
On the Two-Dimensional Knapsack Problem for
Convex Polygons
Arturo Merino
Technische Universität Berlin, Germany
merino@math.tu-berlin.de

Andreas Wiese
Universidad de Chile, Santiago, Chile
awiese@dii.uchile.cl

Abstract
We study the two-dimensional geometric knapsack problem for convex polygons. Given a set of
weighted convex polygons and a square knapsack, the goal is to select the most profitable subset of
the given polygons that fits non-overlappingly into the knapsack. We allow to rotate the polygons
by arbitrary angles. We present a quasi-polynomial time O(1)-approximation algorithm for the
general case and a polynomial time O(1)-approximation algorithm if all input polygons are triangles,
both assuming polynomially bounded integral input data. Also, we give a quasi-polynomial time
algorithm that computes a solution of optimal weight under resource augmentation, i.e., we allow to
increase the size of the knapsack by a factor of 1 + δ for some δ > 0 but compare ourselves with
the optimal solution for the original knapsack. To the best of our knowledge, these are the first
results for two-dimensional geometric knapsack in which the input objects are more general than
axis-parallel rectangles or circles and in which the input polygons can be rotated by arbitrary angles.

2012 ACM Subject Classification Theory of computation → Packing and covering problems

Keywords and phrases Approximation algorithms, geometric knapsack problem, polygons, rotation

Digital Object Identifier 10.4230/LIPIcs.ICALP.2020.84

Category Track A: Algorithms, Complexity and Games

Funding Arturo Merino: Partially supported by DFG Project 413902284 and ANID Becas Chile
2019-72200522.
Andreas Wiese: Partially supported by FONDECYT Regular grant 1170223.

EA
T

C
S

© Arturo Merino and Andreas Wiese;
licensed under Creative Commons License CC-BY

47th International Colloquium on Automata, Languages, and Programming (ICALP 2020).
Editors: Artur Czumaj, Anuj Dawar, and Emanuela Merelli; Article No. 84; pp. 84:1–84:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-1728-6936
mailto:merino@math.tu-berlin.de
https://orcid.org/0000-0003-3705-016X
mailto:awiese@dii.uchile.cl
https://doi.org/10.4230/LIPIcs.ICALP.2020.84
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

84:2 On the Two-Dimensional Knapsack Problem for Convex Polygons

1 Introduction

In the two-dimensional geometric knapsack problem (2DKP) we are given a square knapsack
K := [0, N]× [0, N] for some integer N and a set of n convex polygons P where each polygon
Pi ∈ P has a weight wi > 0; we write w(P ′) :=

∑
Pi∈P′ wi for any set P ′ ⊆ P. The goal

is to select a subset P ′ ⊆ P of maximum total weight w(P ′) such that the polygons in P ′
fit non-overlapping into K if we translate and rotate them suitably (by arbitrary angles).
2DKP is a natural packing problem, the reader may think of cutting items out of a piece
of raw material like metal or wood, cutting cookings out of dough, or, in three dimensions,
loading cargo into a ship or a truck. In particular, in these applications the respective items
can have various kinds of shapes. Also note that 2DKP is a natural geometric generalization
of the classical one-dimensional knapsack problem.

Our understanding of 2DKP highly depends on the type of input objects. If all polygons
are axis-parallel squares there is a (1 + ε)-approximation with a running time of the form
Oε(1)nO(1) (i.e., an EPTAS) [6], and there can be no FPTAS (unless P = NP) since the
problem is strongly NP-hard [11]. For axis-parallel rectangles there is a polynomial time
(17/9 + ε) < 1.89-approximation algorithm and a (3/2 + ε)-approximation if the items can be
rotated by exactly 90 degrees [5]. If the input data is quasi-polynomially bounded there is
even a (1 + ε)-approximation in quasi-polynomial time [2], with and without the possibility
to rotate items by 90 degrees. For circles a (1 + ε)-approximation is known under resource
augmentation in one dimension if the weight of each circle equals its area [12].

To the best of our knowledge, there is no result known for 2DKP for shapes different than
axis-parallel rectangles and circles. Also, there is no result known in which input polygons
are allowed to be rotated by angles different than 90 degrees. However, in the applications
of 2DKP the items might have shapes that are more complicated than rectangles or circles.
Also, it makes sense to allow rotations by arbitrary angles, e.g., when cutting items out of
some material. In this paper, we present the first results for 2DKP in these settings.

1.1 Our contribution
We study 2DKP for arbitrary convex polygons, allowing to rotate them by arbitrary angles.
Note that due to the latter, it might be that some optimal solution places the vertices of the
polygons on irrational coordinates, even if all input numbers are integers. Our first results
are a quasi-polynomial time O(1)-approximation algorithm for general convex polygons and
a polynomial time O(1)-approximation algorithm for triangles.

By rotation we can assume for each input polygon that the line segment defining its
diameter is horizontal. We identify three different types of polygons for which we employ
different strategies for packing them, see Figure 1a). First, we consider the easy polygons
which are the polygons whose bounding boxes fit into the knapsack without rotation. We
pack these polygons such that their bounding boxes do not intersect. Using area arguments
and the Steinberg’s algorithm [13] we obtain a O(1)-approximation for the easy polygons.
Then we consider the medium polygons which are the polygons whose bounding boxes easily
fit into the knapsack if we can rotate them by 45 degrees. We use a special type of packing
in which the bounding boxes are rotated by 45 degrees and then stacked on top of each
other, see Figure 1b). More precisely, we group the polygons by the widths of their bounding
boxes and to each group we assign two rectangular containers in the packing. We compute
the essentially optimal solution of this type by solving a generalization of one-dimensional
knapsack for each group. Our key structural insight for medium polygons is that such a
solution is O(1)-approximate. To this end, we prove that in OPT the medium polygons of

A. Merino and A. Wiese 84:3

P1
P2

P3

easy

medium

hard

(a) (b) (c)

Figure 1 (a) An easy, a medium, and a hard polygon and their bounding boxes (b): Triangles
packed in a top-left packing (c) The geometric DP subdivides the knapsack along the dashed lines
and then recurses within each resulting area.

each group occupy an area that is by at most a constant factor bigger than the corresponding
containers, and that a constant fraction of these polygons fit into the containers. In particular,
we show that medium polygons with very wide bounding boxes lie in a very small hexagonical
area close to the diagonal of the knapsack. Our routines for easy and medium polygons run
in polynomial time.

It remains to pack the hard polygons whose bounding boxes just fit into the knapsack
or do not fit at all, even under rotation. Note that this does not imply that the polygon
itself does not fit. Our key insight is that there can be only O(logN) such polygons in the
optimal solution, at most O(1) from each group. Therefore, we can guess these polygons
in quasi-polynomial time, assuming that N is quasi-polynomially bounded. However, in
contrast to other packing problems, it is not trivial to check whether a set of given polygons
fits into the knapsack since we can rotate them by arbitrary angles and we cannot enumerate
all possibilities for the angles. However, we show that by losing a constant factor in the
approximation guarantee we can assume that the placement of each hard polygon comes
from a precomputable polynomial size set and hence we can guess the placements of the
O(logN) hard polygons in quasi-polynomial time.

