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Abstract
We show that any Algebraic Branching Program (ABP) computing the polynomial

∑n

i=1 x
n
i has

at least Ω(n2) vertices. This improves upon the lower bound of Ω(n logn), which follows from the
classical result of Baur and Strassen [24, 1], and extends the results of Kumar [13], which showed a
quadratic lower bound for homogeneous ABPs computing the same polynomial.

Our proof relies on a notion of depth reduction which is reminiscent of similar statements in
the context of matrix rigidity, and shows that any small enough ABP computing the polynomial∑n

i=1 x
n
i can be depth reduced to essentially a homogeneous ABP of the same size which computes

the polynomial
∑n

i=1 x
n
i + ε(x), for a structured “error polynomial” ε(x). To complete the proof, we

then observe that the lower bound in [13] is robust enough and continues to hold for all polynomials∑n

i=1 x
n
i + ε(x), where ε(x) has the appropriate structure.
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1 Introduction

Proving that there are explicit polynomials which are hard to compute is the template of
many open problems in algebraic complexity theory. Various instances of this problem involve
different definitions of explicitness, hardness and computation.

In the most general form, this is the well known VP vs. VNP question, which asks
whether every “explicit” polynomial has a polynomial-size algebraic circuit. An algebraic
circuit is a very natural (and the most general) algebraic computational model. Informally,
it is a computational device which is given a set of indeterminates {x1, . . . , xn}, and it
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2:2 A Quadratic Lower Bound for Algebraic Branching Programs

can use additions and multiplications (as well as field scalars) to compute a polynomial
f ∈ F[x1, . . . , xn]. The complexity of the circuit is then measured by the number of operations
the circuit performs.

It is trivial to give an explicit n-variate polynomial which requires circuits of size Ω(n).
It is also not hard to show that a degree-d polynomial requires circuits of size Ω(log d),
since the degree can at most double in each operation. Thus, one trivially obtains a
max{n, log d} = Ω(n+ log d) lower bound for an n-variate degree-d polynomial.

A major result of Baur and Strassen [24, 1] gives an explicit n-variate degree-d polynomial
which requires circuits of size at least Ω(n · log d). On the one hand, this is quite impressive
since when d = poly(n), this gives lower bound which is super-linear in n. Such lower bounds
for explicit functions in the analogous model of boolean circuits are a long-standing and
important open problem in boolean circuit complexity. On the other hand, this lower bound
is barely super-linear, whereas ideally one would hope to prove super-polynomial or even
exponential lower bounds (indeed, it can be proved that “most” polynomials require circuits
of size exponential in n).

Despite decades of work, this lower bound has not been improved, even though it has
been reproved (using different techniques [23, 2]). Most of the works thus deal with restricted
models of algebraic computation. For some, there exist exponential or at least super-
polynomial lower bounds. For other, more powerful models, merely improved polynomial
lower bound. We refer the reader to [21] for a comprehensive survey of lower bounds in
algebraic complexity.

One such restricted model of computation for which we have better lower bounds is algeb-
raic formulas. Formulas are simply circuits whose underlying graph is a tree. Kalorkoti [11]
has shown how to adapt Nechiporuk’s method [16], originally developed for boolean formulas,
to prove an almost quadratic lower bound for an n-variate polynomial. 1 This is also the
best lower bound obtainable using this technique.

1.1 Algebraic Branching Programs
Algebraic Branching Programs (ABPs, for short), defined below, are an intermediate model
between algebraic formulas and algebraic circuits. To within polynomial factors, algebraic
formulas can be simulated by ABPs, and ABPs can be simulated by circuits. It is believed
that each of the reverse transformations requires a super-polynomial blow-up in the size (for
some restricted models of computation, this is a known fact [17, 19, 20, 7, 10]).

Polynomial families which can be efficiently computed by algebraic branching programs
form the complexity class VBP, and the determinant is a complete polynomial for this class
under an appropriate notion of reductions. Thus, the famous Permanent vs. Determinant
problem, unbeknownst to many, is in fact equivalent to showing super-polynomial lower
bound for ABPs. In this paper, we focus on the question of proving lower bounds on the
size of algebraic branching programs for explicit polynomial families. We start by formally
defining an algebraic branching program.

I Definition 1 (Algebraic Branching Programs). An Algebraic Branching Program (ABP) is
a layered graph where each edge is labeled by an affine linear form and the first and the last
layer have one vertex each, called the “start” and the “end” vertex respectively.

1 In his paper, Kalorkoti proves an Ω(n3) lower bound for the n× n determinant, which has n2 variables,
so the lower bound not quadratic in the number of variables. However, it is possible to get the statement
claimed here using a straightforward application of his techniques.
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The polynomial computed by an ABP is equal to the sum of the weights of all paths from
the start vertex to the end vertex in the ABP, where the weight of a path is equal to the
product of the labels of all the edges on it.

The size of an ABP is the number of vertices in it.

While Definition 1 is quite standard, there are some small variants of it in the literature
which we now discuss. These distinctions make no difference as far as super-polynomial
lower bounds are concerned, since it can be easily seen that each variant can be simulated by
the other to within polynomial factors, and thus the issues described here are usually left
unaddressed. However, it seems that we are very far from proving super-polynomial lower
bounds for general algebraic branching programs, and in this paper we focus on proving
polynomial (yet still super-linear) lower bounds. In this setting, those issues do affect the
results.

Layered vs. Unlayered

In Definition 1, we have required the graph to be layered. We also consider in this paper
ABPs whose underlying graphs are unlayered, which we call unlayered ABPs. We are able to
prove super-linear (but weaker) lower bounds for this model as well.

One motivation for considering layered graph as the “standard” model is given by the
following interpretation. From the definition, it can be observed that any polynomial
computable by an ABP with d layers and `i vertices in the i-th layer can be written as the
(only) entry of the 1×1 matrix given by the product M :=

∏d−1
i=1 Mi, where Mi is an `i× `i+1

matrix with affine forms as entries. One natural complexity measure of such a representation
is the total number of non-zero entries in those matrices, which is the number of edges in
the ABP. Another natural measure, which can only be smaller, is the sums of dimensions
of the matrices involved in the product, which is the same as the number of vertices in the
underlying graph.

Branching programs are also prevalent in boolean complexity theory, and in particular in
the context of derandomizing the class RL. In this setting again it only makes sense to talk
about layered graphs.

Unlayered ABPs can also be thought of as (a slight generalization of) skew circuits. These
are circuits in which on every multiplication gate, at least one of the operands is a variable
(or more generally, a linear function).

Edge labels

In Definition 1 we have allowed each edge to be labeled by an arbitrary affine linear form in
the variables. This is again quite standard, perhaps inspired by Nisan’s characterization of the
ABP complexity of a non-commutative polynomial as the rank of an associated coefficients
matrix [17], which requires this freedom. A more restrictive definition would only allow each
edge to be labeled by a linear function in 1 variable. On the other hand, an even more
general definition, which we sometimes adopt, is to allow every edge to be labeled by an
arbitrary polynomial of degree at most ∆. In this case we refer to the model as an ABP
with edge labels of degree at most ∆. Thus, the common case is ∆ = 1, but our results are
meaningful even when ∆ = ω(1). Note that this is quite a powerful model, which is allowed
to use polynomials with super-polynomial standard circuit complexity “for free”.

