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Abstract
To study the question under which circumstances small solutions can be found faster than by
exhaustive search (and by how much), we study the fine-grained complexity of Boolean constraint
satisfaction with size constraint exactly k. More precisely, we aim to determine, for any finite
constraint family, the optimal running time f(k)ng(k) required to find satisfying assignments that
set precisely k of the n variables to 1.

Under central hardness assumptions on detecting cliques in graphs and 3-uniform hypergraphs,
we give an almost tight characterization of g(k) into four regimes:
1. Brute force is essentially best-possible, i.e., g(k) = (1± o(1))k,
2. the best algorithms are as fast as current k-clique algorithms, i.e., g(k) = (ω/3± o(1))k,
3. the exponent has sublinear dependence on k with g(k) ∈ [Ω( 3√

k), O(
√

k)], or
4. the problem is fixed-parameter tractable, i.e., g(k) = O(1).

This yields a more fine-grained perspective than a previous FPT/W[1]-hardness dichotomy (Marx,
Computational Complexity 2005). Our most interesting technical contribution is a f(k)n4

√
k-time

algorithm for SubsetSum with precedence constraints parameterized by the target k – particularly
the approach, based on generalizing a bound on the Frobenius coin problem to a setting with
precedence constraints, might be of independent interest.
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1 Introduction

Extensive research in complexity theory has established methods to give precise qualitative
results on the computational hardness of problems. In this context, a basic question that we
would like to answer is: When are there algorithms better than a brute force search, and if
there are, how much improvement is possible compared to brute force? In problem settings
where the task is to find a solution of size k, typically it is easy to obtain algorithms with
running time of the form O(nk+O(1)) by a brute force search of every possible solution. In
such cases, beating brute force could involve having an algorithm with a term (1− ε)k+O(1)
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27:2 A Fine-Grained Perspective into Boolean Constraint Satisfaction

in the exponent for some ε > 0, or having sublinear (e.g, O(k/ log k) or O(
√
k)) dependence

on k in the exponent, or we might be able to completely remove k from the exponent of n
with an f(k)nO(1) time algorithm.

In this paper, we study the above question in the context of the class of Boolean Constraint
Satisfaction problems. Fixing a constraint family F of Boolean functions, the task is to
determine an assignment to Boolean variables x1, . . . , xn satisfying a given conjunction of
constraints of the form f(xi1 , . . . , xir) with f ∈ F and i1, . . . , ir ∈ [n]. Here, the natural
notion of the solution size k is the number of variables set to 1 and we consider the task
of determining a satisfying assignment with precisely k ones. This class indeed contains
a variety of problems: basic graph problems such as the vertex cover problem (F consists
of the binary OR) and the independent set problem in graphs (F consists of the binary
NAND) or d-uniform hypergraphs (F consists of the d-ary NAND), but also other natural
problems such as a formulation of SubsetSum parameterized by the target k (F consists
of binary equality)1, finding a solution of a (sparse) linear system over GF(2) where each
linear equality involves at most a constant number r of variables and the solution must have
precisely k ones (F consists of all linear constraints of arity at most r), as well as finding
a closed set of size k in a directed graph (F consists of the binary implication). Note that
the last problem can be seen to be equivalent to a variant of SubsetSum that prescribes
precedence constraints on the items and uses an unary encoding for all item sizes.

The time complexity inside this class varies widely: Vertex cover is famously fixed-
parameter tractable when parameterized by k, with a best current running time bound
of O(kn + 2O(k)) [16]. It is even simpler to solve the SubsetSum formulation in time
O(m + k2) = O(n2) (where m is the number of edges in the graph) by a straightforward
algorithm2. The fastest known algorithm for independent set [29], however, relies on the
sophisticated techniques for matrix multiplication, and achieves a running time of O(n(ω/3)k)
for k divisible by 3, where ω ≤ 2.373 is the matrix multiplication exponent. For finding closed
sets of size k, a surprisingly simple O(nk/2)-time algorithm3 improves over brute force even
without matrix multiplication, but a priori there is little indication for the optimality of this
approach. Finally, for finding independent sets in 3-uniform hypergraphs, no substantially
faster-than-brute-force algorithm is known.

The central purpose of this paper is to give a detailed understanding of the time complexity
of Boolean constraint satisfaction parameterized by solution size k, particularly when k is
considered a (large) constant: How precisely can we determine the running time f(k)ng(k),
with g(k) as small as possible? Note that for large constant k, we have f(k)ng(k) = O(ng(k))
and aim to determine its optimal polynomial-time complexity.

A classification of the second author [28] resolves the qualitative question for which F
the problem is solvable in FPT time (assuming FPT 6= W[1]), i.e., when g(k) can be bounded
by a constant independent of k. In particular, from this classification, we obtain that among

1 To see the correspondence, note that if F consists of the binary equality, SAT(F) asks to find a union
of connected components of total size k. By representing each connected component by its size (after
linear-time preprocessing), this is precisely the SubsetSum problem with target k.

2 Determine all connected components in time O(m) and solve a SubsetSum instance on the component
sizes in time O(k2) using Bellman’s pesudopolynomial-time algorithm or recent improvements [23, 8].

3 Without loss of generality, it suffices to solve the following problem: given a node-weighted DAG
G = (V, E) and k ∈ N, find a weight-k subset S ⊆ V such that u ∈ S and (u, v) ∈ E implies v ∈ S. If S
contains a set S′ of at most k/2 sources (i.e., vertices that have no incoming edges from other vertices
in S), we can simply guess S′ and check that S′ and the set of all descendants of S′ have total weight k.
If S contains no such set S′ of size at most k/2, we can guess all ≤ k/2 non-sources S′′, remove all
incoming edges to S′′ and find a weight-(k − |S′′|) set of vertices with out-degree 0.
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the above examples, vertex cover, SubsetSum with target k, and the sparse linear systems
over GF(2) can be solved in time f(k)nc, while for independent set (in both graphs and
hypergraphs) as well as SubsetSum with precedence constraints, the exponent of n must
depend on k (unless FPT = W[1]). Can we obtain tight bounds on g(k) when it must depend
on k? In particular, can we determine for which F the brute-force O(nk+c)-time solution is
essentially optimal?