I Theorem 1. There is a O(1)-approximation algorithm for 2DKP with a running time of
(nN)(lognN)O(1) .

If all hard polygons are triangles we present even a polynomial time O(1)-approximation
algorithm. We split the triangles in OPT into two types, for one type we show that a constant
fraction of it can be packed in what we call top-left-packings, see Figure 1b). In these packings,
the triangles are sorted by the lengths of their longest edges and placed on top of each other
in a triangular area. We devise a dynamic program (DP) that essentially computes the most
profitable top-left-packing. For proving that this yields a O(1)-approximation, we need some
careful arguments for rearranging a subset of the triangles with large weight to obtain a
packing that our DP can compute. We observe that essentially all hard polygons in OPT
must intersect the horizontal line that contains the mid-point of the knapsack. Our key
insight is that if we pack a triangle in a top-left-packing then it intersects this line to a
similar extent as in OPT. Then we derive a sufficient condition when a set of triangles fits
in a top-left-packing, based on by how much they overlap this line.

ICALP 2020

84:4 On the Two-Dimensional Knapsack Problem for Convex Polygons

Rj

Rj′

Figure 2 Left: Assume that the polygon (black line segments) is a medium polygon contained in
the set Pj . Then the diagonal (dashed) line segment must lie into the dark-gray area and the whole
polygon must be contained in the light-gray area. Right: The containers for the medium polygons
of the different groups. Within each container, the polygons are stacked on top of each other such
that their respective bounding boxes do not intersect.

For the other type of triangles we use a geometric dynamic program. In this DP we
recursively subdivide the knapsack into subareas in which we search for the optimal solution
recursively, see Figure 1c). In the process we guess the placements of some triangles from
OPT. Again, by losing a constant factor we can assume that for each triangle in OPT there
are only a polynomial number of possible placements. By exploiting structural properties
of this type of triangles we ensure that the number of needed DP-cells is bounded by a
polynomial. A key difficulty is that we sometimes split the knapsack into two parts on which
we recurse independently. Then we need to ensure that we do not select some (possibly high
weight) triangle in both parts. To this end, we globally select at most one triangle from each
of the O(logN) groups (losing a constant factor) and when we recurse, we guess for each
subproblem from which of the O(logN) groups it contains a triangle in OPT. This yields
only 2O(logN) = NO(1) guesses.

I Theorem 2. There is a O(1)-approximation algorithm for 2DKP with a running time of
(nN)O(1) if all input polygons are triangles.

Then we study the setting of resource augmentation, i.e., we compute a solution that fits
into a larger knapsack of size (1 + δ)N × (1 + δ)N for some constant δ > 0 and compare
ourselves with a solution that fits into the original knapsack of size N ×N . We show that
then the optimal solution can contain only constantly many hard polygons and hence we can
guess them in polynomial time.

I Theorem 3. There is a O(1)-approximation algorithm for 2DKP under (1 + δ)-resource
augmentation with a running time of nOδ(1).

Finally, we present a quasi-polynomial time algorithm that computes a solution of weight
at least w(OPT) (i.e., we do not lose any factor in the approximation guarantee) that is
feasible under resource augmentation. This algorithm does not use the above classification of
polygons into easy, medium, and hard polygons. Instead, we prove that if we can increase
the size of the knapsack slightly we can ensure that for the input polygons there are only
(logn)Oδ(1) different shapes by enlarging the polygons suitably. Also, we show that we need to
allow only a polynomial number of possible placements and rotations for each input polygon,
without sacrificing any polygons from OPT. Then we use a technique from [1] implying
that there is a balanced separator for the polygons in OPT with only (logn)Oδ(1) edges and

A. Merino and A. Wiese 84:5

which intersects polygons from OPT with only very small area. We guess the separator,
guess how many polygons of each type are placed inside and outside the separator, and then
recurse on each of these parts. Some polygons are intersected by the balanced separator.
However, we ensure that they have very small area in total and hence we can place them
into the additional space of the knapsack that we gain due to the resource augmentation.
This generalizes a result in [2] for axis-parallel rectangles.

I Theorem 4. There is an algorithm for 2DKP under (1 + δ)-resource augmentation with a
running time of nOδ(logn)O(1) that computes a solution of weight at least w(OPT).

In our approximation algorithms, we focus on a clean exposition of our methodology for
obtaining O(1)-approximations, rather than on optimizing the actual approximation ratio.
Due to space constraints, most proofs and details had to be ommited in this extended
abstract.

1.2 Other related work
Prior to the results mentioned above, polynomial time (2 + ε)-approximation algorithms for
2DKP for axis-parallel rectangles were presented by Jansen and Zhang [10, 9]. For the same
setting, a PTAS is known under resource augmentation in one dimension [7] and a polynomial
time algorithm computing a solution with optimum weight under resource augmentation in
both dimensions [6]. Also, there is a PTAS if the weight of each rectangle equals its area [3].
For squares, Jansen and Solis-Oba presented a PTAS [8].

2 Constant factor approximation algorithms

In this section we present our quasi-polynomial time O(1)-approximation algorithm for
general convex polygons and our polynomial time O(1)-approximation algorithm for triangles.,
assuming polynomially bounded input data. Our strategy is to partition the input polygons
P into three classes, easy, medium, and hard polygons, and then to devise algorithms for
each class separately.

Let K := [0, N]× [0, N] denote the given knapsack. We assume that each input polygon
is described by the coordinates of its vertices which we assume to be integral. First,
we rotate each polygon in P such that its longest diagonal (i.e., the line segment that
connects the two vertices of largest distance) is horizontal. For each polygon Pi ∈ P
denote by (xi,1, yi,1), ..., (xi,ki , yi,ki) the new coordinates of its vertices. Observe that due
to the rotation, the resulting coordinates might not be integral, and possibly not even
rational. We will take this into account when we define our algorithms. For each Pi ∈ P
we define its bounding box Bi to be the smallest axis-parallel rectangle that contains Pi.
Formally, we define Bi := [min` xi,`,max` xi,`]× [min` yi,`,max` yi,`]. For each polygon Pi
let `i := max` xi,` −min` xi,` and hi := max` yi,` −min` yi,`. If necessary we will work with
suitable estimates of these values later, considering that they might be irrational and hence
we cannot compute them exactly.

We first distinguish the input polygons into easy, medium, and hard polygons. We say
that a polygon Pi is easy if Bi fits into K without rotation, i.e., such that `i ≤ N and hi ≤ N .
Denote by PE ⊆ P the set of easy polygons. Note that the bounding box of a polygon
in P \ PE might still fit into K if we rotate it suitably. Intuitively, we define the medium
polygons to be the polygons Pi whose bounding box Bi fits into K with quite some slack if
we rotate Bi properly and the hard polygons are the remaining polygons (in particular those
polygons whose bounding box does not fit at all into K).

