# **Quasi-Majority Functional Voting on Expander** Graphs

# Nobutaka Shimizu

The University of Tokyo, Japan nobutaka shimizu@mist.i.u-tokyo.ac.jp

## Takeharu Shiraga

Chuo University, Tokyo, Japan shiraga.076@g.chuo-u.ac.jp

#### – Abstract

Consider a distributed graph where each vertex holds one of two distinct opinions. In this paper, we are interested in synchronous *voting processes* where each vertex updates its opinion according to a predefined common local updating rule. For example, each vertex adopts the majority opinion among 1) itself and two randomly picked neighbors in best-of-two or 2) three randomly picked neighbors in best-of-three. Previous works intensively studied specific rules including best-of-two and best-of-three individually.

In this paper, we generalize and extend previous works of best-of-two and best-of-three on expander graphs by proposing a new model, quasi-majority functional voting. This new model contains best-of-two and best-of-three as special cases. We show that, on expander graphs with sufficiently large initial bias, any quasi-majority functional voting reaches consensus within  $O(\log n)$ steps with high probability. Moreover, we show that, for any initial opinion configuration, any quasi-majority functional voting on expander graphs with higher expansion (e.g., Erdős-Rényi graph G(n,p) with  $p = \Omega(1/\sqrt{n})$  reaches consensus within  $O(\log n)$  with high probability. Furthermore, we show that the consensus time is  $O(\log n / \log k)$  of best-of-(2k + 1) for  $k = o(n / \log n)$ .

**2012 ACM Subject Classification** Theory of computation  $\rightarrow$  Random walks and Markov chains; Theory of computation  $\rightarrow$  Distributed algorithms

Keywords and phrases Distributed voting, consensus problem, expander graph, Markov chain

Digital Object Identifier 10.4230/LIPIcs.ICALP.2020.97

Category Track A: Algorithms, Complexity and Games

Related Version A full version of the paper is available at https://arxiv.org/abs/2002.07411.

Funding Nobutaka Shimizu: JSPS KAKENHI Grant Number 19J12876, Japan Takeharu Shiraga: JSPS KAKENHI Grant Number 19K20214, Japan

#### 1 Introduction

Consider an undirected graph G = (V, E) where each vertex  $v \in V$  initially holds an opinion  $\sigma \in \Sigma$  from a finite set  $\Sigma$ . In synchronous voting process (or simply, voting process), in each round, every vertex communicates with its neighbors and then all vertices simultaneously update their opinions according to a predefined protocol. The aim of the protocol is to reach a consensus configuration, i.e., a configuration where all vertices have the same opinion. Voting process has been extensively studied in several areas including biology, network analysis, physics and distributed computing [10, 32, 30, 22, 26, 2]. For example, in distributed computing, voting process plays an important role in the consensus problem [22, 26].

This paper is concerned with the *consensus time* of voting processes over *binary* opinions  $\Sigma = \{0, 1\}$ . Then voting processes have state space  $2^V$ . A state of  $2^V$  is called a *configuration*. The consensus time is the number of steps needed to reach a consensus configuration. Henceforth, we are concerned with connected and nonbipartite graphs.



© Nobutaka Shimizu and Takeharu Shiraga:

licensed under Creative Commons License CC-BY 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Editors: Artur Czumaj, Anuj Dawar, and Emanuela Merelli; Article No. 97; pp. 97:1-97:19 Leibniz International Proceedings in Informatics



LIPICS Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

#### 97:2 Quasi-Majority Functional Voting on Expander Graphs

#### 1.1 Previous works of specific updating rules

In *pull voting*, in each round, every vertex adopts the opinion of a randomly selected neighbor. This is one of the most basic voting process, which has been well explored in the past [33, 27, 14, 18, 8]. In particular, the expected consensus time of this process has been extensively studied in the literature. For example, Hassin and Peleg [27] showed that the expected consensus time is  $O(n^3 \log n)$  for all non-bipartite graphs and all initial opinion configurations, where n is the number of vertices. From the result of Cooper, Elsässer, Ono, and Radzik [14], it is known that on the complete graph  $K_n$ , the expected consensus time is O(n) for any initial opinion.

In *best-of-two* (a.k.a. 2-*Choices*), each vertex v samples two random neighbors (with replacement) and, if both hold the same opinion, v adopts the opinion. Otherwise, v keeps its own opinion. Doerr, Goldberg, Minder, Sauerwald, and Scheideler [21] showed that, on the complete graph  $K_n$ , the consensus time of best-of-two is  $O(\log n)$  with high probability<sup>1</sup> for an arbitrary initial opinion configuration. Since best-of-two is simple and is faster than pull voting on the complete graphs, this model gathers special attention in distributed computing and related area [25, 15, 16, 17, 19, 20, 37]. There is a line of works that study best-of-two on expander graphs [15, 16, 17], which we discuss later.

In *best-of-three* (a.k.a. 3-Majority), each vertex v randomly selects three random neighbors (with replacement). Then, v updates its opinion to match the majority among the three. It follows directly from Ghaffari and Lengler [25] that, on  $K_n$  with any initial opinion configuration, the consensus time of best-of-three is  $O(\log n)$  w.h.p. Kang and Rivera [28] considered the consensus time of best-of-three on graphs with large minimum degree starting from a random initial configuration. Shimizu and Shiraga [37] showed that, for any initial configurations, best-of-two and best-of-three reach consensus in  $O(\log n)$  steps w.h.p. if the graph is an Erdős-Rényi graph  $G(n, p)^2$  of  $p = \Omega(1)$ .

Best-of-k  $(k \ge 1)$  is a generalization of pull voting, best-of-two and best-of-three. In each round, every vertex v randomly selects k neighbors (with replacement) and then if at least  $\lfloor k/2 \rfloor + 1$  of them have the same opinion, the vertex v adopts it. Note that the best-of-1 is equivalent to pull voting. Abdullah and Draief [1] studied a variant of best-of-k ( $k \ge 5$  is odd) on a specific class of sparse graphs that includes n-vertex random d-regular graphs<sup>3</sup>  $G_{n,d}$  of  $d = o(\sqrt{\log n})$  with a random initial configuration. To the best of our knowledge, best-of-k has not been studied explicitly so far.

In *Majority* (a.k.a. *local majority*), each vertex v updates its opinion to match the majority opinion among the neighbors. This simple model has been extensively studied in previous works [6, 9, 24, 34, 35, 40]. For example, Majority on certain families of graphs including the Erdős-Rényi random graph [6, 40], random regular graphs [24] have been investigated. See [35] for further details.

#### Voting process on expander graphs

Expander graph gathers special attention in the context of Markov chains on graphs, yielding a wide range of theoretical applications. A graph G is  $\lambda$ -expander if max{ $|\lambda_2|, |\lambda_n|$ }  $\leq \lambda$ , where  $1 = \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq -1$  are the eigenvalues of the transition matrix P of the

<sup>&</sup>lt;sup>1</sup> In this paper "with high probability" (w.h.p.) means probability at least  $1 - n^{-c}$  for a constant c > 0. <sup>2</sup> Recall that the Erdős-Rényi random graph G(n, p) is a graph on n vertices where each of possible  $\binom{n}{2}$ 

vertex pairs forms an edge with probability p independently.

<sup>&</sup>lt;sup>3</sup> An *n*-vertex random *d*-regular graph  $G_{n,d}$  is a graph selected uniformly at random from the set of all labelled *n*-vertex *d*-regular graphs.

simple random walk on G. For example, an Erdős-Rényi graph G(n, p) of  $p \ge (1 + \epsilon) \frac{\log n}{n}$  for an arbitrary constant  $\epsilon > 0$  is  $O(1/\sqrt{np})$ -expander w.h.p. [12]. An *n*-vertex random *d*-regular graph  $G_{n,d}$  of  $3 \le d \le n/2$  is  $O(1/\sqrt{d})$ -expander w.h.p. [13, 39].

Cooper et al. [14] showed that the expected consensus time of pull voting is  $O(n/(1-\lambda))$ on  $\lambda$ -expander regular graphs for any initial configuration. Compared to pull voting, the study of best-of-two on general graphs seems much harder. Most of the previous works concerning best-of-two on expander graphs put some assumptions on the initial configuration. Let A denote the set of vertices of opinion 0 and  $B = V \setminus A$ . Cooper, Elsässer, and Radzik [15] showed that, for any regular  $\lambda$ -expander graph, the consensus time is  $O(\log n)$  w.h.p. if  $||A| - |B|| = \Omega(\lambda n)$ . This result was improved by Cooper, Elsässer, Radzik, Rivera, and Shiraga [16]. Roughly speaking, they proved that, on  $\lambda$ -expander graphs, the consensus time is  $O(\log n)$  if  $|d(A) - d(B)| = \Omega(\lambda^2 d(V))$ , where  $d(S) = \sum_{v \in S} \deg(v)$  denotes the volume of  $S \subseteq V$ . To the best of our knowledge, the worst case consensus time of best-of-k on expander graphs has not been studied.

# 1.2 Our model

In this paper, we propose a new class *functional voting* of voting process, which contains many known voting processes as a special case. Let  $A \subseteq V$  be the set of vertices of opinion 0 and A' be the set in the next round. Let  $B = V \setminus A$  and  $B' = V \setminus A'$ . For  $v \in V$  and  $S \subseteq V$ , let  $N(v) = \{w \in V : \{v, w\} \in E\}$  and  $\deg_S(v) = |N(v) \cap S|$ .

▶ Definition 1.1 (Functional voting). Let  $f : \mathbb{R} \to \mathbb{R}$  be a function satisfying f([0,1]) = [0,1]and f(0) = 0. A functional voting with respect to f is a synchronous voting process defined as

$$\mathbf{Pr}[v \in A'] = f\left(\frac{\deg_A(v)}{\deg(v)}\right) \quad \text{if } v \in B,$$
$$\mathbf{Pr}[v \in B'] = f\left(\frac{\deg_B(v)}{\deg(v)}\right) \quad \text{if } v \in A.$$

We call the function f a betrayal function and the function

$$H_f(x) := x (1 - f(1 - x)) + (1 - x)f(x)$$

an updating function.

