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Abstract
In this paper we revisit the deterministic version of the Sparse Fourier Transform problem, which
asks to read only a few entries of x ∈ Cn and design a recovery algorithm such that the output of
the algorithm approximates x̂, the Discrete Fourier Transform (DFT) of x. The randomized case
has been well-understood, while the main work in the deterministic case is that of Merhi et al. (J
Fourier Anal Appl 2018), which obtains O(k2 log−1 k · log5.5 n) samples and a similar runtime with
the `2/`1 guarantee. We focus on the stronger `∞/`1 guarantee and the closely related problem of
incoherent matrices. We list our contributions as follows.

1. We find a deterministic collection of O(k2 log n) samples for the `∞/`1 recovery in time
O(nk log2 n), and a deterministic collection of O(k2 log2 n) samples for the `∞/`1 sparse re-
covery in time O(k2 log3 n).

2. We give new deterministic constructions of incoherent matrices that are row-sampled submatrices
of the DFT matrix, via a derandomization of Bernstein’s inequality and bounds on exponential
sums considered in analytic number theory. Our first construction matches a previous randomized
construction of Nelson, Nguyen and Woodruff (RANDOM’12), where there was no constraint on
the form of the incoherent matrix.

Our algorithms are nearly sample-optimal, since a lower bound of Ω(k2 + k log n) is known,
even for the case where the sensing matrix can be arbitrarily designed. A similar lower bound of
Ω(k2 log n/ log k) is known for incoherent matrices.
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1 Introduction

Compressed sensing is a subfield of discrete signal processing, based on the principle that a
high-dimensional signal can be approximately reconstructed, by exploiting its sparsity, in
fewer samples than those demanded by the Shannon-Nyquist theorem. An important subtopic
is the Sparse Fourier Transform, where we desire to detect and approximate the largest
coordinates of a high-dimensional signal, given a few samples from its Fourier spectrum.
Fewer samples play a crucial role, for example, in medical imaging, where reconstructing an
image corresponds exactly to reconstructing a signal from its Fourier representation. Thus,
the number of Fourier coefficients needed for (approximate) reconstruction is proportional to
the radiation dose a patient receives as well as the time the patient needs to remain in the
scanner. Furthermore, exploiting the sparsity of the signal has given researchers the hope
of defeating the FFT algorithm of Cooley and Tukey, in the special (but of high practical
value) case where the signal is approximately sparse. Thus, since FFT serves as an important
computational primitive, and has been recognized as one of the 10 most important algorithms
of the 20th century [16], every place where it has found application can possibly be benefited
from a faster algorithm. The main intuition and hope is that signals arising in practice
often exhibit certain structure, such as concentration of energy in a small number of Fourier
coefficients.

Since vectors in practice are never exactly sparse, and it is impossible to reconstruct a
generic vector x̂ ∈ Cn from o(n) samples, researchers resort to approximation. More formally,
a sparse recovery scheme consists of a sample set S ⊆ {1, . . . , n} and a recovery algorithm
R such that for any given x ∈ Cn, the scheme approximates x̂ by x̂′ = R(xS), where xS
denotes the vector of x restricted to the coordinates in S. The fineness of approximation is
measured with respect to the best k-sparse approximation to x̂. The breakthrough work of
Candès, Tao and Donoho [12, 20] first showed that k logO(1) n samples of x ∈ Cn suffices to
reconstruct a O(k)-sparse vector x̂′ which is “close” to the best k-approximation of x̂. More
formally, the reconstruction x̂′ satisfies the so-called `2/`1 guarantee, i.e.,

