. Comput., 20(1):144–148, 1991. doi:10.1137/0220008.

22 Christian Coester and James R. Lee. Pure entropic regularization for metrical task systems.
In COLT, volume 99 of Proceedings of Machine Learning Research, pages 835–848. PMLR,
2019.

23 Cynthia Dwork, Ravi Kumar, Moni Naor, and D. Sivakumar. Rank aggregation methods for
the Web. In Proceedings of the Tenth International World Wide Web Conference, WWW 10,
pages 613–622. ACM, 2001. doi:10.1145/371920.372165.

24 Ran El-Yaniv. There are infinitely many competitive-optimal online list accessing algorithms.
Hebrew University of Jerusalem, 1996.

25 Uriel Feige, László Lovász, and Prasad Tetali. Approximating min sum set cover. Algorithmica,
40(4):219–234, 2004. doi:10.1007/s00453-004-1110-5.

26 Dimitris Fotakis. On the competitive ratio for online facility location. Algorithmica, 50(1):1–57,
2008. doi:10.1007/s00453-007-9049-y.

27 Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. J. Comput. Syst. Sci., 55(1):119–139, 1997. doi:10.1006/
jcss.1997.1504.

28 Anupam Gupta, Guru Guruganesh, Binghui Peng, and David Wajc. Stochastic online metric
matching. In ICALP, pages 67:1–67:14, 2019. doi:10.4230/LIPIcs.ICALP.2019.67.

29 Refael Hassin and Asaf Levin. An approximation algorithm for the minimum latency set cover
problem. In ESA, pages 726–733, 2005. doi:10.1007/11561071_64.

30 John Iacono and Wolfgang Mulzer. A static optimality transformation with applications to
planar point location. Int. J. Comput. Geometry Appl., 22(4):327–340, 2012. doi:10.1142/
S0218195912600084.

31 Sungjin Im, Viswanath Nagarajan, and Ruben van der Zwaan. Minimum latency submodular
cover. ACM Trans. Algorithms, 13(1):13:1–13:28, 2016. doi:10.1145/2987751.

32 Sungjin Im, Maxim Sviridenko, and Ruben van der Zwaan. Preemptive and non-preemptive
generalized min sum set cover. Math. Program., 145(1-2):377–401, 2014. doi:10.1007/
s10107-013-0651-2.

33 Elias Koutsoupias and Akash Nanavati. The online matching problem on a line. In WAOA,
pages 179–191, 2003. doi:10.1007/978-3-540-24592-6_14.

34 Elias Koutsoupias and Christos H. Papadimitriou. On the k-server conjecture. Journal of the
ACM, 42(5):971–983, 1995.

35 Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm. Inf. Comput.,
108(2):212–261, 1994.

36 Mark S. Manasse, Lyle A. McGeoch, and Daniel Dominic Sleator. Competitive algorithms for
server problems. J. Algorithms, 11(2):208–230, 1990. doi:10.1016/0196-6774(90)90003-W.

37 Adam Meyerson. Online facility location. In FOCS, pages 426–431. IEEE Computer Society,
2001.

ICALP 2020

https://doi.org/10.1145/146585.146588
https://doi.org/10.1109/FOCS.2006.39
https://doi.org/10.1561/0400000024
https://doi.org/10.1007/s10951-011-0226-0
https://doi.org/10.1137/0404017
https://doi.org/10.1137/0220008
https://doi.org/10.1145/371920.372165
https://doi.org/10.1007/s00453-004-1110-5
https://doi.org/10.1007/s00453-007-9049-y
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.4230/LIPIcs.ICALP.2019.67
https://doi.org/10.1007/11561071_64
https://doi.org/10.1142/S0218195912600084
https://doi.org/10.1142/S0218195912600084
https://doi.org/10.1145/2987751
https://doi.org/10.1007/s10107-013-0651-2
https://doi.org/10.1007/s10107-013-0651-2
https://doi.org/10.1007/978-3-540-24592-6_14
https://doi.org/10.1016/0196-6774(90)90003-W

51:16 The Online Min-Sum Set Cover Problem

38 Joseph Naor, Debmalya Panigrahi, and Mohit Singh. Online node-weighted steiner tree and
related problems. In FOCS, pages 210–219, 2011. doi:10.1109/FOCS.2011.65.

39 Krati Nayyar and Sharath Raghvendra. An input sensitive online algorithm for the metric
bipartite matching problem. In FOCS, pages 505–515, 2017. doi:10.1109/FOCS.2017.53.

40 Mark Sellke. Chasing convex bodies optimally. In SODA, pages 1509–1518, 2020. doi:
10.1137/1.9781611975994.92.

41 René Sitters. The generalized work function algorithm is competitive for the generalized
2-server problem. SIAM J. Comput., 43(1):96–125, 2014. doi:10.1137/120885309.

42 Martin Skutella and David P. Williamson. A note on the generalized min-sum set cover
problem. Oper. Res. Lett., 39(6):433–436, 2011. doi:10.1016/j.orl.2011.08.002.

43 Daniel Dominic Sleator and Robert Endre Tarjan. Amortized efficiency of list update and
paging rules. Commun. ACM, 28(2):202–208, 1985. doi:10.1145/2786.2793.

44 Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search trees. J. ACM,
32(3):652–686, 1985. doi:10.1145/3828.3835.

45 Erez Timnat. The list update problem, 2016. Master Thesis, Technion- Israel Institute of
Technology.

https://doi.org/10.1109/FOCS.2011.65
https://doi.org/10.1109/FOCS.2017.53
https://doi.org/10.1137/1.9781611975994.92
https://doi.org/10.1137/1.9781611975994.92
https://doi.org/10.1137/120885309
https://doi.org/10.1016/j.orl.2011.08.002
https://doi.org/10.1145/2786.2793
https://doi.org/10.1145/3828.3835

	Introduction
	Our Results
	Further Related Work
	Preliminaries

	Lower Bounds on the Deterministic Competitive Ratio
	An Algorithm with Asymptotically Optimal Competitive Ratio
	Using Multiplicative Weights Update in Online Min-Sum Set Cover
	Rounding
	The Lazy Rounding Algorithm

	A Memoryless Algorithm
	Dynamic Online Min-Sum Set Cover
	Concluding Remarks