Since f(0) = 0, consensus configurations are absorbing states. The intuition behind the updating function  $H_f$  is that, letting  $\alpha = |A|/n$  and  $\alpha' = |A'|/n$ , on a complete graph  $K_n$  (with self-loop), the functional voting with respect to f satisfies  $\mathbf{E}[\alpha'] = \frac{|A|}{n} \left(1 - f\left(\frac{|B|}{n}\right)\right) + \frac{|B|}{n} f\left(\frac{|A|}{n}\right) = H_f(\alpha).$ 

Functional voting contains many existing models as special cases. For example, pull voting, best-of-two, and best-of-three are functional votings with respect to x,  $x^2$  and  $3x^2 - 2x^3$ , respectively. In general, best-of-k is a functional voting with respect to

$$f_k(x) = \sum_{i=\lfloor k/2 \rfloor + 1}^k \binom{k}{i} x^i (1-x)^{k-i}.$$
(1)

# **ICALP 2020**

#### 97:4 Quasi-Majority Functional Voting on Expander Graphs



**Figure 1** The updating functions  $H_f(x)$  of pull voting (solid line), best-of-three (dashed line) and best-of-seven (dotted line). One can easily observe that best-of-three and best-of-seven are quasimajority functional voting. Intuitively speaking, quasi-majority functional voting has an updating function  $H_f$  with the property so-called "the rich get richer", which coincides with Definition 1.2.

It is straightforward to check that  $H_{f_k}(x) = f_k(x)$  if k is odd and  $H_{f_k}(x) = f_{k+1}(x)$  if k is even. Majority is a functional voting with respect to

$$f(x) = \begin{cases} 0 & \text{if } x < \frac{1}{2}, \\ \frac{1}{2} & \text{if } x = \frac{1}{2}, \\ 1 & \text{if } x > \frac{1}{2} \end{cases}$$
(2)

if a vertex adopts the random opinion when it meets the tie.

#### Quasi-majority functional voting

In this paper, we focus on functional voting with respect to f satisfying the following property.

**Definition 1.2** (Quasi-majority). A function f is quasi-majority if f satisfies the following conditions.

- (i) f is  $C^2$  (i.e., the derivatives f' and f'' exist and they are continuous).
- (ii) 0 < f(1/2) < 1,
- (iii)  $H_f(x) < x$  whenever  $x \in (0, 1/2)$ .
- (iv)  $H'_f(1/2) > 1$ ,
- (v)  $H'_f(0) < 1.$

A voting process is a quasi-majority functional voting if it is a functional voting with respect to a quasi-majority function f.

Note that  $H_f(x)$  is symmetric (i.e.,  $H_f(1-x) = 1 - H_f(x)$ ) and thus the condition (iii) implies  $H_f(x) > x$  for every  $x \in (1/2, 1)$ . Intuitively, the conditions (iii) to (v) ensure the drift towards consensus. The conditions (i) and (ii) are due to a technical reasons.

For each constant  $k \geq 2$ , best-of-k is quasi-majority functional voting but pull voting and Majority are not. Indeed, if  $H_{f_k}$  is the updating function of best-of-k, then  $H'_{f_{2\ell}}(x) =$  $H'_{f_{2\ell+1}}(x) = (2\ell+1)\binom{2\ell}{\ell}x^\ell(1-x)^\ell$ . It is straightforward to check that this function satisfies the conditions (iii) to (v) if  $\ell \neq 0$  (pull-voting). See Figure 1 for depiction of the updating functions of pull voting, best-of-three and best-of-seven.

## 1.3 Our result

In this paper, we study the consensus time of quasi-majority functional voting on expander graphs<sup>4</sup>. Let  $T_{\text{cons}}(A)$  denote the consensus time starting from the initial configuration  $A \subseteq V$ . For a graph G = (V, E), let  $\pi = (\pi(v))_{v \in V}$  denote the *degree distribution* defined as

$$\pi(v) = \frac{\deg(v)}{2|E|}.$$
(3)

Note that  $\sum_{v \in V} \pi(v) = 1$  holds. We denote by  $||x||_p := \left(\sum_{v \in V} |x_v|^p\right)^{1/p}$  the  $\ell^p$  norm of  $x \in \mathbb{R}^V$ . For  $\pi \in [0,1]^V$  and  $A \subseteq V$ , let  $\pi(A) := \sum_{v \in A} \pi(v)$ . Let

 $\delta(A) := \pi(A) - \pi(V \setminus A) = 2\pi(A) - 1$ 

denote the *bias* between A and  $V \setminus A$ .

▶ Theorem 1.3 (Main theorem). Consider a quasi-majority functional voting with respect to f on an n-vertex  $\lambda$ -expander graph with degree distribution  $\pi$ . Then, the following holds:

- (i) Let  $C_1 > 0$  be an arbitrary constant and  $\varepsilon : \mathbb{N} \to \mathbb{R}$  be an arbitrary function satisfying  $\varepsilon(n) \to 0$  as  $n \to \infty$ . Suppose that  $\lambda \leq C_1 n^{-1/4}$ ,  $\|\pi\|_2 \leq C_1/\sqrt{n}$  and  $\|\pi\|_3 \leq \varepsilon/\sqrt{n}$ . Then, for any  $A \subseteq V$ ,  $T_{\text{cons}}(A) = O(\log n)$  w.h.p.
- (ii) Let  $C_2$  be a positive constant depending only on f. Suppose that  $\lambda \leq C_2$  and  $\|\pi\|_2 \leq C_2/\sqrt{\log n}$ . Then, for any  $A \subseteq V$  satisfying  $|\delta(A)| \geq C_2 \max\{\lambda^2, \|\pi\|_2\sqrt{\log n}\}, T_{\text{cons}}(A) = O(\log n)$  w.h.p.

The following result indicates that the consensus time of Theorem 1.3(i) is optimal up to a constant factor.

▶ **Theorem 1.4** (Lower bound). Under the same assumption of Theorem 1.3(i),  $T_{\text{cons}}(A) = \Omega(\log n)$  w.h.p. for some  $A \subseteq V$ .

See the full version [38] for the proof of Theorem 1.4.

▶ Theorem 1.5 (Fast consensus for  $H'_f(0) = 0$ ). Consider a quasi-majority functional voting with respect to f on an n-vertex  $\lambda$ -expander graph with degree distribution  $\pi$ . Let C > 0 be a constant depending only on f. Suppose that  $H'_f(0) = 0$ ,  $\lambda \leq C$  and  $\|\pi\|_2 \leq C/\sqrt{\log n}$ . Then, for any  $A \subseteq V$  satisfying  $|\delta(A)| \geq C \max\{\lambda^2, \|\pi\|_2 \sqrt{\log n}\}$ , it holds w.h.p. that

$$T_{\rm cons}(A) = O\left(\log\log n + \log|\delta(A)|^{-1} + \frac{\log n}{\log\lambda^{-1}} + \frac{\log n}{\log(|\pi||_2\sqrt{\log n})^{-1}}\right).$$

For example, for each constant  $k \ge 2$ , best-of-k is quasi-majority with  $H'_f(0) = 0$ .

▶ Remark 1.6. Roughly speaking, for  $p \ge 2$ ,  $\|\pi\|_p$  measures the imbalance of the degrees. For any graphs,  $\|\pi\|_p \ge n^{-1+1/p}$  and the equality holds if and only if the graph is regular. For star graphs, we have  $\|\pi\|_p \approx 1$ .

#### Results of best-of-k

Our results above do not explore Majority since it is not quasi-majority. A plausible approach is to consider best-of-k for  $k = k(n) = \omega(1)$  since each vertex is likely to choose the majority opinion if the number of neighbor sampling increases. Also, note that the betrayal function  $f_k$ 

<sup>&</sup>lt;sup>4</sup> Throughout the paper, we consider sufficiently large n = |V|.

#### 97:6 Quasi-Majority Functional Voting on Expander Graphs

of best-of-k given in (1) converges to that of Majority (i.e.,  $f_k(x) \to f(x)$  as  $k \to \infty$  for each  $x \in [0, 1]$ , where f is the betrayal function (2) of Majority). On the other hand, if k = O(1), there is a tremendous gap between best-of-k and Majority: For any functional voting on the complete graph  $K_n$ ,  $T_{\text{cons}}(A) = \Omega(\log n)$  for some  $A \subseteq V$  from Theorem 1.4. Majority on  $K_n$  reaches the consensus in a single step if  $|A| < |V \setminus A| - 1$ . This motivates us to consider best-of-k for  $k = k(n) \to \infty$  as  $n \to \infty$ . For simplicity, we focus on best-of-(2k + 1) and prove the following result (see the full version [38] for the proof).

▶ **Theorem 1.7.** Let k = k(n) be such that  $k = \omega(1)$  and  $k = o(n/\log n)$ . Let C be an arbitrary positive constant. Consider best-of-(2k + 1) on an n-vertex  $\lambda$ -expander graph with degree distribution  $\pi$  such that  $\lambda \leq Ck^{-1/2}n^{-1/4}$ ,  $\|\pi\|_2 \leq Cn^{-1/2}$  and  $\|\pi\|_3 \leq Ck^{-1/6}n^{-1/2}$ . Then,  $T_{\text{cons}}(A) = O\left(\frac{\log n}{\log k}\right)$  holds w.h.p. for any  $A \subseteq V$ .

# 1.4 Application

Here, we apply our main theorem to specific graphs and derive some useful results.

For any  $p \ge (1+\epsilon)\frac{\log n}{n}$  for an arbitrary constant  $\epsilon > 0$ , G(n,p) is connected and  $O(1/\sqrt{np})$ -expander w.h.p [12, 23].

▶ Corollary 1.8. Consider a best-of-k on an Erdős-Rényi graph G(n, p) for an arbitrary constant  $k \ge 2$ . Then, G(n, p) w.h.p. satisfies the following:

- (i) Suppose that  $p = \Omega(n^{-1/2})$ . Then
  - (a) for any  $A \subseteq V$ ,  $T_{cons}(A) = O(\log n)$  w.h.p.
  - (b) for some  $A \subseteq V$ ,  $T_{cons}(A) = \Omega(\log n)$  w.h.p.
- (ii) Suppose that  $p \ge (1+\epsilon)\frac{\log n}{n}$  for an arbitrary constant  $\epsilon > 0$ . Then, for any  $A \subseteq V$  satisfying  $|\delta(A)| \ge C \max\left\{\frac{1}{np}, \sqrt{\frac{\log n}{n}}\right\}$ ,  $T_{\text{cons}}(A) = O\left(\log\log n + \log|\delta(A)|^{-1} + \frac{\log n}{\log(np)}\right)$ w.h.p., where C > 0 is a constant depending only on f.