We will recall some of these distinctions in Subsection 1.3, where we discuss previous
results, some of which apply to several of the variants discussed here.
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1.2 Lower Bounds for Algebraic Branching Programs
Our main result is a quadratic lower bound on the size of any algebraic branching program
computing some explicit polynomial.

I Theorem 2. Let F be a field and n ∈ N such that char(F) - n. Then any algebraic branching
program over F computing the polynomial

∑n
i=1 x

n
i is of size at least Ω(n2).

When the ABP’s edge labels are allowed to be polynomials of degree at most ∆, our lower
bound is Ω(n2/∆).

Note that there also exists an algebraic branching program for
∑n

i=1 x
n
i of size O(n2/∆).

A rough sketch of the construction is as follows. The ABP essentially consists of n parallel
paths from the source vertex to the target vertex, with the ith path computing xn

i . If the
labels on the edges are allowed to have degree ≤ ∆, then each path consists of n/∆ edges,
with all the edges on the ith path being labelled by x∆

i (except possibly the last edge, which
is labelled by xn−∆((n/∆)−1)

i ). This shows that the bound we give here is in fact tight.
In a subsequent version of this paper [5], we use the techniques in the proof of Theorem 2

along with some more ideas to prove an Ω(n2) lower bound on the size of algebraic formulas
computing the elementary symmetric polynomials on n variables. The lower bound essentially
settles the question of formula complexity of elementary symmetric polynomials and is the
first (non-trivial) Ω(n2) lower bound for an n variate polynomial for algebraic formulas;
the prior best bound being a lower bound of Ω(n2/ logn) due to Kalorkoti [11]. In fact, it
was known that the techniques used in [11] cannot directly give a lower bound better than
Ω(n2/ logn) for an n variate polynomial.

For the unlayered case, we prove a weaker (but still superlinear) lower bound.

I Theorem 3. Let F be a field and n ∈ N such that char(F) - n. Then any unlayered algebraic
branching program over F with edge labels of degree at most ∆ computing the polynomial∑n

i=1 x
n
i has at least Ω(n logn/(log logn+ log ∆)) edges.

1.3 Previous Work
The best lower bound known for ABPs prior to this work is a lower bound of Ω(n logn)
on the number of edges for the same polynomial

∑n
i=1 x

n
i . This follows from the classical

lower bound of Ω(n logn) by Baur and Strassen [24, 1] on the number of multiplication gates
in any algebraic circuit computing the polynomial

∑n
i=1 x

n
i and the observation that when

converting an ABP to an algebraic circuit, the number of product gates in the resulting
circuit is at most the number of edges in the ABP. Theorem 2 improves upon this bound
quantitatively, and also qualitatively, since the lower bound is on the number of vertices in
the ABP.

For the case of homogeneous ABPs,2 a quadratic lower bound for the polynomial
∑n

i=1 x
n
i

was shown by Kumar [13], and the proofs in this paper build on the ideas in [13]. In a
nutshell, the result in [13] is equivalent to a lower bound for ABPs computing the polynomial∑n

i=1 x
n
i when the number of layers in the ABP is at most n. In this work, we generalize

this to proving essentially the same lower bound as in [13] for ABPs with an unbounded
number of layers.

2 An ABP is homogeneous if the polynomial computed between the start vertex and any other vertex is a
homogeneous polynomial. This condition is essentially equivalent to assuming that the number of layers
in the ABP is upper bounded by the degree of the output polynomial.
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In general, an ABP computing an n-variate homogeneous polynomial of degree poly(n)
can be homogenized with a polynomial blow-up in size. This is proved in a similar manner
to the standard classical result which shows this statement for algebraic circuits [25]. Thus,
much like the discussion following Definition 1, homogeneity is not an issue when one considers
polynomial vs. super-polynomial sizes, but becomes relevant when proving polynomial lower
bounds. In other contexts in algebraic complexity this distinction is even more sharp. For
example, exponential lower bounds for homogeneous depth-3 circuits are well known and
easy to prove [18], but strong enough exponential lower bounds for non-homogeneous depth-3
circuits would separate VP from VNP [9].

For unlayered ABPs, the situation is more complex. If the edge labels are only functions of
one variable, it is possible to adapt Nechiporuk’s method [16] in order to obtain a lower bound
of Ω̃(n3/2) (for a different polynomial than we consider). This is an argument attributed
to Pudlák and sketched by Karchmer and Wigderson [12] for the boolean model of parity
branching programs, but can be applied to the algebraic setting. However, this argument does
not extend to the case where the edge labels are arbitrary linear or low-degree polynomials
in the n variables. The crux of Nechiporuk’s argument is to partition the variables into
m disjoint sets, to argue (using counting or dimension arguments) that the number of
edges labeled by variables from each set must be somewhat large3, and then to sum the
contributions over all m sets. This is hard to implement in models where a single edge can
have a “global” access to all variables, since it is not clear how to avoid over-counting in
this case.

As mentioned above, the lower bound of Baur-Strassen does hold in the unlayered case,
assuming the edge labels are linear functions in the variables. When we allow edge labels of
degree at most ∆ for some ∆ ≥ 2, their technique does not seem to carry over. Indeed, even
if we equip the circuit with the ability to compute such low-degree polynomials “for free”, a
key step in the Baur-Strassen proof is the claim that if a polynomial f has a circuit of size τ ,
then there is a circuit of size O(τ) which computes all its first order partial derivatives, and
this statement does not seem to hold in this new model.

It is possible to get an Ω(n logn/ log ∆) lower bound for this model, for a different
polynomial, by suitably extending the techniques of Ben-Or [2, 3]. Our lower bounds are
weaker by at most a doubly-logarithmic factor; however, the techniques are completely
different. Ben-Or’s proofs rely as a black-box on strong modern results in algebraic geometry,
whereas our proofs are much more elementary.

Detereminantal Complexity

Another model of computation in algebraic complexity theory, which is related to the
discussions in this paper is the notion of determinantal complexity. Given a polynomial
f ∈ F[x] of degree d, the determinantal complexity of f is defined to be the smallest k for
which there is a k × k matrix M with affine forms in F[x] as entries, such that det(M) = f .

The best lower bound known on the determinantal complexity was hown by Mignnon and
Ressayre [15, 4], where they show an n/2 lower bound for an n variate polynomial family.
Over the field of real numbers, this bound was improved by Yabe [27], to n.

3 This is usually guaranteed by constructing a function or a polynomial with the property that given a
fixed set S in the partition, there are many subfunctions or subpolynomials on the variables of S that
can be obtained by different restrictions of the variables outside of S.
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Mahajan and Vinay [14] showed that the n × n determinant polynomial has an ABP
of size O(n3). Thus, note that a strong enough lower bound on the ABP complexity of a
polynomial can give a lower bound on its determinantal complexity as well. However, since
the lower bound here is only quadratic, nothing non-trivial can be said in this case, even
though the techniques here could potentially be useful.

