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—— Abstract

We give the first efficient algorithm to approximately count the number of solutions in the random

k-SAT model when the density of the formula scales exponentially with k. The best previous
counting algorithm was due to Montanari and Shah and was based on the correlation decay method,
which works up to densities (1 + ok(l))w, the Gibbs uniqueness threshold for the model. Instead,
our algorithm harnesses a recent technique by Moitra to work for random formulas with much higher
densities. The main challenge in our setting is to account for the presence of high-degree variables
whose marginal distributions are hard to control and which cause significant correlations within the
formula.
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1 Introduction

Let ® = ®(k,n,m) be a k-CNF formula on n Boolean variables with m clauses chosen
uniformly at random where each clause has size k > 3. The random formula ® shows an
interesting threshold behaviour, where the asymptotic probability that & is satisfiable drops
dramatically from 1 to 0 when the density « := m/n crosses a certain threshold ay. There
has been tremendous progress on establishing this phase transition and pinpointing the
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threshold ay [25, 19, 3, 4, 12, 15] guided by elaborate but non-rigorous methods in physics
[28, 27]. The exact value of the threshold « is established in [15] for sufficiently large k; it
is known that a, =2"In2 — 1(1 4 In2) + 0x(1) as k — oc.

In contrast, the “average case” computational complexity of random k-CNF formulas
remains elusive. It is a notoriously hard problem to design algorithms that succeed in finding
a satisfying assignment when the density of the formula @ is close to (but smaller than)
the satisfiability threshold a,. The best polynomial-time algorithm to find a satisfying
assignment of ® is due to Coja-Oghlan [8], which succeeds if o < (1 — 0x(1)) - 28 Ink/k. It is
known that beyond this density bound 2¥ In k/k the solution space of the formula undergoes
a phase transition and becomes severely more complicated [2], so local algorithms are bound
to fail to find a satisfying assignment in polynomial time (see for example [24, 9, 11]).

It is also a natural question to determine the number of satisfying assignments to ®,
denoted by Z(®), when the density is below the satisfying threshold. It has been shown
that L log Z(®) is concentrated around its expectation [1, 13] for o < (1 — 0x(1)) - 2¥ Ink/k.
However, for the k-SAT model, there is no known formula for the expectation E 1 log Z(®)
(though see [35, 14] for progress along these lines for more symmetric models of random
formulas). Regarding the algorithmic question, Montanari and Shah [31] have given an
efficient algorithm to approximate log Z(®) if a < 2123;]“ (1 + 0g(1)), based on the correlation
decay method and the uniqueness threshold of the Gibbs distribution. Note that this only
gives an approximation to Z(®) within an exponential factor. Also, the threshold for « is

exponentially lower than the satisfiability threshold. No efficient algorithm was known to
give a more precise approximation.

In this paper, we address the algorithmic counting problem by giving the first fully
polynomial-time approximation scheme (FPTAS) for the number of satisfying assignments
to random k-CNF formulas, if the density « is less than 2"%, for sufficiently large k& and
some constant > 0. Our bound is exponential in k& and goes well beyond the uniqueness
threshold of 2198k (1 4 ¢, (1)) which is required by the correlation decay method.

k
Our result is related to other algorithmic counting results on random graphs such as

counting colourings, independent sets, and other structures [33, 37, 16, 26] in random graphs.
However, previous methods, such as Markov Chain Monte Carlo and Barvinok’s method,
appear to be difficult to apply to random formulas. Instead, our algorithm is the first
adaptation of Moitra’s method [30] to the random instance setting. We give a high level
overview of the techniques in Section 1.2.

1.1 The model and the main result

For k > 3, let ® = ®(k,n, m) denote a k-SAT formula chosen uniformly at random from the
set of all k-SAT formulas with n variables and m clauses. Specifically, ® has n variables
v1,V2,...,V, and m clauses ci, ¢, ..., ¢y Each clause ¢; has k literals ¢; 1,%; 2,...,¢; , and
each literal ¢; ; is chosen uniformly at random from 2n literals {vi,va, ..., vp, 01, 702, ...,
—w,}. Note that each clause has exactly k literals (repetitions allowed), so there are (2n)F™
possible formulas; we use Pr(:) to denote the uniform distribution on the set of all such
formulas. Throughout, we will assume that m = |n«], where o > 0 is the density of the
formula. We say that an event £ holds w.h.p. if Pr(€) =1 — o(1) as n — oo.

For a k-SAT formula ®, we let = Q(P) denote the set of satisfying assignments of ®.

