
Sublinear-Space Lexicographic Depth-First Search
for Bounded Treewidth Graphs and Planar Graphs†

Taisuke Izumi1

Nagoya Institute of Technology, Japan
t-izumi@nitech.ac.jp

Yota Otachi
Nagoya University, Japan
otachi@nagoya-u.jp

Abstract
The lexicographic depth-first search (Lex-DFS) is one of the first basic graph problems studied in
the context of space-efficient algorithms. It is shown independently by Asano et al. [ISAAC 2014]
and Elmasry et al. [STACS 2015] that Lex-DFS admits polynomial-time algorithms that run with
O(n)-bit working memory, where n is the number of vertices in the graph. Lex-DFS is known to
be P-complete under logspace reduction, and giving or ruling out polynomial-time sublinear-space
algorithms for Lex-DFS on general graphs is quite challenging. In this paper, we study Lex-DFS on
graphs of bounded treewidth. We first show that given a tree decomposition of width O(n1−ε) with
ε > 0, Lex-DFS can be solved in sublinear space. We then complement this result by presenting a
space-efficient algorithm that can compute, for w ≤

√
n, a tree decomposition of width O(w

√
n logn)

or correctly decide that the graph has a treewidth more than w. This algorithm itself would be of
independent interest as the first space-efficient algorithm for computing a tree decomposition of
moderate (small but non-constant) width. By combining these results, we can show in particular
that graphs of treewidth O(n1/2−ε) for some ε > 0 admits a polynomial-time sublinear-space
algorithm for Lex-DFS. We can also show that planar graphs admit a polynomial-time algorithm
with O(n1/2+ε)-bit working memory for Lex-DFS.

2012 ACM Subject Classification Theory of computation→ Problems, reductions and completeness;
Theory of computation → Complexity classes; Theory of computation → Graph algorithms analysis;
Mathematics of computing → Graph algorithms

Keywords and phrases depth-first search, space complexity, treewidth

Digital Object Identifier 10.4230/LIPIcs.ICALP.2020.67

Category Track A: Algorithms, Complexity and Games

Funding Taisuke Izumi: JSPS KAKENHI Grant Number 19K11824
Yota Otachi: JSPS KAKENHI Grant Numbers JP18H04091, JP18K11168, JP18K11169

1 Introduction

1.1 Background and Motivation
Depth-First Search (DFS) is one of the most fundamental and elementary graph search
algorithms with a huge number of applications. Lexicographic DFS (Lex-DFS) is a popular
variant of DFS, which requires the search head always moves to the first undiscovered
neighbor in the adjacency list of the current vertex (as long as it exists). Recently, the space-
efficient implementation of fundamental graph algorithms, including (Lex-)DFS, receives
much attention [3, 6, 15, 16, 23, 26, 30]. These researches are roughly motivated by the

1 Corresponding author.

EA
T

C
S

© Taisuke Izumi and Yota Otachi;
licensed under Creative Commons License CC-BY

47th International Colloquium on Automata, Languages, and Programming (ICALP 2020).
Editors: Artur Czumaj, Anuj Dawar, and Emanuela Merelli; Article No. 67; pp. 67:1–67:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:t-izumi@nitech.ac.jp
mailto:otachi@nagoya-u.jp
https://doi.org/10.4230/LIPIcs.ICALP.2020.67
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

67:2 Sublinear-Space Lexicographic Depth-First Search

two aspects as follows: First, the space matter is serious in the big-data (i.e., too large
inputs) and/or IoT (i.e., too small computational devices) era. Second, the challenge of
proving space-complexity lower bounds for problems within class P still lies at the core of
computational complexity theory. One of the ultimate goals on this research direction is to
prove or disprove the seminal P 6= L conjecture 2. We focus on the space complexity of Lex-
DFS, particularly the algorithms using memory below the trivial O(n logn)-bit bound. This
can be motivated from both sides but much leans against the second one. The sublinear-space
Lex-DFS problem is formulated as the one of outputting the Lex-DFS ordering of all vertices
in streaming way, and its space complexity is measured by the required working-memory
size, as the classical read-only model [25].

To argue the complexity of sublinear-space algorithms, the notion of P-completeness
under logspace reduction plays an important role, which is analogous to NP-completeness in
P 6= NP conjecture. Reif [40] shows that Lex-DFS is P-complete under logspace reduction.
It implies that no Lex-DFS algorithm only using O(logn)-bit working memory exists unless
P = L holds. A counterpart from the upper-bound side is recently obtained by a few
literatures [3, 6, 23, 26]. They focus on the implementation of (Lex-)DFS achieving both
polynomial time and o(n logn)-bit space complexity, where n is the number of vertices in
the input graph. Initiated by Asano et al. [3] and Elmasry et al. [23], a series of papers by
several authors explore the time-space tradeoffs of (Lex-)DFS in the area of o(n logn)-bit
space-complexity. The state-of-the-art bounds are threefolds, O(m log∗ n) running time and
O(n)-bit working memory, O(m+ n) running time and O(n log log(4 +m/n))-bit working
memory, and O(m+ n) running time and O(n log(k) n)-bit working memory for any integer
k > 1, which are all proposed by Hagerup [26]. Looking at hidden coefficients, the smallest-
space algorithm is the one by Asano et al. [3], which achieves a polynomial running time
(with a large exponent) using the working memory of n + o(n) bits. No algorithm so far
attains cn-bit space complexity for c < 1, and obtaining such an algorithm is commonly
recognized as a very challenging problem. This open problem is also supported from yet
another context of computational complexity theory. Lex-DFS on directed graphs is at least
as hard as the directed s-t reachability problem, which is known to be NL-complete and
thus its space-efficient (ideally, logspace) solution is closely related to the seminal L = NL?
problem. In fact, any directed Lex-DFS algorithm achieving O(n1−ε)-bit space complexity
for any small constant ε > 0 would be a breakthrough result on this research line.

1.2 Our Result
In the context of directed s-t reachability, there are many attempts of attaining O(n1−ε)-bit
space complexity for a specific graph class such as planar or bounded treewidth graphs [1,
4, 5, 12, 13, 27, 29], which naturally yields the interest to the feasibility of sublinear-space
Lex-DFS for those classes. It should be noted that Lex-DFS is P-complete even for planar
graphs [2], and thus its difficulty under log-space solvability is the same as the general case.
One of the main results presented in this paper is a sublinear-space Lex-DFS algorithm for
bounded treewidth graphs. The first theorem is stated as follows.

I Theorem 1. Let 0 < ε < 1 be an arbitrary positive constant, G be any n-vertex directed
graph of treewidth w, and (T , {Bx}x∈VT) be its tree decomposition of width w′ ≥ w, where
T = (VT , ET) is a tree and each node x in T is associated with a subset Bx of vertices in G.
Assume a polynomial-time algorithm Alg enumerating the vertices in Bx for all x ∈ VT and
the edges in ET . Then there exists a Lex-DFS algorithm of running time O(nO(1/ε)) using
O(ε−1w′nε logn)-bit memory (except for the space used by Alg).

2 L is the class of problems decidable with O(logn)-bit working space (and thus in poly(n) time).

T. Izumi and Y. Otachi 67:3

It should be noted that Lex-DFS does not necessarily lie on the seminal framework known
as Courcelle’s theorem [19] and its logspace version [22] because the output depends on the
order of vertices in the adjacency list of the input graph.

To figure out a “purely” sublinear-space Lex-DFS algorithm, it is necessary to implement
a tree decomposition algorithm using only sublinear space. Elberfeld et al. [22] presents
a logspace tree-decomposition algorithm for w = O(1), but no sublinear-space algorithm
covering the case of w = ω(1) has been known so far. Our second theorem provides a
sublinear-space solution for tree decomposition:

I Theorem 2. There exists an algorithm that, given a graph G of n vertices and w ≤
n1/2, either provides a tree decomposition of width O(wn1/2 logn) or correctly decides that
the treewidth of G is more than w. This algorithm runs in a polynomial time and uses
O(wn1/2 log2 n)-bit space.