1.4 Proof Overview
The first part in the proof of Theorem 2 is an extension of the lower bound proved in [13] for
ABPs with at most n layers. This straightforward but conceptually important adaptation
shows that a similar lower bound holds for any polynomial of the form

n∑
i=1

xn
i + ε(x) ,

where the suggestively named ε(x) should be thought of as an “error term” which is “negligible”
as far as the proof of [13] is concerned. The exact structure we require is that ε(x) is of the
form

∑r
i=1 PiQi +R, where Pi, Qi are polynomials with no constant term and deg(R) ≤ n−1.

The parameter r measures the “size” of the error, which we want to keep small, and the
lower bound holds if, e.g., r ≤ n/10.

To argue about ABPs with d layers, with d > n, we use a notion of depth reduction which
is reminiscent of similar statements in the context of matrix rigidity. We show that unless
the size τ of the ABP is too large to begin with (in which case there is nothing to prove), it
is possible to find a small set of vertices (of size about η = τ/d) whose removal adds a small
error term ε(x) as above with at most η summands, but also reduces the depth of the ABP
by a constant factor. Repeatedly applying this operation O(logn) times eventually gives an
ABP of depth at most n while ensuring that we have not accumulated too much “error”,4 so
that we can apply the lower bound from the previous paragraph.

In the full proof we have to be a bit more careful when arguing about the ABP along the
steps of the proof above. The details are presented in Section 3.

The proof of Theorem 3 follows the same strategy, although the main impediment is that
general undirected graphs can have much more complex structure then layered graphs. One
of the main ingredients in our proof is (a small variant of) a famous lemma of Valiant [26],
which shows that for every graph of depth 2k with m edges, it is possible to find a set of
edges, of size at most m/k, whose removal reduces the depth of the graph to 2k−1. This
lemma helps us identify a small set of vertices which can reduce the depth of the graph by a
constant factor while again accumulating small error terms.

Interestingly, Valiant originally proved this lemma in a different context, where he showed
that linear algebraic circuits of depth O(logn) and size O(n) can be reduced to a special
type of depth-2 circuits (and thus strong lower bounds on such circuits imply super-linear
lower bounds on circuits of depth O(logn)). This lemma can be also used to show that
boolean circuits of depth O(logn) and size O(n) can be converted to depth-3 circuits of size
2o(n), and thus again strong lower bounds on depth-3 circuits will imply super-linear lower
bounds on circuits of depth O(logn). Both of these questions continue to be well known

4 It takes some care in showing that the total number of error terms accumulated is at most n/10 as
opposed to the obvious upper bound of O(n logn). In particular, we observe that the number of error
terms can be upper bounded by a geometric progression with first term roughly τ/n and common ratio
being a constant less than 1.
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open problems in algebraic and boolean complexity, and to the best of our knowledge, our
proof is the first time Valiant’s lemma is successfully used in order to prove circuit lower
bounds for explicit functions or polynomials.

2 Notations and Preliminaries

All logarithms in the paper are base 2.
We use some standard graph theory terminology: If G is a directed graph and (u, v) is an

edge, v is called the head of the edge and u the tail. Our directed graphs are always acyclic
with designated source vertex s and sink vertex t. The depth of a vertex v, denoted depth(v),
is the length (in edges) of a longest path from s to v. The depth of the graph, denoted by
depth(G), is the depth of t.

For any two vertices u and v in an ABP, the polynomial computed between u and v is
the sum of weights of all paths between u and v in the ABP. We denote this by [u, v].

The formal degree of a vertex u in an ABP denoted fdeg(u), is defined inductively as
follows: If s is the start vertex of the ABP, fdeg(s) = 0. If u is a vertex with incoming edges
from u1, . . . , uk, labeled by non-zero polynomials `1, . . . , `k, respectively, then

fdeg(u) = max
i∈[k]
{deg(`i) + fdeg(ui)} .

It follows by induction that for every vertex u, deg([s, u]) ≤ fdeg(u) (however, cancellations
can allow for arbitrary gaps between the two). Also, note that the formal degree of vertices
is monotonically non-decreasing along any path from the source vertex to the sink vertex.
The formal degree of the ABP is the maximal formal degree of any vertex in it.

We sometimes denote by x the vector of variables (x1, . . . , xn), where n is understood
from the context. Similarly we use 0 to denote the n-dimensional vector (0, 0, . . . , 0).

2.1 A Decomposition Lemma
The following lemma gives a decomposition of a (possibly unlayered) ABP in terms of the
intermediate polynomials it computes. Its proof closely resembles that of Lemma 3.5 of [13].
For completeness we prove it here for a slightly more general model.

I Lemma 4 (Kumar [13]). Let B be a (possibly unlayered) algebraic branching program
which computes a degree d polynomial P ∈ F[x1, . . . xn], and has formal degree d. Further,
assume that the edges of B are labelled by arbitrary polynomials of degree at most ∆, where
1 ≤ ∆ ≤ d/2. Set d′ = bd/∆c.

For any i ∈ {1, 2, . . . , d′ − 1}, let Si = {ui,1, ui,2, . . . , ui,m} be the set of all vertices in B
whose formal degree is in the interval [i∆, (i+ 1)∆).

Then, there exist polynomials Qi,1, Qi,2, . . . , Qi,m and Ri, each of degree at most d − 1
such that

P =
m∑

j=1
[s, ui,j ] ·Qi,j +Ri .

Proof. Fix i as above and set Si = {ui,1, ui,2, . . . , ui,m} as above (observe that since each
edge label is of degree at most ∆, Si is non empty). Further suppose, without loss of
generality, that the elements of Si are ordered such that there is no directed path from ui,j

to ui,j′ for j′ > j.

CCC 2020



2:8 A Quadratic Lower Bound for Algebraic Branching Programs

Consider the unlayered ABP B1 obtained from B by erasing all incoming edges to ui,1,
and multiplying all the labels of the outgoing edges from ui,1 by a new variable y1. The
ABP B1 now computes a polynomial of the form

P ′(y1, x1, . . . , xn) = y1 ·Qi,1 +Ri,1

where P = P ′([s, ui,1], x1, . . . , xn). Ri,1 is the polynomial obtained from B1 by setting y1
to zero, or equivalently, removing ui,1 and all its outgoing edges. We continue in the same
manner with ui,2, . . . , ui,m to obtain

P =
m∑

j=1
[s, ui,j ] ·Qi,j +Ri.

Indeed, observe that since there is no path from ui,j to ui,j′ for j′ > j, removing ui,j does not
change [s, ui,j′ ]. The bound on the degrees of Qi,j is immediate from the fact that the formal
degree of the ABP is at most d and fdeg(ui,j) ≥ 1. It remains to argue the deg(Ri) ≤ d− 1.