ICALP 2020

84:6 On the Two-Dimensional Knapsack Problem for Convex Polygons

Formally, for each polygon Pi ∈ P we define h′i :=
√

2N − `i. The intuition for h′i is that
a rectangle of width `i and height h′i is the highest rectangle of width `i that still fits into K.

I Lemma 5. Let Pi ∈ P. A rectangle of width `i and height h′i fits into K (if we rotate it
by 45°) but a rectangle of width `i and of height larger than h′i does not fit into K.

Hence, if hi is much smaller than h′i then Bi fits into K with quite some slack. Therefore,
we define that a polygon Pi ∈ P \ PE is medium if hi ≤ h′i/8 and hard otherwise. Denote
by PM ⊆ P and PH ⊆ P the medium and hard polygons, respectively. We will present
O(1)-approximation algorithms for each of the sets PE ,PM ,PH separately. The best of the
computed sets will then yield a O(1)-approximation overall.

For the easy polygons, we construct a polynomial time O(1)-approximation algorithm in
which we select polygons such that we can pack their bounding boxes as non-overlapping
rectangles using Steinberg’s algorithm [4], see Section 2.1. The approximation ratio follows
from area arguments.

I Lemma 6. There is a polynomial time algorithm that computes a solution P ′E ⊆ PE with
w(OPT ∩ PE) ≤ O(w(P ′E)).

For the medium polygons, we obtain a O(1)-approximation algorithm using a different
packing strategy, see Section 2.2.

I Lemma 7. There is an algorithm with a running time of nO(1) that computes a solution
P ′M ⊆ PM with w(OPT ∩ PM) ≤ O(w(P ′M)).

The most difficult polygons are the hard polygons. First, we show that in quasi-polynomial
time we can obtain a O(1)-approximation for them, see Section 2.3.

I Lemma 8. There is an algorithm with a running time of (nN)(lognN)O(1) that computes a
solution P ′H ⊆ PH with w(OPT ∩ PH) ≤ O(w(P ′H)).

Combining Lemmas 6, 7, and 8 yields Theorem 1. If all polygons are triangles, we obtain a
O(1)-approximation even in polynomial time. The following lemma is proved in Section 2.3.1
and together with Lemmas 6 and 7 implies Theorem 2.

I Lemma 9. If all input polygons are triangles, then there is an algorithm with a running
time of (nN)O(1) that computes a solution P ′H ⊆ PH with w(OPT ∩ PH) ≤ O(w(P ′H)).

Orthogonal to the characterization into easy, medium and hard polygons, we subdivide the
polygons in P further into classes according to the respective values `i. More precisely, we
do this according to their difference between `i and the diameter of K, i.e.,

√
2N . Formally,

for each j ∈ Z we define Pj := {Pi ∈ P|`i ∈ [
√

2N − 2j ,
√

2N − 2j−1)} and additionally
P−∞ := {Pi ∈ P|`i =

√
2N}. Note that for each polygon Pi ∈ P we can compute the group

Pj even though `i might be irrational.

2.1 Easy polygons
We present a O(1)-approximation algorithm for the polygons in PE . First, we show that the
area of each polygon is at least half of the area of its bounding box. We will use this later
for defining lower bounds using area arguments.

I Lemma 10. For each Pi ∈ P it holds that area(Pi) ≥ 1
2area(Bi).

On the other hand, it is known that we can pack any set of axis-parallel rectangles into K,
as long as their total area is at most area(K)/2 and each single rectangle fits into K.

A. Merino and A. Wiese 84:7

I Theorem 11 ([13]). Let r1, ...,rk be a set of axis-parallel rectangles such that
∑k
i=1area(ri)≤

area(K)/2 and each individual rectangle ri fits into K. Then there is a polynomial time
algorithm that packs r1, ..., rk into K.

We first compute (essentially) the most profitable set of polygons from PE whose total area
is at most area(K) via a reduction to one-dimensional knapsack.

I Lemma 12. In time (nε)O(1) we can compute a set of polygons P ′ ⊆ PE such that
w(P ′) ≥ (1− ε)w(OPT ∩ PE) and

∑
Pi∈PE area(Pi) ≤ area(K).

The idea is now to partition P ′ into at most 7 sets P ′1, ...,P ′7. Hence, one of these sets must
contain at least a profit of w(P ′)/7. We define this partition such that each set P ′j contains
only one polygon or its polygons have a total area of at most area(K)/4.

I Lemma 13. Given a set P ′ ⊆ PE with
∑

Pi∈PE
area(Pi) ≤ area(K). In polynomial time

we can compute a set P ′′ ⊆ P ′ with w(P ′′) ≥ 1
7w(P ′) and additionally

∑
Pi∈P′′

area(Pi) ≤

area(K)/4 or |P ′′| = 1.

If |P ′′| = 1 we simply pack the single polygon in P ′′ into the knapsack. Otherwise, using
Lemmas 10 and 12 and Theorem 11 we know that we can pack the bounding boxes of the
polygons in P ′′ into K. Note that their heights and widths might be irrational. Therefore,
we slightly increase them such that these values become rational, before applying Theorem 11
to compute the actual packing. If as a result the total area of the bounding boxes exceeds
area(K)/2 we partition them into two sets where each set satisfies that the total area of the
bounding boxes is at most area(K)/2 or it contains only one polygon and we keep the more
profitable of these two sets (hence losing a factor of 2 in the approximation ratio). This
yields a O(1)-approximation algorithm for the easy polygons and thus proves Lemma 6.

2.2 Medium polygons
We describe a O(1)-approximation algorithm for the polygons in PM . In its solution, for
each j ∈ Z we will define two rectangular containers Rj , R′j for polygons in PM ∩Pj , each of
them having width

√
2N − 2j−1 and height 2j−3, see Figures 2. Let R := ∪j{Rj , R′j}. First,

we show that we can pack all containers in R into K (if we rotate them by 45°).

I Lemma 14. The rectangles in R can be packed non-overlappingly into K.

For each j ∈ Z we will compute a set of polygons P ′j ⊆ PM ∩ Pj of large weight. Within
each container Rj , R′j we will stack the bounding boxes of the polygons in P ′j on top of each
other and then place the polygons in P ′j in their respective bounding boxes, see Figure 2.
In particular, a set of items P ′′j ⊆ Pj fits into Rj (or R′j) using this strategy if and only if
h(P ′′j) :=

∑
Pi∈P′′j

hi ≤ 2j−3. Observe that for a polygon Pi ∈ Pj with Pi ∈ PH it is not
necessarily true that hi ≤ 2j−3 and hence for hard polygons this strategy is not suitable. We
compute the essentially most profitable set of items P ′j that fits into Rj and R′j with the
above strategy. For this, we need to solve a variation of one-dimensional knapsack with two
knapsacks (instead of one) that represent Rj and R′j . The value hi for a polygon Pi might
be irrational, therefore we work with a (1 + ε)-estimate of hi instead. This costs only a factor
O(1) in the approximation guarantee.