1.1 Our Results
Let us formally state our problems and results.

I Problem 1.1. Let F be a finite constraint family of Boolean functions. The problem
SAT(F) asks to determine whether a given formula φ on Boolean variables x1, . . . , xn is
satisfiable by an assignment with k ones, where φ is a conjunction of m constraints C of the
form f(x), where f : {0, 1}r → {0, 1} is a constraint function in F and x is an r-tuple of
variables among x1, . . . , xn.

Note that if all f ∈ F have arity bounded by r, then there are at most O(nr) possible
constraints, and exhaustive search solves SAT(F) in time O(nk+r).

We will show that the complexity of SAT(F) is tightly characterized by the set of functions
expressible as restrictions of constraint functions f ∈ F . To formally introduce this concept,
let f : {0, 1}r → {0, 1} be an arbitrary Boolean function. We say that g : {0, 1}s → {0, 1} is a
restriction of f if it is obtained from g by replacing each argument of f by either the constant 0,
the constant 1, or an argument of g, i.e., we can partition [r] into X1, . . . , Xs, Z0, Z1 such
that

g(x1, . . . , xs) = f(
X1︷ ︸︸ ︷

x1 . . . x1, . . . ,

Xs︷ ︸︸ ︷
xs . . . xs,

Z0︷ ︸︸ ︷
0 . . . 0,

Z1︷ ︸︸ ︷
1 . . . 1).

Here,
Y︷ ︸︸ ︷

y . . . y denotes plugging in y for all (not necessarily contiguous) positions Y ⊆ [r], see
Section 2.

I Definition 1.2. Let g : {0, 1}d → {0, 1} be an arbitrary Boolean function. A constraint
family F represents g if there is some f ∈ F such that g is a restriction of f . If F does not
represent g, we say that F avoids g.

Let IMPL : {0, 1}2 → {0, 1} and NANDd : {0, 1}d → {0, 1} be the binary implication
and d-ary NAND function, respectively, i.e.,

IMPL(y1, y2) := y1 ∨ y2,

NANDd(y1, . . . , yd) :=
∧d

i=1
yi.

In [28], it is shown that assuming FPT 6= W[1], SAT(F) is solvable in FPT time f(k)nc
if and only if F is weakly separable, which is a condition equivalent to F avoiding NAND2
and IMPL. We show an almost tight characterization of g(k) (under plausible assumptions
from fine-grained complexity theory) that depends only on whether or not F represents
IMPL, NAND2 or NANDd for higher order d ≥ 3. Specifically, we obtain the following main
theorem, illustrated in Figure 1.

I Theorem 1.3. Let F be a finite constraint family.
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Figure 1 Overview over our main results. The parts of the diagram to the right of the vertical
IMPL line depict F representing IMPL, while the parts to the left avoid IMPL. Analogously, the
parts of the diagram above a NANDd line depict NANDd-representing F , while those below avoid
NANDd. For each cell, we illustrate our (typically matching) algorithmic and hardness results,
together with a problem that is complete for this cell (in a certain sense). For clarity of presentation,
we drop additional f(k)nc-factors of stated running times.

1. [FPT regime]
If F avoids both NAND2 and IMPL, then there is a computable f(k) and constant cF
such that SAT(F) can be solved in time f(k)ncF .

2. [Subexponential regime]
If F represents IMPL, but avoids NAND2, then there is a computable f(k) and constant cF
such that SAT(F) can be solved in time f(k)n4

√
k+cF ;

furthermore, for no computable f(k) and constants cF , ε > 0, SAT(F) can be solved in
time f(k)n(ω/6−ε) 3√

k+cF , unless the k-clique conjecture fails.
3. [Clique regime]

If F represents NAND2, but avoids NAND3, then there is a computable f(k) and con-
stant cF such that SAT(F) can be solved in time f(k)n(ω/3)k+cF ;
furthermore for no computable f(k) and constants cF , ε > 0, SAT(F) can be solved in
time f(k)n(ω/3−ε)k+cF , unless the k-clique conjecture fails.

4. [Brute-force regime]
If F represents NAND3, then for no computable f(k) and constants cF , ε > 0, SAT(F)
can be solved in time f(k)n(1−ε)k+cF , unless the 3-uniform k-HyperClique conjecture fails.

That is, we only have four regimes: g(k) is either constant, sublinear in k with a value
between essentially (ω/6) 3

√
k and 4

√
k, the clique detection bound of essentially (ω/3)k, or

the brute force bound of essentially k. Note that we do not try to optimize the bounds
on f(k), which generally are bounded by rO(k3), where r is the arity of F .

Let us briefly discuss our hardness assumptions and their plausibility (for a detailed
discussion, we refer to Section 2.1): The k-clique conjecture postulates that there is no
O(n(ω/3−ε)k+c) time algorithm for detecting a k-clique in a given graph, with a matching
upper bound of O(n(ω/3)k+1) known since 1985 [29]. By now, it has been used, e.g., to
justify (conditional) optimality of Valiant’s parser for context free grammars [2] and to give
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conditional lower bounds for string problems [10, 1], average-case settings [5], and more.
Notably, the only k-clique algorithm known to break brute force by a polynomial factor
makes crucial use of fast matrix multiplication techniques – unfortunately, these techniques
do not extend to finding cliques in hypergraphs. This has led to the d-uniform HyperClique
conjecture (for arbitrary d ≥ 3): This conjecture states that there is no algorithm beating
brute force, i.e., no O(n(1−ε)k+c)-time algorithm, for detecting a k-clique in a given d-uniform
hypergraph. It has been used to expose hardness of problems in sparse graphs [27], for
first-order queries to relational databases (specifically, in model-checking [9] and enumeration
contexts [13]), and for the orthogonal vectors problem [3]; furthermore, it is known that its
refutation requires giving a O((2− ε)n)-time algorithm for Max-3SAT – we refer to [2, 27]
for more detailed discussions of the plausibility of the (d-uniform Hyper-)Clique conjecture.

Interestingly, our classification does not fundamentally rely on the validity of the d-
uniform HyperClique conjecture: If, for some d ≥ 3, the d-uniform HyperClique conjecture is
eventually refuted, we obtain faster-than-brute-force algorithms for all NANDd+1-avoiding
families!