» Theorem 1. There is a polynomial-time algorithm A and there are two constants r > 0
and ko > 3 such that, for all k > ko and all o < 27, the following holds w.h.p. over the
choice of the random k-SAT formula ® = ®(k,n, |an]). The algorithm A, given as input
the formula ® and a rational € > 0, outputs in time poly(n,1/e) a number Z that satisfies
e |0(®)] < Z < e*|(®).
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Throughout this paper, we will assume that k& > ko where ky is a sufficiently large
constant. We will also assume that the density « of the formula ® satisfies o < 2F/309 /i3 so
r can be taken to be 1/301 in Theorem 1. The constant 300 here is not optimised, but we
do not expect to be able to use the current techniques to improve it substantially. Our main
point is that for a density which is exponential in k, an FPTAS exists for random k-CNF
formulas. Finally, we assume that k?a > 1, otherwise it is well-known (see, e.g., Theorem 3.6
in [34]) that w.h.p. every connected component of ®, viewed as a hypergraph where variables
correspond to vertices and clauses correspond to hyperedges, is of size O(logn). In this case
we can count the number of satisfying assignments by brute force.

1.2 Algorithm overview

We give a high-level overview of our algorithm here before giving the details. Approximately
counting the satisfying assignments of a k-CNF formula has been a challenging problem
using traditional algorithmic techniques, since the solution space (the set of satisfying
assignments) is complicated and it is not connected, using the transitions of commonly-
studied Markov chains. Recently some new approaches were introduced [30, 20]. Most
notably, the breakthrough work of Moitra [30] gives the first (and so far the only) efficient
deterministic algorithm that can approximately count the satisfying assignments of k-CNF
formulas in which each variable appears in at most d clauses, if, roughly, d < 25/60 Inspired
by this, Feng et al. [18] have also given a MCMC algorithm which applies when d < 2%/,

As our goal is to count satisfying assignments of sparse random k-CNF formulas, where
these degree bounds do not hold, but average degrees are small, it is natural to also choose
Moitra’s method in the random instance setting. However, the first difficulty is that Moitra’s
method relies on the fact that the marginal probability of each variable (the probability
that the variable is true in a uniformly-chosen satisfying assignment) is nearly 1/2. This is
necessary because Moitra’s method involves solving a certain linear program (LP) and the
size of this LP is polynomially-bounded only if a certain process couples quickly. The proof
that the process couples quickly relies on the fact that the marginals are nearly 1/2 (and
certainly on the fact that they are bounded away from 0 and 1). In contrast, for a random
k-CNF formula, although the average degree of variables is low, w.h.p. there are variables
with degrees as high as € (logn/loglogn). In the presence of these high-degree variables, the
marginal probabilities of the variables can be arbitrarily near 0 or 1, instead of 1/2.

Our solution to this issue is to separate out high-degree variables, as well as those that
are heavily influenced by high-degree variables. To do this, we define a process to recursively
label “bad” variables. At the start, all high-degree variables are bad. Then, all clauses
containing more than k/10 bad variables are labelled bad, as are all variables that they
contain. We run this process until no more bad clauses are found. We call the remaining
variables and clauses of the formula “good”. A key property is that all good variables have
an upper bound on their degree and all good clauses contain at least 9k/10 good variables;
this allows us to show that the marginal probabilities of good variables are close to 1/2.

The next step is to attempt to apply Moitra’s method. The goal of Moitra’s method
is to compute more precise estimates for the marginal probabilities of the variables; given
accurate estimates on the marginal probabilities, it is then relatively easy to approximate
the number of satisfying assignments using refined self-reducibility techniques.

Of course, we need to modify the method to deal with the bad variables, which still appear
in the formula. We first explain Moitra’s method and then proceed with our modifications.
The first step is to mark variables, so that every clause contains a good fraction of marked
variables and a good fraction of unmarked variables. Then, for a particular marked variable
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v, we set up an LP. As noted earlier, the variables of the LP correspond to the states of
a certain coupling process which couples two distributions on satisfying assignments using
the marked variables — the first distribution over satisfying assignments in which v is true,
and the second distribution over satisfying assignments in which v is false. Solving the LP
recovers the transition probabilities of the coupling process and yields enough information to
approximate the marginal probability of v.

In order to guarantee that the size of the LP is bounded by a polynomial in the size
of the original CNF formula, we have to restrict the coupling process. The process can be
viewed as a tree and it suffices to truncate this tree at a suitable level.

Thus, a crucial part of the proof (both in Moitra’s case and in ours) is to show that the
error caused by the truncation is sufficiently small. The reason that the error caused by the
truncation is small is that, with high probability, branches of the coupling tree “die out”
before reaching a large level. The reason for this is that the marginals of marked variables
stay near 1/2, even when conditioning on partial assignments.

In our case where ® is a random formula, the marginals are not all near 1/2, even
without any conditioning. But the good variables do have marginals near 1/2. So we only
mark/unmark good variables and we “give up” on bad variables. Given that we don’t have
any control over the bad variables, we have to modify the coupling process. Thus, whenever
we meet a bad variable in the coupling process, we have to assume the worst case and treat
this variable and all bad variables connected to it as if they all have failed the coupling,
meaning that the disagreement spreads quickly over bad components.