‖x̂− x̂′‖2 ≤
1√
k
‖x̂−k‖1,

where x̂−k is the tail vector, obtained from restricting x̂ to its smallest n− k coordinates
in magnitude. The strength of their algorithms lies in the uniformity, in the sense that the
samples at the same coordinates can be used to approximate every x ∈ Cn. However, the
running time is polynomial in the vector length n, giving thus only sample-efficient, but
not necessarily time-efficient algorithms. Furthermore, the samples are not obtained via
a deterministic procedure, but are chosen at random. Regarding non-uniform randomized
algorithms that run in sublinear time, numerous researchers have worked on the problem
and obtained a series of algorithms with different recovery guarantees [29, 46, 42, 24, 3,
27, 30, 31, 43, 38, 53, 34, 33, 39, 40, 41, 50]. See Table 1 for a list of common recovery
guarantees. The state of the art is the seminal algorithm of Kapralov [40], which shows
that O(k logn) samples and O(k logO(1) n) time are simultaneously possible for the `2/`2
guarantee (which is strictly stronger1 than the `2/`1). The fastest algorithm is due to [30],
needing O(k logn · log(n/k)) time and samples. We note also the algorithm of Indyk and
Kapralov [33] that runs in O(n log2 n) time, uses O(k logn) samples but gives a stronger

1 Here we mean that given an algorithm giving the `2/`2 guarantee, one can create an algorithm, using
the `2/`2 algorithm as a black box, with sparsity parameter k′ = O(k), achieving the `2/`1 guarantee
with the same order of number of samples.
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Table 1 Common guarantees of sparse recovery. Only the `2/`2 case requires a parameter C > 1.
The guarantees are listed in the descending order of strength.

Guarantee Formula Deterministic Lower Bound
`∞/`2 ‖x̂− x̂′‖∞ ≤ ‖x̂−k‖2/

√
k Ω(n) [17]

`2/`2 ‖x̂− x̂′‖2 ≤ C‖x̂−k‖2 Ω(n) [17]
`∞/`1 ‖x̂− x̂′‖∞ ≤ ‖x̂−k‖1/k Ω(k2 + k log n) [23, 21]
`2/`1 ‖x̂− x̂′‖2 ≤ ‖x̂−k‖1/

√
k Ω(k log(n/k)) [23, 21]

`∞/`2 guarantee than the `2/`2 guarantee in the previous two papers. We refer the reader
to the next section for comparison of the different guarantees appearing in the literature.
Recently there has been also considerable work on recovering k-sparse signals from their
continuous Fourier Transform, see [9, 55, 14, 6].

Although our understanding on randomized algorithms is almost complete, there are still
important gaps in our knowledge regarding deterministic schemes. The following natural
open-ended question has theoretical and practical interest and remains in principle highly
unexplored, touching a variety of fields including (sublinear-time) algorithms, pseudoran-
domness and computational complexity, Additive Combinatorics [10] and analytic number
theory.

I Question 1. What are the best bounds we can obtain for the different versions of the
deterministic Sparse Fourier Transform problem?

With sublinear runtime, the earliest work of Iwen [36, 37] gives O(k2 log4 n) samples and
time, albeit in a significantly easier (although similar) model: where one wants to learn a
band-limited function f : [0, 2π)→ C and can evaluate f at any point. In the discrete case
which we are interested in, the state of the art is the work of Merhi et al. [47], which obtains
O(k2 log11/2 n/ log k) samples and the same runtime. A recent work of Bittens et al. [8]
showed that the quadratic dependence can be dropped if the signals are sufficiently structured,
namely, if the Fourier coefficients are generated by an unknown but small degree polynomial.
On the related problem of the Walsh-Hamadard Transform, Indyk and Cheraghchi [15]
showed that roughly O(k1+α logO(1)+6/α n) samples and similar run-time are possible, if
one resorts to a slightly weaker guarantee. Interestingly, their approach resides in a novel
connection between the Walsh-Hadamard matrix and linear lossless condensers. However,
this connection does not extend to the Fourier Transform over Zn, which is our focus and
the most interesting case. Interesting ideas appear also in the work of Akavia [1, 2], where
it is shown how to approximate the Fourier Transform of an arithmetic progression in
poly-logarithmic time in the length of the progression; due to the worse dependence on the
quality of approximation, however, that work obtained an algorithm with sample complexity
(k · (signal-to-noise ratio))4.