Coarser Classification. While we state our results under very fine-grained hardness as-
sumptions on clique and hyperclique detection, we may also state a coarser classification
assuming only the assumption that k-clique cannot be solved in time f(k)no(k). Already
under this assumption, which is implied by the Exponential Time Hypothesis (see [14, 15]),
our reductions and algorithms show that there exists an FPT regime where g(k) is a constant,
a subexponential regime where g(k) is between Ω( 3

√
k) and O(

√
k), and a linear regime

where g(k) = Θ(k). However, based on the Exponential Time Hypothesis only, we cannot
distinguish problems solvable in time f(k)n(1±o(1))k and f(k)n(ω/3±o(1))k, and thus cannot
differentiate in the linear regime.

Examples. From our general classification, we can draw some interesting specific corollaries
(assume here that k is a large constant):

3-SAT: Finding satisfying assignments with k ones for 3-CNF formulas (F consists of all
ternary functions with a single falsifying assignment) requires brute force time n(1−o(1))k

under the 3-uniform HyperClique conjecture. However, if we drop a single function
from F (specifically NAND3, i.e., each constraint must have at most two negative literals),
the problem can be solved in time O(n(ω/3)k+c), which is essentially optimal under the
k-Clique conjecture.
Subexponential cases: We obtain nO(

√
k)-time algorithms for interesting special cases:

Beyond precedence-constrained SubsetSum with target k (i.e, SAT({IMPL})), this
includes SAT({f}) with f(y1, y2, y3) := y1 ⇒ (y2 ∨ y3), and, more generally, every
finite set of dual-Horn constraints (i.e., constraints that can be represented by clauses
with at most a single negative literal)4. This also includes examples beyond dual-
Horn constraints such as SAT({IMPL, f ′}) with f ′ being defined by f ′(y1, y2, y3) = 1 iff
(y1, y2, y3) ∈ {(0, 0, 0), (1, 0, 1), (1, 1, 0)}. Interestingly, all of these problems have the same
(conditionally optimal) time complexity of f(k)nΘ(kα) with 1/3 ≤ α ≤ 1/2; determining
the precise value of α remains a challenge for future work.

4 It is known that a constraint is dual-Horn if and only if it its satisfying assignments are closed under
union, which immediately implies that it cannot contain NAND2 as a restriction.

CCC 2020
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1.2 Technical Overview
We give an overview of the technical challenges that are handled in our work, from the
highest running time regime to the lowest running time regime:

Brute-force regime. It is straightforward to obtain hardness for NAND3-representing fami-
lies by the following intuitive approach: To reduce from k-clique in a 3-uniform hypergraph G,
we let xi denote whether we include vertex vi in our k-clique. By the standard observation
that a clique in a hypergraph G is an independent set of its complement graph G, we only
need to ensure that for each edge e = (va, vb, vc) of G, not all vertices are included in
our clique, i.e., NAND3(xa, xb, xc) holds. Since F represents NAND3, we can express this
constraint using an appropriate restriction of some f ∈ F . Here, there is a technical issue
of how we can generate the constants 0 or 1 to obtain the desired restrictions – using not
particularly difficult, but careful constructions, we show that we can always simulate these
constants as needed (Section 6).

Moderately hard regime. While the hardness of NAND3-representing families is straight-
forward, it is surprising that this condition is in fact necessary for the brute-force approach
to be (conditionally) optimal: If NAND3 is not representable, we give a f(k)n(ω/3)k+cF -time
algorithm via reduction to k-Clique.

The essential idea for this reduction is the following win-win argument. Let us denote
by ax,y the weight-2 assignment setting only x and y to 1. Fix any weight-k satisfying
assignment a. If there are two variables xi = xi′ = 1 in a such that axi,xi′ is not satisfying,
then we can use this pair of variables to “guide” our search towards a. We guess xi, xi′ ,
identify a falsified constraint (of arity r) and guess an additional third variable from the at
most r unguessed variables in this constraint. This means that by guessing two variables
(n2 possibilities), we obtain an additional variable almost for free (guessing r possibilities).
That is, in the considered case we can identify 3 variables of a with a guess of rn2 possibilities,
which is a significant gain compared to the n3 possibilities of brute force. Otherwise, if a
has no such pair of variables, we observe that a satisfies already a simpler formula that
uses only NAND2’s: specifically, the conjunction of NAND(xi, xi′) for all i, i′ such that
assignment axi,xi′ violates the original formula. Furthermore, we show that since NAND3
is not representable, any solution of the simpler formula indeed remains a solution of the
original formula.

Interestingly, this reduction generalizes also to hypergraphs so that a refutation of the
d-uniform HyperClique conjecture would give a f(k)n(1−ε)k+cF -time algorithm for NANDd+1-
avoiding families.

On the hardness side, analogously to the brute-force regime, it is rather straightforward
to show that k-clique running time is indeed necessary for NAND2-representing constraint
families (see Section 6), which thus concludes a tight bound on g(k) of essentially (ω/3)k in
this regime.

Mildly hard regime. This is the technically most interesting regime. If NAND2 is not
representable, then SAT(F) might still not have an FPT algorithm, specifically, if it represents
IMPL. Implicit in the W[1]-hardness proof in [28] is a fine-grained lower bound of nΩ(log k)

under the k-clique conjecture. By giving a careful adaptation of the lower bound of [28], we
can strengthen this lower bound to nΩ( 3√

k). While it is conceivable that this lower bound
can be strengthened to nΩ(

√
k), the structure of the construction suffers from a fundamental

obstacle that makes a lower bound beyond nΩ(
√
k) seem unlikely. This raises the suspicion that
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a no(k)-time algorithm for NAND2-avoiding families could exist – and indeed, we manage to
develop a nO(

√
k)-time algorithm, which is perhaps the most interesting technical contribution

of our paper.
To illustrate our approach, consider the problem Weighted DAG Implications: Given

a DAG G = (V,E) with node weights w : V → N and a parameter k ∈ N, the task is to
find a set S ⊆ V such that (1) u ∈ S and (u, v) ∈ E implies v ∈ S and (2) S has total
weight

∑
s∈S w(s) = k. Without edges, this problem simplifies to SubsetSum which we

could solve in poly(k) time [23, 8]. However, to enable a generalization to our precedence
setting, we describe a different approach based on a combinatorial property inspired by the
famous Frobenius coin problem: Given coins of denominations 2 ≤ d1 < d2 < · · · < d` with
gcd(d1, . . . , d`) = 1, what is the largest number x not representable as x =