The most important part of our analysis is to upper bound the size of connected bad
components and how often we encounter them during the coupling processs. Given these
upper bounds, we are able to show that the coupling still dies out sufficiently quickly, so the
error caused by the truncation is not too large. Solving the LP then allows us to estimate
the marginals of the good variables. Given that the bad components have small size, this
turns out to be enough information to estimate the number of satisfying assignments of the
original formula (containing both good and bad clauses).

We conclude this summary by discussing the prospects for improving our work. Although
we have given an efficient algorithm which works for densities that are exponentially large in
k, the densities that we can handle are still small compared to the satisfiability threshold
or to the threshold under which efficient search algorithms exist. Perhaps a modest start
towards obtaining comparable thresholds for approximate counting algorithms would be
to consider models whose state spaces are connected. For example, for monotone k-CNF
formulas where each variable appears in at most d clauses, Hermon et al. [23] showed that
efficient randomised algorithms exist if d < ¢2%/2 for some constant ¢ > 0, which is optimal
up to the constant ¢ due to complementing hardness results [6]. They also showed that the
same algorithm works for random regular monotone k-CNF formulas, if the degree d < 2% /k
for some ¢ > 0. It remains open whether an average case bound of the same order can be
achieved for random monotone k-CNF formulas.

2 The coupling tree

2.1 Identifying bad variables

We start by identifying bad variables; the method that we use is inspired by [12].

» Definition 2. Let ® be a k-SAT formula. We say that a variable v of ® is high-degree if

P contains at least A := 25/390 occurrences of literals involving the variable v.
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The reason that high-degree variables are harmful is that their marginal probabilities
(when we sample uniformly from satisfying assignments) are not bounded away from 0
and 1. Also, any variable that shares clauses with high-degree variables may also have biased
marginals. In our algorithm, we will not be able to control these high degree variables or
other variables that are affected by them. This variables contribute to the “bad” part of
the formula ®. Formally, denote the set of clauses of ® by C and the set of variables by
V. For each ¢ € C, let var(c) denote the set of variables in ¢. For each subset C of C, let
var(C) := Uceevar(c). The bad variables and bad clauses of ® are identified as follows:

1. Vo (the initial bad variables) < the set of high-degree variables;
2. Co « the set of clauses with at least k/10 variables in Vy;
3. i+ 0;
4. Do the following until V; = V;_1:
141+ 1;
Vi «— Vi—l U var(Ci_l);
Ci <+ {ceC|var(c)NV; > k/10};
5. Chaq + C; and Vpaq Vi;
6. Coo0a <+ C\ Ci and Vgooa < V \ V.

» Observation 3. V¢ € Cyooq, |var(c) N Viaa| < k/10. Ve € Cpaa, |var(c) N Vgeod| = 0.

2.2 Marking good variables and identifying a satisfying assignment

Apart from the fact that we only mark variables in V004, our marking follows the approach
of Moitra [30]. Formally, a “marking” is an assignment from Vgqoq to {marked, unmarked}.
Using Observation 3 and applying the asymmetric version of the Lovdsz local lemma [17, 36,
22] and the algorithmic version of the local lemma by Moser and Tardos [32] it is easy to
prove the following lemma.

» Lemma 8. There exists a marking on Vgoeq such that every good clause has at least 3k/10
marked variables and at least k/4 unmarked good variables. It has the property that there
s a partial assignment of bad variables that satisfies all bad clauses. Furthermore, such a
marking can be found in deterministic polynomial time.

We also use the Lovéasz local lemma to identify a partial assignment A* that we will use
to apply self-reducibility.

» Lemma 10. Let ® = ®(k,n,m) and let vi,va,. .., v, be the variables of ®. In each clause,
order the literals in the order induced by the indices of their variables. Then there is a partial
assignment N* of truth values to some subset of Varked With the property that every clause
¢ € Cyood s satisfied by its first k/20 literals corresponding to marked variables. Moreover,
A* can be found in deterministic polynomial time.

2.3 The coupling tree

Fix a prefix A of the assignment A* from Lemma 10. Let ®* be the formula produced by

simplifying ® under A (remove clauses that are satisfied under A and remove all false literals).

C? denotes the clauses of ®* and VA denotes the variables. We also define Vé;od = Vagood N VA
and Cé‘ood = Caood NCA. QN denotes the set of satisfying assignments of ®*.

For a variable v* € VA, let Q% be the set of assignments in Q% in which v* is true, and
let Q2 be the set of assignments in Q* in which v* is false. The algorithm estimates the
marginal probability that v* is true by solving a certain LP which allows it to estimate the
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ratio [Q)|/|2%]. The variables of the LP correspond to the states of a coupling process. The
process couples the uniform distribution on 24 with the uniform distribution on 5. We
can now describe process via its “coupling tree” TA.