In Corollary 1.8(i), we stress that the worst-case consensus time on G(n,p) was known for  $p = \Omega(1)$  [37]. If  $\frac{\log n}{\log(np)} = O(\log \log n)$  (or equivalently,  $np = n^{\Omega(1/\log \log n)}$ ), Corollary 1.8(ii) implies  $T_{\text{cons}}(A) = O(\log \log n + \log |\delta(A)|^{-1})$  w.h.p.

► Corollary 1.9. Let k = k(n) be such that  $k = \omega(1)$  and  $k = O(\sqrt{n})$ . Consider best-of-(2k+1) on G(n,p) for  $p = \Omega(k/\sqrt{n})$ . Then, for any  $A \subseteq V$ ,  $T_{cons}(A) = O\left(\frac{\log n}{\log k}\right)$  holds w.h.p.

From Corollary 1.9, best-of- $n^{\epsilon}$  on  $G(n, n^{-1/2+\epsilon})$  for any constant  $\epsilon \in (0, 1/2)$  reaches consensus in O(1) steps. It is known that Majority on  $G(n, Cn^{-1/2})$  satisfies  $T_{\text{cons}}(A) \leq 4$  for large constant C and random  $A \subseteq V$  with constant probability [6].

For  $3 \leq d \leq n/2$ , *n*-vertex random *d*-regular graph  $G_{n,d}$  is connected and  $O(1/\sqrt{d})$ -expander w.h.p. [13, 39].

▶ Corollary 1.10. Consider a best-of-k on an n-vertex random d-regular graph  $G_{n,d}$  for an arbitrary constant  $k \ge 2$ . Then,  $G_{n,d}$  w.h.p. satisfies the following:

- (i) Suppose that  $d = \Omega(n^{1/2})$  and  $d \le n/2$ . Then,
  - (a) for any  $A \subseteq V$ ,  $T_{cons}(A) = O(\log n)$  w.h.p.
  - (b) for some  $A \subseteq V$ ,  $T_{cons}(A) = \Omega(\log n)$  w.h.p.
- (ii) Suppose that  $d \ge C$  and  $d \le n/2$  for a constant C > 0 depending only on f. Then, for any  $A \subseteq V$  satisfying  $|\delta(A)| \ge C \max\left\{\frac{1}{d}, \sqrt{\frac{\log n}{n}}\right\}$ , it holds w.h.p. that  $T_{\text{cons}}(A) = O\left(\log\log n + \log|\delta(A)|^{-1} + \frac{\log n}{\log d}\right)$ .

► Corollary 1.11. Let k = k(n) be such that  $k = \omega(1)$  and  $k = O(\sqrt{n})$ . Consider best-of-(2k+1) on an n-vertex random d-regular graph  $G_{n,d}$  such that  $d = \Omega(k\sqrt{n})$  and  $d \le n/2$ . Then, for any  $A \subseteq V$ ,  $T_{\text{cons}}(A) = O\left(\frac{\log n}{\log k}\right)$  holds w.h.p.

See the full version [38] for other specific results and examples of quasi-majority functional voting.

## 1.5 Related work

In asynchronous voting process, in each round, a vertex is selected uniformly at random and only the selected vertex updates its opinion. Cooper and Rivera [18] introduced *linear voting* model. In this model, an opinion configuration is represented as a vector  $v \in \Sigma^V$  and the vector v updates according to the rule  $v \leftarrow Mv$ , where M is a random matrix sampled from some probability space. This model captures a wide variety model including asynchronous push/pull voting and synchronous pull voting. Note that best-of-two and best-of-three are not included in linear voting model. Schoenebeck and Yu [36] proposed an asynchronous variant of our functional voting. The authors of [36] proved that, if the function f is symmetric (i.e., f(1-x) = 1 - f(x)), smooth and has "majority-like" property (i.e., f(x) > x whenever 1/2 < x < 1), then the expected consensus time is  $O(n \log n)$  w.h.p. on G(n, p) with  $p = \Omega(1)$ . This perspective has also been investigated in physics (see, e.g., [10]).

Several researchers have studied best-of-two and best-of-three on complete graphs initially involving  $k \ge 2$  opinions [5, 4, 7, 25]. For example, the consensus time of best-of-three is  $O(k \log n)$  if  $k = O(n^{1/3}/\sqrt{\log n})$  [25]. Cooper, Radzik, Rivera, and Shiraga [17] considered best-of-two and best-of-three on regular expander graphs that hold more than two opinions.

Recently, Cruciani, Natale, and Scornavacca [20] studied best-of-two with a random initial configuration on a clustered regular graph. Shimizu and Shiraga [37] obtained phase-transition results of best-of-two and best-of-three on stochastic block models.

# 2 Preliminary and technical result

#### 2.1 Formal definition

Let G = (V, E) be an undirected and connected graph. Let  $P \in [0, 1]^{V \times V}$  be the matrix defined as

$$P(u,v) := \frac{\mathbb{1}_{\{u,v\} \in E}}{\deg(u)} \quad \forall (u,v) \in V \times V$$

$$\tag{4}$$

where  $\mathbb{1}_Z$  denotes the indicator of an event Z. For  $v \in V$  and  $S \subseteq V$ , we write  $P(v, S) = \sum_{s \in S} P(v, s)$ .

Now, let us describe the formal definition of functional voting. For a given  $A \subseteq V$ , let  $(X_v)_{v \in V}$  be independent binary random variables defined as

$$\mathbf{Pr}[X_v = 1] = f(P(v, A)) \quad \text{if } v \in B,$$
  
$$\mathbf{Pr}[X_v = 0] = f(P(v, B)) \quad \text{if } v \in A,$$
(5)

where  $B = V \setminus A$ . For  $A \subseteq V$  and  $(X_v)$  above, define  $A' = \{v \in V : X_v = 1\}$ . Note that this definition coincides with Definition 1.1 since  $P(v, A) = \frac{\deg_A(v)}{\deg(v)}$ . Then, a functional voting is a Markov chain  $A_0, A_1, \ldots$  where  $A_{t+1} = (A_t)'$ .

For  $A \subseteq V$ , let  $T_{\text{cons}}(A)$  denote the consensus time of the functional voting starting from the initial configuration A. Formally,  $T_{\text{cons}}(A)$  is the stopping time defined as

$$T_{\text{cons}}(A) := \min \{ t \ge 0 : A_t \in \{ \emptyset, V \}, A_0 = A \}.$$

#### 97:8 Quasi-Majority Functional Voting on Expander Graphs

## 2.2 Technical background

Consider best-of-two on a complete graph  $K_n$  (with self loop on each vertex) with a current configuration  $A \subseteq V$ . Let  $\alpha = |A|/n$ . We have  $P(v, A) = \alpha$  for any  $v \in V$  and  $A \subseteq V$ . Then, for any  $A \subseteq V$ ,  $\mathbf{E}[\alpha'] = H_f(\alpha) = 3\alpha^2 - 2\alpha^3$ . Thus, in each round,  $\alpha' = 3\alpha^2 - 2\alpha^3 \pm O(\sqrt{\log n/n})$  holds w.h.p. from the Hoeffding bound. Therefore, the behavior of  $\alpha$  can be written as the iteration of applying  $H_f$ .

The most technical part is the symmetry breaking at  $\alpha = 1/2$ . Note that  $H_f(1/2) = 1/2$ and thus, the argument above does not work in the case of  $|\alpha - 1/2| = o(\sqrt{\log n/n})$ . To analyze this case, the authors of [21, 11] proved the following technical lemma asserting that  $\alpha$  w.h.p. escapes from the area in  $O(\log n)$  rounds.

▶ Lemma 2.1 (Lemma 4.5 of [11] (informal)). For any constant C, it holds w.h.p. that  $|\alpha - 1/2| \ge C\sqrt{\log n/n}$  in  $O(\log n)$  rounds (the hidden constant factor depends on C) if

- (i) For any constant h, there is a constant  $C_0 > 0$  such that, if  $|\alpha 1/2| = O(\sqrt{\log n/n})$ then  $\Pr[|\alpha' - 1/2| > h/\sqrt{n}] > C_0$ .
- (ii) If  $|\alpha 1/2| = O(\sqrt{\log n/n})$  and  $|\alpha 1/2| = \Omega(1/\sqrt{n})$ ,  $\mathbf{Pr}[|\alpha' 1/2| \le (1+\epsilon)|\alpha 1/2|] \le \exp(-\Theta((\alpha 1/2)^2 n))$  for some constant  $\epsilon > 0$ .

Intuitively speaking, the condition (ii) means that the bias  $|\alpha' - 1/2|$  is likely to be at least  $(1 + \epsilon)|\alpha - 1/2|$  for some constant  $\epsilon > 0$ . The condition (ii) is easy to check using the Hoeffding bound. The condition (i) means that  $\alpha'$  has a fluctuation of size  $\Omega(1/\sqrt{n})$  with a constant probability. We can check condition (i) using the Central Limit Theorem (the Berry-Esseen bound). The Central Limit Theorem implies that the normalized random variable  $(\alpha' - \mathbf{E}[\alpha'])/\sqrt{\mathbf{Var}[\alpha']}$  converges to the standard normal distribution as  $n \to \infty$ . In other words,  $\alpha'$  has a fluctuation of size  $\Theta(\sqrt{\mathbf{Var}[\alpha']})$  with constant probability. Now, to verify the condition (i), we evaluate  $\mathbf{Var}[\alpha']$ . On  $K_n$ , it is easy to show that  $\mathbf{Var}[\alpha'] = \Theta(1/n)$ , which implies the condition (i).

The authors of [16, 17] considered best-of-two on expander graphs. They focused on the behavior of  $\pi(A)$  instead of  $\alpha$ . Roughly speaking, they proved that  $\mathbf{E}[\pi(A') - 1/2] \ge (1 + \epsilon)(\pi(A) - 1/2) - O(\lambda^2)$ . At the heart of the proof, they showed the following result.

▶ Lemma 2.2 (Special case of Lemma 3 of [17]). Consider a  $\lambda$ -expander graph with degree distribution  $\pi$ . Then, for any  $S \subseteq V$ ,  $\left|\sum_{v \in V} \pi(v) P(v, S)^2 - \pi(S)^2\right| \leq \lambda^2 \pi(S) (1 - \pi(S))$ .