∑`
i=1 αidi for

some non-negative values αi ≥ 0? A proof attributed to Schur (see [7, 30, 21]) yields an upper
bound of x ≤ (d1 − 1)(d` − 1). Consequently, if w1 ≤ · · · ≤ w` with gcd(w1, . . . , w`) | k are
the weights occurring in an edgeless G, and w` ≤

√
k, then there always exists a set S of total

weight k, provided each weight occurs sufficiently often (say, at least k times). Thus, if we
can preprocess the instance such that each weight is bounded by

√
k and occurs sufficiently

often, we can determine the answer to the instance by simply computing the gcd of the
weights. Intuitively, this is possible in time nO(

√
k) by guessing the O(

√
k) vertices of weight

larger than
√
k, as well as brute-forcing vertices of each weight class containing only few

vertices.
Interestingly, this approach can be lifted to the setting with precedence constraints. To

this end, assume that the graph consists of layers V1, . . . , V` such that each Vi consists of
a sufficiently large number of vertices of weight wi and that all edges respect the layering
(i.e., an edge between a vertex in Vi and a vertex in Vj implies i > j). We show the following
property, which gives a generalization of Schur’s bound to the precedence setting:

If for each vertex v, the total weight of its descendants (including v itself) is at most
√
k/2,

then there exists a solution of total size k if and only if gcd(w1, . . . , w`) | k.

By an nO(
√
k)-time preprocessing analogous to the intuitive arguments for the edge-less case,

we can ensure that the preconditions are satisfied. We give the details of this approach in
Section 3.

The above algorithmic insight solves the Weighted DAG Implications problem in
time O(n4

√
k). To obtain such a bound for all NAND2-avoiding families, we use a randomized

reduction to Weighted DAG Implications. On a very high level, the approach is to create
a Weighted DAG Implications instance G that contains only solutions that satisfy the
given formula φ by iteratively choosing random implications consistent with certain solutions
of φ. Doing this in an appropriate manner, a fixed feasible solution survives this process
with 1/f(k) probability, which gives an algorithm running in time essentially O(f(k)n4

√
k).

We give the details in Section 4.

Fast regime. For the remaining regime of families avoiding both IMPL and NAND2, an
f(k)nc-time algorithm follows from [28], concluding the characterization.

1.3 Related work
Dichotomy theorems for constraint satisfaction have a rich history, starting with Schaefer’s
Theorem classifying Boolean Constraint Satisfaction Problems (CSPs) into either polynomial-
time solvable or NP-complete [31]. The subsequent Dichotomy conjecture [20], which
postulated that Schaefer’s Theorem can be extended to any constant domain size beyond

CCC 2020
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Boolean, was resolved positively only recently by Bulatov [11] and Zhuk [34]. Further
classifications have been investigated in a number of related settings, including quantified
CSP (see, e.g., [18, 35]) and optimization variants (see, e.g. [17, 22]). Parameterizing by the
solution size (as we do here), corresponding dichotomies have been obtained for Boolean [28]
and larger domain sizes [12, 26], with a characterization of kernelization for Boolean domain
given in [24] and a study of parameterized approximability given in [6]. A parameterized
dichotomy for related local search tasks has been given in [25].

On a conceptual level, our work is related to a fine-grained classification result for model-
checking first-order properties with a bounded number of quantifiers [9], where a fine-grained
dichotomy under the 3-uniform HyperClique conjecture is given. Note, however, that the
hardness criterion and techniques developed there are substantially different due to the
different nature of the problem settings.

1.4 Open Problems
The main open problem raised by our work is to close the gap in the subexponential regime:
Can we solve Implications = SAT({IMPL}) already in f(k)nO( 3√

k) or can we improve our
lower bound to f(k)nΩ(

√
k)? Note that by our reductions, improved bounds directly transfer

to all NAND2-avoiding families.
Second, a natural direction is to extend our classification beyond the Boolean domain,

i.e., give a fine-grained perspective building on [12, 26].
Finally, interesting related settings include natural problem variants with different size

restrictions (at most k or at least k), local search tasks as well as optimization settings with
weights on the variables or on the constraints.

2 Preliminaries

We write [n] := {1, . . . , n} and for any set S and integer d, let
(
S
d

)
denote the set of d-element

subsets of S.
For a finite constraint family F , we say its arity r is the maximum arity of a function

f ∈ F . Since in the constraints of SAT(F), we may use variables in arbitrary order, we use
the following notation for convenience: For any f : {0, 1}r → {0, 1} and partition X1, . . . , Xs

of [r], we write

f(
X1︷ ︸︸ ︷

x1 . . . x1, . . . ,

Xs︷ ︸︸ ︷
xs . . . xs)

to denote the value of f(u1, . . . , ur) where we plug in xj for each ui with i ∈ Xj . Corre-
spondingly g : {0, 1}d → {0, 1} can be obtained as a restriction of f if and only if there is a
partition X1, . . . , Xd, Z0, Z1 of [r] such that

g(x1, . . . , xd) = f(
X1︷ ︸︸ ︷

x1 . . . x1, . . . ,

Xd︷ ︸︸ ︷
xd . . . xd,

Z0︷ ︸︸ ︷
0 . . . 0,

Z1︷ ︸︸ ︷
1 . . . 1).

We say that an assignment a : [n]→ {0, 1} has weight k if
∑n
i=1 a(i) = k. Furthermore,

we say that a is dominated by an assignment a′ : [n] → {0, 1}, written a ≤ a′, if for all
i ∈ [n], we have a(i) ≤ a′(i). For a subset S ⊆ [n], we let aS denote the assignment that sets
a(i) = 1 if and only if i ∈ S. We let ones(a) := {xi | a(i) = 1} denote the set of 1-variables
of a. For any constraint C = f(x) where x = (xi1 , . . . , xir) with i1, . . . , ir ∈ [n], we let
vars(C) = {xi1 , . . . , xir} denote the variable set involved in C.
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All graphs considered in this paper are simple, i.e., we disallow multiple edges and self-
loops. If G = (V,E) is a directed graph, we call S ⊆ V a closed set if for all (u, v) ∈ E, we
have that u ∈ S implies that v ∈ S. We say that v is a descendant of u if v is reachable by a
path from u and let D(u) denote the set of descendants of u (including u itself). Analogously,
if v is a descendant of u, we call u an ancestor of v. We extend the notation naturally to
sets S ⊆ V by defining D(S) :=

⋃
u∈S D(u). For a graph G = (V,E) with node weights

w : V → N and S ⊆ V , we write w(S) :=
∑
v∈S w(v). For any S ⊆ V , we let G[S] denote

the subgraph of G induced by S, i.e., the subgraph obtained by deleting all vertices in V \ S
and adjacent edges.