For each node p there is a partial assignment A;(p) € Q) and a partial assignment
Ax(p) € Q8. The variables set in these partial assignments are A U Vier(p). The set Vi(p)
contains “problematic” variables. The details will be clear later. Roughly, these include
variables in Vet (p) on which A;(p) and As(p) disagree, variables contained in clauses that
are not satisfied in some A;(p), even though all marked variables have already been set,
and variables “affected” by bad variables during the coupling process. Crem(p) is the set of
remaining clauses to consider at descendants of p in the coupling.

The root of the coupling tree is the node p* with Viet(p*) = Vi(p*) = {v*}. The
assignment A; (p*) sets v* to T and the assignment Ay (p*) sets v* to F. Crem(p*) = CM. Let
n = |V|. In order to ensure that the size of the LP is bounded by a polynomial in n we need
to ensure that the size of the coupling tree is also bounded by a polynomial in n. To do
this, we choose truncation depth L := Cy(3k?A)[log(n/c)] where Cj is a sufficiently large
constant. We then truncate the tree as follows.

» Definition 12. A node p of the coupling tree is a leaf if |Vi(p)| < L and every ¢ € Crem(p)
has the property that var(c) C Vi(p)UVier(p) orvar(c) C VA (Vi(p)UVier(p)). If [Vi(p)| > L,
then p is a truncating node. We denote the set of leaves by L, the set of truncating nodes
by T, and their union by L* : = LUT.

If p is not in £* then we define its four children as follows. The “first clause” of p is the
first good clause ¢ with a variable in V;(p) and a variable in VA \ V;(p). (The definitions
imply that such a clause exists.) The “first variable” u of p is the first (good) variable in
marked(c) \ Vzet(p). For each of the four pairs (71, 72) where 71 and 75 are assignments from
{u} to {T,F}, we create a child p,, -, of p using the following algorithm.

Algorithm 1 Constructing the child p-, -, of a non-truncating node p of the coupling tree, where
71, T2 are assignments from {u} to {T,F}, and w is the first variable of p.

Veet (pry.7m2)  Veet(p) U {u};
A1(pr, ) < combine A;(p) with 74;
Az(pry ) < combine As(p) with 7;
(V17 Crem) — (VI(p)v Crem(p));
if 74 (u) # 72 (u) then
Vi<~ Viu {u},
end if
for ¢ € Crem s.t. ¢ is satisfied by both Ay (pr, r,) and Az(pr, r,) do
Crem — Crem \ {C/};
end for
. while 3¢/ € Crem with var(¢) N V; # 0, var(¢) N (VA \ Vi) # 0, and marked(c) \
Vet (pn,rg) =0 do
2 Vi Vi UWar(e) \ Vie(pr )
13: Crem < Crem \ {¢'};
14: end while
15: while 3¢’ € Crem N Chaqg With var(¢) NV; # 0 do
16: Vi ViU (var(c) \ Vaet(pr,72));
17: Crem < Crem \ {¢'};
18: end while
19: (Vi(pry,m); Crem(Pry,ms)) <= (VI,Crem);

— =
= O
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2.4 Key property of the coupling tree for a random formula

Recall that the variables of the LP which is used to estimate the marginal of the variable v*
of ®* correspond to the states of the coupling on the coupling tree T*. We will define two
LP variables P , and P, , for each node p of TA. In order to efficiently solve the LP, we
need its size to be bounded by a polynomial in 7, so we need the number of nodes of T* to
be bounded by a polynomial in n. For a random formula, this follows from the following key
lemma, which is a main technical contribution of our work.

» Lemma 14. W.h.p. over the choice of ®, for every prefiz A of A*, every node p in T has
the property that |Vie(p)| < 3k3aL + 1.

To see that Lemma 14 implies that the size of the coupling tree is at most a polynomial in n,
note that the depth of the tree does not exceed max,era |Viet (p)| < 3k3aL +1 = O(log 2).
Also, each node has at most 4 children.

In the rest of this section, we sketch the proof of Lemma 14. We start by defining some
graphs associated with ®. The formula ® naturally corresponds to a bipartite “factor graph”
where one side is variables and the other clauses (a variable has an edge to a clause in the
factor graph if one its literals is contained in the clause). We also use the following two
graphs.

» Definition 3. Let Gg be the graph with vertex set C (the clauses of ®) in which two clauses
c and ¢ are adjacent if and only if var(c) Nvar(c') # 0. We say that a set C C C of clauses
is connected if the induced subgraph Gg[C| is connected.