Then, from the Hoeffding bound, we have  $\mathbf{E}[\pi(A') - 1/2] \ge (1 + \epsilon)(\pi(A) - 1/2) - O(\lambda^2 + \|\pi\|_2 \sqrt{\log n}))$ . Thus, if the initial bias  $|\pi(A) - 1/2|$  is  $\Omega(\max\{\lambda^2, \sqrt{\log n/n}\})$ , we can show that the consensus time is  $O(\log n)$ .

Unfortunately, we can not apply the same technique to estimate  $\operatorname{Var}[\pi(A')]$  on expander graphs, and due to this reason, it seems difficult to estimate the worst-case consensus time on expander graphs. Actually, any previous works put assumptions on the initial bias due to the same reason. It should be noted that Lemma 2.1 is well-known in the literature. For example, Cruciani et al. [20] used Lemma 2.1 from random initial configurations.

The technique of estimating  $\mathbf{E}[\pi(A')]$  by Cooper et al. [16, 17] is specialized in best-of-two. Thus, it is not straightforward to prove the estimation of  $\mathbf{E}[\pi(A')]$  for voting processes other than best-of-two.

# 2.3 Our technical contribution

For simplicity, in this part, we focus on a quasi-majority functional voting with respect to a symmetric function f (i.e., f(1-x) = 1 - f(x) for every  $x \in [0,1]$ ) on a  $\lambda$ -expander graph with degree distribution  $\pi$ . For example,  $f(x) = 3x^2 - 2x^3$  of best-of-three is a symmetric

function. Note that  $f = H_f$  if f is symmetric. Similar results mentioned in this subsection holds for non-symmetric f (see Lemma 3.5 and 3.6 of the full version [38]). For a  $C^2$  function  $h : \mathbb{R} \to \mathbb{R}$ , let

$$K_1(h) := \max_{x \in [0,1]} |h'(x)|, \quad K_2(h) := \max_{x \in [0,1]} |h''(x)|$$

be constants<sup>5</sup> The following technical result enables us to estimate  $\mathbf{E}[\pi(A')]$  and  $\mathbf{Var}[\pi(A')]$  of functional voting.

▶ Lemma 2.3. Consider a functional voting with respect to a symmetric  $C^2$  function f on a  $\lambda$ -expander graph with degree distribution  $\pi$ . Let g(x) := f(x)(1 - f(x)). Then, for all  $A \subseteq V$ ,

$$\left| \mathbf{E}[\pi(A')] - H_f(\pi(A)) \right| \le \frac{K_2(f)}{2} \lambda^2 \pi(A) \left( 1 - \pi(A) \right), \\ \left| \mathbf{Var}[\pi(A')] - \|\pi\|_2^2 g(\pi(A)) \right| \le K_1(g) \lambda \sqrt{\pi(A) \left( 1 - \pi(A) \right)} \|\pi\|_3^{3/2}.$$

Note that, if f is symmetric, the corresponding functional voting satisfies that  $\mathbf{Pr}[v \in A'] = f(P(v, A))$  for any  $v \in V$ . Thus we have

$$\mathbf{E}[\pi(A')] = \sum_{v \in V} \pi(v) f(P(v, A)), \quad \mathbf{Var}[\pi(A')] = \sum_{v \in V} \pi(v)^2 g(P(v, A)).$$

To evaluate  $\mathbf{E}[\pi(A')]$  and  $\mathbf{Var}[\pi(A')]$  above, we prove the following key lemma that is a generalization of Lemma 2.2 and implies Lemma 2.3.

▶ Lemma 2.4 (Special case of Lemmas 3.2 and 3.3). Consider a  $\lambda$ -expander graph with degree distribution  $\pi$ . Then, for any  $S \subseteq V$  and any  $C^2$  function  $h : \mathbb{R} \to \mathbb{R}$ ,

$$\left| \sum_{v \in V} \pi(v) h(P(v,S)) - h(\pi(S)) \right| \leq \frac{K_2(h)}{2} \lambda^2 \pi(S) (1 - \pi(S)),$$
$$\left| \sum_{v \in V} \pi(v)^2 h(P(v,S)) - \|\pi\|_2^2 h(\pi(S)) \right| \leq K_1(h) \lambda \sqrt{\pi(S) (1 - \pi(S))} \|\pi\|_3^{3/2}$$

#### Non-symmetric functions

For general f, we prove the following.

▶ Lemma 2.5. Consider a functional voting with respect to a  $C^2$  function f on a  $\lambda$ -expander graph. Let g(x) := f(x)(1 - f(x)). Then, for all  $A \subseteq V$ ,

$$\begin{aligned} \left| \mathbf{E}[\pi(A')] - H_f(\pi(A)) \right| &\leq K_2(f) \lambda \left( |2\pi(A) - 1| + \lambda \right) \pi(A) \left( 1 - \pi(A) \right), \\ \left| \mathbf{Var}[\pi(A')] - \|\pi\|_2^2 g\left(\frac{1}{2}\right) \right| &\leq K_1(g) \left( \frac{1}{2} \|\pi\|_2^2 |2\pi(A) - 1| + 2\|\pi\|_3^{3/2} \lambda \sqrt{\pi(A) \left( 1 - \pi(A) \right)} \right). \end{aligned}$$

We refer the proof of Lemma 2.5 to the full-version [38] due to the page limitation.

<sup>&</sup>lt;sup>5</sup> For example, for  $f(x) = 3x^2 - 2x^3$  of best-of-three, f''(x) = 6 - 12x and  $K_2(f) = 6$ . It should be noted that we deal with f not depending on G except for best-of-k with  $k = \omega(1)$ .

# 2.4 Proof sketch of Theorem 1.3

We present proof sketch of Theorem 1.3(i). From the assumption of Theorem 1.3(i) and Lemma 2.3, if  $|\pi(A) - 1/2| = o(1)$ , we have  $\operatorname{Var}[\pi(A')] = \Theta(||\pi||_2^2 g(\pi(A))) = \Theta(||\pi||_2^2 g(1/2 + o(1))) = \Theta(1/n)$ . Moreover,  $\mathbf{E}[\pi(A')] = H_f(\pi(A)) \pm O(\pi(A)/\sqrt{n})$  holds for any  $A \subseteq V$ . Hence, from the Hoeffding bound,  $\pi(A') = H_f(\pi(A)) + O(\sqrt{\log n/n})$  holds w.h.p. for any  $A \subseteq V$ .

- If  $|\pi(A) 1/2| = O(\sqrt{\log n/n})$ , we use Lemma 2.1 to obtain an  $O(\log n)$  round symmetry breaking. In this phase, since  $|\pi(A) - 1/2| = o(1)$ ,  $\operatorname{Var}[\pi(A') - 1/2] = \Theta(1/n)$ . Then, from the Berry-Esseen bound, we can check the condition (i). To check the condition (ii), we invoke the condition  $H'_f(1/2) > 1$  of the quasi-majority function. From Taylor's theorem and the assumption of Lemma 2.1(ii)  $(\pi(A) - 1/2 = \Omega(1/\sqrt{n}))$ ,  $\mathbf{E}[\pi(A') - 1/2] =$  $H_f(\pi(A)) - H_f(1/2) - O(1/\sqrt{n}) \approx (1 + \epsilon_1)(\pi(A) - 1/2)$  for some positive constant  $\epsilon_1 > 0$ . Note that  $H_f(1/2) = 1/2$ .
- If  $C_1\sqrt{\log n/n} \leq |\pi(A) 1/2| \leq C_2$  for sufficiently large constant  $C_1$  and some constant  $C_2 > 0$ , we use the Hoeffding bound and then obtain  $\pi(A') 1/2 \approx (1 + \epsilon_1)(\pi(A) 1/2) O(\sqrt{\log n/n}) \geq (1 + (\epsilon_1/2))(\pi(A) 1/2)$  w.h.p. Hence,  $O(\log n)$  rounds suffice to yield a constant bias. (Note that this argument holds when  $|\pi(A) 1/2| \leq C_2$  due to the remainder term of Taylor's theorem.)
- If  $C_3 \leq \pi(A) < 1/2$ , it is straightforward to see that  $\pi(A') = H_f(\pi(A)) + O(\sqrt{\log n/n}) \leq \pi(A) \epsilon_2$  w.h.p. for some constant  $\epsilon_2 > 0$ . Note that we invoke the property that  $H_f(x) < x$  whenever 0 < x < 1/2.
- If  $\pi(A) \leq C_3$  for sufficiently small constant  $C_3$ , we use the Markov inequality to show  $\pi(A_t) = O(n^{-3})$  w.h.p. for some  $t = O(\log n)$ . Since  $\pi(A) \geq 1/n^2$  whenever  $A \neq \emptyset$ , this implies that the consensus time is  $O(\log n)$  w.h.p. Note that, since  $H'_f(0) < 1$ , we have  $\mathbf{E}[\pi(A')] \leq H_f(\pi(A)) + O(\pi(A)/\sqrt{n}) \approx H'_f(0)\pi(A) + O(\pi(A)/\sqrt{n}) \leq (1-\epsilon_3)\pi(A)$  for some constant  $\epsilon_3 > 0$ .

In the proof of Theorem 1.7, we modify Lemma 2.1 and apply the same argument.

# 3 Reversible Markov chains and Proof of Lemma 2.4

In this section, we prove Lemma 2.4 by showing Lemmas 3.2 and 3.3, which are generalizations of Lemma 2.4 in terms of *reversible Markov chain*. This enables us to evaluate  $\mathbf{E}[\pi(A')]$  and  $\mathbf{Var}[\pi(A')]$  for functional voting with respect to a  $C^2$  function f (see the full version [38] for functional voting with respect to non-symmetric f).

# 3.1 Technical tools for reversible Markov chains

To begin with, we briefly summarize the notation of Markov chain, which we will use in this section<sup>6</sup>. Let V be a set of size n. A transition matrix P over V is a matrix  $P \in [0,1]^{V \times V}$  satisfying  $\sum_{v \in V} P(u,v) = 1$  for any  $u \in V$ . Let  $\pi \in [0,1]^V$  denote the stationary distribution of P, i.e., a probability distribution satisfying  $\pi P = \pi$ . A transition matrix P is reversible if  $\pi(u)P(u,v) = \pi(v)P(v,u)$  for any  $u, v \in V$ . It is easy to check that the matrix (4) is

<sup>&</sup>lt;sup>6</sup> For further detailed arguments about reversible Markov chains, see e.g., [29].

a reversible transition matrix and its stationary distribution is (3). Let  $\lambda_1 \geq \cdots \geq \lambda_n$ denote the eigenvalues of P. If P is reversible, it is known that  $\lambda_i \in \mathbb{R}$  for all i. Let  $\lambda = \max\{|\lambda_2|, |\lambda_n|\}$  be the second largest eigenvalue in absolute value<sup>7</sup>.