The polynomial Ri is obtained from B by erasing all the vertices in Si and the edges
touching them. We will show that every path in the corresponding ABP computes a
polynomial of degree at most d − 1. Let s = v1, v2, . . . , vr = t be such a path, which is
also a path in B. Let vk be the minimal vertex in the path whose degree (in B) is at least
(i+ 1)∆ (if no such vk exists, the proposition follows). As vk−1 6∈ Si, the formal degree of
vk−1 is at most i∆− 1. The degree of the polynomial computed by this path is thus at most
i∆− 1 + ∆ +D = (i+ 1)∆− 1 +D, where D is the degree of product of the labels on the
path vk, vk+1, . . . , t. To complete the proof, it remains to be shown that D ≤ d− (i+ 1)∆.

Indeed, if D ≥ d− (i+ 1)∆ + 1 then since the degree of vk is at least (i+ 1)∆, there would
be in B a path of formal degree at least (i+ 1)∆ +D ≥ d+ 1, contradicting the assumption
on B. J

2.2 Variety and its Dimension
One of the important notions we will use in our proofs is that of an affine algebraic variety.
Given a set of polynomials, the algebraic variety defined by these polynomials is defined to
be the set of their common zeros. That is, if S is a set of polynomials on n variables over a
field F, then

V = {a ∈ Fn : ∀f ∈ S, f(a) = 0} .

Given a variety, an important property that is studied is its dimension. Intuitively, it
is an appropriate generalisation of the notion of dimension for linear spaces. We will not
be defining it formally here and refer the interested reader to the book by Cox, Little and
O’Shea [6]. However we state formally the properties, of dimensions of varieties, that we will
be using in our proofs.

I Lemma 5 (Section 2.8 in [22]). Let S be a set of polynomials in n variables over an
algebraically closed field F such that |S| ≤ n. Let V = V(S) be the set of common zeros of
polynomials in S. If V is non-empty, then the dimension of V is at least n− |S|.

I Lemma 6 (Chapter 4 in [6]). Let F be an algebraically closed field, and let V1 ⊆ Fn and
V2 ⊆ Fn be two affine varieties such that V1 ⊆ V2. Then, the dimension of V1 is at most the
dimension of V2.
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3 A Lower Bound for Algebraic Branching Programs

In this section we prove Theorem 2. We start by restating it.

I Theorem 7. Let n ∈ N and let F be a field such that char(F) - n. If A is an algebraic
branching program with edge labels of degree at most ∆ that computes the polynomial

∑n
i=1 x

n
i ,

then the size of A is at least

Ω
(
n2

∆

)
.

For technical reasons, we work with a slightly more general model which we call mul-
tilayered ABPs, which we now define.

I Definition 8 (Multilayered ABP). Let A1, . . . ,Ak be k ABPs with d1, . . . , dk layers and
τ1, . . . , τk vertices, respectively. A multilayered ABP A, denoted by A =

∑k
i=1Ai, is the ABP

obtained by placing A1,A2, . . . ,Ak in parallel and identifying their start and end vertices
respectively. Thus, the polynomial computed by A is

∑k
i=1[Ai], where [Ai] is the polynomial

computed by Ai.
The number of layers of A is d := max {d1, . . . , dk}. The size of A is the number of

vertices in A, and thus equals

|A| := 2 +
∑

i

(τi − 2) .

This model is an intermediate model between (layered) ABPs and unlayered ABPs: given
a multilayered ABP of size τ it is straightforward to construct an unlayered ABP of size
O(τ) which computes the same polynomial.

3.1 A Robust Lower Bound for ABPs of Formal Degree at most n
In this section, we prove a lower bound for the case where the formal degree of every vertex
in the ABP is at most n. In fact, Kumar [13] has already proved a quadratic lower bound
for this case.

I Theorem 9 (Kumar [13]). Let n ∈ N and let F be a field such that char(F) - n. Then
any algebraic branching program of formal degree at most n which computes the polynomial∑n

i=1 x
n
i has at least Ω(n2) vertices.

However, to prove Theorem 7, we need the following more “robust” version of Theorem 9,
which gives a lower bound for a larger class of polynomials. For completeness, we also sketch
an argument for the proof which is a minor variation of the proof of Theorem 9.

I Theorem 10. Let n ∈ N and let F be field such that char(F) - n. Let A1(x), . . . , Ar(x),
B1(x), . . . , Br(x) and R(x) be polynomials such that for every i, Ai(0) = Bi(0) = 0 and R
is a polynomial of degree at most n− 1. Then, any algebraic branching program over F, of
formal degree at most n and edge labels of degree at most ∆ ≤ n/10, which computes the
polynomial

n∑
i=1

xn
i +

r∑
j=1

Aj ·Bj +R

has at least (n/2−r)n
2∆ vertices.

CCC 2020



2:10 A Quadratic Lower Bound for Algebraic Branching Programs

The proof of the theorem follows from Lemma 4 and the following lemma which is a
slight generalization of Lemma 3.1 in [13]. We include a proof for completeness.

I Lemma 11. Let n ∈ N, and let F be an algebraically closed field such that char(F) - n.
Let {P1, . . . , Pm, Q1, . . . , Qm, A1, . . . , Ar, B1, . . . , Br} be a set of polynomials in F[x1, . . . , xn]
such that the set of their common zeros

V = V(P1, . . . , Pm, Q1, . . . , Qm, A1, . . . , Ar, B1, . . . , Br) ⊆ Fn

is non-empty. Finally, suppose R is a polynomial in F[x] of degree at most n− 1, such that
n∑

i=1
xn

i +
r∑

j=1
Aj ·Bj = R+

m∑
i=1

Pi ·Qi.

Then, m ≥ n
2 − r.

Proof. Since V 6= ∅, by Lemma 5, dim(V) ≥ n − 2m − 2r. Thus, the set of zeros with
multiplicity two of

n∑
i=1

xn
i −R =

m∑
i=1

Pi ·Qi −
r∑

j=1
Aj ·Bj ,

has dimension at least n− 2m− 2r. Now if S is the set of common zeros of the set of all first
order partial derivatives of

∑n
i=1 x

n
i −R, V ⊆ S. Thus, by Lemma 6, dim(S) ≥ n− 2m− 2r.

Up to scaling by n (which is non-zero in F, by assumption), the set of all first order partial
derivatives of

∑n
i=1 x

n
i −R is given by{

xn−1
i − 1

n
∂xi

R

}
i∈[n]

.

Thus, the statement of this lemma immediately follows from the following claim.

B Claim 12 (Lemma 3.2 in [13]). Let F be an algebraically closed field, and D a positive
natural number. For every choice of polynomials g1, g2, . . . gn ∈ F[x] of degree at most D− 1,
the dimension of the variety

V(xD
1 − g1, x

D
2 − g2, . . . , x

D
n − gn)

is zero.

Indeed, the above claim shows that 0 = dim(S) ≥ n − 2m − 2r, and so m ≥ n
2 − r. This

completes the proof of Lemma 11. J

We now use Lemma 4 and Lemma 11 to complete the proof of Theorem 10.