» Definition 4. Let Hg be the graph with vertex set V (the variables of ®) in which two
variables v and v' are adjacent if and only if there exists a clause ¢ € C such that v,v" € var(c).
We say that a set V. C 'V of variables is connected if the induced subgraph Hg[V] is connected.
Let Hg paq be the graph with vertex set Vipgq in which two variables v and v' are adjacent
if and only if there exists a bad clause ¢ € Cpqaq such that v,v" € var(c). We say that a set
V CV of variables is a bad component if V is a connected component in He pod.

For V CV, let 'y, (V) = UpevTm, (v) be the neighbourhood of V in Hg. Let I‘Eq) (V)=
V UTg, (V) be the extended neighbourhood. The proof of Lemma 14 relies on the following
rather abstract fact about random formulas.!

» Lemma 41. W.h.p. over the choice of ®, there do not exist sets Y', Z of clauses and a
set V of variables such that |Y'| > logn, |V| > |Y'|, |Z] > 2k*a|V|, Y' N Z =0, Ge[Y'] is
connected, V- Cvar(Y"), and every clause in Z contains at least one variable from V.

The lemma says that if you take any “large” set of clauses Y’ that are connected in Gg
and any large set V of the variables of Y’ then there aren’t many clauses outside of Y’ that
contain variables in V. (There isn’t a large set Z of such clauses.) Obviously, the lemma
doesn’t apply to every ®, but is highly dependent on the random way in which ® is chosen.
The proof of Lemma 41 relies crucially on upper-bounding the probability that a set of
clauses Y is connected in Gg. To do this, we sum over possible trees connecting the clauses
in Y/. We use the bound from Lemma 39 of the full version, which shows that the probability
that any particular tree T is connected in G is at most (k2/n)!V(DI=1,

! We need a more general version in the full paper, but this suffices here. The variable names here are
chosen to make the (single) application in this short version easy.
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Proof of Lemma 14. Let A be a prefix of A* and let p be a node in TA. Our goal is to
prove |Viet(p)| < 3k3aL + 1. We first consider the case in which p is not a truncating node,
so [Vi(p)| < L and we show |Vie(p)| < 3k3aL. The proof has two parts.

Part 1. Viei(p) C T4, (Vi(p)).

To prove Part 1, we consider any u € Vit (p) \ Vi(p) and show that there is a clause ¢
containing u and containing a variable in Vi(p).

We first rule out the case that u = v* by noting (from the construction of the coupling
tree) that v* € Vi(p) N Viet(p)-

So consider u € Vit (p) \ Vi(p) and let p’ be the ancestor of p in the coupling tree such
that u is the first variable of p’. The definition of the coupling tree guarantees that p’ is
uniquely defined and that it is a proper ancestor of p — the definition of “first variable”
guarantees that u & Vi (p'), but for all proper descendants p” of p/, u € Vier (p").

Let p” be the child of p’ on the path to p. We will show that there is a clause ¢ containing u
and containing a variable in V;(p’). Part 1 then follows from the fact that V;(p) contains
Vi(p'). The existence of such a clause ¢ is immediate from the definition of “first variable” —

indeed c is the “first clause” of p'.

Part 2. W.h.p., the random formula @ is such that Vp, I (Vi(p))| < 3k3aL.

For Part 2, it is important that the set Vi(p) is connected in Hg — this follows from the
construction of the coupling tree. We show (this is Lemma 51) that, w.h.p. over the choice
of @, every connected set of variables V' C V satisfies

|I‘;¢(V)| < 3k3amax{|V|, klogn}, (1)

which establishes Part 2 since |V;(p)| < L.

The proof of (1) is as follows. Let V be a connected of variables and let Y be the set
of neighbours of V in the factor graph of @, i.e., Y = {¢ € C | var(¢) NV # 0}. Clearly
T, (V)] < k|Y] and hence it suffices to show that [Y| < 3k*a max{|V|, klogn}. There are
two cases depending on the size of V.

|V| > klogn. Since V is a connected set of variables, there exists a set Y’ C Y such that

[V|/k <|Y’'| <|V] and V UY" is connected in the factor graph of ®. Hence, Y’ is a

connected set of clauses and |Y'| > logn. Let Z =Y \ Y. If |Z| > 2k?«|V| then we

obtain a contradiction to Lemma 41, which holds w.h.p. Thus, w.h.p., |Z| < 2k%a|V|
which implies |Y| = |Y’| + |Z] < 3k?«a|V|, as required.

Otherwise |V| < klogn. If [T (V)| < [klogn] then we are finished. Otherwise,

consider an arbitrary connected V' O V such that |V’| = [klogn]. By the argument of

the previous case, the set of neighbours of V' in the factor graph, denoted Y, satisfies
that |Y”| < 3k%a |V’| < 3k3alogn. Thus, |Y| < |Y”| < 3k3alogn.
This completes the proof of (1), and hence Part 2.