The papers above showed how to achieve the `2/`1 guarantee in a number of samples
that is quadratic in the signal sparsity. It is already known that a nearly linear dependence
is possible [12]; however, we do not have efficient deterministic algorithms for finding these
samples. The work of [12], as well as subsequent works, proceeds by sampling with repetition
rows of the DFT matrix, and showing that the RIP condition (see Definition 5) holds, which in
turn implies the desired result, but via a super-linear algorithm. The state-of-the-art analysis
of such row subsampling is due to Haviv and Regev [32], who showed that O(k log2 k logn)
samples suffice. A lower bound of Ω(k logn) rows for this subsampling process has been
shown in [7]. In this paper, we follow a different avenue and give a new set of schemes for
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the Sparse Fourier Transform which allow uniform reconstruction. Although our dependence
is still quadratic in k, it is necessary, in contrast to the previous works: our results satisfy
the strictly stronger `∞/`1 guarantee, for which a quadratic lower bound is known [23], and
hence one cannot hope for a sub-quadratic dependence. We also note the deterministic
algorithm of [41], which needs a cubic dependence on k but solves a somewhat different
problem of finding the multidimensional sparse Fourier transform of a signal with at most k
non-zeros in the frequency domain, and thus is not robust to noise.

The focus of our work is the `∞/`1 guarantee, defined formally as follows.

I Definition 2 (`∞/`1 guarantee). A sparse recovery scheme is said to satisfy the `∞/`1
guarantee with parameter k, if given access to vector x, it outputs a vector x̂′ such that

‖x̂− x̂′‖∞ ≤
1
k
‖x̂−k‖1. (1)

`∞/`1 versus `2/`1: A matter of “find all” versus “miss all”

As we have discussed, previous works satisfied the `2/`1 guarantee, while our target is the
`∞/`1 guarantee. Any algorithm for the latter guarantee also satisfies the former one. But,
as we shall demonstrate in Section 2.3, the `∞/`1 guarantee is much stronger: there exists
an infinite family of vectors for which an `2/`1 algorithm might detect none of the heavy
frequencies, while an `∞/`1 algorithm must detect all of them. This happens because the
`∞/`1 is a worst-case guarantee, in the sense that it requires detection of every frequency
just above the noise level, in contrast to the `2/`1, which should be regarded as an average-
case guarantee in the sense that it allows missing a subset of the heavy frequencies if they
carry the energy proportional to the noise level.

Previous Work on `∞/`1 with arbitrary linear measurements

All approaches described above concerned Fourier measurements, but compressed sensing
has a long history using arbitrary linear measurements, for example [19, 56, 35, 25, 28,
48, 26, 45, 44, 49]. Regarding `∞/`1, the work of [51] indicated a connection between
the aforementioned guarantee and incoherent matrices. More specifically, it was shown
that given a (1/k)-incoherent matrix one can design an algorithm satisfying the `∞/`1
guarantee. The existence of a matrix with O(k2 min{logn, (logn/ log k)2}) rows was also
proved. Reconstruction needed Ω(nk) time, something which was partially remedied by
Li and Nakos [44] with a scheme of O(k2 logn · log∗ k) measurements and poly(k, logn)
decoding time. Incoherent matrices are interesting objects on their own, and have been
studied before, as they can be used to obtain RIP matrices. Deterministic constructions of
O(k2(logn/ log k)2) rows were obtained by DeVore [18] using deep results from the theory
of Gelfand widths and by Amini and Marvasti [5] via binary BCH code vectors, where
the zeros are replaced by −1s. We note that incoherent matrices matching this bound
also follow immediately from the famous Nisan-Wigderson combinatorial designs [52], and
serve as a cornerstone for constructions of pseudorandom generators and extractors [59].
Incoherent matrices are also connected with ε-biased codes, and thus an almost optimal
strongly explicit construction can be obtained by the recent breakthrough work of [57].
On the lower bound side, Alon has shown that Ω(k2 logn/ log k) rows are necessary for a
(1/k)-incoherent matrix [4].
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Our Contribution

In this work we offer several new results for the Sparse Fourier Transform problem across
different axis, some of which are nearly optimal. We show how to find in polynomial time
a deterministic collection of samples from the time domain, such that we can solve the
Sparse Fourier Transform problem in linear and sublinear time and achieve nearly optimal
sample complexity. For the closely related problem of incoherent matrices from DFT rows,
which is of independent interest, we obtain a nearly optimal derandomized construction via
Bernstein’s inequality. We also demonstrate strongly explicit constructions, by invoking
heavy number-theoretical machinery.