To the best of our knowledge, this is the first non-trivial tree-decomposition algorithm
attaining both sublinear-space and polynomial time for w = ω(1). It is also worth noting
that planar graphs admit a space-efficient algorithm of finding a balanced separator of
size O(

√
n) using Õ(

√
n)-bit space [27], which can be translated into a small-space tree

decomposition algorithm of width O(
√
n logn). Putting all the results above together, we

obtain the following consequence:

I Corollary 3. Let ε > 0 be any positive constant. There exist the polynomial-time Lex-DFS
algorithms respectively satisfying the following properties3.

Using O(nε)-bit working memory for directed graphs of treewidth w = O(1).
Using O(wn1/2+ε)-bit working memory for directed graphs of treewidth w = O(n1/2).
Using O(n1/2+ε)-bit working memory for directed planar graphs.

1.3 Related Work
As stated above, the space complexity of Lex-DFS is one of the classical problems in the
context of logspace computability. Following the P-completeness result by Reif [40], Anderson
and Mayr [2] also shows a weaker variant of Lex-DFS (lexicographically first maximal path)
is also P-complete even for planar graphs. The main interest of those earlier results is closely
related to the s-t reachability problem. It is known that the space complexity of undirected
s-t connectivity drops into O(logn) bits for any input graphs, which is proved in Reingold’s
celebrating paper [41]. The best space upper bound of all polynomial-time directed s-t
reachability algorithms is O(n/2Ω(

√
logn)) bits by Barnes et al. [9]. Its near optimality within

a (naturally) restricted class of algorithms, called NNJAG [39], is also shown by Edmonds
et al. [21].

More recently, the space-complexity matter of the directed s-t reachability problem for
specific graph classes receives much attention, and a number of papers try to expand the graph
class allowing sublinear-space directed reachability algorithms. Grid graphs [1, 5, 28], planar
graphs [1, 4, 13, 27], bounded-genus graphs [12], and bounded-treewidth graphs [29] have been
considered so far. Notice that the algorithms presented in [12] and [29] for bounded-genus
graphs and bounded-treewidth graphs respectively require the surface embedding and the
tree decomposition of the input graph (as Theorem 1), but it is not addressed how to compute
them using sublinear space. Our tree-decomposition algorithm (by Theorem 2) yields the first

3 Since one can choose an arbitrary ε > 0, polylog(n) factors are absorbed in the part of nε in the
statements of this corollary.

ICALP 2020

67:4 Sublinear-Space Lexicographic Depth-First Search

purely sublinear-space directed reachability algorithm for graphs of treewidth w = O(n1/2−ε).
Very recently, an O(1)-approximate tree decomposition algorithm using O(wn)-bit space is
presented [31], which attains a non-trivial space complexity for w = o(logn).

Despite relatively rich literatures on directed s-t reachability, the space complexity of
Lex-DFS receives less attention until recently. After the two concurrent results by Asano et
al. [3] and Elmasry et al. [23], a few follow-up papers propose fundamental graph algorithms
using only o(n logn)-bit working memory, which cover Lex-BFS [6, 23], single-source shortest
path [23], biconnected component decomposition [15, 30], s-t numbering [15], maximum
cardinality search [16], and so on. It is also becoming active to consider sublinear-space
algorithms for fundamental non-graph problems [7, 20, 34, 36, 42].

On the side of computational models, the read-only model is one of the classical models to
consider the complexity of working memory. An earlier topic in this model is the time-space
tradeoffs for sorting and/or selection [10, 17, 18, 25, 37, 38]. Recently, more unconventional
models are also investigated; Stream model [33], restore model (algorithms can manipulate
input memory but after the computation the initial input data must be recovered) [14, 32],
and catalytic model (algorithms can use a large memory which are already used for other
purpose, and after the computation the memory state must be recovered to the initial
one) [11]. Some of the results in those models allow a Lex-DFS algorithm using only a small
(exclusive) working memory, but they are incomparable to the ones in the standard read-only
model. Barba et al. [8] provides a general scheme of realizing stack machines using only a
small memory space. While the dominant part of the memory usage in Lex-DFS algorithms
is the storage for a stack, the technique by Barba et al. only applies to the algorithms whose
access pattern to stacks are non-adaptive. Thus that scheme does not work for saving the
space complexity of Lex-DFS algorithms.

1.4 Organization of Paper
In Section 2, we introduce the model, notations, and several auxiliary matters for our Lex-
DFS problem. Sections 3 and 4 respectively show the proofs of Theorem 1 and 2. Finally
the paper is concluded in Section 5.

2 Preliminaries

2.1 Model and Notation
As stated in the introduction, this paper adopts the read-only model [25], where the space
complexity of an algorithm is measured by the number of bits used for the working space,
excluding the memory for inputs and outputs. The input memory is read-only, and the output
memory is write-only. The memory-access model follows the standard RAM of (logn)-bit
words. Let G be any directed input graph of n vertices and m edges, which is stored in
the form of the adjacency list AG. For any graph G, we denote the sets of the vertices and
edges in G by VG and EG respectively. We assume VG = [0, n− 1], that is, each vertex in
VG is uniquely identified by an integer in [0, n− 1]. Letting NG(v) ⊆ VG be the set of v’s
neighbors in G, we refer to the neighbor list of v ∈ VG as AG,v and denote the i-th vertex in
AG,v by AG,v[i] (index i starts from value zero). We use notation u <v u′ for u, u′ ∈ NG(v)
if u precedes u′ in AG,v. We define the inverse mapping of AG,v as A−1

G,v, that is, for any
neighbor u of v, A−1

G,v[u] returns the position of u in AG,v. When we consider a subgraph
H ⊆ G, the adjacency list of H is inherited from that of G. More precisely, when we delete
an edge (u, v) ∈ EG, the adjacency list AH,u after deletion is defined as the one such that

T. Izumi and Y. Otachi 67:5

AH,u[i] = AG,u[i] for any i < A−1
G,u[v] and AH,u[i− 1] = AG,u[i] for any i > A−1

G,u[v]. Since
any subgraph is obtained by iterative deletion of edges (and removal of isolated vertices), the
specification of the adjacency list after deletion of one edge also specifies the adjacency list
AH for any subgraph H.

Letting X be a set of vertices or edges, we denote by G−X the graph obtained from G

by removing all the elements in X (if X is a vertex set, all the edges incident to a vertex
in X are also deleted). The subgraph of G induced by X is denoted by G[X]. If there is a
polynomial-time algorithm Alg enumerating all the elements in X, it naturally provides an
access to the adjacency list AH for H = G[X] or H = G−X without explicitly constructing
it in the working memory (i.e., Alg works as a filter extracting the elements in G[X] or
G−X from the adjacency list of AG). Then we call Alg an emulator of H. The overhead of
accessing to AH is a polynomial time (depending on the running time of Alg) per one access.
Thus we can run any polynomial-time algorithm taking H as its input within a polynomial
time. In the following argument, we often omit the subscript G of the notations defined
above if there is no ambiguity.

2.2 Lex-DFS
In what follows, we fix a starting vertex s of Lex-DFS tasks. A Lex-DFS algorithm is
presented in Algorithm 1. In the algorithm, we introduce the notion of time. At each time,
the search head vcur moves to a neighbor decided by the algorithm. The search starts at
time t = 1 and finishes at time t = 2n. We define ht as the vertex pointed by the search
head at the beginning of time t in the Lex-DFS on G. For vertex v ∈ V , the discovery time
d(v) of v is defined as the first time when the search head moves to v. Similarly, we define
the leaving time l(v) of v as the last time when the search head moves from v. The discovery
time of s is defined as zero. Following the terminology in [3], a vertex v is called a gray
vertex at t if d(v) ≤ t ≤ l(v) holds. The (path) subgraph corresponding to the sequence of
all gray vertices at time t sorted by their discovery times is called the gray path at t, which is
denoted by St4. For any vertex u ∈ VSt

, we also denote by pt(u) and st(u) the (immediate)
predecessor and successor of u in St, and by St(u) the prefix of St terminating at u. We
define pt(s) =⊥ and st(ht) =⊥.