To finish, we consider the case where p is a truncating node. Let p’ be the parent
of p. Parts 1 and 2 imply that |Viet(p')| < 3k3aL. The result follows since |Viet(p)| =
[Vaet (P + 1. <

3 The linear program

Here we briefly list the constraints in the LP so that we can discuss its analysis. For a node p
of the coupling tree, let C;(p) be the set of clauses ¢ € C* such that var(c) C Vi(p) U Vier(p).
For i € {1,2}, let N;(p) be the number of assignments 7 to V7(p) \ Viet(p) such that every
clause in Cy(p) is satisfied by 7 U A;(p). It turns out (see Lemma 15) that N;(p) # 0 for
1 € {1,2}, so we define r(p) = N1(p)/Na(p).
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The LP relies on two constants Tjower and rypper. The algorithm that uses the LP will
move these closer and closer together by binary search. For each node p of the coupling
tree, we introduce two variables P; , and P, ,. The constraints are as follows. Constraint
Set 0: For every node p of the coupling tree and every ¢ € {1,2} we add the constraint
0 < P;, <1. Constraint Set 1: If p € £ then we add the constraint riower P2, < P1,,7(p)
and the constraint Py , 7(p) < rypper P2,,. Constraint Set 2: For the root p* of the coupling
tree, we add the constraints P ,- =1 and P ,- = 1. For every node p of the coupling tree
that is not in £*, let u be the first variable of p. For each X € {T,F} add the constraints
P17p = P17pu~>X,u~>T + P17pu~>X,u~}F and P27p = P2;pu~>T,u~)X + P27pu~>F,u~>X' Constraint Set
3: For every node p of the coupling tree that is not in £*, every X € {T,F}, and every
i € {1,2}, let u be the first variable of p and add the constraint P; < %PW.

Pu—X,u——-X

4  Analysis of the linear program for a random formula and how it
enables us to conclude Theorem 1

The key lemmas demonstrating the purpose of the linear program are as follows.

> Lemma 24. Suppose Tiower < |Q]/|Q5] < Tupper- There is a set of variables P = {P; ,}

that satisfies all constraints of the LP.

» Lemma 34. Fix riower < Tupper- W.h.p. over the choice of ®, the following holds. If the
LP has a solution P using Tiower and Typper, then e=e/Bn)p e < Q8 /198 < ee/(?’")ruppe,.

The full version proves Theorem 1 using these two lemmas. Here we just give the main
idea. First, consider the sub-goal of estimating [Q}|/|Q%| given ® and a partial assignment A
of A*. We can do this with accuracy exp (+¢/n) using the linear program. The proof of
Lemma 57 in the full version uses the Lovasz local lemma to establish values for rguer and
Tupper that meet the conditions in Lemma 24. Then, by binary search we bring rigwer and
Tupper Closer together until we achieve the desired accuracy (by Lemma 34). The initial values
of Tiower and rypper guarantee (see the proof of Lemma 57 for details) that the LP is run at
most O(log(n/e)) times. Since we have already shown that the size of the LP is bounded by
a polynomial in n/e the algorithm runs in polynomial time.

Now consider the proof of Theorem 1. Using standard self-reducibility, we can use the
estimates that we have just established to obtain an accurate estimate (within exp (+¢)) of
|QA7|/|9|, which is the probability that a random satisfying assignment is consistent with A*.

To finish we need one last key ingredient — we need a method to estimate |Q4"|. Since all
good clauses are satisfied by A*, the set C*" of clauses of ®A" consists only of bad clauses.
Now we need one more key lemma.

» Lemma 48. W.h.p. over the choice of ®, every bad component S has size at most
21600k log n.

Lemma 48 implies that C*" can be divided into disjoint subsets where each subset of
clauses contains O(log n) variables. The algorithm can then compute the number of satisfying
assignments of each subset by brute force in time poly(n). Then |Q| is the product of these
numbers.

This concludes the sketch of the proof of Theorem 1 — the details are in the full version.

In the rest of this short version, we briefly discuss the proof of the remaining key lemmas,
Lemmas 48, 34, and 24.
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We start with the proof of Lemma 48. This lemma, which bounds the size of bad
components, is one of the main technical achievements allowing us to extend Moitra’s method
to random CNFs with high density. Here we only have room for a very rough sketch. Recall
that a bad component is a set S of variables that is connected in Hg paq. Let HD(S) = VNS
be the set of high-degree variables in S. We wish to show that w.h.p., over the choice of ®,
every bad component S has size at most 21600k log n. This follows from the following two
lemmas, which give a contradiction for large bad components S.

» Lemma 42. W.h.p. over the choice of ®, every connected set U of variables with size at

least 21600k log n satisfies that [HD(U)| < 2|1(é(‘)0-

» Lemma 47. W.h.p. over the choice of ®, for any bad component S, |S| < 60 |HD(S)|.