We note that the bounds of our constructions have been known for more than a decade if
the sensing/incoherent matrix is allowed to be arbitrary. However, the previous arguments
did not facilitate the frequent and relevant scenario where we have access to rows only from
the Fourier ensemble. Part of our work is to show that some of these results carry over to the
significantly more constrained case. We also note that any progress to deterministic `2/`1
schemes with subquadratic sample complexity is connected to the very challenging problem
of obtaining a deterministic DFT row-subsampled RIP matrices with subquadratic number
of rows2 which possibly out of reach at the moment.

2 Technical Results

2.1 Preliminaries
For a positive integer n, we define [n] = {0, 1 . . . , n− 1} and we shall index the coordinates
of a n-dimensional vector or the rows/columns of an n×n matrix from 0 to n− 1. We define
the Discrete Fourier Transform (DFT) matrix F ∈ Cn×n to be the unitary matrix such that
Fij = 1√

n
e2π
√
−1·ij/n, and the Discrete Fourier Transform of a vector x ∈ Cn to be x̂ = Fx.

For a set S ⊆ [n] we define xS to be the vector obtained from x after zeroing out the
coordinates not in S. We also define H(x, k) to be the set of the indices of the largest k
coordinates (in magnitude) of x, and x−k = x[n]\H(x,k). We say x is k-sparse if x−k = 0.
We also define ‖x‖p =

(∑n−1
i=0 |xi|p

)1/p for p ≥ 1 and ‖x‖0 to be the number of nonzero
coordinates of x.

For a matrix F ∈ Cn×n and subsets S, T ⊆ [n], we define FS,T to be the submatrix of F
indexed by rows in S and columns in T .

The median of a collection of complex numbers {zi} is defined to be mediani zi =
mediani Re(zi) +

√
−1 mediani Im(zi), i.e., taking the median of the real and the imaginary

component separately.
For two points x and y on the unit circle, we use |x− y|◦ to denote the circular distance

(in radians, i.e. modulo 2π) between x and y.

2.1.1 `∞/`1 Gurantee and incoherent matrices
The quality of the approximation is usually measured in different error metrics, and the
main recovery guarantee we are interested in is called the `∞/`1 guarantee, as defined in
Definition 2. Other types of recovery guarantee, such as the `∞/`2, the `2/`2 and the

2 Note that [10] breaks the quadratic barrier for RIP matrices but does not use the Fourier ensemble; the
rows are picked from the discrete chirp-Fourier ensemble, where the linear functions are substituted by
quadratic polynomials.

ICALP 2020
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`2/`1, are defined similarly, where (1) is replaced with the respective expression in Table 1.
Note that these are definitions of the error guarantee per se and do not have algorithmic
requirements on the scheme.

Highly relevant with the `∞/`1 guarantee is a matrix condition which we call incoherence.

I Definition 3 (Incoherent Matrix). A matrix A ∈ Cm×n is called ε-incoherent if ‖Ai‖2 = 1
for all i (where Ai denotes the i-th column of A) and |〈Ai, Aj〉| ≤ ε.

I Lemma 4 ([51]). There exist an absolute constant c > 0 such that for any (c/k)-incoherent
matrix A, there exists a `∞/`1-scheme which uses A as the measurement matrix and whose
recovery algorithm runs in polynomial time.

2.1.2 The Restrictred Isometry Property and its connection with
incoherence

Another highly relevant condition is called the renowned restricted isometry property, intro-
duced by Candès et al. in [11]. We show how incoherent matrices are connected to it.