I Lemma 15. Let ε > 0. For each j ∈ Z there is an algorithm with a running time of nO(1
ε)

that computes two disjoint sets P ′j,1,P ′j,2 ⊆ Pj ∩ PM such that h(P ′j,1) ≤ 2j−3 and h(P ′j,2) ≤
2j−3 and w(P∗j,1 ∪ P∗j,2) ≤ O(w(P ′j,1 ∪ P ′j,2)) for any disjoint sets P∗j,1,P∗j,2 ⊆ Pj ∩ PM
such that h(P∗j,1) ≤ 2j−3 and h(P∗j,2) ≤ 2j−3.

ICALP 2020

84:8 On the Two-Dimensional Knapsack Problem for Convex Polygons

For each j ∈ Z with Pj ∩ PM 6= ∅ we apply Lemma 15 and obtain sets P ′j,1,P ′j,2. We pack
P ′j,1 into Rj and P ′j,2 into R′j , using that h(P ′j,1) ≤ h(Rj) and h(P ′j,2) ≤ h(R′j). Then we
pack all containers Rj , R′j for each j ∈ Z into K, using Lemma 14.

Let P ′M :=
⋃
j P ′j,1 ∪ P ′j,2 denote the selected polygons. We want to show that P ′M has

large weight; more precisely we want to show that w(OPT ∩ PM) ≤ O(w(P ′M)). First, we
show that for each j ∈ Z the polygons in Pj ∩ PM ∩OPT have bounded area. To this end,
we show that they are contained inside a certain (irregular) hexagon (see Figure 2) which
has small area if the polygons Pi ∈ Pj are wide, i.e., if `i is close to

√
2N . The reason is

that then Pi must be placed close to the diagonal of the knapsack and on the other hand hi
is relatively small (since Pi is medium), which implies that all of Pi lies close to the diagonal
of the knapsack. For any object O ⊆ R2 we define area(O) to be its area.

I Lemma 16. For each j it holds that area(Pj ∩ PM) ≤ O(area(Rj ∪R′j)).

Using this, we can partition Pj ∩ PM ∩OPT into at most O(1) subsets such that for each
subset P ′ it holds that h(P ′) ≤ 2j−3 and hence P ′ fits into Rj (and R′j) using our packing
strategy above. Here we use that each medium polygon Pi ∈ Pj satisfies that hi ≤ 2j−3.

I Lemma 17. For each j ∈ Z there are disjoint set P∗j,1,P∗j,2 ⊆ Pj ∩ PM ∩ OPT with
w(Pj ∩ PM ∩OPT) ≤ O(w(P∗j,1 ∪ P∗j,2)) such that h(P∗j,1) ≤ 2j−3 and h(P∗j,2) ≤ 2j−3.

By combining Lemmas 14, 15 and 17 we obtain the proof of Lemma 7.

2.3 Hard polygons

We first show that for each class Pj there are at most a constant number of polygons from
Pj ∩ PH in OPT, and that for only O(logN) classes Pj it holds that Pj ∩ PH 6= ∅.

I Lemma 18. For each j ∈ Z it holds that |Pj ∩ PH ∩OPT| ≤ O(1). Also, if Pj ∩ PH 6= ∅
then j ∈ {jmin, ..., jmax} with jmin := −dlogNe and jmax := 1 +

⌈
log((

√
2− 1)N)

⌉
.

We describe now a quasi-polynomial time algorithm for hard polygons, i.e., we want
to prove Lemma 8. Lemma 18 implies that |PH ∩ OPT| ≤ O(logN). Therefore, we can
enumerate all possibilities for PH ∩OPT in time nO(logN). For each for each enumerated set
P ′H ⊆ PH we need to check whether it fits into K. We cannot try all possibilities for placing
P ′H into K since we are allowed tof rotate the polygons in P ′H by arbitrary angles. To this
end, we show that there is a subset of PH ∩OPT of large weight which contains only a single
polygon or it does not use the complete space of the knapsack but leaves some empty space.
We use this empty space to move the polygons slightly and rotate them such that each of
them is placed in one out of (nN)O(1) different positions that we can compute beforehand.
Hence, we can guess all positions of these polygons in time (nN)O(logN). We define that a
placement of a polygon Pi ∈ P inside K is a polygon P̃i such that d+ rotα(Pi) = P̃i ⊆ K

where d ∈ R2 and rotα(Pi) is the polygon that we obtain when we rotate Pi by an angle α
clockwise around its first vertex.

I Lemma 19. For each polygon Pi ∈ PH we can compute a set of (nN)O(1) possible
placements Li in time (nN)O(1) such that there exists a set P ′H ⊆ PH ∩OPT with w(PH ∩
OPT) ≤ O(w(P ′H)) which can be packed into K such that each polygon Pi is packed according
to a placement in Li.

This yields the proof of Lemma 8.

A. Merino and A. Wiese 84:9

2.3.1 Hard triangles
In this section we present a O(1)-approximation algorithm in polynomial time for hard
polygons assuming that they are all triangles, i.e., we prove Lemma 9. Slightly abusing
notation, denote by OPT the set P ′H obtained by applying Lemma 19. We distinguish the
triangles in OPT into two types: edge-facing triangles and corner-facing triangles. Let
Pi ∈ OPT ∩ PH , let e1, e2 denote the two longest edges of Pi, and let v∗i the vertex of Pi
adjacent to e1 and e2. Let R(1)

i and R
(2)
i be the two rays that originate at v∗i and that

contain e1 and e2, respectively, in the placement of Pi in OPT. We have that R(1)
i \ {v∗i } and

R
(2)
i \ {v∗i } intersect at most one edge of the knapsack each. If R(1)

i \ {v∗i } and R
(2)
i \ {v∗i }

intersect the same edge of the knapsack then we say that Pi is edge-facing, if one of them
intersects a horizontal edge and the other one intersects a vertical edge we say that Pi is
corner-facing. The next lemma shows that there can be only O(1) triangles in OPT ∩ PH
that are neither edge- nor corner-facing, and therefore we compute a O(1)-approximation
with respect to the total profit of such triangles by simply selecting the input triangle with
maximum weight.

I Lemma 20. There can be at most O(1) triangles in OPT∩PH that are neither edge-facing
nor corner-facing.

Let pTL, pTR, pBL, and pBR denote the top left, top right, bottom left, and bottom right
corners of K, respectively, and let pM :=

(
N/2
N/2
)
, pL :=

(0
N/2
)
, and pR :=

(
N
N/2
)
, see Figure 3.

By losing a factor O(1) we assume from now on that that OPT contains at most one hard
triangle from each group Pj , using Lemma 18.

Let OPTEF ⊆ OPT ∩ PH denote the edge-facing hard triangles in OPT and denote by
OPTCF ⊆ OPT ∩ PH the corner-facing hard triangles in OPT. In the remainder of this
section we present now O(1)-approximation algorithms for edge-facing and for corner-facing
triangles in PH . By selecting the best solution among the two we obtain the proof of
Lemma 9.