The proof of Lemma 42 is deferred to the full version. It uses Lemma 41 and studies
trees in the factor graph of ®. The following proof sketch concludes the proof of Lemma 48.

Proof Sketch of Lemma 47. Consider the following process P which we will use to work

with bad compoments. The process, for every set S of variables, defines a set of variables

BC(S).

1. Let BC(S) = S.

2. While there is a clause ¢ such that |var(c) N BC(S)| > k/10 and BC(S) \ var(c) # 0
BC(S) := BC(S) U var(c)

Note that Vyaqa = BC(Vy), where Vg is the set of high-degree variables. We show (Lemma
43) that for every bad component S, we have S = BC(HD(S)). Thus, the process P can be
viewed as a “local” process for identifying bad components.

Let S be a bad component. If S contains only an isolated variable, it must be a high-degree
variable and hence HD(S) = S (so we are finished). Otherwise, since a bad component is a
connected component of variables in Hg pad, the definition of Hg paq ensures that the bad
component has at least k/10 high-degree variables.

Note that [HD(S)| < [Vy|. In Lemma 35 of the full version we use Poisson estimates for
the degrees of the variables to show that, w.h.p., [Vo| < n/2%".

The next step is to apply a counting argument to show that, w.h.p., for every set of
variables Y such that 2 < |Y| < n/2F, the number of clauses that contain at least k/10
variables from Y is at most 22|Y'|. This is Corollary 38 of the full version. We apply the
corollary with ¥ = HD(S), so we find that there are at most 32 [HD(S)| clauses that contain
at least k/10 variables from HD(S).

Now, we run the process P starting with HD(S). Take Z to be the set of clauses that

contain at least k/10 variables from HD(S) (so, from above, we have |Z| < 32 [HD(S)| <

30 n)
k‘leO .

The next step is to show that, w.h.p., the number of clauses ¢ such that var(c) C
BC(HD(S)) is at most 2|Z]| (which we have already shown to be at most 60 |HD(S)| /k). This
analysis is contained in Corollary 45. It is essentially an analysis of the process P which
follows easily from a lemma of Coja-Oghlan and Frieze [10, Lemma 2.4]. The high-probability
guarantees are universal over Z (hence universal over S).

Since S = BC(HD(S)) and each variable in S is contained in some bad clause, we have

U var(c)

c€Cpaq: var(c)NS#D

|S] < < 60|HD(S)|, as required. <
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We now turn to the proof of Lemma 34. There are two kinds of errors which cause
solutions of the LP to differ from the ratio |Q{\| / |Q§’ The first kind comes from so-called

“l-wrong assignments” and the second kind comes from the truncation of the coupling tree.

To define these more precisely, we need some graph-theoretic notation.

» Definition 25. Given a graph G and any positive integer k, let G=* be the graph with
vertex set V(G) in which vertices u and v are connected iff there is a path from u tov in G
of length at most k.

The main combinatorial structure that we use is a set D(Gg), which is based on Alon’s
“2,3-tree” [5]. Similar structures were subsequently used in [30, 21]. The main difference
between our definition and previous ones is that we take into account whether clauses are
connected via good variables.

» Definition 26. Given Gg, let D(Gg) be the set of subsets T C V(Gg) such that (1) For
any c1,co € T, var(cr) Nvar(cz) N Vgooa = 0; and (2) The graph G§4[T], which is the subgraph
of Gq§>4 induced by T, is connected.

» Definition 29. An assignment o € Q2 is (-wrong if 3 a size-f set T € D(Gs) such that
cteT, |T ﬂC;\OOd| > 2|T| /3, and there is a size [£/2] subset S of T N Cé\ood such that
the restriction of o to marked variables in clauses in S does not satisfy any clause in S.

Otherwise o is £-correct.

Proof Sketch of Lemma 34. The constraints in Constraint Set 2 guarantee (see Lemma
18 of the full version) that, for any i € {1,2} and o € Q2, Zpeﬁ*:aEQAi(PWA P, , = 1. Thus,
QM =3 can 1= can > persoeqrimun Pip. Let £ = L/(3k*A). We start by defining

Z;, Z! and Z! as follows for i € {1, 2}.
Z; = E E P ,,
ceQl)  peELiceQAI(PIUA
Zi = Pi,p7
UGQ?, o is £-wrong  pEL*:0€NAI(PIUA
" _
Zi = E E Pi,p~

c€QA, o is L-correct  peT:0eQAI(PVA

Thus Z; < |Q}| < Z; + Z + Z!'. The full version proves
Tlower < ZI/Z2 < Tupper- (2
ZHOMN < (1 —e /By /2 for i e {1,2}). (
Z' IO < (1 —e7¥/Gm)Y /2 for i e {1,2}. (4

w

)
)
)

The lemma follows easily from these. Combining (3) and (4) with the fact that Z; < |QN <
Zi+ ZI+ Z!', we get e=</07) < < 1. Plugging in (2) we obtain the result.