Proof of Theorem 10. Let B be an algebraic branching program of formal degree at most
n, edge labels of degree at most ∆ ≤ n/10, and with start vertex s and end vertex t, which
computes

n∑
i=1

xn
i +

r∑
j=1

Aj ·Bj +R.

We may assume without loss of generality that F is algebraically closed, by interpreting B as
an ABP over the algebraic closure of F, if necessary.
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Let n′ = bn/∆c, fix k ∈ {1, 2, . . . , n′ − 1}, and let Vk = {vk,1, vk,2, . . . , vk,m} be the set of
all vertices in B whose formal degree lies in the interval [k∆, (k+ 1)∆). Letting P ′j = [s, vk,j ],
by Lemma 4, there exist polynomials Q′1, Q′2, . . . , Q′m and R′, each of degree at most n− 1
such that

n∑
i=1

xn
i +

r∑
j=1

Aj ·Bj +R =
m∑

j=1
P ′j ·Q′j +R′ .

Let αj , βj be the constant terms in P ′j , Q′j respectively. Then by defining

Pj = P ′j − αj and Qj = Q′j − βj ,

we have that
n∑

i=1
xn

i +
r∑

j=1
Aj ·Bj = R′′ +

m∑
j=1

Pj ·Qj .

Here, R′′ = −R+R′ +
∑m

j=1(αj ·Q′j + βj · P ′j + αjβj). We now have that for every i, the
constant terms of Pi, Qi are zero and deg(R′′) ≤ n− 1. Let

V = V(P1, . . . , Pm, Q1, . . . , Qm, A1, . . . , Ar, B1, . . . , Br).

Then 0 ∈ V, and so V 6= ∅. Thus by Lemma 11, we know that m ≥ n
2 − r.

Finally, for k 6= k′ ∈ {1, 2, . . . , n′ − 1}, Vk ∩ Vk′ = ∅. Thus, the number of vertices in B
must be at least(n

2 − r
)
· (n′ − 1) ≥

(n
2 − r

)
· n2∆ . J

3.2 A lower bound for the general case

The following lemma shows how we can obtain, given an ABP with d layers which computes
a polynomial F , a multilayered ABP, whose number of layers is significantly smaller, which
computes F plus a small “error term”.

I Lemma 13. Let A be an ABP over a field F with d layers, which computes the polynomial
F and has m vertices. Let s and t be the start and end vertices of A respectively, and let
L =

{
u1, u2, . . . , u|L|

}
be the set of vertices in the `-th layer of A. For every i ∈ {1, 2, . . . , |L|},

let αi and βi be the constant terms of [s, ui] and [ui, t] respectively. Furthermore, let Pi and
Qi be polynomials such that [s, ui] = Pi + αi and [ui, t] = Qi + βi.

Then, there is a multilayered ABP A′, with at most max{`, d− `+ 1} layers and size at
most |A| that computes the polynomial

F −
|L|∑
i=1

Pi ·Qi +
|L|∑
i=1

αi · βi.

Proof. Let u1, u2, . . . , u|L| be the vertices in L as described, so that

F = [s, t] =
|L|∑
i=1

[s, ui] · [ui, t] .
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2:12 A Quadratic Lower Bound for Algebraic Branching Programs

Further, for every i ∈ {1, 2, . . . , |L|}, [s, ui] = Pi +αi and [ui, t] = Qi +βi, where the constant
terms of Pi and Qi are zero (by definition). Having set up this notation, we can thus express
the polynomial F computed by A as

F = [s, t] =
|L|∑
i=1

(Pi + αi) · (Qi + βi) .

On further rearrangement, this gives

F −

 |L|∑
i=1

Pi ·Qi

+

 |L|∑
i=1

αi · βi

 =

 |L|∑
i=1

αi · (Qi + βi)

+

 |L|∑
i=1

(Pi + αi) · βi

 .

This is equivalent to the following expression.

F −

 |L|∑
i=1

Pi ·Qi

+

 |L|∑
i=1

αi · βi

 =

 |L|∑
i=1

αi · [ui, t]

+

 |L|∑
i=1

[s, ui] · βi

 .

Now, observe that the polynomial
∑|L|

i=1[s, ui] · βi is computable by an ABP B with ` + 1
layers, obtained by just keeping the vertices and edges within first ` layers of A and the end
vertex t, deleting all other vertices and edges, and connecting the vertex ui in the `-th layer to
t by an edge of weight βi. Similarly, the polynomial

∑|L|
i=1 αi · [ui, t] is computable by an ABP

C with at most (d− `+ 1) + 1 layers, whose set of vertices is s along the vertices in the layers
`, `+ 1, `+ 2, . . . , d of A. From the definition of B and C, it follows that the multilayered
ABP Ã obtained by taking the sum of B and C has at most max {`+ 1, d− `+ 2} layers.

We are almost done with the proof of the lemma, except for the upper bound on the
number of vertices of the resulting multilayered ABP Ã, and the fact that the upper bound
on the depth is slightly weaker than claimed. Both these issues can be solved simultaneously.

The vertices in L appear in both the ABP B and the ABP C and are counted twice in
the size of Ã. However, every other vertex is counted exactly once. Hence,

|B|+ |C| = |A|+ |L| . (1)

In order to fix this issue, we first observe that the edges between the vertices in the `-th layer
of B and the end vertex t are labeled by β1, β2, . . . , β|L|, all of which are field constants. In
the following claim, we argue that for ABPs with this additional structure, the last layer is
redundant and can be removed.

B Claim 14. LetM be an ABP over F with k + 1 layers and edge labels of degree at most
∆ such that the labels of all the edges between the k-th layer ofM and its end vertex are
scalars in F. Then, there is an ABPM′ with k layers computing the same polynomial asM,
with edge labels of degree at most ∆, such that

|M′| ≤ |M| − |V | ,

where V is the set of vertices in the k-th layer ofM.

An analogous statement, with an identical proof, is true if we assume that all edge labels
between the first and second layer are scalars in F.

We first use Claim 14 to complete the proof of the lemma. As observed above, the edge
labels between the last layer L of B and its end vertex are all constants. Hence, by Claim 14,
there is an ABP B′ which computes the same polynomial as B such that |B′| ≤ |B| − |L|,
and B′ has only ` layers. Similarly, we can obtain an ABP C′ with at most d− `+ 1 layers.
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We consider the multilayered ABP A′ by taking the sum of B′ and C′. Clearly, the
number of layers in A′ is at most max{`, d− `+ 1} and the size is at most

|A′| ≤ |B′|+ |C′| ≤ (|B| − |L|) + (|C| − |L|) ≤ |A| .

Here, the second inequality follows by Claim 14 and the last one follows by Equation 1. To
complete the proof of the lemma, we now prove Claim 14. J

Proof of Claim 14. For the proof of the claim, we focus on the k-th and (k − 1)-st layer of
M. To this end, we first set up some notation. Let {v1, v2, . . . , vr} be the set of vertices in
the k-th layer ofM, {u1, u2, . . . , ur′} be the set of vertices in (k− 1)-st layer ofM, and a, b
denote the start and the end vertices ofM respectively. Then, the polynomial computed by
M, can be decomposed as

[a, b] =
r∑

i=1
[a, vi] · [vi, b] .