2.1 Hardness Assumptions

Let k-clique denote the following problem: Given a (simple) undirected graph G = (V,E),
determine whether there is a clique of size k, i.e., S ⊆ V, |S| = k such that for all {u, v} ∈

(
S
2
)

we have {u, v} ∈ E. A simple algorithm [29] solves k-clique in time O(n(ω/3)k) when k is
divisible by 3, which extends to time O(nbk/3cω+(k mod 3)) for arbitrary k (for more precise
bounds, see [19]). This running time is conjectured to be best possible, in the following
sense.

I Hypothesis 2.1 (k-Clique Conjecture). For no c, ε>0 and f(k), there is an f(k)n(ω/3−ε)k+c-
time algorithm for k-Clique.5

As without the use of matrix multiplication, no O(n(1−ε)k+c)-time algorithms are known, a
variant of the conjecture postulates that there are even no O(n(1−ε)k+c)-time combinatorial
algorithms, i.e., algorithms avoiding the sophisticated algebraic techniques underlying current
matrix multiplication algorithms.

By now, the k-clique conjecture has been used to explain hardness barriers in various
contexts, such as the optimality of Valiant’s parser for context-free grammar recognition [2],
pattern matching in uncompressed and compressed strings [10, 1], average-case hardness [5]
and more. For a more detailed discussion of this hardness assumption, we refer to [2].

The k-clique problem naturally extends to hypergraphs: Given a d-uniform hypergraph
G = (V,E), the d-uniform k-HyperClique problem asks to determine whether there is a
(hyper-)clique of size k, i.e., S ⊆ V, |S| = k such that for all subsets S′ ∈

(
S
d

)
, we have S′ ∈ E.

I Hypothesis 2.2 (d-Uniform k-HyperClique Conjecture). Let d ≥ 3. For no c, ε > 0 and f(k),
there is an f(k)n(1−ε)k+c-time algorithm for d-uniform k-HyperClique.

Similarly to the k-Clique conjecture, this hardness conjecture reveals hardness barriers in
a number of contexts, such as hardness for problems on sparse graphs [27], for deciding or
enumerating answers to first-order queries [9, 13] and for the study of fine-grained average-case
complexity [5]. It is known that it implies the Orthogonal Vectors conjecture [3], however,
refuting this conjecture requires (at least) to give an O((2− ε)n)-time exact algorithm for
Max3SAT; for details and further discussion of the plausibility of this conjecture, see [27].

5 Note: sometimes, the k-clique conjecture is stated as

inf{F | 3k-clique can be solved in time nF k+o(1) for all (sufficiently large) constant k} = ω,

which can be seen to be equivalent to the above formulation via a standard self-reduction for k-clique.
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3 Algorithm for Implications

In this section, we give an algorithm for the problem Implications = SAT({IMPL}) that is
much faster than brute force and achieves O(

√
k) dependence of k in the exponent n. For

convenience, we reduce Implications to the following problem. (Recall that for any graph
G = (V,E), we say that S ⊆ V is closed, if for all (u, v) ∈ E, we have u ∈ S implies v ∈ S.)

I Problem 3.1 (Weighted DAG Implications). Given a DAG G = (V,E) with node
weights w : V → N and parameter k ∈ N, determine whether there is a closed set S ⊆ V of
weight exactly k, i.e., w(S) = k.

The easy reduction works as follows. For each variable xi, we introduce a corresponding
vertex xi of weight 1 and introduce an edge (xi, xj) for every implication constraint xi ⇒ xj
of φ. We contract each strongly connected component C = {v1, v2, . . . , v`} in G to a single
vertex vC of weight

∑`
i=1 w(vi) in time O(n+m) = O(n2) [33]. Observe that the resulting

graph is a DAG which has a closed set of weight k if and only if φ has satisfying assignment
of weight k.

Recall that for any v ∈ V , we let D(v) denote the set of descendants of v, i.e., the set of
nodes reachable from v (including v).

As we will formally argue later, by a f(k)nO(
√
k)-time preprocessing it is not difficult to

preprocess a Weighted DAG Implications instance into the following form, which we
call Frobenius instance, as it admits a combinatorial characterization of solvability that is
analogous to Schur’s bound for the Frobenius coin problem.

I Definition 3.2. A Frobenius instance with parameter k is a weighted directed graph
G = (V,E,w) with ` parts V = V1 ∪ V2 ∪ · · · ∪ V` and weight function w : V → N such that
the following properties hold:
(P1) there are weights w1, . . . , w` such that w(v) = wi for all v ∈ Vi and i ∈ [`].
(P2) for any edge (u, v) ∈ E, we have u ∈ Vi and v ∈ Vj for some ` ≥ i > j ≥ 1,
(P3) for all i ∈ [`], we have |Vi| ≥ k,
(P4) for all v ∈ V , we have w(D(v)) ≤

√
k/2.

Intuitively, the necessary preprocessing follows from the following arguments: To en-
sure (P4), note that any weight-k closed set S has at most

√
2k many vertices v ∈ S with

w(D(v)) >
√
k/2, which we can exhaustively enumerate with nO(

√
k)-time overhead. By

suitably arranging remaining nodes among the layers, it is straightforward to ensure (P1),
(P2) and additionally that ` ≤ f(k), since by (P4), each node has at most O(

√
k) descendants.

Finally, to ensure (P3), if any part Vi is small (i.e., |Vi| < k), we can exhaustively try out
including any subset of Vi, introducing an overhead of only 2O(k) per Vi; since ` ≤ f(k), this
additional overhead is bounded by f(k)2O(k).

If a Frobenius instance had no edges, then Schur’s bound on the Frobenius coin problem
implies that it has a solution if and only if gcd(w1, . . . , w`) | k. We prove that this criterion
holds even in the setting of precedence constraints.