In Algorithm 1, we encapsulate the space-consuming parts of the algorithm by two
abstract procedures called Pivot(t) and Parent(t). The procedure Pivot(t) tries to find
the first undiscovered neighbor of ht with respect to the order <ht

. If there is no undiscovered
neighbor, it returns −1. The procedure Parent(t) returns the predecessor pt(ht) in the
current gray path. It returns −1 if ht = s holds. It is obvious that Lex-DFS is implemented
with the working memory of f(n) + O(logn) bits if both of Pivot(t) and Parent(t) are
implemented with f(n) bits.

2.3 Tree Decomposition and Balanced Separator
We first present the definition of tree decomposition.

I Definition 4. A tree decomposition of an undirected graph G is a pair (T , {Bx}x∈VT),
where T is a tree and each node x ∈ VT is associated with a subset Bx of vertices in VG
(called the bag x) satisfying the following conditions:

Any edge in G is covered by at least one bag, i.e., ∀(u, v) ∈ EG : ∃x : u, v ∈ Bx.
Letting T (u) be the subgraph of T induced by the bags containing u, for any u ∈ VG, T (u)
is non-empty and connected.

4 Intuitively, the gray path St is the path from s to ht in the Lex-DFS tree of G.

ICALP 2020

67:6 Sublinear-Space Lexicographic Depth-First Search

Algorithm 1 Lex-DFS Algorithm for graph G starting from s.

1: vcur ← s; t← 1 . vcur is the search head
2: while true do
3: v ← Pivot(t) . Find the first undiscovered neighbor of vcur in AG,s.
4: if v = −1 then . All neighbors have been already visited
5: v ← Parent(t) . Find the parent in the gray path
6: if v = −1 then halt . All vertices are visited
7: else
8: Output v . Discovery of a new vertex
9: vcur ← v

10: t← t+ 1

Note that tree decomposition is defined for undirected graphs. When we consider the
tree decomposition of directed graphs G, we naturally adapt the same definition to the
undirected graph obtained from G by omitting the orientation of all edges5. Each bag is
identified by an integer value in [0, |VT | − 1]. Throughout this paper, we assume that any
decomposition tree T is rooted, and that a tree decomposition is encoded as the sequence
(B1, q(1)), (B2, q(2)), . . . , (Bx, q(x)), . . . , (B|VT |−1, q(|VT | − 1)), where q(x) is the ID of the
parent of x in T . The parent of the root bag is defined as −1. A sublinear-space tree
decomposition algorithm must output this sequence in a streaming way. The width w of
a tree decomposition (T , {Bx}x∈VT) is defined as the maximum bag size minus one, i.e.,
w = (maxx∈VT |Bx|) − 1. The treewidth of a graph G is the minimum width over all tree
decompositions of G. It is a fundamental property that the removal of the vertices in
any (non-leaf) bag Bx from G splits G into several connected components, each of which
corresponds to a subtree of T obtained by the removal of x from T .

Tree decomposition is closely related to the notion of balanced vertex separators. Let
G = (V,E) be any directed graph and µ : VG → N be any vertex-weight function. We define
µ(X) =

∑
v∈X µ(v) for any X ⊆ VG. A vertex subset U ⊆ V is called a weighted α-balanced

separator of G with respect to µ if any weakly-connected component C in G − U satisfies
µ(VC)/µ(VG) ≤ α. If µ is a constant function, it is simply called an α-balanced separator of
G. Throughout this paper, we often consider a subgraph obtained by recursively removing
separators. Let cc(H,U) be the set of connected components in H − U for any graph H
and its vertex subset U ⊆ VH , and vcc(H,U) = {VC | C ∈ cc(H,U)}. The following lemma
holds.

I Lemma 5. Let H0, H1, H2, . . . ,Hk−1 and U0, U1, . . . , Uk−1 be respectively the sequences
of subgraphs of G and their vertex subsets such that Hi ∈ cc(Hi−1, Ui−1) holds. Assuming k
algorithms respectively enumerating the vertices in Ui for each i ∈ [0, k − 1], there exists a
logspace algorithm of enumerating all the vertex subsets in vcc(Hk−1, Uk−1) using them as
black-box subroutines.

Proof. Since the straightforward recursive emulation of Hk−1 takes the overhead exponential
of k, such an approach applies only to the case of k = O(1). Instead of emulating Hi−1−Ui−1
recursively, we use the emulation of G − U for U =

⋃
0≤i≤k−1 Ui. Since we assume the

algorithms of enumerating Ui for all i ∈ [0, k − 1], this emulation works with a polynomial-
time overhead independent of k. We have cc(Hk−1, Uk−1) ⊆ cc(G,U) obviously. While

5 Precisely, if two directed edges (u, v) and (v, u) exist, omitting their orientation causes two multiedges
between u and v. Then those edges are merged into a single undirected edge.

T. Izumi and Y. Otachi 67:7

cc(G,U) might contain a connected component not in cc(Hk−1, Uk−1), one can identify
C ∈ cc(Hk−1, Uk−1) by checking if C has an outgoing edge to a neighbor in Uk−1 because
any component C 6∈ cc(Hk−1, Uk−1) is separated from Hk−1 by U0, U1, . . . or Uk−2. Thus,
letting ∂Uk−1 be the set of vertices in G−

⋃
0≤i≤k−1 Ui adjacent to a node in Uk−1, it suffices

to obtain an algorithm enumerating all the components in cc(G,U) intersecting ∂Uk−1. It is
realized by the following procedure.
1. Let c = 1, and v0, v1, . . . , vl−1 be the sequence of the vertices in ∂Uk−1 sorted by their IDs,

which can be enumerated using logarithmic space and the algorithms for U0, U1, . . . , Uk−1.
2. For each vi, check if a vertex vj satisfying j < i is reachable to vi in G − U . If such a

vertex exists, repeat this step for vi+1 (unless i = l − 1). Otherwise, go to step 3.
3. Enumerate all the vertices reachable from vi as the vertices in the c-th component in

cc(Hk−1, Uk−1). After the enumeration, increment c by one, and go back to step 2 for
vi+1.

The procedure above is implemented with O(logn)-bit space by utilizing the logspace
undirected s-t connectivity algorithm [41] (since cc(Hk−1, Uk−1) is a set of weakly-connected
components, undirected s-t connectivity suffices). Letting vj be the vertex with the minimum
ID in VC ∩ ∂UK−1 for a component C ∈ cc(Hk−1, Uk−1), C is necessarily enumerated when
the procedure above processes vj . In addition, it is never enumerated twice because any
other vertex in VC ∩ ∂Uk−1 has an ID larger than vj and is reachable to vj in G− U . J

The lemma above implies that one can associate an unique integer ID with each connected
component in Hk−1−Uk−1, and can emulate with a polynomial-time overhead the connected
component in Hk−1 − Uk−1 specified by a given ID. We also have the lemma below.

I Lemma 6. Let G = (V,E) be any graph of treewidth w, and 0 < δ < 1 be an arbitrary
positive constant. Assume an algorithm outputting a tree decomposition of width at most w′
for G. Then, there exists an algorithm outputting an O(n−δ)-balanced vertex separator U of
size O(w′nδ) for G, which uses only O(w′nδ logn)-bit space (except for the space used by the
tree-decomposition algorithm).

Proof. Let (T , {Bx}x∈VT) be the (rooted) tree decomposition constructed by the algorithm.
For any subgraph T ′ ⊆ T and a subset X ⊆ VG, we define vol(T ′, X) = |

⋃
y∈VT ′

By \X|.
We also define T (x) as the subtree of T rooted by x ∈ VT .

The proof is constructive. The algorithm finds the O(nδ) bags whose removal splits T
into a small subtrees T0, T1, . . . , TM−1 satisfying vol(Ti, U) ≤ n1−δ for any i ∈ [1,M]. The
algorithm manages two sets U ′ and U . The set U ′ stores the set of bag IDs constituting the
vertex subset U , i.e., U =

⋃
x∈U ′ Bx. The construction of U is done by iteratively adding

a vertex in VT to U ′. Let xi be the vertex added to U ′ at the i-th iteration, and Ui and
U ′i be respectively the contents of U and U ′ when |U ′| = i holds. We further define T Ri as
the connected component of T − U ′i containing the root. The algorithm chooses as xi the
deepest vertex in T Ri−1 such that vol(T Ri−1(xi), Ui−1) ≥ n1−δ holds. The iteration terminates
when vol(T Ri , Ui) becomes smaller than n1−δ. Since one iteration decreases vol(T R∗ , U∗) by
at least n1−δ, the algorithm terminates within nδ iterations. In addition, for any children y
of xi, we have vol(T Ri−1(y), Ui−1) < n1−δ because xi is the deepest vertex. It implies that
any connected component in G− U contains at most n1−δ vertices.