For a function  $h : \mathbb{R} \to \mathbb{R}$  and subsets  $S, T \subseteq V$ , consider the quantity  $Q_h(S, T)$  defined as

$$Q_h(S,T) := \sum_{v \in S} \pi(v) h\big(P(v,T)\big). \tag{6}$$

The special case of h(x) = x, that is,  $Q(S,T) := \sum_{v \in S} \pi(v)P(v,T)$ , is well known as *edge* measure [29] or *ergodic flow* [3, 31]. Note that, for any reversible P and subsets  $S, T \subseteq V$ , Q(S,T) = Q(T,S) holds. The following result is well known as a version of the *expander* mixing lemma.

▶ Lemma 3.1 (See, e.g., p.163 of [29]). Suppose P is reversible. Then, for any  $S, T \subseteq V$ ,

$$|Q(S,T) - \pi(S)\pi(T)| \le \lambda \sqrt{\pi(S)\pi(T)(1 - \pi(S))(1 - \pi(T))}.$$

We show the following lemma which gives a useful estimation of  $Q_h(S,T)$ .

▶ Lemma 3.2. Suppose P is reversible. Then, for any  $S,T \subseteq V$  and any  $C^2$  function  $h : \mathbb{R} \to \mathbb{R}$ ,

$$\left|Q_{h}(S,T) - \pi(S)h(\pi(T)) - h'(\pi(T))(Q(S,T) - \pi(S)\pi(T))\right| \leq \frac{K_{2}(h)}{2}\lambda^{2}\pi(T)(1 - \pi(T)).$$

**Proof of Lemma 3.2.** From Taylor's theorem, it holds for any  $x, y \in [0, 1]$  that

$$|h(x) - h(y) - h'(y)(x - y)| \le \frac{K_2(h)}{2}(x - y)^2.$$

Hence

$$\begin{aligned} \left| Q_h(S,T) - \pi(S)h(\pi(T)) - h'(\pi(T)) (Q(S,T) - \pi(S)\pi(T)) \right| \\ &= \left| \sum_{v \in S} \pi(v) \left( h(P(v,T)) - h(\pi(T)) - h'(\pi(T)) (P(v,T) - \pi(T)) \right) \right| \\ &\leq \sum_{v \in S} \pi(v) \left| h(P(v,T)) - h(\pi(T)) - h'(\pi(T)) (P(v,T) - \pi(T)) \right| \\ &\leq \sum_{v \in S} \pi(v) \frac{K_2(h)}{2} (P(v,T) - \pi(T))^2 \leq \frac{K_2(h)}{2} \sum_{v \in V} \pi(v) (P(v,T) - \pi(T))^2 \\ &\leq \frac{K_2(h)}{2} \lambda^2 \pi(T) (1 - \pi(T)). \end{aligned}$$

The last inequality follows from Corollary A.2 of the full version [38].

Next, consider

$$R_h(S,T) := \sum_{v \in S} \pi(v)^2 h\big(P(v,T)\big) \tag{7}$$

for a function  $h : \mathbb{R} \to \mathbb{R}$  and  $S, T \subseteq V$ . For notational convenience, for  $S \subseteq V$ , let  $\pi_2(S) := \sum_{v \in S} \pi(v)^2$ . We show the following lemma that evaluates  $R_h(S,T)$ .

<sup>&</sup>lt;sup>7</sup> If P is ergodic, i.e., for any  $u, v \in V$ , there exists a t > 0 such that  $P^t(u, v) > 0$  and  $\text{GCD}\{t > 0 : P^t(x, x) > 0\} = 1, 1 > \lambda_2$  and  $\lambda_n > -1$ . For example, the transition matrix of the simple random walk on a connected and non-bipartite graph is ergodic.

#### 97:12 Quasi-Majority Functional Voting on Expander Graphs

▶ Lemma 3.3. Suppose that P is reversible. Then, for any  $S, T \subseteq V$  and any  $C^2$  function  $h : \mathbb{R} \to \mathbb{R}$ ,

$$|R_h(S,T) - \pi_2(S)h(\pi(T))| \le K_1(h) ||\pi||_3^{3/2} \lambda \sqrt{\pi(T)(1-\pi(T))}.$$

**Proof.** We first observe that

$$|h(x) - h(y)| \le K_1(h)|x - y|$$
(8)

holds for any  $x, y \in [0, 1]$  from Taylor's theorem. Hence,

$$\begin{aligned} \left| R_h(S,T) - \pi_2(S)h(\pi(T)) \right| \\ &= \left| \sum_{v \in S} \pi(v)^2 \left( h(P(v,T)) - h(\pi(T)) \right) \right| \le \sum_{v \in S} \pi(v)^2 \left| h(P(v,T)) - h(\pi(T)) \right| \\ &\le \sum_{v \in S} \pi(v)^2 K_1(h) \left| P(v,T) - \pi(T) \right| \le K_1(h) \sum_{v \in V} \pi(v)^2 \left| P(v,T) - \pi(T) \right|. \end{aligned}$$

Then, applying the Cauchy-Schwarz inequality and Corollary A.2 of the full version [38],

$$\sum_{v \in V} \pi(v)^2 |P(v,T) - \pi(T)| \le \sqrt{\left(\sum_{v \in V} \pi(v)^3\right) \left(\sum_{v \in V} \pi(v) \left(P(v,T) - \pi(T)\right)^2\right)} \le \|\pi\|_3^{3/2} \lambda \sqrt{\pi(T) \left(1 - \pi(T)\right)}$$

and we obtain the claim.

▶ Remark 3.4. The results of this paper can be extended to voting processes where the sampling probability is determined by a reversible transition matrix P. This includes voting processes on edge-weighted graphs G = (V, E, w), where  $w : E \to \mathbb{R}$  denotes an edge weight function. Consider the transition matrix P defined as follows:  $P(u, v) = w(\{u, v\}) / \sum_{x:\{u,x\} \in E} w(\{u, x\})$  for  $\{u, v\} \in E$  and P(u, v) = 0 for  $\{u, v\} \notin E$ . A weighted functional voting with respect to f is determined by  $\mathbf{Pr}[v \in A' | v \in B] = f(P(v, B))$  and  $\mathbf{Pr}[v \in B' | v \in A] = f(P(v, A))$ . For simplicity, in this paper, we do not explore the weighted variant and focus on the usual setting where P is the matrix (4) and its stationary distribution  $\pi$  is (3).

4

# 3.2 Proof of Lemma 2.4

For the first inequality, by substituting V to S of Lemma 3.2, we obtain  $\left|Q_h(V,T) - h(\pi(T))\right| \leq \frac{K_2(h)}{2}\lambda^2\pi(T)(1-\pi(T))$ . Note that  $Q(V,T) = Q(T,V) = \pi(T)$  from the reversibility of P. Similarly, we obtain the second inequality by substituting V to S of Lemma 3.3.

# 4 Proofs of Theorems 1.3 and 1.5

Consider a quasi-majority functional voting with respect to f on an n-vertex  $\lambda$ -expander graph with degree distribution  $\pi$ . Let  $A_0, A_1, \ldots$ , be the sequence given by the functional voting with initial configuration  $A_0 \subseteq V$ . Theorems 1.3 and 1.5 follow from the following lemma. ▶ Lemma 4.1. Consider a quasi-majority functional voting with respect to f on an n-vertex  $\lambda$ -expander graph with degree distribution  $\pi$ . Let  $\epsilon_h(f) := H'_f(1/2) - 1$ ,  $\epsilon_c(f) := 1 - H'_f(0)$  and  $K(f) := \max\{K_2(f), K_2(H_f)\}$  be three positive constants depending only on f. Then, the following holds:

- (1) Let  $C_1 > 0$  be an arbitrary constant and  $\varepsilon : \mathbb{N} \to \mathbb{R}$  be an arbitrary function satisfying  $\varepsilon(n) \to 0$  as  $n \to \infty$ . Suppose that  $\lambda \leq C_1 n^{-1/4}$ ,  $\|\pi\|_2 \leq C_1/\sqrt{n}$  and  $\|\pi\|_3 \leq \varepsilon/\sqrt{n}$ . Then, for any  $A_0 \subseteq V$  such that  $|\delta(A_0)| \leq c_1 \log n/\sqrt{n}$  for an arbitrary constant  $c_1 > 0$ ,  $|\delta(A_t)| \geq c_1 \log n/\sqrt{n}$  within  $t = O(\log n)$  steps w.h.p.
- (II) Suppose that  $\lambda \leq \frac{\epsilon_h(f)}{2K(f)}$ . Then, for any  $A_0 \subseteq V$  s.t.  $\frac{2 \max\{K(f), 8\}}{\epsilon_h(f)} \max\{\lambda^2, \|\pi\|_2 \sqrt{\log n}\}$  $\leq |\delta(A_0)| \leq \frac{\epsilon_h(f)}{K(f)}, |\delta(A_t)| \geq \frac{\epsilon_h(f)}{K(f)}$  within  $t = O(\log |\delta(A_0)|^{-1})$  steps w.h.p.
- (III) Let  $c_2, c_3$  be two arbitrary constants satisfying  $0 < c_2 < c_3 < 1/2$  and  $\epsilon(f) := \min_{x \in [c_2, c_3]} (x H_f(x))$  be a positive constant depending  $f, c_2, c_3$ . Suppose that  $\lambda \leq \frac{\epsilon(f)}{2K(f)}$  and  $\|\pi\|_2 \leq \frac{\epsilon(f)}{4\sqrt{\log n}}$ . Then, for any  $A_0 \subseteq V$  satisfying  $c_2 \leq \pi(A_0) \leq c_3$ ,  $\pi(A_t) \leq c_2$  within constant steps w.h.p.
- $\pi(A_t) \leq c_2 \text{ within constant steps w.h.p.}$ (IV) Suppose that  $\lambda \leq \frac{\epsilon_c(f)}{2K(f)}$  and  $\|\pi\|_2 \leq \frac{\epsilon_c(f)^2}{32K(f)\sqrt{\log n}}$ . Then, for any  $A_0 \subseteq V$  satisfying  $\pi(A_0) \leq \frac{\epsilon_c(f)}{8K(f)}, \ \pi(A_t) = 0$  within  $t = O(\log n)$  steps w.h.p.
- (V) Suppose that  $H'_f(0) = 0$ ,  $\lambda \leq \frac{1}{10K(f)}$  and  $\|\pi\|_2 \leq \frac{1}{64K(f)\sqrt{\log n}}$ . Then, for any  $A_0 \subseteq V$  satisfying  $\pi(A_0) \leq \frac{1}{7K(f)}$ , it holds w.h.p. that  $\pi(A_t) = 0$  within

$$t = O\left(\log\log n + \frac{\log n}{\log \lambda^{-1}} + \frac{\log n}{\log(\|\pi\|_2 \sqrt{\log n})^{-1}}\right) steps.$$

**Proof of Theorem 1.3(ii).** Since  $\|\pi\|_2 \ge 1/\sqrt{n}$ , we have  $|\delta(A_0)| = \Omega(\sqrt{\log n/n})$ . This implies that Phase (II) takes at most  $O(\log n)$ . Thus, we obtain the claim since we can merge Phases (II) to (IV) by taking appropriate constants  $c_2, c_3$  in Phase (III).