I Definition 5 (Restricted Isometry Property). A matrix A ∈ Cm×n is said to satisfy the
(k, ε) Restricted Isometry Property (RIP), if for all x ∈ Cn with ‖x‖0 ≤ k, it holds that
(1− ε)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + ε)‖x‖2.

Candès et al. proved in their breakthrough paper [11] that any RIP matrix can be used
for sparse recovery with the `2/`1 error guarantee. The following formulation comes from [22,
Theorem 6.12].

I Lemma 6. Given a (2k, ε)-RIP matrix A with ε < 4/
√

41, we can design a `2/`1-scheme
that uses A as the measurement matrix and has a recovery algorithm that runs in polynomial
time.

Although randomly subsampling the DFT matrix gives an RIP matrix with O(klog2klogn)
rows [32], no algorithm for finding these rows in polynomial time is known; actually, even
for o(k2) · poly(logn) rows the problem remains wide open3. It is a very important and
challenging problem whether one can have an explicit construction of RIP matrices from
Fourier measurements that break the quadratic barrier on k.

We state the following two folklore results, connecting the two different guarantees, and
their associated combinatorial objects. This indicates the importance of incoherent matrices
for the field of compressed sensing.

I Proposition 7 (folklore). An `∞/`1 scheme with a measurement matrix of m rows and
recovery time T induces an `2/`1 scheme of a measurement matrix of O(m) rows and recovery
time O(T + ‖x̂′‖0), where x̂′ is the output of the `∞/`1 scheme.

I Proposition 8 (folklore). A (c/k)-incoherent matrix is also a (k, c)-RIP matrix.

3 In fact, one of the results of our paper gives the state-of-the-art result even for this problem, with
O(k2 log n) rows, see Theorem 12.
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Table 2 Comparison of our results and the previous results. All O- and Ω-notations are suppressed.
The result in the first row follows from Lemma 6 and the RIP matrix in [32].Our algorithms adopt
the common assumption in the sparse FT literature that the signal-to-noise ratio is bounded by nc

for some absolute constant c > 0.

Samples Run-time Guarantee
Explict

Construction Lower Bound
[32] k log2 k log n poly(n) `2/`1 No k log(n/k)
[47] k2 log5.5 n/ log k k2 log5.5 n/ log k `2/`1 Yes k log(n/k)
Theorem 9 k2 log n nk log2 n `∞/`1 Yes k2 + k log n[51]
Theorem 10 k2 log2 n k2 log3 n `∞/`1 Yes k2 + k log n[51]

2.2 Our results
2.2.1 Sparse Fourier Transform Algorithms
I Theorem 9 (Deterministic SFT with super-linear time). Let n be a power of 2. There exist
a set S ⊆ [n] with |S| = O(k2 logn) and an absolute constant c > 0 such that the following
holds. For any vector x ∈ Cn with ‖x̂‖∞ ≤ nc‖x̂−k‖1/k, one can find an O(k)-sparse vector
x̂′ ∈ Cn such that

‖x̂− x̂′‖∞ ≤
1
k
‖x̂−k‖1,

in time O(nk log2 n) by accessing {xi}i∈S only. Moreover, the set S can be found in poly(n)
time.

I Theorem 10 (Deterministic SFT with sublinear time,). Let n be a power of 2. There exist a
set S ⊆ [n] with |S| = O(k2 log2 n) and an absolute constant c > 0 such that the following
holds. For any vector x ∈ Cn with ‖x̂‖∞ ≤ nc‖x̂−k‖1/k, one can find an O(k)-sparse vector
x̂′ ∈ Cn such that

‖x̂− x̂′‖∞ ≤
1
k
‖x̂−k‖1,

in time O(k2 log3 n) by accessing {xi}i∈S only. Moreover, the set S can be found in poly(n)
time.

I Remark 11. The condition ‖x̂‖∞ ≤ nc‖x̂−k‖1/k upper bounds the “signal-to-noise ratio”,
a common measure in engineering that compares the level of a desired signal to the level
of the background noise. This is a common assumption in most algorithms in the Sparse
Fourier Transform literature, see, e.g. [30, 33, 39, 13, 40], where the `2-norm variant ‖x̂‖∞ ≤
nc‖x̂−k‖2/

√
k was assumed.