The remaining issue is the time and space complexities for implementing the algorithm.
Since the tree decomposition algorithm provides the whole topological information on T ,
one can use it as the adjacency list of T incurring a polynomial-time overhead. Since U ′
is stored in the working memory, it is possible to emulate T Ri for any i. The computation

ICALP 2020

67:8 Sublinear-Space Lexicographic Depth-First Search

of vol(T Ri (x), Ui) for any x ∈ VT R
i

can be done in a polynomial time using the membership
test of v ∈ By for all pairs of v ∈ VG \ Ui and y ∈ VT R

i
(x) \ {x}. Consequently, the proposed

algorithm can be implemented with the storage cost for U and U ′. Since each bag contains
at most w′ vertices, the space complexity is O(w′nδ logn) bits. J

3 Small-Space Lex-DFS Algorithm for Graphs of Bounded Treewidth

3.1 Reduction to (Approximate) Gray-Path Membership
The algorithms shown in [3] reduces the procedures of Pivot(t) and Parent(t) to a single
abstract task called IsGray(u, v), which tests if v belongs to the prefix of the gray path by
u (i.e., tests if v ∈ VSd(u) holds or not). The following lemma is proved in [3].

I Lemma 7 (Asano et al. [3]). Assume that there exists a polynomial-time algorithm
IsGray(u, v) which is executable at any time d(u) ≤ t ≤ l(u) and determines if v ∈ VSd(u)

holds or not. Letting f(n) be the space complexity of that algorithm and g(n) be the space-
complexity of solving the directed s-t reachability problem, we have two polynomial-time
algorithms which respectively implement Pivot(t) and Parent(t) using the memory of
f(n) + g(n) bits.

We slightly extend this lemma by introducing a new primitive called AIsGray(u, v)
(approximate testing of gray vertex), which is a one-sided-error version of IsGray(u, v)
satisfying the following two conditions:
1. If v ∈ VSd(u) holds, AIsGray(u, v) always returns true.
2. If d(v) > d(u) holds, AIsGray(u, v) always returns false.
The following lemma implies that we can replace IsGray(u, v) in Lemma 7 by AIsGray(u, v).

I Lemma 8. Assume a polynomial-time algorithm AIsGray(u, v) executable at any time
d(u) ≤ t ≤ l(u) using f(n)-bit space, and a polynomial-time tree decomposition algorithm
outputting the decomposition of width at most w′ for any input graphs of treewidth w. Then
we have the polynomial-time algorithm which implements IsGray(u, v) using the space of
f(n) +O(w′ logn) bits (except for the space used by the tree decomposition algorithm).

Proof. To implement IsGray(u, v), it suffices to enumerate all the vertices in St(u), which
can be realized by repeatedly using an algorithm outputting st(x) for given x ∈ VSt(u) \ {ht}.
Let V ′(x) be the set of the vertices v′ such that AIsGray(x, v′) returns true. It has been
shown in [3] that st(x) is the first vertex y ∈ N(x) with respect to the order of Ax such that
y is reachable to ht in G− VSt(x). We first show that this fact still holds even if we replace
VSt(x) by V ′(x). Any y preceding st(x) in Ax is unreachable to ht in G− V ′(x) because it
is unreachable in G − VSt(x) and VSt(x) ⊆ V ′(x) holds by the first condition of AIsGray.
Letting X be the graph corresponding to the suffix of St from st(x) to ht, any vertex in
VX has a discovery time larger than d(x), and thus VX ∩ V ′(x) = ∅ holds by the second
condition of AIsGray. It implies that st(x) is reachable to ht in G− V ′(x), and concludes
that st(x) is the first vertex y ∈ N(x) such that y is reachable to ht in G− V ′(x). Since the
procedure AIsGray(x, v′) works as the emulator of G− V ′(x), we can obtain an algorithm
of computing st(x) using any directed s-t reachability algorithm. The algorithm by Jain et
al. [29] matches our goal. It uses any tree decomposition of width w′ as a side information,
and runs in a polynomial time using O(w′ logn)-bit space. The memory complexity is f(n)
bits for AIsGray, and O(w′ logn) bits for deciding s-t reachability and for managing a
constant number of pointers to vertices in VG. J

T. Izumi and Y. Otachi 67:9

𝑈

𝑋0

𝑋2
𝑠

𝑋1

Tree edges

Gray path

Non-Tree
edges

Figure 1 An example of decomposition by U .

𝐻0

𝐻2

𝑠

𝐻1

edges

Edge added
for const. of 𝐻𝑖

𝑞1,0
𝑤0,0

𝑞0,0 𝑤1,0
𝑞1,1

𝑤1,1

𝑞2,0

𝑤2,0(= 𝑢)

Figure 2 Construction of Hi.

3.2 Implementation of AIsGray(u, v)
As utilized in the proof of Lemma 8, directed s-t reachability is solvable using O(w′ logn)-bit
space with the side information of a tree decomposition of width w′ [29]. Thus we have
Lemma 7 with g(n) = O(w′ logn). The remaining part of our algorithm is to implement
AIsGray(u, v) executable at any d(u) ≤ t ≤ l(u). Let U be the set shown in Lemma 6,
and X = {X0, X1, . . . , XN−1} be the set of the connected components in G− U (Figure 1).
At each time t, our algorithm keeps track of the information of (d(x), pt(x), st(x)) for any
x ∈ VSt

∩ U . Specifically, we prepare the dictionary Z which maps any vertex x in U to the
corresponding triple (d(x), pt(x), st(x)) if x ∈ St holds. We refer to the three elements in the
triple for x as Z[x].d, Z[x].p, and Z[x].s respectively. The contents of Z is updated in the
main routine of Lex-DFS when the search head moves. Let `i be the number of connected
components in the subgraph Sd(u)[VXi]. For each connected component C in Sd(u)[VXi],
we define its entrance and exit as the vertices with the minimum and maximum discovery
times in VC respectively. Let Ci = Ci,0, Ci,1, . . . , Ci,`i−1 be the sequence of the connected
components in Sd(u)[VXi

] sorted by the discovery times of their entrances. We also define
the exit of Ci,−1 as s, which works as a sentinel value. Let Qi = (qi,0, qi,1, . . . , qi,`i−1) and
Wi = (wi,−1, wi,0, wi,1, . . . , wi,`i−1) be the sequences of the entrances and exits associated
with each component in Ci respectively. Now we construct the graph Hi from G by the
following procedure:
1. Remove all the vertices not in VXi

∪ {s} as well as their incident edges.
2. For all 0 ≤ j ≤ `i − 1, contract the gray path from wi,j−1 to qi,j into an edge. The

positions of qi,j in Awi,j−1 and wi,j−1 in Aqi,j
are equal to those of st(wi,j−1) and pt(qi,j)

respectively.
Note that s = wi,−1 = qi,0 holds if s ∈ VXi

. We illustrate an example of the construction in
Figure 2. Consider the run of any Lex-DFS algorithm in Hi until the discovery of wi,`i−1,
which outputs a vertex set Li ⊆ VXi ∪ {s}. Let L(u) = L0 ∪ L1 ∪ · · · ∪ LN−1 ∪ (Sd(u) ∩ U).
An important fact is that AIsGray(v, u) can be implemented using the query if v ∈ L(u) or
not. The following lemma holds.

I Lemma 9. Let Li be the output sequence of the Lex-DFS running in Hi until the discovery
of wi,`i−1. Any vertex in VSd(u)[VXi

] is contained in Li, and d(x) ≤ d(wi,`i−1) ≤ d(u) holds
for any x ∈ Li.