I Lemma 3.3. Let G be a Frobenius instance with parameter k. Then G has a closed set of
weight k if and only if gcd(w1, . . . , w`) | k.

Proof. Since gcd(w1, . . . , w`) | w(S) for any S ⊆ V , the condition gcd(w1, . . . , w`) | k is
necessary for G to have a closed set of weight k.

We show that this condition is also sufficient via induction on `. In the base case ` = 1,
let S ⊆ V1 = V be an arbitrary subset of k/w1 vertices (note that by k/w1 ≤ k ≤ |V1|, such
a set indeed exists). By construction, S has weight |S|w1 = k and is closed, as G cannot
contain any edges.
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Thus let us assume that the claim holds for all `′ ≤ ` − 1 and consider a Frobenius
instance with d′ := gcd(w1, . . . , w`) | k. Let d := gcd(w1, . . . , w`−1). We may assume that
d - k; otherwise, already the Frobenius instance G[V1 ∪ · · · ∪ V`−1] satisfies the assumption
gcd(w1, . . . , w`−1) | k and we obtain a closed set by inductive hypothesis.

Intuitively, we want to use the variables in V` to reach the target weight k modulo d;
then we can reduce to a simpler instance where every weight (including the target weight) is
divided by d. Note that we may assume

2 ≤ d ≤
√
k/2, (1)

where the lower bound follows from d - k and the upper bound follows from d≤ mini∈[`−1] wi ≤√
k/2, as w(v) ≤ w(D(v)) ≤

√
k/2 for any v ∈ V .

Let b be the smallest non-negative integer such that b · w` ≡ k (mod d). Such an integer
exists and satisfies b < d: By Bézout’s identity, since gcd(w`, d) = d′ | k, there are coefficients
β, γ such that βw` + γd = k, and thus any b with b ≡ β (mod d) achieves the desired
congruence.

Let S ⊆ V` be an arbitrary subset of size b < d; such a set indeed exists as d ≤
√
k/2 ≤

k ≤ |V`|. We observe that S satisfies

w(D(S)) ≤
∑
s∈S

w(D(s)) ≤ |S|
√
k/2 ≤ d

√
k/2 ≤ k

2 , (2)

where we used (P4) for the second inequality, and (1) for the last inequality. Consider
the graph G′ = (V ′, E′) obtained as a copy from G from which we delete V` ∪ D(S) and
define the node weights w′(v′) = w(v)/d for any v ∈ V \ (V` ∪ D(S)). We claim that G′
is a Frobenius instance with parameter k′ := (k − w(D(S)))/d (observe that k′ is indeed
integer, as w(D(S)) ≡ bw` ≡ k (mod d), and that k′ ≥ 0 by (2)). If this is indeed the case,
then by inductive hypothesis G′ has a closed set S′ with w′(S′) = k′, since the gcd of the
weights w′ is 1. Observe that by construction, D(S) ∪ S′ is a closed set in G of weight
w(D(S)) + d · w′(S′) = w(D(S)) + (k − w(D(S))) = k, as desired.

It remains to prove that G′ is indeed a Frobenius instance with parameter k′. First,
observe G′ has `−1 layers V ′i := Vi \D(S), i ∈ [`−1] and that w′ is well defined, as d | wi for
all i ∈ [`− 1]. Conditions (P1) and (P2) of being Frobenius are fulfilled as G′ is a subgraph
of G. To see (P3), note that

|V ′i | ≥ |Vi| − |D(S)| ≥ |Vi| − w(D(S)) ≥ k − w(D(S)) ≥ k′.

To see (P4), we observe that by (2) and (1), we have

k′ = k − w(D(S))
d

≥ k − k/2
d

= k

2d ≥
k

d2 .

Thus, for any v′ ∈ V ′, we obtain

w′(D(v′)) ≤ w(D(v))
d

≤
√
k/2
d

=
√

k

2d2 ≤
√
k′/2,

where we used condition (P4) of G in the second inequality. Thus, G′ is indeed a Frobenius
instance with parameter k′, concluding the claim and thus the proof of our lemma. J

The above criterion is the main technical tool in the algorithmic result of the session.
What remains is to show that the instance can be preprocessed in a way that it becomes a
Frobenius instance.
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I Theorem 3.4. We can solve Weighted DAG Implications in time f(k)n4
√
k.

Proof. Consider the following recursive algorithm, which proceeds in 4 steps:
Step 1: For every v ∈ V with w(D(v)) ≥

√
k/2, we return YES if a recursive call

determines that G[V \D(v)] has a closed set of weight k − w(D(v)); otherwise, we delete v
and all its ancestors from G. From now on, G satisfies w(D(v)) ≤

√
k/2 for all v ∈ V .

Step 2: We construct layers L1, . . . , L√k/2 by the following iterative process: for every

i = 1, . . . ,
√
k/2, we let Li consists of all vertices in V \ (L1 ∪ · · · ∪ Li−1) whose outgoing

edges end in L1 ∪ · · · ∪ Li−1. Note that L1, . . . , L√k/2 partitions V ; in particular, every
vertex is included in some Li, since if there was a vertex v ∈ V \ (L1 ∪ · · · ∪ L√k/2), then by

construction there exists a path from v containing strictly more than
√
k/2 vertices, leading

to the contradiction w(D(v)) ≥ |D(v)| >
√
k/2.

We observe that each layer Li can be partitioned into sublayers Li,j , j ∈ {1, . . . ,
√
k/2}

such that each v ∈ Li,j has weight w(v) = j: there can be no vertex of larger weight,
as otherwise w(D(v)) ≥ w(v) >

√
k/2 yields a contradiction. We consider layers Li,j in

increasing lexicographic order of (i, j): If |Li,j | < k, then for every v ∈ Li,j , we return YES
if a recursive call determines that G[V \ D(v)] contains a closed set of size k − w(D(v)),
and otherwise we delete v and all its ancestors from G. Observe that by the lexicographic
ordering, we never delete vertices from already processed layers, so that at the end of the
process, each Li,j is either empty or contains at least k vertices.

Step 3: We let V1, . . . , V` be an enumeration of all non-empty sublayers Li,j by the
lexicographic order on (i, j) so that any vertex v ∈ Vi has only edges to vertices in V1∪· · ·∪Vi−1.
Observe that by construction, this yields a Frobenius instance. Let w1, . . . , w` be the weights
of the Frobenius instance. We return YES if gcd(w1, . . . , w`) | k and NO otherwise.