Edge-facing triangles

We define a special type of solutions called top-left-packings that our algorithm will compute.
We will show later that there are solutions of this type whose profit is at least a constant
fraction of the profit of OPTEF.

For each t ∈ N let pt := pM + t
N2

(1
0
)
. Let P ′ = {Pi1 , ..., Pik} be a set of triangles that

are ordered according to the groups Pj , i.e., such that for any Pi` , Pi`+1 ∈ P ′ with Pi` ∈ Pj
and Pi`+1 ∈ Pj′ for some j, j′ it holds that j ≤ j′. We define a placement of P ′ that we call
a top-left-packing. First, we place Pi1 such that v∗i1 concides with pTL and one edge of Pi1
lies on the diagonal of K that connects pTL and p0. Note that there is a unique way to place
Pi1 in this way. Iteratively, suppose that we have packed triangles {Pi1 , ..., Pi`} such that
for each triangle Pi`′ in this set its respective vertex v∗i`′ coincides with pTL, see Figure 1c).
Intuitively, we pack Pi`+1 on top of Pi` such that v∗i`+1

coincides with pTL. Let t be the
smallest integer such that the line segment connecting pt and pR has empty intersection with
each triangle Pi1 , ..., Pi` according to our placement. We place Pi`+1 such that v∗i`+1

concides
with pTL and one of its edges lies on the line that contains pTL and pt. There is a unique
way to place Pi`+1 in this way. We continue until we placed all triangles in P ′. If all of
them are placed completely inside K we say that the resulting solution is a top-left-packing
and that P ′ is top-left-packable. We define bottom-right-packing and bottom-right-packable
symmetrically, mirroring the above definition along the line that contains pBL and pTR.

ICALP 2020

84:10 On the Two-Dimensional Knapsack Problem for Convex Polygons

In the next lemma we show that there is always a top-left-packable or a bottom-right-
packable solution with large profit compared to PH ∩OPT or there is a single triangle with
large profit.

I Lemma 21. There exists a solution P∗H ⊆ PH ∩ OPTEF such that w(PH ∩ OPTEF) ≤
O(w(P∗H)) and
P∗H is top-left-packable or bottom-right-packable and for each j we have that |P∗H ∩Pj | ≤ 1,
or it holds that |P∗H | = 1.

Proof sketch. Let L be the line segment connecting pL with pR. Essentially, we can assume
that the length of the longest edge of each triangle is close to

√
2N (the length of the diagonal

of the knapsack), e.g., (1− ε)
√

2N for some ε > 0. One can show that this holds for all but
Oε(1) hard triangles in OPT. Our key observation is that in any packing each hard triangle
Pi intersects L by the same amount (up to constant factors). Using this, we partition OPTEF
into O(1) groups such that in any packing each group intersects L by a smaller amount than
OPTEF in the original packing. This guarantees that the bottom edge of each triangle fits
in the top-left-packing for each group. Using that in the original packing the triangles in
OPTEF were edge-facing, we show that also the entire triangle fits. J

We describe now a polynomial time algorithm that computes the most profitable solution
that satisfies the properties of Lemma 21. To find the most profitable solution P∗H that
satisfies that |P∗H | = 1 we simply take the triangle with maximum weight, let Pi∗ be this
triangle. We establish now a dynamic program that computes the most profitable top-
left-packable solution; computing the most profitable bottom-right-packable solution works
analogously. Our DP has a cell corresponding to pairs (j, t) with j, t ∈ Z. Intuitively, (j, t)
represents the subproblem of computing a set P ′H ⊆ PH of maximum weight such that
P ′H ∩ Pj′ = ∅ for each j′ < j and |P ′H ∩ Pj′′ | ≤ 1 for each j′′ ≥ j and such that P ′H is
top-left-packable inside the triangular area Tt defined by the line that contains pTL and
pt, the top edge of K, and the right edge of K. Given a cell (j, t) we want to compute a
solution DP (j, t) associated with (j, t). Intuitively, we guess whether the optimal solution
P ′H to (j, t) contains a triangle from PH ∩ Pj . Therefore, we try each triangle Pi ∈ PH ∩ Pj
and place it inside Tt such that v∗i concides with pTL and one of its edges lies on the line
containing pTL and pt. Let t′(Pi) denote the smallest integer such that t′(Pi) ≥ t and pt′(Pi)
is not contained in the resulting placement of Pi inside Tt. We associate with Pi the solution
Pi∪DP (j+1, t′(Pi)). Finally, we define DP (j, t) to be the solution of maximum profit among
the solutions Pi ∪DP (j + 1, t′(Pi)) for each Pi ∈ PH ∩ Pj and the solution DP (j + 1, t).

We introduce a DP-cell DP (j, t) for each pair (j, t) ∈ Z2 where jmin ≤ j ≤ jmax and
0 ≤ t ≤ log1+1/n

(
N
2
)
. Note that due to Lemma 18 for all other values of j we have that

Pj ∩PH = ∅. Also note that pt /∈ K if t ≥ N2/2. This yields at most (nN)O(1) cells in total.
Finally, we output the solution DP (jmin, 0).

In the next lemma we prove that our DP computes the optimal top-left-packable solution
with the properties of Lemma 21.

I Lemma 22. There is an algorithm with a running time of (nN)O(1) that computes the
optimal solution P ′ ⊆ PH such that P ′ is top-left-packable or bottom-right-packable and such
that for each j we have that |P ′ ∩ Pj | ≤ 1.

We execute the above DP and its counterpart for bottom-right-packable solutions to
obtain a top-left-packable solution P ′1 and a bottom-right-packable solution P ′2. We output
the most profitable solution among {Pi∗},P ′1,P ′2. Due to Lemma 21 this yields a solution
with weight at least Ω(w(PH ∩OPT)).

A. Merino and A. Wiese 84:11

pTL pTR

pBRpBL

pMpL pR

P̃i

Rup
i

v̄i

Li

v∗i

Figure 3 Left: The points pT L, pT R, pBL, pBR, pL, pM , pR. Right: A corner-facing triangle, its
vertices v∗

i and v̄i, and the lines Li and Rup
i .

I Lemma 23. There is an algorithm with a running time of (nN)O(1) that computes a
solution P ′H ⊆ PH such that w(OPTEF) ≤ O(w(P ′H)).

Corner-facing triangles

We present now a O(1)-approximation algorithm for the corner-facing triangles in OPT, i.e.,
our algorithm computes a solution P ′ ⊆ P of profit at least Ω(w(OPTCF)). We first establish
some properties for OPTCF. We argue that by losing a constant factor we can assume that
each triangle in OPTCF intuitively faces the bottom-right corner.

I Lemma 24. By losing a factor 4 we can assume that for each triangle Pi ∈ OPTCF we
have that R(1)

i \{v∗i } intersects the bottom edge of the knapsack and and R(2)
i \{v∗i } intersects

the right edge of the knapsack, or vice versa.