Proof. For any v ∈ V , let PG,v be the set of all simple paths from s to v in G, and
PG =

⋃
v∈VG

PG,v. For any path P = s, u1, . . . , uj , v in PG,v, we define its word γG(P) as
the sequence A−1

s [u1], A−1
u1

[u2], . . . , A−1
uk

[v]. Letting ≺ be the lexicographic order over all
words, the minimum path πG(v) ∈ PG,v of a vertex v ∈ V is defined as the one satisfying

ICALP 2020

67:10 Sublinear-Space Lexicographic Depth-First Search

γG(πG(v)) ≺ γG(P) for any P ∈ PG,v. For any two vertices v, v′ ∈ VHi , the gray paths in
Hi to v and v′ are respectively obtained by contracting several common subpaths in the
gray paths to v and v′ in G. Hence it is easy to check γG(πG(v)) ≺ γG(πG(v′)) holds if and
only if γHi(πHi(v)) ≺ γHi(πHi(v′)) holds for any v, v′ ∈ VHi . Since it is well-known that the
total ordering of VG with respect to ≺ over {γG(πG(v))}v∈VG

is equivalent to the Lex-DFS
ordering of VG, this fact implies that Li contains all the vertices in VXi discovered earlier
than wi,`−1 in the Lex-DFS search in G, and contains no vertex in VXi

whose discovery time
in the Lex-DFS search in G is later than d(wi,`−1). The lemma is proved. J

Since Hi is a minor of G, its treewidth is also bounded by w. Thus we can perform our
Lex-DFS algorithm recursively for graph Hi of O(n1−ε) vertices to output Li. The graph Hi

can be emulated using the subset U and the information stored in Z. Outputting Li for all
i ∈ [0, N − 1] can answer the query if v ∈ L(u) holds or not.

3.3 Algorithm Details for Lex-DFS

The pseudocode of our algorithm is given in Algorithm 2. It is defined as a recursive
procedure Lex-DFS(G, s, u), which outputs the Lex-DFS sequence of G starting from s

until u is discovered. If the procedure runs with u 6∈ VG, it outputs the whole Lex-DFS
sequence of G starting from s. Note that the dictionary Z is independently defined in each
recursive call for the computed separator U . In addition, the size O(nε) of separator U is
fixed independently of recursion depth. That is, the variable n in the size parameter O(nε) is
always the number of vertices in the original input graph, not the number of vertices in the
input graph taken as an argument of Lex-DFS. The main routine Lex-DFS almost follows
Algorithm 1, except for using AIsGray to compute Pivot and Parent and managing Z.
The core of the algorithm is the implementation of AIsGray, in particular, the emulation of
Hi for each Vi (0 ≤ i ≤ N − 1). That part corresponds to the lines 23-30. First, we identify
the set Qi and Wi, which can be done by extracting the nodes x ∈ U satisfying Z[x].s ∈ Vi as
a member of Qi (or those satisfying Z[x].p ∈ Vi as Wi). Since each node in St(u) ∩ U stores
its discovery time in Z, we can add the nodes into Qi or Wi in the order of their discovery
times. Following the order of Qi and Wi, we create the edge set F , which corresponds to the
edges obtained by the contraction of gray subpaths in the step 2 of the construction.

3.4 Complexity

Since Pivot and Parent are called at most 2n times in each recursive call, a polynomial-
time invocations of AIsGray suffices to implement them. Let nc be the upper bound
for the number of invocations of AIsGray in one execution of Pivot or Parent. One
invocation of AIsGray calls Lex-DFS at most n times. Putting all them together, nc+2

recursive invocations of Lex-DFS occur per one call of Lex-DFS. Since the recursion depth
is obviously bounded by O(1/ε), at most O(n(c+2)/ε) calls of Lex-DFS are invoked in total.
By Lemma 5, the input graph to each recursive call can be emulated with a polynomial-time
overhead, and thus one invocation of Lex-DFS excepting the run of recursive calls has a
polynomially-bounded running time. Consequently, the total running time is nO(1/ε).

In each recursive call, the information on U and Z is stored in the working memory. The
space for storing U and Z are bounded by O(w′nε logn) bits. Except for the space used by
the tree decomposition algorithm, the space of O(w′ logn) bits is necessary for implementing
Parent and Pivot from AIsGray. Since the recursion depth is O(1/ε), the total space
complexity is O(w′ε−1nε logn) bits.

T. Izumi and Y. Otachi 67:11

Algorithm 2 Lex-DFS Algorithm for graph G of treewidth k (starting from s).

1: function Lex-DFS(G, s, u)
2: if |VG| ≤ nε then run the standard Lex-DFS algorithm and halt
3: Find a separator U of size O(nε)
4: Initialize Z : U → [0, n− 1]× VG × VG
5: vcur ← s; t← 1
6: output s; Z[s]← (1,⊥,⊥)
7: while true do
8: v ← Pivot(t) using AIsGray(vcur , ·)
9: if v = −1 then . All neighbors have been already visited
10: v ← Parent(t) using AIsGray(vcur , ·)
11: Z[vcur]← null; Z[v]← (Z[v].d, Z[v].p,⊥)
12: if v = −1 then halt . All vertices are visited
13: else
14: Z[vcur]← (Z[vcur].d, Z[vcur].p, v); Z[v]← (t, vcur ,⊥)
15: Output v
16: if v = u then halt
17: vcur ← v

18: t← t+ 1
19: function AIsGray(u, v)
20: if Z[v] 6= null then return true
21: Let X0, X1, . . . , XN−1 be the connected components in G− U
22: for i = 0, 1, . . . , N − 1 do
23: Q← (); W ← (s)
24: for ∀x ∈ U : Z[x] 6= null in ascending order of Z[x].d do
25: if Z[x].s ∈ VXi then append Z[x].s to Q
26: if Z[x].p ∈ VXi

then append Z[x].p to W
27: if u ∈ VXi then append u to W
28: `i ← |Q|
29: for j = 0, 1, . . . , `i − 1 do
30: F ← F ∪ {(W [j], Q[j])}
31: Hi ← G[Vi] + F . Not explicitly constructed
32: if v ∈ Lex-DFS(Hi, s,W [`i − 1]) then return true
33: return false

4 Tree Decomposition using Small Space

In this section, we present a tree-decomposition algorithm, which usesO(wn1/2 logn)-bit space
and outputs a decomposition of width O(wn1/2 logn) for any undirected graph G = (V,E) of
treewidth w ≤

√
n. We first introduce a space-saving variant of the known weighted balanced

separator algorithm.

I Lemma 10 (Extended from Theorem 1.1 of Fomin et al. [24]). There exists a polynomial-time
algorithm that, given a graph G on n vertices, any vertex-weight function µ, and a positive
integer k, either provides a weighted O(1)-balanced separator of G with respect to µ consisting

ICALP 2020

67:12 Sublinear-Space Lexicographic Depth-First Search

of O(k2) vertices, or concludes that the treewidth of G is more than k. The algorithm uses
the memory space required for finding the minimum unweighted s-t vertex cut in G plus
O(k2 logn) bits.

Proof. We refer to the algorithm proposed in Theorem 1.1 of [24] as Sep. Except for
the space complexity matter, the correctness of the lemma completely follows that of Sep
presented in [24]. Thus it suffices to show how Sep is implemented using the memory space
claimed in this lemma. The algorithm Sep roughly works as follows. Let G be any input
graph of treewidth at most k.
1. First the algorithm Sep constructs any rooted spanning tree T of G, and decomposes it

into a set X of Θ(k) connected subtrees such that at most O(k) vertices can belong to
two or more subtrees in X : Let T (x) be the subtree of T rooted by x. The algorithm
Sep starts with T ′ = T , and for i = 0, 1, . . . , iteratively finds the deepest vertex xi such
that |VT ′(xi)| ≥ αn/k holds for an appropriate constant α. Then the subtree T ′(xi) is
split into several subtrees of size Θ(n/k) sharing xi, each of which becomes a member of
X . After updating T ′ as T ′ ← T ′ − T ′(xi), the algorithm proceeds to the next iteration.

2. For any Xi, Xj ∈ X such that VXi
∩VXj

= ∅, Sep emulates the graph Hi,j obtained from
G by contracting Xi and Xj into two vertices xi and xj . Then it computes the minimum
xi-xj vertex cut in Hi,j . If there exists a pair (i, j) such that the output cut contains at
most k vertices, the algorithm adds it to the separator set U .