Using Lemma 3.3, the correctness of the algorithm is easy to see.

B Claim 3.5. The above algorithm is correct.

Proof. If the algorithm returns YES, indeed there is a closed set of size k: If we return
YES in Steps 1 or 2, we have found a vertex v and a closed set S′ in G[V \D(v)] of size
k − w(D(v)), which yields a closed set S′ ∪D(v) in G of size k, as desired. Otherwise, we
have arrived at a Frobenius instance and returned YES since gcd(w1, . . . , w`) | k, which
implies that G has a closed set of size k by Lemma 3.3.

Conversely, fix a closed set S of size k, and we show that the algorithm returns YES: If S
contains a vertex v investigated in Steps 1 or 2, then the recursive call to G[V \D(v)] (for the
first such vertex v) will find a solution of size |S| − w(D(v)) (note that D(v) ⊆ S if v ∈ S).
Otherwise, we have arrived at a Frobenius instance which must satisfy gcd(w1, . . . , w`) by
Lemma 3.3, and we return YES. C

Finally, we need to bound the running time of the recursive algorithm. The analysis
relies on the observation that the algorithm makes at most n recursive calls with a parameter
decrease of at least

√
k/2, and at most O(k2) recursive calls with a parameter decrease

of one.

B Claim 3.6. The above algorithm can be implemented in time f(k)n4
√
k.

Proof. Let U be the set of vertices of small layers (|Li,j | < k) considered in Step 2. We observe
that the above algorithm can be implemented recursively with the following recurrence on
its running time T (n, k) on instances with n vertices and parameter k.

T (n, k) ≤
∑

v∈V,w(D(v))≥
√
k/2

T (n, k − w(D(v))) +
∑
u∈U

T (n, k − w(D(u))) +O(n2)
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We claim by induction on k that this yields a bound of T (n, k) ≤ f(k)n4
√
k for some

f(k) = kO(k). It is not difficult to see that for k ≤ 2, we can solve the problem in time
O(n2) = O(n4

√
k), yielding the base case. For k ≥ 3, we thus obtain the following bound, using

that in Step 2, we process less than k vertices for each “small” sublayer Li,j , 1 ≤ i, j ≤
√
k/2,

i.e., |U | ≤ k(k/2) = k2/2,

T (n, k) ≤ O(n · f(k −
√
k/2)n4

√
k−
√
k/2 + k2f(k − 1)n4

√
k−1 + n2)

≤ (f(k)/2)(n4
√
k−
√
k/2+1 + n4

√
k) ≤ f(k)n4

√
k,

where the second bound follows from choosing f(k) = kO(k) large enough to ensure k2f(k −
1) ≤ f(k)/2 and the last bound follows from the observation that 4

√
k −

√
k/2 + 1 ≤ 4

√
k if

and only if (
4
√
k −

√
k/2 + 1

)2
≤ 16k

⇐⇒ 16(k −
√
k/2) + 8

√
k −

√
k/2 + 1 ≤ 16k

⇐⇒ 8
√
k −

√
k/2 + 1 ≤ 16

√
k/2,

where the last inequality holds since 8
√
k + 1 ≤ 16

√
k/2 as k ≥ 3. C

Claims 3.5 and 3.6 show the correctness of our algorithm for Weighted DAG Implications.
By the reduction described at the beginning of the section, a similar algorithm follows for
Implications. J

4 Algorithms for NAND2-avoiding F : Reduction to Implications

In this section, we show that for any NAND2-avoiding constraint family F , we can reduce
SAT(F) to Implications. Specifically, we obtain the following theorem.

I Theorem 4.1. Let F be a NAND2-avoiding constraint family and let TIMPL(n, k) denote
the optimal running time to solve Implications. There is a constant cF and computable
f(k) such that we can solve SAT(F) in time f(k)(TIMPL(n, k) + ncF ) logn.

Together with Theorem 3.4, this gives an f(k)n4
√
k+cF -time algorithm for any NAND2-

avoiding constraint family F .
To prove the above theorem, we prepare some notation and helpful facts. Let φ be an

arbitrary formula. For any assignment a, we call a′ a minimal satisfying extension of a, if
a′ satisfies φ, a ≤ a′, and no other satisfying assignment a′′ /∈ {a, a′} fulfills a ≤ a′′ ≤ a′.
The following lemma shows that there are only f(k) many minimal extensions of weight at
most k, and these minimal extensions can be computed in time f(k)nc for some constant c
independent of k. Intuitively, this follows by using the bounded search tree technique over
violated constraints, where the depth of the search tree is bounded by k and each branching
step has at most r possibilities.

I Lemma 4.2 ([12, Lemma 2.3]). Let F be a finite constraint family of bounded arity r.
There is a constant c′F such that given any instance φ of SAT(F) and assignment a, there
are at most O(rk) minimal extensions of a of weight k, and we can compute these extensions
in time O(rknc′F ).
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As an immediate useful consequence, we obtain that for our algorithmic results, we
may assume without loss of generality that F is 0-valid, i.e., each f ∈ F is satisfied by the
all-zeroes assignment.

I Corollary 4.3 (see also [28, Lemma 4.1]). We can reduce any instance of SAT(F) with
parameter k to O(rk) many instances of SAT(F ′) with a parameter bounded by k, where F ′
is the set of all 0-valid f ′ that are represented by F .

By definition, if F does not represent NAND2, then also F ′ does not represent NAND2,
and it remains to give an f(k)(TIMPL(n, k) + ncF ) logn-time algorithm for 0-valid NAND2-
avoiding F .

In the remainder of this section, we will use the graph formulation of the Implications
problem: We are given a directed graph G = (V,E) and the task is to find a closed set S
(recall that S is closed, if for all (u, v) ∈ E we have that u ∈ S implies v ∈ S) of size k.
Recall that for any vertex set S ⊆ V , D(S) denotes the set of descendants of any vertex
s ∈ S (including the vertices in S).