In the following lemma we establish a property that will be crucial for our algorithm. For
each Pi ∈ OPTCF let Rup

i denote the ray originating at v∗i and going upwards. We establish
that we can assume that Rup

i does not intersect with any triangle Pi′ ∈ OPTCF, see Figure 3.

I Lemma 25. By losing a factor O(1) we can assume that for each Pi, Pi′ ∈ OPTCF it holds
that Rup

i ∩ Pi′ = ∅.

Our algorithm is a dynamic program that intuively guesses the placements of the triangles
in OPTCF step by step. To this end, each DP-cell corresponds to a subproblem that is
defined via a part K ′ ⊆ K of the knapsack and a subset of the groups J ⊆ {jmin, ..., jmax}.
The goal is to place triangles from

⋃
j∈J Pj of maximum profit into K ′. Formally, each

DP-cell is defined by up to two triangles Pi, Pi′ , placements P̃i, P̃i′ for them, and a set
J ⊆ {jmin, ..., jmax}; if the cell is defined via exactly one triangle Pi then there is also a value
dir ∈ {left,mid}. The corresponding region K ′ is defined as follows: if the cell is defined
via zero triangles then the region is the whole knapsack K. Otherwise, let v̄i denote the
right-most vertex of P̃i, i.e., the vertex of P̃i that is closest to the right edge of the knapsack
(see Figure 3). Let Li denote the vertical line that goes through v̄i (and thus intersects the
top and the bottom edge of the knapsack). If the cell is defined via one triangle Pi then
observe that K \ (P̃i ∪Rup

i ∪ Li) has three connected components,

ICALP 2020

84:12 On the Two-Dimensional Knapsack Problem for Convex Polygons

v̄i∗
Pi∗

Li∗

Pi∗

v̄i∗

Pi

v̄i∗

Pi

Pi∗

Pi

Pi′Pi∗

1. 2. 3. 4.

Figure 4 The cases in the transition of the DP for corner-facing triangles (see Lemma 26).

one on the left, surrounded by Rup
i , parts of P̃i, the left edge of the knapsack, and parts

of the top and bottom edge of the knapsack
one on the right, surrounded by Li, the right edge of the knapsack, and parts of the top
and bottom edge of the knapsack, and
one in the middle, surrounded by the top edge of the knapsack, P̃i, and Li.

If dir = left then the region of the cell equals the left component, if dir = mid then the
region of the cell equals the middle component. Assume now that the cell is defined via two
triangles Pi, Pi′ . Assume w.l.o.g. that v̄i is closer to the right edge of the knapsack than v̄i′ .
Then K \ (P̃i ∪ P̃i′ ∪Rup

i ∪R
up
i′ ∪ Li′) has one connected component that is surrounded by

P̃i, P̃i′ , R
up
i , R

up
i′ , Li′ and we define the region of the cell to be this component. Observe that

the total number of DP-cells is bounded by (nN)O(1), using that there are only (nN)O(1)

possible placements for each triangle.
We describe now a dynamic program that computes the optimal solution to each cell.

Assume that we are given a cell C for which we want to compute the optimal solution. We
guess the triangle Pi∗ in the optimal solution to this cell such that v̄i∗ is closest to the right
edge of the knapsack, and its placement P̃i∗ in the optimal solution to C. Let j∗ such that
Pi∗ ∈ Pj∗ . We will prove in the next lemma that the optimal solution to C consists of Pi∗
and the optimal solutions to two other DP-cells, see Figure 4.

I Lemma 26. Let C be a DP-cell, let J ⊆ {jmin, ..., jmax}, and let Pi ∈ P`, Pi′ ∈ P`′ be two
triangles with ` < `′ and let P̃i, P̃i′ be placements for them. Then there are disjoint sets
J ′, J ′′ ⊆ J such that
1. if C = (J), then its optimal solution consists of Pi∗ and the optimal solutions to the cells

(J ′, Pi∗ , P̃i∗ , left) and (J ′′, Pi∗ , P̃i∗ ,mid),
2. if C = (J, Pi, P̃i, left) then its optimal solution consists of Pi∗ and the optimal solutions

to the cells (J ′, Pi∗ , P̃i∗ , left) and (J ′′, Pi, P̃i, Pi∗ , P̃i∗),
3. if C = (J, Pi, P̃i,mid) then its optimal solution consists of Pi∗ and the optimal solutions

to the cells (J ′, Pi∗ , P̃i∗ ,mid) and (J ′′, Pi, P̃i, Pi∗ , P̃i∗),
4. if C = (J, Pi, P̃i, Pi′ , P̃i′) then the optimal solution to C consists of Pi∗ and the optimal

solutions to the cells (J ′, Pi, P̃i, Pi∗ , P̃i∗) and (J ′′, Pi∗ , P̃i∗ , Pi′ , P̃i′).

We guess the sets J ′, J ′′ ⊆ J according to Lemma 26 and store in C the solution consisting
of Pi∗ , and the solutions stored in the two cells according to the lemma. At the end, the
cell C = ({jmin, ..., jmax}) (whose corresponding region equals to K) contains the optimal
solution. By combining Lemmas 23 and 27 we obtain the proof of Lemma 9.

I Lemma 27. There is an algorithm with a running time of (nN)O(1) that computes a
solution P ′ ⊆ P such that w(OPTCF) ≤ O(w(P ′)).

A. Merino and A. Wiese 84:13

2.4 Hard polygons under resource augmentation
Let δ > 0. We consider the setting of (1 + δ)-resource augmentation, i.e., we want to compute
a solution P ′ ⊆ P that is feasible for a knapsack of size (1 + δ)N × (1 + δ)N and such that
w(OPT) ≤ O(w(P ′)) where OPT is the optimal solution for the original knapsack of size
N × N . Note that increasing K by a factor of 1 + δ is equivalent to shrinking the input
polygons by a factor of 1 + δ.

Given a polygon P defined via coordinates (x1, y1), ..., (xk, yk) ∈ R2 we define shr1+δ(P)
to be the polygon with coordinates (x̄1, ȳ1), ..., (x̄k, ȳk) ∈ R2 where x̄k′ = xk′/(1 + δ) and
ȳk′ = yk′/(1 + δ) for each k′. For each input polygon Pi ∈ P we define its shrunk counterpart
to be P̄i := shr1+δ(Pi). Based on P̄ we define sets P̄E , P̄M , P̄H and the set P̄j for each
j ∈ Z in the same way as we defined PE ,PM ,PH and Pj based on P above.

For the sets P̄E and P̄M we use the algorithms due to Lemmas 6 and 7 as before. For
the hard polygons P̄H we can show that there are only Oδ(1) groups P̄j that are non-empty,
using that we obtained them via shrinking the original input polygons. Intuitively, this is
true since ¯̀

i ≤
√

2N
1+δ for each P̄i ∈ P̄ where ¯̀

i denotes the length of the longest diagonal of
P̄i, and hence P̄j ∩ P̄H = ∅ if j < log

(
δ

1+δ
√

2N
)
.