3. The steps 1 and 2 are iteratively applied to the largest connected component after the
removal of the computed vertex cut, until U becomes an O(1)-balanced separator of G.
It is proved in [24] that this iteration terminates within O(k) times if the treewidth of
the input graph is at most k.

The small-space implementation of step 1 is very similar with the algorithm shown in the
proof of Lemma 6. With the support of the emulator of T , finding xi and the emulation
of T ′ can be done in the same way as the proof of Lemma 6. The spanning tree T can be
emulated using the logspace undirected connectivity: We introduce an arbitrary logspace-
computable edge-weight function g : EG → N which assigns all edges with different weights.
Let e0, e1, . . . , em−1 be the sequence of all edges sorted in the ascending order of their weights,
and Ei = {e0, e1, . . . , ei−1}. Then an edge ei = (u, v) is contained in the minimum spanning
tree of G with respect to g if and only if u and v is connected in G[Ei], which directly deduces
the emulator of the minimum spanning tree.

Assuming an algorithm computing the set X , Hi,j can be emulated with a polynomial-time
overhead. Thus the step 2 can be implemented within a polynomial time using O(k2 logn)
bits (except for the space used by the vertex-cut algorithm). J

4.1 A Small-Space Balanced Separator Algorithm
Let I(G) be the maximum independent set of G, (if two or more maximum independent sets
exist, an arbitrary one is chosen), and I(G) = V \ I(G) for short. The first key ingredient of
our algorithm is a space-saving algorithm for the minimum s-t vertex cut problem.

I Lemma 11. Let G be any n-vertex undirected graph. For any s, t ∈ VG, the minimum
(unweighted) s-t vertex cut of G can be found in a polynomial time using O(|I(G)| logn) bits.

Proof. The algorithm basically follows the vertex-cut version of Ford-Fulkerson algorithm,
which manages a set of augmenting paths for recognizing the current residual graph (see
Section 3.5 in [35] for example). In the case of unweighted vertex cuts, any set of augmenting
paths is a set of vertex-disjoint s-t paths in G. Letting L be the maximum total length of

T. Izumi and Y. Otachi 67:13

managed s-t paths, the algorithm can be implemented using O(L logn)-bit space. Thus it
suffices to show that L = O(|I(G)|) holds for any instance G. Let R1, R2, . . . , Ry be any set
of vertex-disjoint s-t paths in G. Since no two vertices in I(G) consecutively appears in any
path, we have |VRi ∩ I(G)| ≤ |VRi ∩ I(G)|+ 1 for any i ∈ [1, y]. Then |VRi | ≤ 3|VRi ∩ I(G)|
holds. Since VRi

for all i ∈ [1, y] are mutually disjoint, it follows
∑

1≤i≤y |VRi
| = O(|I(G)|).

The lemma is proved. J

Consider a partition of VG into a family P = {P0, P2, . . . , PN−1} of N subsets such that
G[Pi] is a connected subgraph of G. We denote by G/P the graph obtained by contracting
each subgraph Pi into a single vertex ui with weight µ(ui) = |VPi

| (parallel edges are
merged into the single one). The second key ingredient is to reduce the (approximate)
tree decomposition of G into that of another graph G/P for an appropriate partition P
such that |I(G/P)| becomes small. Since treewidth never increases by edge contraction,
G/P also has a treewidth at most k. Thus we can run the balanced-separator algorithm
obtained from Lemmas 10 and 11 on G/P using only O((|I(G/P)| + k2) logn)-bit space.
For the computed separator B, we replace each ui ∈ B by VPi

. That is, we create a
vertex subset B′ =

⋃
ui∈B VPi

, which is obviously a balanced separator of G consisting of
O(k2 maxi{|VPi

|}) vertices. To attain the space complexity of Theorem 2 following this
approach, we have to construct a polynomial-time algorithm outputting the partition P
satisfying |I(G/P)| = O(kn1/2) and |Pi| = O(n1/2/k) for any Pi ∈ P. In addition, we have
to guarantee that the algorithm uses only O(kn1/2 logn) bits.

We argue the implementation of such an algorithm. Let us define an arbitrary total
ordering of edges in EG. This can be easily realized by any ordering function f : E → N which
can be computed in logarithmic space (e.g., the lexicographic ordering of endpoint ID pairs).
Let e1, e2, . . . , em be the sequence of all edges sorted in this order, and Ei = {e1, e2, . . . , ei}.
For any subgraph H ⊆ G, we also define S(H, v, i) as the set of the vertices which are
reachable from v in H[Ei]. The partition is constructed by the following algorithm:
1. Let P = ∅, R← ∅, and H ← G.
2. Find the minimum ` such that the largest connected component C in H[E`] contains at

least n1/2/k vertices, and add VC to P. Letting v be the vertex with the smallest ID in
VC , we store the pair (v, `) into R.

3. Update H ← G−
⋃

(v,`)∈R S(G, v, `).
4. Repeat steps 2 and 3 until the size of any connected component in H becomes less than

n1/2/k.
5. Letting Q =

⋃
Pi∈P Pi, add VC′ to P for any connected component C ′ in G−Q.

The actual algorithm does not store P explicitly. Except for step 5, the set P is write-only,
and it is easy to verify that steps 1-4 can be implemented only with the space for storing
R. The matter of the space complexity relies on how to restore the set Q in step 5 only
from the information of R. Let Ci be the connected component found in the i-th iteration
of step 2, and (ui, ji) be the entries added to R then. We denote by Hi the graph stored
in H immediately after the i-th iteration of step 2. It is easy to enumerate the vertices in
S(G, u, j) by the logspace undirected s-t connectivity algorithm [41] (recall that we omit the
orientation of edges in considering the tree decomposition for directed graphs), and thus
we obtain an emulator of Hi using the information in R and extra O(logn)-bit space. It
also yields an algorithm for enumerating Ci = S(Hi−1, ui, ji). Consequently, this algorithm
works using only O(|R| logn)-bit space. The following lemma guarantees the correctness of
the output.

I Lemma 12. Let P = {P0, P1, . . . , PN−1} be the partition outputted by the algorithm above.
Then for any Pi ∈ P, |Pi| ≤ 2n1/2/k holds. In addition, |I(G/P)| ≤ kn1/2 holds.

ICALP 2020

67:14 Sublinear-Space Lexicographic Depth-First Search

Proof. We first show that P is actually a partition of VG. By step 5, it is obvious that any
vertex in VG is contained in at least one subset Pi ∈ P. The subset added in step 5 does
not intersect other subsets. Consider any two subsets Ci and Ck added in step 2 (i < k).
By the construction of Ci and Ck, we have Ci = S(Hi−1, ui, ji) and Ck = S(Hk−1, uk, jk).
Since i < k holds, Hk−1 does not contain any vertex in S(G, ui, ji). It implies Hk−1 does
not contain any vertex in Ci = S(Hi−1, uj , ji) because of Hi−1 ⊆ G. That is, Ci and Ck
are mutually disjoint. Next, we bound the size of each Pi. Any subset added in step 5
has a cardinality less than n1/2/k. Since the algorithm finds the smallest ` such that the
cardinality of C becomes at least n1/2/k, any connected component in Hi−1[E`−1] has a size
less than n1/2/k. Thus the size of any connected component in Hi−1[E`] is at most 2n1/2/k.
Finally, we show |I(G/P)| ≤ kn1/2. We call a subset Pi ∈ P a red subset if Pi is added in
step 5, and also call the corresponding vertex ui ∈ VG/P a red vertex. It is obvious that any
red subset Pi has no outgoing edge to other red subsets in G, the set of all red vertices forms
an independent set of G/P. Since the cardinality of any non-red subset is at least n1/2/k,
at most kn1/2 non-red vertices exist in G/P. It implies I(G/P) ≤ kn1/2. The lemma is
proved. J

This lemma also implies that the size of R is at most kn1/2. Thus the space complexity of
the algorithm is bounded by O(kn1/2 logn) bits. The combination of Lemmas 10, 11, and 12
yields the following lemma.