2.2.2 From DFT to incoherent matrices
This section contains deterministic constructions of incoherent matrices.

An Explicit Construction: Derandomization in poly(n) time

I Theorem 12 (Incoherent matrices by derandomized subsampling of DFT). There exists a set
S ⊆ [n] with of cardinality O(k2 logn) such that the matrix

√
n
mFS,[n] is (1/k)-incoherent.

Moreover, S can be found in poly(n) time.

The above Theorem yields immediately a different algorithm for `∞/`1 Sparse Fourier
Tranform with O(k2 logn) samples, via the reduction in [51].

ICALP 2020
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Strongly explicit constructions: Derandomization in sub-linear time

I Theorem 13 (Incoherent matrices from DFT via low-degree polynomials). Let ε > 0 be a
constant small enough, p be a prime and d ≥ 2 be an integer. There exists a strongly explicit
construction of an O(mε( 1

m + p
md )21−d)-incoherent matrix M ∈ Cm×p such that the rows of√

mM are rows of the DFT matrix (a row may appear more than once). The hidden constant
in the O-notation depends on d and ε. Finding the indices of the rows takes Õ(m) time.

To get an idea of the above result one could for example set d = 3 and observe that the
results translates to the following: for every k ≥ p1/8 one can get a (1/k)-incoherent matrix
with O(k4+ε) rows. One needs the condition on k (or equivalently the condition on m) to
bound the term p/md. The larger the degree d, the looser this condition, but also the worse
the dependence of m on k. For example, when d = 4, we can expand the regime of k to
approximately k ≥ p1/24, but obtain approximately m = O(k8+ε).

The following is a different construction, incomparable with Theorem 13 in multiple ways.
First, the construction runs in sublinear time in p but it is not strongly explicit. Second, it
gives different trade-offs between the sparsity parameter and the number of rows. Last but
not least, the construction depends on the factorization of p− 1.

I Theorem 14 (Incoherent matrices from DFT via multiplicative subgroupss). Let p be a prime
number. For every divisor d of p−1 such that d > √p we can find in time O(d log p) a matrix
M ∈ Cd×p with rows being the rows of the DFT matrix such that 1

dM is (√p/d)-incoherent.

This result could give (depending on the factorization of p − 1) a better polynomial
dependence of m on k in the high-sparsity regime. If p− 1 has a large divisor about p1−γ ,
this would yield a matrix with sparsity parameter k ≈ pγ and m ≈ k1/γ−1 rows. For example,
when γ = 1/4, we obtain k ≈ p1/4 and m ≈ k3, which cannot be obtained from Theorem 13.
In general, Theorem 14 will yield useful matrices as long as p− 1 has divisors in the range
[√p, p − 1], ideally as many as possible. An extreme case is Fermat primes, which have
(log p)/2 divisors in the aforesaid interval.

The reader might ask the question if the polynomial dependence of k on p is necessary;
ideally one would like a logarithmic dependence, since the polynomial dependence is interesting
only in the high-sparsity regime. Regarding strongly explicit constructions, we provide some
evidence why this might be a very hard problem in the remark below.
I Remark 15. The inferiority of our bounds in the low-sparsity regime is justifiable to some
extent: it is because of a common obstacle that has persisted more than a century in the
theory of exponential sums, due to the lack of techniques to account for sparse character
sums (either additive or multiplicative). In general, the fewer summands the sum has, the
harder it is to prove a tight cancellation bound. Thus, owing to the use of heavy machinery
from analytic number theory and more specifically the theory of exponential sums over finite
fields, our bounds for strongly explicit constructions are quite suboptimal.

2.3 Comparing `2/`1 with `∞/`1

In this subsection we elaborate why `∞/`1 is much stronger than `2/`1, and not just a
guarantee that implies `2/`1. Let γ < 1 be a constant and consider the following scenario.
There are three sets A,B,C of size γk, (1− γ)k, n− k respectively, and for every i ∈ A we
have |x̂i| = 2

k‖x̂C‖1 = 2
k‖x̂−k‖1, while every coordinate in B and C has the equal magnitude.