I Lemma 28. We have that P̄j = ∅ if j < log
(

δ
1+δ
√

2N
)
. Hence, there are only log

(1+δ
δ

)
+1

values j ∈ Z such that P̄j 6= ∅.

Lemmas 18 and 28 imply that |OPT ∩ P̄H | ≤ O(log
(1+δ

δ

)
) where OPT denotes the optimal

solution for the polygons in P̄. Let P̄ ′H ⊆ P̄H denote the set due to Lemma 19 when
assuming that P̄H are the hard polygons in the given instance. Therefore, we guess P̄ ′H
in time nO(log(1+δ

δ)). Finally, we output the solution of largest weight among P̄ ′H and the
solutions due applying to Lemmas 6 and 7 to the input sets P̄E and P̄M , respectively. This
yields the proof of Theorem 3.

3 Optimal profit under resource augmentation

In this section we also study the setting of (1 + δ)-resource augmentation, i.e., we want to
compute a solution P ′ which is feasible for an enlarged knapsack of size (1 + δ)N × (1 + δ)N ,
for any constant δ > 0. We present an algorithm with a running time of n(log(n)/δ)O(1) that
computes such a solution P ′ with w(P ′) ≥ OPT where OPT is the optimal solution for
the original knapsack of size N ×N . In particular, we here do not lose any factor in our
approximation guarantee.

First, we prove a set of properties that we can assume “by (1 + δ)-resource augmentation”
meaning that if we increase the size of K by a factor 1 + δ then there exists a solution of
weight w(OPT) with the mentioned properties, or that we can modify the input in time
nO(1) such that it has these properties and there still exists a solution of weight w(OPT).

3.1 Few types of items
We want to establish that the input polygons have only (log(n)/δ)O(1) different shapes. Like
in Section 2 for each polygon Pi ∈ P denote by Bi its bounding box with width `i and height
hi. Note that `i ≥ hi. The bounding boxes of all polygons Pi ∈ P such that hi ≤ δNn have a
total height of at most δN . Therefore, we can pack all these polygons into the extra capacity
that we gain by increasing the size of K by a factor 1 + δ and therefore ignore them in the
sequel.

ICALP 2020

84:14 On the Two-Dimensional Knapsack Problem for Convex Polygons

I Lemma 29. By (1 + δ)-resource augmentation we can assume for each Pi ∈ P that
`i ≥ hi ≥ δN/n and that area(Pi) = Ω(area(K)δ2/n2).

Next, intuitively we stretch the optimal solution OPT by a factor 1 + δ which yields a
container Ci for each polygon Pi ∈ OPT which contains Pi and which is slightly bigger
than Pi. We define a polygon P ′i such that Pi ⊆ P ′i ⊆ Ci and that globally there are only
(log(n)/δ)Oδ(1) different ways P ′i can look like, up to translations and rotations. We refer to
those as a set S of shapes of input objects. Hence, due to the resource augmentation we can
replace each input polygon Pi by one of the shapes in S.

I Lemma 30. By (1 + δ)-resource augmentation we can assume that there is a set of shapes
S with |S| ≤ (log(n)/δ)Oδ(1) such that for each Pi ∈ P there is a shape S ∈ S such that
Pi = S and S has only Λ = (1/δ)O(1) many vertices.

Finally, we ensure that for each polygon Pi ∈ P we can restrict ourselves to only (n/δ)O(1)

possible placements in K.

I Lemma 31. By (1 + δ)-resource augmentation, for each polygon Pi ∈ P we can compute a
set Li of at most (n/δ)O(1) possible placements for Pi in time (n/δ)O(1) such that if Pi ∈ OPT
then in OPT the polygon Pi is placed inside K according to one placement P̃i ∈ Li.

3.2 Recursive algorithm
We describe our main algorithm. First, we guess how many polygons of each of the shapes
in S are contained in OPT. Since there are only (log(n)/δ)Oδ(1) different shapes in S we can
do this in time n(log(n)/δ)Oδ(1) . Once we know how many polygons of each shape we need to
select, it is clear which polygons we should take since if for some shape Si ∈ S we need to
select ni polygons with that shape then it is optimal to select the ni polygons in P of shape
Si with largest weight. Therefore, in the sequel assume that we are given a set of polygons
P ′ ⊆ P and we want to find a packing for them inside K.

Our algorithm is recursive and it generalizes a similar algorithm for the special case of
axis-parallel rectangles in [1]. On a high level, we guess a partition of K given by a separator
Γ which is a polygon inside K. It has the property that at most 2

3 |OPT| of the polygons
of OPT lie inside Γ and at most 2

3 |OPT| of the polygons of OPT lie outside Γ. We guess
how many polygons of each shape are placed inside and outside Γ in OPT. Then we recurse
separately inside and outside Γ. For our partition, we are looking for a polygon Γ according
to the following definition.

I Definition 32. Let ` ∈ N and ε > 0. Let P̄ be a set of pairwise non-overlapping polygons
in K. A polygon Γ is a balanced ε̂-cheap `-cut if

Γ has at most ` edges,
the polygons contained in Γ have a total area of at most 2/3 · area(P̄),
the polygons contained in the complement of Γ, i.e., in K \ Γ, have a total area of at
most 2/3 · area(P̄), and
the polygons intersecting the boundary of Γ have a total area of at most ε̂ · area(P̄).

In order to restrict the set of balanced cheap cuts to consider, we will allow only polygons
Γ such that each of its vertices is contained in a set Q of size (n/δ)O(1) defined as follows.
We fix a triangulation for each placement P ′i ∈ Li of each polygon Pi ∈ P ′. We define a
set Q0 where for each placement P ′i ∈ Li for Pi we add to Q0 the positions of the vertices
of P ′i . Also, we add the four corners of K to Q0. Let V denote the set of vertical lines
{(x̄, ȳ)|ȳ ∈ R} such that x̄ is the x-coordinate of one point in Q0. We define a set Q1 where

A. Merino and A. Wiese 84:15

for each placement P ′i ∈ Li of each Pi ∈ P ′, each edge e of a triangle in the triangulation of
P ′i , and each vertical line L ∈ V we add to Q1 the intersection of e and L. Also, we add to
Q1 the intersection of each line in L ∈ V with the two boundary edges of K. Let Q2 denote
the set of all intersections of pairs of line segments whose respective endpoints are in Q0 ∪Q1.
We define Q := Q0 ∪Q1 ∪Q2. A result in [1] implies that there exists a balanced cheap cut
whose vertices are all contained in Q.

I Lemma 33 ([1]). Let ε > 0 and let P ′ be a set of pairwise non-intersecting polygons in
the plane with at most Λ edges each such that area(P) < area(P ′)/3 for each P ∈ P. Then
there exists a balanced O(εΛ)-cheap Λ(1

ε)O(1)-cut Γ whose vertices are contained in Q.