I Lemma 13. There exists a polynomial-time algorithm that, given a graph G on n vertices
and a positive integer k, either provides an O(1)-balanced separator of G consisting of
O(kn1/2) vertices, or concludes that the treewidth of G is more than k. The algorithm uses
O(kn1/2 logn)-bit space.

The remaining part is to transform the separator algorithm into a tree-decomposition
algorithm. The following lemma obviously deduces Theorem 2.

I Lemma 14. Assume an algorithm Alg which outputs an O(1)-balanced separator of size
k(w, n) for any graph G of treewidth w using g(n)-bit space. Then there exists a polynomial-
time tree decomposition algorithm which outputs a tree decomposition of width O(k(w, n) logn)
using O(g(n) + k(w, n) log2 n)-bit working memory.

Proof. The proof is constructive. We refer to the constructed algorithm as Alg. The
algorithm Alg first computes an O(1)-balanced separator U of G, and then recursively
constructs the tree decomposition of each connected component in G−U whose size is larger
than k(w, n). A component having at most k(w, n) vertices is treated as the subgraph with the
tree decomposition consisting of a single bag of the whole component. Let H0, H1, . . . ,H`−1
be the connected components in G − U sorted in the order specified by the enumeration
algorithm of Lemma 5, and Ti be the output sequence of the recursive call for Hi. Defining
the binary operator ◦ for concatenating two sequences, let T = T0 ◦T1 ◦ · · · ◦T`−1. We further
define mi =

∑
0≤j≤i |Ti|. The algorithm Alg modifies the sequence T in the following way:

Any pair (B, q) ∈ Ti is replaced by (B ∪ U, q + mi) if q 6= −1 or (B ∪ U,m`−1) otherwise.
Finally, we append the pair (U,−1) at the tail of T . Intuitively, this modification is for
relabeling bag identifiers to guarantee their uniqueness, and for merging all the subgraph
decompositions into a single one rooted by the last bag (U,−1). It is easy to verify that
the modified sequence is a tree decomposition of G. By Lemma 5, the input graph at any
recursion level is emulated with a polynomial-time overhead. Thus the running time at any
recursion level is a polynomial time. One recursive call remove one bag from the input graph,
the number of recursive calls is bounded by n. Totally the algorithm Alg finishes within a
polynomial time.

T. Izumi and Y. Otachi 67:15

Let wi be the maximum width of all the output tree decompositions at the i-th recursion
level. Then we have the inequality wi+1 ≤ k(w, n)+wi. Since the separator is O(1)-balanced,
the recursion finishes at the depth of O(logn). It implies that the maximum bag size is
O(k(w, n) logn). The modification of the sequence T can be done in a streaming way. Thus
the space complexity of Alg is O(|U | logn) = O(k(w, n) logn) bits per one recursion. The
largest space consumption is at the bottom-level recursion, where Alg uses O(k(w, n) log2 n)
bits in total. J

The lemma above also deduces the consequence for planar graphs in Corollary 3. Since
planar graphs admit a Õ(

√
n)-bit space O(1)-balanced separator algorithm [27], we can use

it instead of Lemma 13.

5 Conclusion

In this paper, we presented a Lex-DFS algorithm for directed graphs of bounded treewidth w.
It is not only the first algorithm solving Lex-DFS using sublinear space for w = ω(1), but also
the first algorithm solving directed s-t reachability in the same situation. One of the key tools
is a new sublinear-space tree decomposition algorithm covering the case of moderate (small
but non-constant) treewidth. The authors believe that this is a strong tool for designing
small-space algorithms for other fundamental graph problems on bounded-treewidth graphs.

References
1 Eric Allender, David A. Mix Barrington, Tanmoy Chakraborty, Samir Datta, and Sambud-

dha Roy. Planar and grid graph reachability problems. Theory of Computing Systems.,
45(4):675–723, 2009.

2 Richard Anderson and Ernst W. Mayr. Parallelism and the maximal path problem. Information
Processing Letters, 24(2):121–126, 1987. doi:10.1016/0020-0190(87)90105-0.

3 Tetsuo Asano, Taisuke Izumi, Masashi Kiyomi, Matsuo Konagaya, Hirotaka Ono, Yota Otachi,
Pascal Schweitzer, Jun Tarui, and Ryuhei Uehara. Depth-first search using O(n) bits. In
International Symposium on Algorithms and Computation (ISAAC), pages 553–564, 2014.

4 Tetsuo Asano, David Kirkpatrick, Kotaro Nakagawa, and Osamu Watanabe. Õ(
√
n)-space and

polynomial-time algorithm for planar directed graph reachability. In International Symposium
on Mathematical Foundations of Computer Science (MFCS), pages 45–56, 2014.

5 Ryo Ashida and Kotaro Nakagawa. Õ(n1/3)-space algorithm for the grid graph reachability
problem. In International Symposium on Computational Geometry (SoCG), pages 5:1–5:13,
2018.

6 Niranka Banerjee, Sankardeep Chakraborty, and Venkatesh Raman. Improved space efficient
algorithms for BFS, DFS and applications. In International Computing and Combinatorics
Conference (COCOON), pages 119–130, 2016.

7 Bahareh Banyassady, Matias Korman, Wolfgang Mulzer, André van Renssen, Marcel Roeloffzen,
Paul Seiferth, and Yannik Stein. Improved Time-Space Trade-Offs for Computing Voronoi
Diagrams. In International Symposium on Theoretical Aspects of Computer Science (STACS),
pages 9:1–9:14, 2017. doi:10.4230/LIPIcs.STACS.2017.9.

8 Luis Barba, Matias Korman, Stefan Langerman, Kunihiko Sadakane, and Rodrigo I. Silveira.
Space-time trade-offs for stack-based algorithms. Algorithmica, 72(4):1097–1129, 2015. doi:
10.1007/s00453-014-9893-5.

9 Greg Barnes, Jonathan F. Buss, Walter L. Ruzzo, and Baruch Schieber. A sublinear space, poly-
nomial time algorithm for directed s-t connectivity. SIAM Journal on Computing, 27(5):1273–
1282, 1998. doi:10.1137/S0097539793283151.

ICALP 2020

https://doi.org/10.1016/0020-0190(87)90105-0
https://doi.org/10.4230/LIPIcs.STACS.2017.9
https://doi.org/10.1007/s00453-014-9893-5
https://doi.org/10.1007/s00453-014-9893-5
https://doi.org/10.1137/S0097539793283151

67:16 Sublinear-Space Lexicographic Depth-First Search

10 Allan B. Borodin and Stephan Cook. A time-space tradeoff for sorting on a general sequential
model of computation. SIAM Journal on Computing, 11(2):287–297, 1982. doi:10.1137/
0211022.

11 Harry Buhrman, Richard Cleve, Michal Koucký, Bruno Loff, and Florian Speelman. Computing
with a full memory: Catalytic space. In ACM Symposium on Theory of Computing (STOC),
pages 857–866, 2014. doi:10.1145/2591796.2591874.

12 Diptarka Chakraborty, A. Pavan, Raghunath Tewari, N. Variyam Vinodchandran, and Lin For-
rest Yang. New Time-Space Upperbounds for Directed Reachability in High-genus and
H-minor-free Graphs. In International Conference on Foundation of Software Technology and
Theoretical Computer Science (FSTTCS), pages 585–595, 2014.

13 Diptarka Chakraborty and Raghunath Tewari. An O(nε) space and polynomial time algorithm
for reachability in directed layered planar graphs. ACM Transactions on Computation Theory,
9(4), 2017.

14 Sankardeep Chakraborty, Anish Mukherjee, Venkatesh Raman, and Srinivasa Rao Satti. A
Framework for In-place Graph Algorithms. In European Symposium on Algorithms (ESA),
volume 112, pages 13:1–13:16, 2018. doi:10.4230/LIPIcs.ESA.2018.13.

15 Sankardeep Chakraborty, Venkatesh Raman, and Srinivasa Rao Satti. Biconnectivity, Chain
Decomposition and st-Numbering Using O(n) Bits. In International Symposium on Algorithms
and Computation (ISAAC), volume 64, pages 22:1–22:13, 2016. doi:10.4230/LIPIcs.ISAAC.
2016.22.