Note that (vi, b) is an edge in the ABP. Similarly, the polynomial [a, vi] can be written as

[a, vi] =
r′∑

j=1
[a, uj ] · [uj , vi] .

Combining the two expressions together, we get

[a, b] =
r∑

i=1
[vi, b] ·

 r′∑
j=1

[uj , vi] · [a, uj ]

 ,

which on further rearrangement, gives us

[a, b] =
r′∑

j=1

(
r∑

i=1
[vi, b][uj , vi]

)
· [a, uj ] . (2)

From the hypothesis of the claim, we know that for every i ∈ [r], the edge label [vi, b] is a
field constant, and the edge label [uj , vi] is a polynomial of degree at most ∆. Thus, for
every j ∈ [r′], the expression (

∑r
i=1[ui, b][uj , vi]) is a polynomial of degree at most ∆.

This gives us the following natural construction for the ABPM′ from M. We delete
the vertices v1, v2, . . . , vr in M (and hence, all edges incident to them), and for every
j ∈ {1, 2, . . . , r′}, we connect the vertex uj with the end vertex b using an edge with
label (

∑r
i=1[vi, b][uj , vi]). The upper bound on the size and the number of layers ofM′ is

immediate from the construction, and that it computes the same polynomial asM follows
from Equation 2. C

We now state and prove a simple generalization of Lemma 13 for a multilayered ABP.

I Lemma 15. Let A =
∑m

i=1Ai be a multilayered ABP with d layers over a field F
computing the polynomial F , such that each Ai is an ABP with di layers. Also, let `i,j be
the number of vertices in the j-th layer of Ai (`i,j = 0 if Ai has fewer than j layers), and
` = minj∈(d/3,2d/3) {

∑m
i=1 `i,j}.

Then, there is a multilayered ABP with at most 2d/3 layers and size at most |A| that
computes a polynomial of the form

F −
∑̀
i=1

Pi ·Qi + δ ,

where {P1, . . . , P`, Q1, . . . , Q`} is a set of non-constant polynomials with constant term zero
and δ ∈ F.
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Proof. Let j0 ∈ (d/3, 2d/3) be the natural number which minimizes the quantity
∑m

i=1 `i,j ,
and let S ⊆ [m] be the set of all indices i such that Ai has at least j0 layers. Let A′ =

∑
i∈S Ai

and A′′ =
∑

i/∈S Ai. Thus,

A = A′ +A′′.

Here, A′′ =
∑

i/∈S Ai is a multilayered ABP with at most 2d/3 layers. Moreover, |A| =
|A′|+ |A′′|.

The idea now is to apply Lemma 13 to every ABP in A′. For every i ∈ S, we know that
there exist some polynomials Pi,1, . . . , Pi,`i,j0

, Qi,1, . . . , Qi,`i,j0
with constant terms zero and

a constant δi, such that

Fi −
`i,j0∑
r=0

Pi,rQi,r + δi

can be computed by a multilayered ABP. Let us denote this multilayered ABP by Bi. From
Lemma 13, we know that Bi has at most max{j0, di − j0 + 1} ≤ 2d/3 layers and size at most
|Ai|. Taking a sum over all i ∈ S and re-indexing the summands, we get that there exist
polynomials P1, . . . , P`, Q1, . . . , Q` with constant terms zero and a constant δ such that the
polynomial

∑
i∈S

Fi −
∑̀
r=0

PrQr + δ

is computable by a multilayered ABP B =
∑

i∈S Bi with at most 2d/3 layers and size at
most

∑
i∈S |Ai| ≤ |A′|.

Finally, by combining the multilayered ABPs B and A′′, we get that the polynomial

F −
∑̀
r=0

PrQr + δ

is computable by a multilayered ABP with at most 2d/3 layers and size at most |A|. J

We now use Lemma 15 to prove our main result, which we restate once more.

I Theorem 7. Let n ∈ N and let F be a field such that char(F) - n. If A is an algebraic
branching program with edge labels of degree at most ∆ that computes the polynomial

∑n
i=1 x

n
i ,

then the size of A is at least

Ω
(
n2

∆

)
.

Proof. Let A be a multilayered ABP with d0 layers which computes the polynomial
∑n

i=1 x
n
i .

As before we may assume without loss of generality that the underlying field F is algebraically
closed. Note that if d0 is at most n/∆, then the formal degree of A is at most d0∆ ≤ n.
Thus, by Theorem 10, we know that |A| is at least Ω(n2/∆) and we are done. Also, if
d0 > n2/∆, then again we have our lower bound since each layer of A must have at least one
vertex. Thus, we can assume that n/∆ ≤ d0 ≤ n2/∆.

The proof idea is to iteratively make changes to A till we get a multilayered ABP A′ of
formal degree at most n that computes a polynomial of the type

n∑
i=1

xn
i +

r∑
j=1

Aj ·Bj +R



P. Chatterjee, M. Kumar, A. She, and B. L. Volk 2:15

where r ≤ n/10 and A1(x), . . . , Ar(x), B1(x), . . . , Br(x), R(x) are polynomials such that for
every i, Ai(0) = Bi(0) = 0 and R has degree at most n − 1. Once we have this, we can
invoke Theorem 10 and get the required lower bound.

We now explain how to iteratively obtain A′ from A. In one step, we ensure the following.

B Claim 16. Let Ak be a multilayered ABP with edge labels of degree at most ∆, dk ≥ n/∆
layers and size at most τ that computes a polynomial of the form

∑n
i=1 x

n
i +

∑r
j=1Aj ·

Bj +R where A1(x), . . . , Ar(x), B1(x), . . . , Br(x), R(x) are polynomials such that for every
j, Aj(0) = Bj(0) = 0 and R has degree at most n− 1.

If τ ≤ 0.001n2/∆, then there exists a multilayered ABP Ak+1 with at most 2dk/3 layers
and size at most τ which computes a polynomial of the form

n∑
i=1

xn
i +

r′∑
j=1

A′j ·B′j +R′ ,

such that r′ ≤ r+0.005 n2

∆·dk
and A′1(x), . . . , A′r′(x), B′1(x), . . . , B′r′(x), R′(x) are polynomials

such that for every i, A′i(0) = B′i(0) = 0 and R′ has degree at most n− 1.

Before moving on to the proof of Claim 16, we first use it to complete the proof of
Theorem 7. Let us set A0 = A. Then, A0 is a multilayered ABP with d0 layers and size at
most τ that computes the polynomial

∑n
i=1 x

n
i .