**Proof of Theorem 1.3(i).** Under the assumption of Theorem 1.3(i), for any positive constant C, a positive constant C' exists such that  $C(\lambda^2 + \|\pi\|_2 \sqrt{\log n}) \leq C' \frac{\log n}{\sqrt{n}}$ . Thus, we can combine Phase (I) and Theorem 1.3(ii), and we obtain the claim.

**Proof of Theorem 1.5.** Combining Phases (II), (III) and (V), we obtain the claim.

In the rest of this section, we show Phases (I) to (V) of Lemma 4.1. For notational convenience, let

$$\alpha := \pi(A), \ \alpha' := \pi(A'), \ \alpha_t := \pi(A_t), \\ \delta := \delta(A) = 2\alpha - 1, \ \delta' := \delta(A'), \ \delta_t := \delta(A_t).$$

# 4.1 Phase (I): $0 \le |\delta| \le c_1 \log n / \sqrt{n}$

We use the following lemma to show Lemma 4.1(I).

▶ Lemma 4.2 (Lemma 4.5 of [11]). Consider a Markov chain  $(X_t)_{t=1}^{\infty}$  with finite state space  $\Omega$  and a function  $\Psi : \Omega \to \{0, \ldots, n\}$ . Let  $C_3$  be arbitrary constant and  $m = C_3\sqrt{n}\log n$ . Suppose that  $\Omega, \Psi$  and m satisfies the following conditions:

(i) For any positive constant h, there exists a positive constant  $C_1 < 1$  such that

$$\mathbf{Pr}\left[\Psi(X_{t+1}) < h\sqrt{n} \,\middle|\, \Psi(X_t) \le m\right] < C_1.$$

#### 97:14 Quasi-Majority Functional Voting on Expander Graphs

(ii) Three positive constants γ, C<sub>2</sub> and h exist such that, for any x ∈ Ω satisfying h√n ≤ Ψ(x) < m,</li>

$$\mathbf{Pr}\left[\Psi(X_{t+1}) < (1+\gamma)\Psi(X_t) \,|\, X_t = x\right] < \exp\left(-C_2 \frac{\Psi(x)^2}{n}\right).$$

Then,  $\Psi(X_t) \ge m$  holds w.h.p. for some  $t = O(\log n)$ .

Let us first prove the following lemma concerning the growth rate of  $|\delta|$ , which we will use in the proofs of (I) and (II) of Lemma 4.1.

▶ Lemma 4.3. Consider a quasi-majority functional voting with respect to f on an nvertex  $\lambda$ -expander graph with degree distribution  $\pi$ . Let  $\epsilon_h(f) := H'_f(1/2) - 1$  and  $K(f) := \max\{K_2(f), K_2(H_f)\}$  be positive constants depending only on f. Suppose that  $\lambda \leq \frac{\epsilon_h(f)}{2K(f)}$ . Then, for any  $A \subseteq V$  satisfying  $\frac{2K(f)}{\epsilon_h(f)}\lambda^2 \leq |\delta| \leq \frac{\epsilon_h(f)}{K(f)}$ ,

$$\mathbf{Pr}\left[|\delta'| \le \left(1 + \frac{\epsilon_h(f)}{8}\right)|\delta|\right] \le 2\exp\left(-\frac{\epsilon_h(f)^2\delta^2}{128\|\pi\|_2^2}\right).$$

**Proof.** Combining Lemma 2.5 and Taylor's theorem, we have

$$\left| \mathbf{E}[\delta'] - H'_{f}\left(\frac{1}{2}\right)\delta \right| = 2\left| \mathbf{E}[\alpha'] - \frac{1}{2} - H'_{f}\left(\frac{1}{2}\right)\left(\alpha - \frac{1}{2}\right) \right|$$
$$= 2\left| \mathbf{E}\left[\alpha'\right] - H_{f}\left(\alpha\right) + H_{f}\left(\alpha\right) - H_{f}\left(\frac{1}{2}\right) - H'_{f}\left(\frac{1}{2}\right)\left(\alpha - \frac{1}{2}\right) \right|$$
$$\leq 2K_{2}(f)\lambda\left(|\delta| + \lambda\right)\alpha(1 - \alpha) + K_{2}(H_{f})\left(\alpha - \frac{1}{2}\right)^{2}$$
$$\leq \left(\frac{K(f)}{2}\lambda + \frac{K(f)}{4}|\delta|\right)|\delta| + \frac{K(f)}{2}\lambda^{2}$$
(9)

Note that  $H_f(1/2) = 1/2$  from the definition. From assumptions of  $\lambda \leq \frac{\epsilon_h(f)}{2K(f)}$ ,  $|\delta| \leq \frac{\epsilon_h(f)}{K(f)}$ and  $\lambda^2 \leq \frac{\epsilon_h(f)}{2K(f)} |\delta|$ , we have  $\left| H'_f\left(\frac{1}{2}\right) \delta \right| - |\mathbf{E}[\delta']| \leq \left| H'_f\left(\frac{1}{2}\right) \delta - \mathbf{E}[\delta'] \right| \leq \frac{3}{4} \epsilon_h(f) |\delta|$ . Hence, it holds that

$$\left|\mathbf{E}[\delta']\right| \ge \left|H'_f\left(\frac{1}{2}\right)\delta\right| - \frac{3}{4}\epsilon_h(f)|\delta| = (1 + \epsilon_h(f))|\delta| - \frac{3}{4}\epsilon_h(f)|\delta| = \left(1 + \frac{\epsilon_h(f)}{4}\right)|\delta|.$$

We observe that, for any  $\kappa > 0$ ,

$$\mathbf{Pr}\left[|\delta'| \le \left|\mathbf{E}[\delta']\right| - \kappa\right] \le 2\exp\left(-\frac{\kappa^2}{2\|\pi\|_2^2}\right) \tag{10}$$

from Corollary A.4 of the full version [38]. Note that  $\delta' = \sum_{v \in V} \pi(v)(2X_v - 1)$  for independent indicator random variables  $(X_v)_{v \in V}$  (see (5) for the definition of  $X_v$ ). Thus,

$$\begin{aligned} \mathbf{Pr}\left[|\delta'| \leq \left(1 + \frac{\epsilon_h(f)}{8}\right)|\delta|\right] &= \mathbf{Pr}\left[|\delta'| \leq \left(1 + \frac{\epsilon_h(f)}{4}\right)|\delta| - \frac{\epsilon_h(f)}{8}|\delta|\right] \\ &\leq \mathbf{Pr}\left[|\delta'| \leq \left|\mathbf{E}[\delta']\right| - \frac{\epsilon_h(f)}{8}|\delta|\right] \leq 2\exp\left(-\frac{\epsilon_h(f)^2\delta^2}{128\|\pi\|_2^2}\right) \end{aligned}$$

and we obtain the claim.

**Proof of Lemma 4.1(I).** We check the conditions (i) and (ii) of Lemma 4.2 with letting  $\Psi(A) = \lfloor n |\delta(A)| \rfloor$  and  $m = c_1 \sqrt{n} \log n$ .

**Condition (i).** First, we show the following claim that evaluates  $Var[\delta']$ .

 $\triangleright$  Claim 4.4. Under the same assumption as Lemma 4.1(I),

$$\frac{\epsilon_{\text{var}}(f)}{n} \le \mathbf{Var}[\delta'] \le \frac{5C_1^2}{n}$$

holds, where  $\epsilon_{\text{var}}(f) := f(1/2)(1 - f(1/2))$  is a positive constant depending only on f.

Proof of the claim. From Lemma 2.5 and assumptions, we have

$$\left|\frac{\operatorname{Var}[\delta']}{4} - \|\pi\|_2^2 g\left(\frac{1}{2}\right)\right| = \left|\operatorname{Var}[\alpha'] - \|\pi\|_2^2 g\left(\frac{1}{2}\right)\right| \le K_1(g) \left(\|\pi\|_2^2 \frac{|\delta|}{2} + \|\pi\|_3^{3/2} \lambda\right)$$
$$\le \frac{K_1(g)}{n} \left(C_1^2 c_1 \frac{\log n}{\sqrt{n}} + C_1 \epsilon^{3/2}\right) = \frac{1}{n} \cdot o(1).$$

Note that  $\operatorname{Var}[\delta'] = \operatorname{Var}[2\alpha' - 1] = 4 \operatorname{Var}[\alpha']$ . Since  $\|\pi\|_2^2 \ge 1/n$ , we have

$$\frac{\epsilon_{\mathrm{var}}(f)}{n} \leq \frac{4\epsilon_{\mathrm{var}}(f) - o(1)}{n} \leq \mathbf{Var}[\delta'] \leq \frac{4C_1^2 + o(1)}{n} \leq \frac{5C_1^2}{n}.$$

From Corollary A.6 of the full version [38] with letting  $Y_v = \pi(v)(2X_v - 1)$ , we have

$$\mathbf{Pr}\left[|\delta'| \le x\sqrt{\frac{\epsilon_{\mathrm{var}}(f)}{n}}\right] \le \mathbf{Pr}\left[|\delta'| \le x\sqrt{\mathbf{Var}[\delta']}\right] \le \Phi(x) + \frac{5.6\|\pi\|_3^3}{\mathbf{Var}[\delta']^{3/2}}$$
$$\le \Phi(x) + 5.6\frac{\epsilon^3}{n^{3/2}} \cdot \frac{n^{3/2}}{\epsilon_{\mathrm{var}}(f)^{3/2}} = \Phi(x) + o(1)$$
(11)

for any  $x \in \mathbb{R}$ , where  $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-y^2/2} dy$ . Thus, for any constant h > 0, there exists some constant C > 0 such that  $\mathbf{Pr}[\Psi(A') < h\sqrt{n} \mid \Psi(A) \leq m] < C$ , which verifies the condition (i).