16 Sankardeep Chakraborty and Srinivasa Rao Satti. Space-efficient algorithms for maximum
cardinality search, its applications, and variants of bfs. Jouanal of Combinatorial Optimization,
37(2):465–481, 2019. doi:10.1007/s10878-018-0270-1.

17 Timothy M. Chan. Comparison-based time-space lower bounds for selection. ACM Transactions
on Algorithms, 6(2):26:1–26:16, 2010. doi:10.1145/1721837.1721842.

18 Timothy M. Chan, J. Ian Munro, and Venkatesh Raman. Faster, space-efficient selection
algorithms in read-only memory for integers. In International Symposium on Algorithms and
Computation (ISAAC), pages 405–412, 2013. doi:10.1007/978-3-642-45030-3_38.

19 Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs.
Information and Computation, 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

20 Omar Darwish and Amr Elmasry. Optimal time-space tradeoff for the 2D convex-hull problem.
In European Symposium on Algorithms (ESA), pages 284–295, 2014.

21 Jeff Edmonds, Chung Keung Poon, and Dimitris Achlioptas. Tight lower bounds for st-
connectivity on the nnjag model. SIAM Journal on Computing, 28(6):2257–2284, 1999.
doi:10.1137/S0097539795295948.

22 Michael Elberfeld, Andreas Jakoby, and Till Tantau. Logspace versions of the theorems of
Bodlaender and Courcelle. In IEEE 51st Annual Symposium on Foundations of Computer
Science (FOCS), pages 143–152, 2010.

23 Amr Elmasry, Torben Hagerup, and Frank Kammer. Space-efficient Basic Graph Algorithms.
In International Symposium on Theoretical Aspects of Computer Science (STACS), pages
288–301, 2015. doi:10.4230/LIPIcs.STACS.2015.288.

24 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, Michał Pilipczuk, and Marcin Wrochna.
Fully polynomial-time parameterized computations for graphs and matrices of low treewidth.
ACM Transactions on Algorithms, 14(3), 2018.

25 Greg N. Frederickson. Upper bounds for time-space trade-offs in sorting and selection. Journal
of Computer and System Sciences, 34(1):19–26, 1987. doi:10.1016/0022-0000(87)90002-X.

26 Torben Hagerup. Space-efficient DFS and applications to connectivity problems: Simpler,
leaner, faster. Algorithmica, 82(4):1033–1056, 2020. doi:10.1007/s00453-019-00629-x.

27 Tatsuya Imai, Kotaro Nakagawa, Aduri Pavan, N. Variyam Vinodchandran, and O. Watanabe.
An O(n1/2+ε)-space and polynomial-time algorithm for directed planar reachability. In IEEE
Conference on Computational Complexity (CCC), pages 277–286, 2013.

https://doi.org/10.1137/0211022
https://doi.org/10.1137/0211022
https://doi.org/10.1145/2591796.2591874
https://doi.org/10.4230/LIPIcs.ESA.2018.13
https://doi.org/10.4230/LIPIcs.ISAAC.2016.22
https://doi.org/10.4230/LIPIcs.ISAAC.2016.22
https://doi.org/10.1007/s10878-018-0270-1
https://doi.org/10.1145/1721837.1721842
https://doi.org/10.1007/978-3-642-45030-3_38
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1137/S0097539795295948
https://doi.org/10.4230/LIPIcs.STACS.2015.288
https://doi.org/10.1016/0022-0000(87)90002-X
https://doi.org/10.1007/s00453-019-00629-x

T. Izumi and Y. Otachi 67:17

28 Rahul Jain and Raghunath Tewari. An O(n1/4+ε) Space and Polynomial Algorithm for Grid
Graph Reachability. In IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS), pages 19:1–19:14, 2019.

29 Rahul Jain and Raghunath Tewari. Reachability in High Treewidth Graphs. In International
Symposium on Algorithms and Computation (ISAAC), volume 149, pages 12:1–12:14, 2019.
doi:10.4230/LIPIcs.ISAAC.2019.12.

30 Frank Kammer, Dieter Kratsch, and Moritz Laudahn. Space-efficient biconnected components
and recognition of outerplanar graphs. Algorithmica, 81(3):1180–1204, 2019. doi:10.1007/
s00453-018-0464-z.

31 Frank Kammer, Johannes Meintrup, and Andrej Sajenko. Space-efficient vertex separators for
treewidth. CoRR, abs/1907.00676, 2019. arXiv:1907.00676.

32 Frank Kammer and Andrej Sajenko. Linear-time in-place dfs and bfs on the word ram. In
International Conference on Algorithms and Complexity (CIAC), pages 286–298, 2019.

33 Shahbaz Khan and Shashank K. Mehta. Depth First Search in the Semi-streaming Model. In
International Symposium on Theoretical Aspects of Computer Science (STACS), volume 126,
pages 42:1–42:16, 2019. doi:10.4230/LIPIcs.STACS.2019.42.

34 Masashi Kiyomi, Hirotaka Ono, Yota Otachi, Pascal Schweitzer, and Jun Tarui. Space-
efficient algorithms for longest increasing subsequence. Theory of Computing Systems, 2019.
doi:10.1007/s00224-018-09908-6.

35 Tom Leighton and Satish Rao. Multicommodity max-flow min-cut theorems and their use
in designing approximation algorithms. Journal of the ACM, 46(6):787–832, 1999. doi:
10.1145/331524.331526.

36 Andrea Lincoln, Virginia Vassilevska Williams, Joshua R. Wang, and R. Ryan Williams.
Deterministic Time-Space Trade-Offs for k-SUM. In International Colloquium on Automata,
Languages, and Programming (ICALP), volume 55, pages 58:1–58:14, 2016. doi:10.4230/
LIPIcs.ICALP.2016.58.

37 J.Ian Munro and Mike Paterson. Selection and sorting with limited storage. Theoretical
Computer Science, 12(3):315–323, 1980. doi:10.1016/0304-3975(80)90061-4.

38 Jakob Pagter and Theis Rauhe. Optimal time-space trade-offs for sorting. In ACM Symposium
on Theory of Computer Science (STOC), pages 264–268, 1998. doi:10.1109/SFCS.1998.
743455.

39 Chung Keung Poon. Space bounds for graph connectivity problems on node-named jags and
node-ordered jags. In IEEE 34th Annual Symposium on Foundations of Computer Science
(FOCS), page 218–227, 1993.

40 John H. Reif. Depth-first search is inherently sequential. Information Processing Letters,
20(5):229–234, 1985. doi:10.1016/0020-0190(85)90024-9.

41 Omer Reingold. Undirected connectivity in log-space. Journal of the ACM, 55(4), 2008.
doi:10.1145/1391289.1391291.

42 Joshua R. Wang. Space-efficient randomized algorithms for k-sum. In European Symposium
on Algorithms (ESA), pages 810–829, 2014.

ICALP 2020

https://doi.org/10.4230/LIPIcs.ISAAC.2019.12
https://doi.org/10.1007/s00453-018-0464-z
https://doi.org/10.1007/s00453-018-0464-z
http://arxiv.org/abs/1907.00676
https://doi.org/10.4230/LIPIcs.STACS.2019.42
https://doi.org/10.1007/s00224-018-09908-6
https://doi.org/10.1145/331524.331526
https://doi.org/10.1145/331524.331526
https://doi.org/10.4230/LIPIcs.ICALP.2016.58
https://doi.org/10.4230/LIPIcs.ICALP.2016.58
https://doi.org/10.1016/0304-3975(80)90061-4
https://doi.org/10.1109/SFCS.1998.743455
https://doi.org/10.1109/SFCS.1998.743455
https://doi.org/10.1016/0020-0190(85)90024-9
https://doi.org/10.1145/1391289.1391291

	Introduction
	Background and Motivation
	Our Result
	Related Work
	Organization of Paper

	Preliminaries
	Model and Notation
	Lex-DFS
	Tree Decomposition and Balanced Separator

	Small-Space Lex-DFS Algorithm for Graphs of Bounded Treewidth
	Reduction to (Approximate) Gray-Path Membership
	Implementation of AIsGray(u, v)
	Algorithm Details for Lex-DFS
	Complexity

	Tree Decomposition using Small Space
	A Small-Space Balanced Separator Algorithm

	Conclusion