It follows immediately that

‖x̂C‖1 = n− k
n− γk

‖x̂B∪C‖1.
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Now assume that k ≤ γn, then (n− γk)/(n− k) ≤ 1 + γ. We claim that the zero vector
is a valid solution for the `2/`1 guarantee, since

‖~0− x̂‖2
2 = ‖x̂A‖2

2 + ‖x̂B∪C‖2
2

≤ γk · 4
k2 ‖x̂−k‖

2
1 + 1

(n− γk)‖x̂B∪C‖
2
1

≤ 4γ
k
‖x̂−k‖2

1 + n− γk
(n− k)2 ‖x̂C‖

2
1

≤
(

4γ
k

+ 1 + γ

n− k

)
‖x̂−k‖2

1

≤ 5γ
k
‖x̂−k‖2

1,

where the last inequality follows provided it further holds that k ≤ γn/(2γ + 1). Hence when
γ ≤ 1/5, we see that the zero vector satisfies the `2/`1 guarantee.

Since ~0 is a possible output, we may not recover any of the coordinates in S, which is
the set of “interesting” coordinates. On the other hand, the `∞/`1 guarantee does allow
the recovery of every coordinate in S. This is a difference of recovering all γk versus 0
coordinates. We conclude from the discussion above that in the case of too much noise, the
`2/`1 guarantee becomes much weaker than the `∞/`1, possibly giving meaningless results
in some cases.

3 Overview

Sparse Fourier Transform Algorithms

We first show how to achieve the for-all schemes, i.e., schemes that allow universal re-
construction of all vectors, and then derandomize them. Similarly to the previous works
[31, 33, 40], our algorithm hashes, with the filter in [40], the spectrum of x to O(k) buckets
using pseudorandom permutations, and repeat O(k logn) times with fresh randomness. The
main part of the analysis is to show that for any vector x̂ ∈ Cn and any set S ⊆ [n] with
|S| ≤ k, each i ∈ S, in a constant fraction of the repetitions, receives “low noise” from all
other elements, under the pseudorandom permutations. This will boil down to a set of
Θ(n2) inequalities involving the filter and the pseudorandom permutations. We prove these
inequalities with full randomness, and then derandomize the pseudorandom permutations
using the method of conditional expectations. This will give us Theorem 9. To do so, we
choose the pseudorandom permutations one at a time, repetition by repetition, and keep
an (intricate) pessimistic estimator , which we update accordingly. Our argument extends
the arguments in [51] and [54], and could be of independent interest. To compare with [51]
we have the following observation. The construction in [51] consists of O(k logn) matrices,
joined vertically, each having O(k) rows and exactly one 1 per column. This ensures a small
incoherence of the concatenated matrix and gives the `∞/`1 guarantee. In the Fourier case,
the convolution with the filter functions behaves analogously: instead of having exactly one
non-zero element, each column in the `-th matrix has a contiguous segment of 1s of size
≈ n/k (where the center of that segment is depends on the choice of the `-th pseudorandom
permutation) and polynomially decaying entries away from this segment. Moreover, the
positions of the segments across the columns are not fully independent and are defined
via the pseudorandom permutations. We show that even in this more restricted setting,
derandomization is possible in polynomial time. Several details are omitted in the preceding
high-level discussion and we suggest the reader look at the corresponding sections for the
complete argument.
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The sublinear-time algorithm (Theorem 10) is obtained by bootstrapping the deran-
domized scheme above with an identification procedure in each bucket, as most previous
algorithms have done (e.g. [30]). The major difference is that our identification procedure
needs to be deterministic. We show an explicit set of samples that allow the implementation
of the desired routine. To illustrate our idea, let us focus on the following 1-sparse case:
x̂ ∈ Cn and |x̂i∗ | ≥ 3‖x̂[n]\i∗‖1 for some i∗, which we want to locate. Let