**Condition (ii).** Set  $h = \frac{2K(f)}{\epsilon_h(f)}C_1^2$  and assume  $h\sqrt{n} \le \Psi(A) < m$ . Then

$$\frac{2K(f)}{\epsilon_h(f)}\lambda^2 n \le \frac{2K(f)}{\epsilon_h(f)}C_1^2\sqrt{n} = h\sqrt{n} \le \Psi(A) \le |\delta|n = o(n).$$

Thus, we can apply Lemma 4.3 and positive constants  $\gamma, C$  exist such that, for any  $h\sqrt{n} \leq \Psi(A) \leq c_1\sqrt{n}\log n$ ,  $\Pr[\Psi(A') < (1+\gamma)\Psi(A)] < \exp\left(-C\frac{\Psi(A)^2}{n}\right)$ . Note that  $\|\pi\|_2^2 = \Theta(1/n)$  from the assumption. Thus the condition (ii) holds and we can apply Lemma 4.2.

# 4.2 Phase (II): $\frac{2\max\{K(f),8\}}{\epsilon_h(f)} \max\{\lambda^2, \|\pi\|_2 \sqrt{\log n}\} \le |\delta| \le \frac{\epsilon_h(f)}{K(f)}$

**Proof of Lemma 4.1(II).** Since  $|\delta| \geq \frac{16}{\epsilon_h(f)} ||\pi||_2 \sqrt{\log n}$  from assumptions, applying Lemma 4.3 yields  $\Pr\left[|\delta'| \leq \left(1 + \frac{\epsilon_h(f)}{8}\right) |\delta|\right] \leq \frac{2}{n^2}$ . Thus, it holds with probability larger than  $(1 - 2/n^2)^t$  that  $|\delta_t| \geq \left(1 + \frac{\epsilon_h(f)}{8}\right)^t |\delta_0|$  and we obtain the claim by substituting  $t = O(\log |\delta_0|^{-1})$ .

#### 97:16 Quasi-Majority Functional Voting on Expander Graphs

# 4.3 Phase (III): $0 < c_2 \le \alpha \le c_3 < 1/2$

**Proof of Lemma 4.1(III).** We first observe that, for any  $\kappa > 0$ ,

$$\mathbf{Pr}\left[|\alpha' - \mathbf{E}[\alpha']| \ge \kappa \|\pi\|_2 \sqrt{\log n}\right] \le 2n^{-2\kappa} \tag{12}$$

from the Hoeffding theorem. Note that  $\alpha' = \sum_{v \in V} \pi(v) X_v$  for independent indicator random variables  $(X_v)_{v \in V}$ . Hence, applying Lemma 2.5 yields

$$|\alpha' - H_f(\alpha)| \le |\alpha' - \mathbf{E}[\alpha']| + |\mathbf{E}[\alpha'] - H_f(\alpha)| \le ||\pi||_2 \sqrt{\log n} + \frac{K_2(f)}{4} (|\delta| + \lambda)\lambda$$
(13)

with probability larger than  $1 - 2/n^2$ . Then, for any  $\alpha \in [c_2, c_3]$ , it holds with probability larger than  $1 - 2/n^2$  that

$$\alpha' \le H_f(\alpha) + \frac{K(f)}{2}\lambda + \|\pi\|_2 \sqrt{\log n} \le \alpha - \epsilon(f) + \frac{\epsilon(f)}{4} + \frac{\epsilon(f)}{4} \le \alpha - \frac{\epsilon(f)}{2}.$$

Thus, for  $\alpha_0 \in [c_2, c_3]$ ,  $\alpha_t \leq c_2$  within  $t = 2(c_3 - c_2)/\epsilon(f) = O(1)$  steps w.h.p.

# 4.4 Phase (IV): $0 \le \alpha \le \frac{\epsilon_c(f)}{8K(f)}$

We show the following lemma which is useful for proving (IV) and (V) of Lemma 4.1.

▶ Lemma 4.5. Let  $\epsilon \in (0,1]$  be an arbitrary constant. Consider functional voting on an *n*-vertex connected graph with degree distribution  $\pi$ . Suppose that, for some  $\alpha_* \in [0,1]$  and  $K \in [0,1-\epsilon]$ ,  $\mathbf{E}[\alpha'] \leq K\alpha$  holds for any  $A \subseteq V$  satisfying  $\alpha \leq \alpha_*$  and  $\|\pi\|_2 \leq \frac{\epsilon\alpha_*}{2\sqrt{\log n}}$ . Then, for any  $A_0 \subseteq V$  satisfying  $\alpha_0 \leq \alpha_*$ ,  $\alpha_t = 0$  w.h.p. within  $O\left(\frac{\log n}{\log K^{-1}}\right)$  steps.

**Proof.** For any  $\alpha \leq \alpha_*$ , from (12) and assumptions of  $\mathbf{E}[\alpha'] \leq \alpha$  and  $\|\pi\|_2 \leq \frac{\epsilon \alpha_*}{2\sqrt{\log n}}$ , it holds with probability larger than  $1 - 2/n^4$  that

$$\alpha' \le \mathbf{E}[\alpha'] + 2\|\pi\|_2 \sqrt{\log n} \le K\alpha + \epsilon \alpha_* \le (1-\epsilon)\alpha_* + \epsilon \alpha_* = \alpha_*.$$

Thus, for any  $\alpha_0 \leq \alpha_*$ , we have

$$\mathbf{E}[\alpha_{t}] = \sum_{x \le a_{*}} \mathbf{E}[\alpha_{t} | \alpha_{t-1} = x] \mathbf{Pr}[\alpha_{t-1} = x] + \sum_{x > a_{*}} \mathbf{E}[\alpha_{t} | \alpha_{t-1} = x] \mathbf{Pr}[\alpha_{t-1} = x]$$

$$\leq \sum_{x \le a_{*}} Kx \mathbf{Pr}[\alpha_{t-1} = x] + \mathbf{Pr}[\alpha_{t-1} > a_{*}] \le K \mathbf{E}[\alpha_{t-1}] + \frac{2t}{n^{4}}$$

$$\leq \dots \le K^{t} \alpha_{0} + \frac{2t^{2}}{n^{4}} \le K^{t} + \frac{2t^{2}}{n^{4}}.$$

This implies that,  $\mathbf{E}[\alpha_t] = O(n^{-3})$  within  $t = O\left(\frac{\log n}{\log K^{-1}}\right)$  steps. Let  $\pi_{\min} := \min_{v \in V} \pi(v) \ge 1/(2|E|) \ge 1/n^2$ . We obtain the claim from the Markov inequality, which yields  $\mathbf{Pr}[\alpha_t = 0] = 1 - \mathbf{Pr}[\alpha_t \ge \pi_{\min}] \ge 1 - \frac{\mathbf{E}[\alpha_t]}{\pi_{\min}} = 1 - O(1/n)$ .

Proof of Lemma 4.1 of (IV). Combining Lemma 2.5 and Taylor's theorem,

$$\left| \mathbf{E}[\alpha'] - H'_{f}(0)\alpha \right| = \left| \mathbf{E}[\alpha'] - H_{f}(\alpha) + H_{f}(\alpha) - H_{f}(0) - H'_{f}(0)(\alpha - 0) \right|$$
  
$$\leq K_{2}(f)\lambda \left( |\delta| + \lambda \right) \alpha (1 - \alpha) + \frac{K_{2}(H_{f})}{2}\alpha^{2}$$
  
$$\leq 2K(f)\lambda\alpha + \frac{K(f)}{2}\alpha^{2}.$$
(14)

Hence, for any  $\alpha \leq \frac{\epsilon_c(f)}{8K(f)}$ , we have  $\mathbf{E}[\alpha'] \leq \left(H'_f(0) + 2K(f)\lambda + \frac{K(f)}{2}\alpha\right)\alpha \leq \left(1 - \frac{\epsilon_c(f)}{2}\right)\alpha$ . Letting  $\epsilon = \epsilon_c(f)/2$ ,  $K = 1 - \epsilon_c(f)/2$  and  $\alpha_* = \frac{\epsilon_c(f)}{8K(f)}$ , from the assumption,  $\|\pi\|_2 \leq \frac{\epsilon_c(f)^2}{32K(f)\sqrt{\log n}} = \frac{\epsilon\alpha_*}{2\sqrt{\log n}}$ . Thus, we can apply Lemma 4.5 and we obtain the claim.

# 4.5 Phase (V): $H'_f(0) = 0$ and $0 \le \alpha \le \frac{1}{7K(f)}$

Proof of Lemma 4.1(V). In this case, from (14),

$$\mathbf{E}[\alpha'] \le 2K(f)\lambda\alpha + \frac{K(f)}{2}\alpha^2.$$
(15)

We consider the following two cases.