If τ ≥ 0.001n2/∆, the statement of the theorem follows. Otherwise, we apply Claim 16
iteratively K times, as long as the number of layers is more than n/∆, to eventually get a
multilayered ABP A′ = AK with d′ ≤ n/∆ layers. Let d0, . . . , dK−1, dK denote the number
of layers in each ABP in this sequence, so that dK−1 > n/∆, and dk ≤ 2dk−1/3 for k ∈ [K].
A′ is an ABP with at most n/∆ layers and size at most τ , which by induction, computes a
polynomial of the form

n∑
i=1

xn
i +

r∑
j=1

Aj ·Bj +R ,

where A1(x), . . . , Ar(x), B1(x), . . . , Br(x), R(x) are polynomials such that for every i,
Ai(0) = Bi(0) = 0 and R has degree at most n− 1. Further, the number of error terms, r, is
at most

0.005n2

∆

(
1

dK−1
+ 1
dK−2

+ · · ·+ 1
d0

)
.

Since dk ≤ 2
3 · dk−1, we have that 1

dk−1
≤ 2

3 ·
1

dk
for all k ∈ [K], so that

r ≤ 0.005n2

∆ · 1
1− 2/3 ·

1
dK−1

≤ n

10

as dK−1 ≥ n/∆.
At this point, since the formal degree is at most n, using Theorem 10 we get

τ ≥ |A′| ≥ (n/2− r)n
2∆ = Ω

(
n2

∆

)
. J

To complete the proof of Theorem 7, we now prove Claim 16.
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Proof of Claim 16. Let Ak =
∑m

i=1Ak,i, and for j ∈ [dk], let `i,j be the number of vertices
in layer j of Ak,i. Recall that if the number of layers in Ak,i is strictly less than j, then we
set `i,j = 0. Let ` be the total number of vertices in the middle layers of Ak, defined as

` =
m∑

i=1

 ∑
j∈(dk/3,2dk/3)

`i,j

 .

Since ` ≤ τ ≤ 0.001n2

∆ , by averaging, we know that there is a j0 ∈ (dk/3, 2dk/3), such that

`j0 =
m∑

i=1
`i,j0 ≤

`

dk/3
≤ 0.001n2

∆ · 1
dk/3

≤ 0.005 n2

∆ · dk
.

This condition, together with Lemma 15, tells us that there is a multilayered ABP A′k+1
with at most 2dk/3 layers and size at most τ that computes a polynomial of the form

n∑
i=1

xn
i +

r∑
j=1

Aj ·Bj +R−
`j0∑
i=1

Pi ·Qi + δ ,

where P1, . . . , P`, Q1, . . . , Q` are a set of non-constant polynomials with constant term zero
and δ ∈ F. Since `j0 ≤ 0.005 n2

∆·dk
, the claim follows. C

4 Unlayered Algebraic Branching Programs

In this section, we prove Theorem 3. We begin with the following definition.

I Definition 17. Let A be an unlayered ABP over F. Let s and t denote the start and end
vertices of A, respectively, and let v 6= s, t be a vertex in A. Denote by α ∈ F the constant
term of [s, v] and by β ∈ F the constant term of [v, t].

The cut of A with respect to v, denoted cut(A, v), is the unlayered ABP obtained from A
using the following sequence of operations:
1. Duplicate the vertex v (along with its incoming and outgoing edges). Let v1, v2 denote the

two copies of v.
2. Erase all outgoing edges of v1, and connect v1 to t by a new edge labeled β.
3. Erase all incoming edges of v2, and connect s to v2 by a new edge labeled α.

We now prove some basic properties of the construction in Definition 17.

B Claim 18. Let A be an unlayered ABP over F computing a polynomial F , and let v be a
vertex in A. Denote A′ = cut(A, v). Denote by d the depth of A and by dv the depth of v in
A. Then the following properties hold:
1. A′ has 1 more vertex and 2 more edges than A.
2. The depth of A′ is at most

max {depth(A \ {v}), dv + 1, d− dv + 1} ,

where A \ {v} is the ABP obtained from A by erasing v and all of its adjacent edges.
3. A′ computes a polynomial of the form F − P ·Q− δ where P and Q have no constant

term, and δ ∈ F.
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Proof. The first property is immediate from the construction. The second property follows
from the following reasoning: each path in A′ is of exactly one of the following types: (a)
misses both v1 and v2, (b) passes through v1, or (c) passes through v2. In case (a), the path
also appears in the graph of A \ {v}. In case (b), the only edge going out of v1 is to t, and
all other edges in the path appear in A, hence the length is at most dv + 1. In case (c), the
only edge entering v2 is from s, hence similarly the path is of length at most d− dv + 1.

It remains to show the last property. Let P ′ = [s, v] and Q′ = [v, t] (as computed in A).
Denote P ′ = P +α where P has no constant term and α ∈ F and similarly Q′ = Q+ β. One
may write F = P ′ ·Q′ +R = (P + α)(Q+ β) +R where R is the sum over all paths in A
which do not pass through v. In A′, we have that [s, v1] = P ′ and [v2, t] = Q′, and thus A′
computes the polynomial

R+ α ·Q′ + P ′ · β = F − P ·Q+ αβ. C

Our goal is to perform cuts on a strategically chosen set of vertices. In order to select
them, will use the following well known lemma of Valiant [26], simplifying and improving an
earlier result of Erdős, Graham and Szemerédi [8]. For completeness, we also sketch a short
proof.

I Lemma 19 (Valiant [26]). Let G be a directed acyclic graph with m edges and depth d ≥
√
n.

Then, there exists a set E′ of at most 4m/ logn edges such that removing E′ from G results
in a graph of depth at most d/2.

Proof. Let d′ ≥ d ≥
√
n be a smallest power of 2 larger than d, so that d′ ≤ 2d. Let k = log d′.

A valid labeling of a directed graph G = (V,E) is a function f : V → {0, . . . , N − 1} such
that whenever (u, v) is an edge, f(u) < f(v). Clearly if G had depth d then there is a valid
labeling with image {0, . . . , N − 1} = {0, . . . , d− 1} by labeling each vertex by its depth.
Conversely, if there is a valid labeling with image {0, . . . , N − 1} then depth(G) ≤ N .

Let f be a valid labeling of G with image {0, . . . , d′ − 1} and for i ∈ [k] let Ei be the set
of edges such that the most significant bit in which the binary encoding of the labels of their
endpoints differ is i. If Ei is removed, we can obtain a valid relabeling of the graph with
image {0, . . . , d′/2− 1} by removing the i-th bit from all labels.

The two smallest sets among the Ei-s have size at most 2m/k ≤ 4m/ logn (since
k = log d′ ≥ logn/2), and removing them gives a valid labeling with image {0, . . . , d′/4− 1},
and therefore a graph with depth at most d′/4 ≤ d/2. J

We need a slight variation of this lemma, in which we do not pick edges whose endpoints
have too small or too large a depth in the graph.

I Lemma 20. Let G be a directed acyclic graph with m edges and depth d ≥
√
n. Then,

there exist a set U of vertices, of size at most 4m/ logn, such for every v ∈ U we have that
d/9 ≤ depth(v) ≤ 8d/9, and removing U (and the edges touching those vertices) results in a
graph of depth at most 3d/4.