Zi
QA

i

To prove (2) we exchange the order of summation in the definition of Z; to get

Zl:Z Z Pi,p:ZPi,p'|QAi(p)UA"

PEL  oeQtioeQAi(PUA peEL

Since p € L, we prove (see Lemma 17) that r(p) = [QA1(PUA| /|QA2(MUA| (this is actually
the point of 7(p)). Constraint Set 1 then guarantees that

Rl p, )
lower > P2,p i ‘QA2(P)UA‘ - P27p.

< Tupper, Which suffices.
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The main ingredient in the proof of (3) is Lemma 30, which shows that the fraction of
assignments in Q2 that are f-wrong is at most (kA)~%. The main ingredient in the proof
of (4) is showing that, w.h.p., for every f-correct o € Q2, > peToenimua Pip < (kA)~8.
This is handled in Lemmas 32 and 33.

To prove these lemmas (say for ¢ = 1) we consider a sampling procedure for choosing a
node p € £* conditioned on some o € Q4. The probability that it reaches any node p € £*
with o € QAU i5 designed to be Py , so the goal is to bound the probability that it
reaches the set Y, = {p € T | 0 € Q4 (MYAY This is where the combinatorial structures
that we have defined come in. We use F(p) to denote the set of clauses that “fail” in the
coupling process, contributing variables to V;(p). Lemma 28 shows that w.h.p., for every
node p € T,, there is a set T' C F(p) containing the first clause ¢* such that T' € D(Gg),
|T) = ¢ and |T' N Cpaa| < |T|/3. This implies that |T'N Cg)od| > 2|T|/3. We therefore need
to upper bound the probability that such a T is contained in F(p) when p is chosen from
the sampling procedure. T has size £ and contains ¢* and contains enough good clauses. So
it turns out that, since o is ¢-correct, a lot of these failed clauses in F(p) must have failed
due to disagreements in the coupling. Since T' € D(Gg) these clauses do not share good
variables. The constraints in Constraint Set 3 then imply that the probability of all of
these simultaneous disagreements is unlikely.

That concludes the proof, apart from proving the key Lemma 28. This again relies on
properties about bad components - in particular on Lemma 50, which says that, w.h.p., for
every connected set of clauses Y such that |var(Y')| > 21600k logn, it holds that |Y N Cpaa| <
|Y'|/12. This is somewhat similar to the issues that we discussed regarding the proof of
Lemma 48 — we defer the details to the full version. <

there is a set of variables P = {P; ,} that satisfies all constraints of the LP. Here is a suitable
assignment. Let p be a node of the coupling tree with first variable u. For X € {T,F}, we
use the notation v, y 1 := [QA(Pumrxumx)UA| /|QALPIVA | = | QAL (Puss X um - x)UA | /| QAL(PIUA
This is well-defined since A1 (py— x,u—sx) = A1(Pusxu—s-x). In other words, ¥, x 1 is the
probability that u is assigned value X under the uniform distribution on QA41(PYUA ~ We
similarly define v, x 2 := |QA2(Pumxumx)UA| /]QA2(UA| = |QA2(Pums—xumx)UA | /| A2(P)UA|

We will next give an inductive definition of a function @ from nodes of the coupling tree
to real numbers in [0,1]. The way to think about this is as follows — we will implicitly define
a probability distribution over paths from the root of the coupling tree to £L*. For each
node p, Q(p) will be the probability that p is included in a path drawn from this distribution.

Proof Sketch of Lemma 24. Suppose Tiower < [Q4]/]Q5] < 7upper- Our goal is to show that

Any such path starts at the root, so we define Q(p*) = 1. Once we have defined Q(p) for
a node p that is not in £* we can define Q(-) on the children of p as follows. Let u be the
first variable of p and consider the four children py, 1 u—T, PussT u—sF) PussFu—sT) Pu—sF,u—F-
Define the values of @ as follows: Q(pu—T,u—T1) := Q(p) min{y, 11,9, 12}, Q(PusT umr) ==
Q(p)(pr1 — min{ty, 11,9y, 72})s Q(Pu—skusk) = Q(p) min{l —, 11,1 — 9,72}, and
Q(Pu—sFu—sT) = Q(p)(1 =Yy 11) —min{l — ¢, 71,1 =1, 72}). Finally, we define P; , :=
Q(p)|Q2 /|94 (P)UA| T the full version, we prove that this assignment satisfies the constraints
of the LP. Mostly, the LP is designed to make this true, though for example to establish the
constraint P, ,, . . < P, (Lemma 23) we need to prove that 1, x,; is around 1/2.

Like Moitra, we prove this using the Lovasz local lemma, so this is why it is essential that
we restrict the LP to good variables. <
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