**Case 1.** max  $\left\{\lambda, \sqrt{\frac{\|\pi\|_2 \sqrt{\log n}}{K(f)}}\right\} \le \alpha \le \frac{1}{7K(f)}$ : In this case, combining (12) and (15), it holds with probability larger than  $1 - 2/n^2$  that

$$\alpha' \le \left(\frac{2K(f)\lambda}{\alpha} + \frac{K(f)}{2} + \frac{\|\pi\|_2\sqrt{\log n}}{\alpha^2}\right)\alpha^2 \le \frac{7K(f)}{2}\alpha^2$$

Applying this inequality iteratively, for any  $\alpha_0 \leq 7K(f)^{-1}$ ,

$$\alpha_t \le \frac{7K(f)}{2} \alpha_{t-1}^2 \le \dots \le \frac{2}{7K(f)} \left(\frac{7K(f)}{2} \alpha_0\right)^{2^t} \le \frac{2}{7K(f)2^{2^t}}.$$

holds with probability larger than  $(1 - 2/n^2)^t$ . This implies that, within  $t = O(\log \log n)$ steps,  $\alpha_t \leq \max\left\{\lambda, \sqrt{\frac{\|\pi\|_2\sqrt{\log n}}{K(f)}}\right\}$  w.h.p. Note that  $\max\left\{\lambda, \sqrt{\frac{\|\pi\|_2\sqrt{\log n}}{K(f)}}\right\}$   $\geq \sqrt{\frac{\|\pi\|_2\sqrt{\log n}}{K(f)}} \geq \sqrt{\frac{\sqrt{\log n/n}}{K(f)}}$  since  $\|\pi\|_2^2 \geq 1/n$ . **Case 2.**  $\alpha \leq \max\left\{\lambda, \sqrt{\frac{\|\pi\|_2\sqrt{\log n}}{K(f)}}\right\}$ : Set  $\alpha_* = \max\left\{\lambda, \sqrt{\frac{\|\pi\|_2\sqrt{\log n}}{K(f)}}\right\} \geq \sqrt{\frac{\|\pi\|_2\sqrt{\log n}}{K(f)}}$ ,  $K = \frac{5K(f)}{2}\lambda + \frac{1}{2}\sqrt{K(f)}\|\pi\|_2\sqrt{\log n}$  and  $\epsilon = 1/4$ . Then, from  $\lambda \leq \frac{1}{10K(f)}$  and  $\|\pi\|_2 \leq \frac{1}{64K(f)\sqrt{\log n}}$ , we have  $K \leq 1 - \epsilon$ ,  $\|\pi\|_2 = (\sqrt{\|\pi\|_2})^2 \leq \frac{\sqrt{\|\pi\|_2}}{8\sqrt{K(f)\sqrt{\log n}}} = \sqrt{\frac{\|\pi\|_2\sqrt{\log n}}{K(f)}} \frac{\epsilon}{2\sqrt{\log n}} \leq \frac{\epsilon\alpha_*}{2\sqrt{\log n}}$ ,  $\mathbf{E}[\alpha'] \leq \left(2K(f)\lambda + \frac{K(f)}{2}\alpha\right)\alpha \leq \left(2K(f)\lambda + \frac{K(f)}{2}\lambda + \frac{1}{2}\sqrt{K(f)}\|\pi\|_2\sqrt{\log n}\right)\alpha = K\alpha$ .

Thus, applying Lemma 4.5, we obtain the claim.

# 5 Conclusion

In this paper we propose functional voting as a generalization of several known voting processes. We show that the consensus time is  $O(\log n)$  for any quasi-majority functional voting on  $O(n^{-1/2})$ -expander graphs with balanced degree distributions. This result extends previous works concerning voting processes on expander graphs. Possible future direction of this work includes

- 1. Does  $O(\log n)$  worst-case consensus time holds for quasi-majority functional voting on graphs with less expansion (i.e.,  $\lambda = \omega(n^{-1/2})$ )?
- **2.** Is there some relationship between best-of-k and Majority?

#### — References

- 1 M. A. Abdullah and M. Draief. Global majority consensus by local majority polling on graphs of a given degree sequence. *Discrete Applied Mathematics*, 1(10):1–10, 2015.
- 2 Y. Afek, N. Alon, O. Barad, E. Hornstein, N. Barkai, and Z. Bar-Joseph. A biological solution to a fundamental distributed computing problem. *Science*, 331(6014):183–185, 2011.
- 3 D. Aldous and J. Fill. Reversible Markov chains and random walks on graphs. URL: https://www.stat.berkeley.edu/users/aldous/RWG/book.html.
- 4 L. Becchetti, A. Clementi, E. Natale, F. Pasquale, R. Silvestri, and L. Trevisan. Simple dynamics for plurality consensus. *Distributed Computing*, 30(4):293–306, 2017.
- 5 L. Becchetti, A. Clementi, E. Natale, F. Pasquale, and L. Trevisan. Stabilizing consensus with many opinions. In Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 620–635, 2016.
- 6 I. Benjamini, S.-O. Chan, R. O'Donnell, O. Tamuzc, and L.-Y. Tand. Convergence, unanimity and disagreement in majority dynamics on unimodular graphs and random graphs. *Stochastic Processes and their Applications*, 126(9):2719–2733, 2016.
- 7 P. Berenbrink, A. Clementi, R. Elsässer, P. Kling, F. Mallmann-Trenn, and E. Natale. Ignore or comply? On breaking symmetry in consensus. In Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC), pages 335–344, 2017.
- 8 P. Berenbrink, G. Giakkoupis, Anne-Marie Kermarrec, and F. Mallmann-Trenn. Bounds on the voter model in dynamic networks. *In Proceedings of the 43rd International Colloquium on Automata, Languages, and Programming (ICALP)*, 2016.
- **9** E. Berger. Dynamic monopolies of constant size. *Journal of Combinatorial Theory Series B*, 83(2):191–200, 2001.
- 10 R. Pastor-Satorras C. Castellano, M. A. Muñoz. The non-linear q-voter model. Physical Review E, 80, 2009.
- 11 A. Clementi, M. Ghaffari, L. Gualà, E. Natale, F. Pasquale, and G. Scornavacca. A tight analysis of the parallel undecided-state dynamics with two colors. In Proceedings of the 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS), 117(28):1–15, 2018.
- 12 A. Coja-Oghlan. On the laplacian eigenvalues of  $G_{n,p}$ . Combinatorics, Probability and Computing, 16(6):923–946, 2007.
- 13 Nicholas Cook, Larry Goldstein, and Tobias Johnson. Size biased couplings and the spectral gap for random regular graphs. *The Annals of Probability*, 46(1):72–125, 2018.
- 14 C. Cooper, R. Elsässer, H. Ono, and T. Radzik. Coalescing random walks and voting on connected graphs. SIAM Journal on Discrete Mathematics, 27(4):1748–1758, 2013.
- 15 C. Cooper, R. Elsässer, and T. Radzik. The power of two choices in distributed voting. In Proceedings of the 41st International Colloquium on Automata, Languages, and Programming (ICALP), 2:435–446, 2014.
- 16 C. Cooper, R. Elsässer, T. Radzik, N. Rivera, and T. Shiraga. Fast consensus for voting on general expander graphs. In Proceedings of the 29th International Symposium on Distributed Computing (DISC), pages 248–262, 2015.
- 17 C. Cooper, T. Radzik, N. Rivera, and T. Shiraga. Fast plurality consensus in regular expanders. In Proceedings of the 31st International Symposium on Distributed Computing (DISC), 91(13):1– 16, 2017.
- 18 C. Cooper and N. Rivera. The linear voting model. In Proceedings of the 43rd International Colloquium on Automata, Languages, and Programming (ICALP), 55(144):1–12, 2016.
- 19 E. Cruciani, E. Natale, A. Nusser, and G. Scornavacca. Phase transition of the 2-choices dynamics on core-periphery networks. In Proceedings of the 17th International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pages 777–785, 2018.
- 20 E. Cruciani, E. Natale, and G. Scornavacca. Distributed community detection via metastability of the 2-choices dynamics. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI), pages 6046–6053, 2019.

- 21 B. Doerr, L. A. Goldberg, L. Minder, T. Sauerwald, and C. Scheideler. Stabilizing consensus with the power of two choices. In Proceedings of the 23rd Annual ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 149–158, 2011.
- 22 M. Fischer, N. Lynch, and M. Merritt. Easy impossibility proofs for distributed consensus problems. *Distributed Computing*, 1(1):26–39, 1986.
- 23 A. Frieze and M. Karońsky. Introduction to random graphs. Campridge University Press, 2016.
- 24 B. Gärtner and A. N. Zehmakan. Majority model on random regular graphs. In Proceedings of the 13th Latin American Symposium on Theoretical Informatics (LATIN), pages 572–583, 2018.
- 25 M. Ghaffari and J. Lengler. Nearly-tight analysis for 2-choice and 3-majority consensus dynamics. In Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC), pages 305–313, 2018.
- 26 S. Gilbert and D. Kowalski. Distributed agreement with optimal communication complexity. In Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 965–977, 2010.
- 27 Y. Hassin and D. Peleg. Distributed probabilistic polling and applications to proportionate agreement. *Information and Computation*, 171(2):248–268, 2001.
- 28 N. Kang and R. Rivera. Best-of-three voting on dense graphs. In Proceedings of the 31st ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 115–121, 2019.
- 29 D. A. Levin and Y. Peres. Markov chain and mixing times: second edition. The American Mathematical Society, 2017.
- 30 T. M. Liggett. Interacting particle systems. Springer-Verlag, 1985.
- 31 R. Montenegro and P. Tetali. *Mathematical aspects of mixing times in Markov chains*. NOW Publishers, 2006.
- 32 E. Mossel, J. Neeman, and O. Tamuz. Majority dynamics and aggregation of information in social networks. Autonomous Agents and Multiagent Systems, 28(3):408–429, 2014.
- 33 T. Nakata, H. Imahayashi, and M. Yamashita. Probabilistic local majority voting for the agreement problem on finite graph. In Proceedings of the 5th Annual International Computing and Combinatorics Conference (COCOON), pages 330–338, 1999.
- 34 D. Peleg. Size bounds for dynamic monopolies. *Discrete Applied Mathematics*, 86(2–3):263–273, 1998.
- 35 D. Peleg. Local majorities, coalitions and monopolies in graphs: a review. Theoretical Computer Science, 282(2):231–257, 2002.
- 36 G. Schoenebeck and F. Yu. Consensus of interacting particle systems on Erdős-Rényi graphs. In Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1945–1964, 2018.
- 37 N. Shimizu and T. Shiraga. Phase transitions of best-of-two and best-of-three on stochastic block models. In Proceedings of the 33rd International Symposium on Distributed Computing (DISC), pages 32:1–32:17, 2019.
- 38 N. Shimizu and T. Shiraga. Quasi-majority functional voting on expander graphs. arXiv, 2020. arXiv:2002.07411.
- **39** K. Tikhomirov and P. Youssef. The spectral gap of dense random regular graphs. *The Annals of Probability*, 47(1):362–419, 2019.
- 40 A. N. Zehmakan. Opinion forming in Erdős-Rényi random graph and expanders. In Proceedings of the 29th International Symposium on Algorithms and Computation (ISAAC), pages 4:1–4:13, 2018.