θj =
(

2π
n
j

)
mod 2π,

and consider the logn samples x0, x1, x2, x4, . . . , x2r−1 , . . . .
Observe that (ignoring 1/

√
n factors)

xβ = x̂i∗e
√
−1βθi∗ +

∑
j 6=i∗

x̂je
√
−1βθj ,

we can find βθi∗ + arg x̂i∗ up to π/8, just by estimating the phase of xβ . Thus we can
estimate βθi∗ up to π/4 from the phase of xβ/x0. If i∗ 6= j, then there exists a β ∈
{1, 2, 22, . . . , 2r−1, . . .} such that |βθi∗ −βθj |◦ > π/2, and so βθj will be more than π/4 away
from the phase of the measurement. Thus, by iterating over all j ∈ [n], we keep the index j
for which βθj is within π/4 from arg(xβ/x0), for every β that is a power of 2 in Zn.

Unfortunately, although this is a deterministic collection of O(logn) samples, the above
argument gives only O(n logn) time. For sublinear-time decoding we use x1/x0 to find
a sector S0 of the unit circle of length π/4 that contains θi∗ . Then, from x2/x0 we find
two sectors of length π/8 each, the union of which contains θi∗ . Because these sectors are
antipodal on the unit circle, the sector S0 intersects exactly one of those, let the intersection
be S1. The intersection is a sector of length at most π/8. Proceeding iteratively, we halve
the size of the sector at each step, till we find θi∗ , and infer i∗. Plugging this idea in the
whole k-sparse recovery scheme yields the desired result. Our argument crucially depends on
the fact that in the `1 norm the phase of θi∗ will always dominate the phase of all samples
we take.

Incoherent Matrices from the Fourier ensemble

Our first result for incoherent matrices (Theorem 12) is more general and works for any
matrix that has orthonormal columns with entries bounded by O(1/

√
n). We subsample the

matrix, invoke a Chernoff bound and Bernstein’s inequality to show the small incoherence of
the subsampled matrix. We follow a derandomization procedure which essentially mimics
the proof of Bernstein’s inequality, keeping a pessimistic estimator which corresponds to the
sum of the generating functions of the probabilities of all events we want to hold, evaluated
at specific points. We obtain an explicit construction, i.e. a derandomization in poly(n)
time. This argument could be of independent interest for its generality. As there are many
technical obstacles to overcome, we suggest the reader take a careful look at the proof to
gain a clearer picture of the argument.

Our next results (Theorem 13 and Theorem 14) construct strongly explicit incoherent
matrices by making use of technology from the fruitful theory of exponential sums in
analytic number theory and additive combinatorics. Roughly speaking, to bound a complex
exponential sum over a set S, one would expect that specific choices of the set S lead to
non-trivial bounds, i.e. o(|S|), since cancellation takes place in the summation. Ideally,
one would desire that the exponentials behave like a random walk and give the optimal
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cancellation of O(
√
|S|). This intuition is clearly not true, but the results by Weyl and

others show that certain sets S can exhibit a nicer behaviour. We exploit their results to
build incoherent matrices by taking the rows of the DFT matrix indexed by the “nice” sets.
This connection also yields an immediate improvement on the lower bound of an exponential
sum obtained by Winterhof [60].

4 Open Problems and Future Direction

A direction of research is to design deterministic schemes that break the quadratic barrier
for signals with structured Fourier support. For example, subsampling the rows of the
DFT matrix to obtain RIP matrices depends highly on the structure of the vectors we
would like to preserve. The more additive structure the support of a k-sparse vector x has,
the worse is the concentration of a random Fourier coefficient of x. Equivalently, the less
additive structure the support of x has, the flatter its Fourier transform is, and hence, the
better concentration bounds we obtain. The concentration in the extreme case, when the
support of x is “dissociated”, is captured by the renowned Rudin’s inequality in additive
combinatorics (see, e.g. [58, Lemma 4.33]). We thus believe that it is an interesting direction
to use machinery from the field of additive combinatorics and the relevant fields in order to
obtain new constructions and algorithms, at least for interesting subclasses of structured
signals.
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