Proof. Let E denote the set of edges of G and E′ ⊆ E be the set of edges guaranteed by
Lemma 19. Let E1 ⊆ E′ be the edges in E′ whose heads have depth at most d/9, and E2 be
the edges in E′ whose heads have depth at least 8d/9. Let E′′ = E′ \ (E1 ∪ E2). Clearly,
|E′′| ≤ |E′| ≤ 4m/ logn. Let U be the set of heads of vertices in E′′.

Consider now any path in the graph obtained from G by removing U (and hence in
particular E′′). Given such a path, let e1 be the last edge from E1 in the path which appears
before all edges from E2 (if there exists such an edge), and let e2 the first edge from E2 (if
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any) in the path. We partition the path into three (possibly empty) parts: the first part is
all the edges which appear until e1 (including e1); the second part is all the edges after e1
and before e2; the last part consists of all the edges which appear after e2 (including e2).
Because the head of e1 is a vertex of depth at most d/9, the first part can contribute at most
d/9 edges. The second part includes only edges from E \ E′, and thus its length is at most
d/2. The last part again has depth at most d/9 + 1, as any path leaving a vertex of depth at
least 8d/9 can have at most that many edges (here we add 1 to account for the edge e2 itself,
since the assumption is on the depth of the head of e2). Thus, the total length of the path is
at most

d/9 + d/2 + d/9 + 1 ≤ 3d/4 . J

The set of vertices given by the lemma above will be the vertices according to which we
will cut the ABP. We describe it in the following lemma, and prove some properties of this
operation.

I Lemma 21. Let A be an ABP over a field F of depth d ≥
√
n computing a polynomial F .

Let τ be the number of vertices and m be the number of edges in A. Then, there exist an
unlayered ABP A′, with at most τ + 4m/ logn vertices, at most m+ 8m/ logn edges, and
depth at most 9d/10, computing a polynomial of the form F −

∑r
i=1 PiQi − δ where δ ∈ F is

a field constant, the Pi, Qi’s have no constant term, and r ≤ 4m/ logn.

Proof. Let G be the underlying graph of the ABP A. Let U = {u1, . . . , ur} be the set
of vertices guaranteed by Lemma 20, such that r ≤ 4m/ logn. We perform the following
sequence of cuts on A. Set A0 := A and for i ∈ [r], Ai = cut(Ai−1, ui). Finally A′ = Ar.

The statements of the lemma now follow from the properties of cuts as proved in Claim 18.
The bound on the number of vertices and edges in A′ is immediate. The claim on the
polynomial computed by A′ follows by induction on i.

Finally, by induction on i, we have that the depth of A′ is at most

max{depth(A\U), depth(u1)+1, . . . , depth(ur)+1, d−depth(u1)+1, . . . , d−depth(ur)+1} ,

where A \ U is the ABP obtained by removing all vertices in U .
By the choice of U as in Lemma 20, for every i ∈ [r] we have that d/9 ≤ depth(ui) ≤ 8d/9,

and depth(A \ U) ≤ 3d/4, which implies the required upper bound on the depth of A′
(assuming n, and hence d, are large enough). J

Repeated applications of Lemma 21 give the following statement.

I Corollary 22. Let A be an ABP over a field F, with edge labels of degree at most ∆ = no(1),
computing an n-variate polynomial F . Further suppose A has depth at least

√
n, and that the

number of edges in A is at most n logn/(1000(log logn+ log ∆)). Let τ denote the number
of vertices in A.

Then, there exists an ABP A′, whose depth is at most n/∆, which computes a polynomial
of the form F −

∑r
i=1 PiQi − δ, such that Pi, Qi are all polynomials without a constant term,

δ ∈ F is a field constant, and r ≤ n/10. The number of vertices in A′ is at most τ + n/10.

Proof. Observe that the depth of A is at most d := n logn. As long as the depth is at least√
n, apply Lemma 21 repeatedly at most k := 7(log logn+ log ∆) times, to obtain an ABP

of depth at most (0.9)k · d ≤ n/∆.
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The upper bound on the number of summands PiQi and the number of vertices after
each application is given as a function of the number of edges, which increases in the process.
Hence, we first provide a crude estimate on the number of edges at each step. For i ∈ [k],
let Ai denote the ABP obtained after the i-th application of Lemma 21, and let mi be the
number of edges in that ABP.

We claim that by induction on i, mi ≤ m0 · (1 + 8/ logn)i. This is true for i = 0 by
definition. For i ≥ 1, since we maintain the invariant that the depth is at least

√
n, it follows

from Lemma 21 that

mi ≤ mi−1 + 8mi−1/ logn = mi−1(1 + 8/ logn) ≤ m0(1 + 8/ logn)i−1 · (1 + 8/ logn) ,

where the last inequality uses the induction hypothesis. Thus, the final ABP has at most

mk ≤ m0(1 + 8/ logn)k ≤ 2m0 = n logn/(500(log logn+ log ∆)) =: M

assuming n is large enough (recall that by assumption we have that log ∆ = o(logn), so that
limn→∞(1 + 8/ logn)o(log n) = 1). It is convenient to now use M as a uniform upper bound
on the number of edges in all stages of this process, so that each step adds at most 4M/ logn
summands and vertices. It now follows that r is at most

4kM
logn ≤

7(log logn+ log ∆) · 4n
500(log logn+ log ∆) ≤ n/10,

and similarly the total number of vertices added throughout the process is at most n/10. J

The lower bound given in Theorem 3 now follows by a simple win-win argument. For
convenience, we restate the theorem.

I Corollary 23. Let A be an ABP over a field F, with edge labels of degree at most ∆ = no(1),
computing

∑n
i=1 x

n
i . Then A has at least Ω(n logn/(log logn+ log ∆) edges.

Proof. Let τ denote the number of vertices in A. If the number of edges is at least
n logn/(1000(log logn+ log ∆)), then we already have our lower bound. Else, the number of
edges is at most n logn/(1000(log logn+ log ∆)). Now, by Corollary 22, there exists an ABP
A′, with τ + n/10 vertices and depth at most n/∆, computing

∑n
i=1 x

n
i −

∑r
j=1 PiQi − δ,

such that Pj , Qj have no constant term, r ≤ n/10, and δ ∈ F.
It thus follows that A′ has formal degree at most n. By Theorem 10, it has Ω(n2/∆)

vertices, thus τ = Ω(n2/∆), so that the number of edges is also Ω(n2/∆). J

5 Open problems

We conclude with some open problems.
A natural open question here is to prove an improved lower bound for unlayered algebraic
branching programs. In particular, in the absence of an obvious non-trivial upper bound,
it seems reasonable to conjecture that any unlayered ABP computing the polynomial∑n

i=1 x
n
i has size at least Ω(n2−o(1)).

Yet another question which is natural in the context of this work and remains open is
to prove stronger lower bounds for ABPs. As a first step towards this, the question of
proving super-quadratic lower bound for homogeneous algebraic formulas might be more
approachable.
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