Our algorithm is recursive and places polygons from P ′, trying to maximize the total area of
the placed polygons. In each recursive call we are given an area K̄ ⊆ K and a set of polygons
P̄ ⊆ P ′. In the main call these parameters are K̄ = K and P̄ = P ′. If P̄ = ∅ then we return
an empty solution. If there is a polygon Pi ∈ P̄ with area(Pi) ≥ area(P̄)/3 then we guess a
placement P ′i ∈ Li and we recurse on the area K \ P ′i and on the set P̄ \ {Pi}. Otherwise,
we guess the balanced cheap cut Γ due to Lemma 33 with ε := δ

Λ log(n/δ) and for each shape
S ∈ S we guess how many polygons of P ′ with shape S are contained in Γ∩ K̄, how many are
contained in K̄ \Γ, and how many cross the boundary of Γ (i.e., have non-empty intersection
with the boundary of Γ). Note that there are only n(Λ log(n/δ))O(1) possibilities to enumerate.
Let P̄in, P̄out, and P̄cross denote the respective sets of polygons. Then we recurse on the area
Γ ∩ K̄ with input polygons P̄in and on the area K̄ \ Γ with input polygons P̄out. Suppose
that the recursive calls return two sets of polygons P̄ ′in ⊆ P̄ in and P̄ ′out ⊆ P̄out that the
algorithm managed to place inside the respective areas Γ∩ K̄ and K̄ \Γ. Then we return the
set P̄ ′in∪P̄ ′out for the guesses of Γ, P̄ in, P̄out, and P̄cross that maximize area(P̄ ′in∪P̄ ′out). If we
guess the (correct) balanced cheap cut due to Lemma 33 in each iteration then our recursion
depth is O(log3/2(n2/δ2)) = O(log(n/δ)) since the cuts are balanced and each polygon has
an area of at least Ω(area(K)δ2/n2) (see Lemma 29). Therefore, if in a recursive call of the
algorithm the recursion depth is larger than O(log(n/δ)) then we return the empty set and do
not recurse further. Also, if we guess the correct cut in each node of the recursion tree then
we cut polygons whose total area is at most a δ

log(n/δ) -fraction of the area of all remaining
polygons. Since our recursion depth is O(log(n/δ)), our algorithm outputs a packing for a
set of polygons in P ′ with area at least (1 − δ

log(n/δ))O(log(n/δ))w̄(P̄) = (1 − O(δ))area(P̄).
This implies the following lemma.

I Lemma 34. Assume that there is a non-overlapping packing for P ′ in K. There is an
algorithm with a running time of n(Λ log(n/δ))O(1) that computes a placement of a set of
polygons P̄ ′ ⊆ P ′ inside K such that area(P̄ ′) ≥ (1−O(δ))area(P ′).

It remains to pack the polygons in P̃ ′ := P ′ \ P̄ ′. The total area of their bounding boxes is
bounded by

∑
Pi∈P̃′ Bi ≤ 2area(P̃ ′) ≤ O(δ)area(P ′) ≤ O(δ)area(K). Therefore, we can pack

them into additional space that we gain via increasing the size of K by a factor 1 +O(δ),
using the Next-Fit-Decreasing-Height algorithm [4].

I Theorem 35. There is an algorithm with a running time of n(log(n)/δ))O(1) that computes
a set P ′ with w(P ′) ≥ OPT such that P ′ fits into K under (1 + δ)-resource augmentation.

ICALP 2020

84:16 On the Two-Dimensional Knapsack Problem for Convex Polygons

References
1 Anna Adamaszek and Andreas Wiese. A QPTAS for maximum weight independent set of

polygons with polylogarithmically many vertices. In Proceedings of the 25th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2014), pages 645–656. SIAM, 2014.

2 Anna Adamaszek and Andreas Wiese. A quasi-PTAS for the two-dimensional geometric
knapsack problem. In Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2015), pages 1491–1505. SIAM, 2015.

3 Nikhil Bansal, Alberto Caprara, Klaus Jansen, Lars Prädel, and Maxim Sviridenko. A
structural lemma in 2-dimensional packing, and its implications on approximability. In
Algorithms and Computation (ISAAC 2009), volume 5878 of LNCS, pages 77–86. Springer,
2009.

4 Edward G Coffman, Jr, Michael R Garey, David S Johnson, and Robert Endre Tarjan.
Performance bounds for level-oriented two-dimensional packing algorithms. SIAM Journal on
Computing, 9:808–826, 1980.

5 Waldo Gálvez, Fabrizio Grandoni, Sandy Heydrich, Salvatore Ingala, Arindam Khan, and
Andreas Wiese. Approximating geometric knapsack via l-packings. In 58th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October
15-17, 2017, pages 260–271, 2017. doi:10.1109/FOCS.2017.32.

6 Sandy Heydrich and Andreas Wiese. Faster approximation schemes for the two-dimensional
knapsack problem. ACM Trans. Algorithms, 15(4):47:1–47:28, 2019. doi:10.1145/3338512.

7 Klaus Jansen and Roberto Solis-Oba. New approximability results for 2-dimensional packing
problems. In Mathematical Foundations of Computer Science (MFCS 2007), volume 4708 of
LNCS, pages 103–114. Springer, 2007.

8 Klaus Jansen and Roberto Solis-Oba. A polynomial time approximation scheme for the square
packing problem. In Integer Programming and Combinatorial Optimization (IPCO 2008),
volume 5035 of LNCS, pages 184–198. Springer, 2008.

9 Klaus Jansen and Guochuan Zhang. Maximizing the number of packed rectangles. In Algorithm
Theory (SWAT 2004), volume 3111 of LNCS, pages 362–371. Springer, 2004.

10 Klaus Jansen and Guochuan Zhang. On rectangle packing: maximizing benefits. In Proceedings
of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2004), pages 204–
213. SIAM, 2004. URL: http://dl.acm.org/citation.cfm?id=982792.982822.

11 Joseph YT Leung, Tommy W Tam, CS Wong, Gilbert H Young, and Francis YL Chin. Packing
squares into a square. Journal of Parallel and Distributed Computing, 10(3):271–275, 1990.

12 Carla Negri Lintzmayer, Flávio Keidi Miyazawa, and Eduardo Candido Xavier. Two-
dimensional knapsack for circles. In Latin American Symposium on Theoretical Informatics,
pages 741–754. Springer, 2018.

13 A Steinberg. A strip-packing algorithm with absolute performance bound 2. SIAM Journal
on Computing, 26(2):401–409, 1997.

https://doi.org/10.1109/FOCS.2017.32
https://doi.org/10.1145/3338512
http://dl.acm.org/citation.cfm?id=982792.982822

	Introduction
	Our contribution
	Other related work

	Constant factor approximation algorithms
	Easy polygons
	Medium polygons
	Hard polygons
	Hard triangles

	Hard polygons under resource augmentation

	Optimal profit under resource augmentation
	Few types of items
	Recursive algorithm