Our aim is the following: Given a formula φ of SAT(F), we give a randomized construction
of an Implications instance G such that
(i) any closed set S in G corresponds to a satisfying assignment of φ, and
(ii) with large enough probability, G contains a closed set of size k if φ has a weight-k

solution.
To this end, we let V = {x1, . . . , xn} and recall that, for any set S ⊆ V , we let aS : [n]→ {0, 1}
denote a corresponding assignment with aS(i) = 1 iff xi ∈ S. From now on, we often
synonymously speak of closed sets S ⊆ V in G and the corresponding assignment aS for φ.

The rough outline is as follows: we start with the graph G = (V, ∅), and try to repeatedly
“fix” some closed set S that violates φ, by determining a (random) implication consistent
with a minimal satisfying extension of S. The main insight is that if F avoids NAND2, then
it suffices to make sure that all sets D(v) for v ∈ V are satisfying and this will automatically
ensure that every closed set is satisfying.

Let us formally describe the algorithm:
1. Given φ, initialize G = (V,E) with V = {x1, . . . , xn} and E = ∅.
2. While there exists some v ∈ V such that aD(v) violates φ, do the following:

a. Compute the set Av of minimal satisfying extensions of aD(v) of weight at most k.
b. Let X consist of all xi ∈ V \D(v) such that there is some a ∈ Av with a(i) = 1.
c. If X = ∅, delete all ancestors of v (including v) from G. Otherwise, pick x uniformly

at random from X and add the edge (v, x) to E.

The important properties of the algorithm are captured in the following lemma.

I Lemma 4.4. Let F be a finite 0-valid constraint family. There is a constant cF and a
function g(k) such that the following properties hold.
(P1) During the process, each vertex v is considered at most k times in the while loop. Thus,

the algorithm can be implemented to run in time O(g(k)ncF ).
(P2) If φ has a satisfying assignment of weight k, then with probability at least g(k)−1, there

is a closed set S in G of size k.
(P3) If F avoids NAND2, any closed set S ⊆ V in the constructed graph yields a satisfying

assignment aS for φ.

Proof. For (P1), note that whenever v ∈ V is considered in the while loop, it is either
deleted, or an edge (v, x) with x /∈ D(v) is added to the graph. Thus, when v is considered
for the k-th time, we have |D(v)| ≥ k, and thus there can be no satisfying extension of aD(v)
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of weight at most k. Consequently, we must have Av = ∅, and thus X = ∅, which forces v to
be deleted. Thus, we have at most kn iterations of the while loop, where each iteration can
be implemented in time O(rknc′F ) by Lemma 4.2.

For (P2), assume that there is a set S of size k such that aS satisfies φ. We show that
with large enough probability, we will maintain as invariant that D(v) ⊆ S for every v ∈ S,
and thus S will be a closed set in G. To this end, we first observe that for D(v) ⊆ S to hold
for all v ∈ S, it suffices that the following property holds:

In each iteration that considers a vertex v ∈ S, the selected vertex x is in S. (3)

Indeed, if this is the case, then no v ∈ S is ever deleted. Furthermore, we have that D(v) ⊆ S
for all v ∈ S, and thus S is a closed set in G. It remains to give a lower bound on the
probability that (3) holds throughout the process.

To this end, consider the event that some v ∈ V is considered in the while loop, conditioned
that (3) has not been violated in a previous iteration. Under this event, D(v) ⊆ S, and thus
there is a minimal satisfying extension D(v) ( S′ ⊆ S such that aS′ satisfies φ and thus
aS′ ∈ Av. Let s ∈ S′ \D(v) be arbitrary, then s ∈ X by construction (note that s has not
been deleted). By Lemma 4.2, we have that |Av| ≤ O(rk). Since each a ∈ Av has weight
at most k, this yields |X| ≤ k|Av| ≤ O(krk). Thus, the probability that the random choice
is x = s is at least 1/|X| ≥ Ω(1/(krk)). Finally, we observe that by (P1), for each v ∈ S,
there are at most k iterations considering v, where each iteration has a probability of at least
Ω(1/(krk)) of not violating (3). Thus, we obtain that (3) holds with probability at least
Ω(1/(krk)k|S|) = Ω(1/(krk)k2), and the claim follows by setting g(k) := (krk)−k2 .

Finally, for (P3), note that at the end of the process, the property holds that

For all (remaining) v ∈ V, aD(v) satisfies φ. (4)

We will leverage this fact to show that aS satisfies φ for all closed sets S = D(v1)∪ ...∪D(v`)
for v1, . . . , v` ∈ V . We first transform the graph G to a DAG by contracting all strongly
connected components C = {v1, . . . , vc} to a single vertex vC representing the set C. Note
that the closed sets in the DAG remain in a one-to-one correspondence to the closed sets
of the original graph (and the corresponding assignments to φ), thus this transformation is
without loss of generality. Thus, we may assume that G has a topological ordering v1, . . . , vn′

of its vertices (n′ ≤ n). We will prove by induction on i = n′, ..., 1 that for all closed sets
S ⊆ {vi, ..., vn′}, aS satisfies φ.

For the base case i = n′, we only need to verify that (i) the all-0 assignment satisfies φ,
which holds by 0-validity of F , and (ii) that avn′ satisfies φ, which holds by (4) (as D(vn′) =
{vn′}). Thus, for i < n′, let us assume that the claim holds for i+ 1. Consider any closed set
U ⊆ {vi, . . . , vn′}. If U does not contain vi, the claim follows by inductive assumption, thus
let us assume that vi ∈ U and thus U ⊇ D(vi), as U is closed. If U = D(vi), aU satisfies φ
by (4). Thus, it remains to consider U ) D(vi), for which we assume for contradiction
that aU violates φ. Let W := U \ D(vi), and note that D(W ) ⊆ U is a closed set in
{vi+1, . . . , vn′}. Thus, by inductive assumption, aD(W ) satisfies φ. Furthermore, observe that
Z := D(vi)∩D(W ) is a closed set in {vi+1, . . . , vn′} (since the intersection of any two closed
sets yields a closed set). Thus, aZ satisfies φ by inductive assumption. It remains to show
that the fact that aD(vi), aD(W ) and aZ = aD(vi)∩D(W ) all satisfy φ, while aU = aD(vi)∪D(W )
violates φ, gives a contradiction to F avoiding NAND2.

To this end, let C be a constraint violated by aU and note that C = f(xi1 , . . . , xir)
for some f ∈ F and i1, . . . , ir ∈ [n]. Note that we can view f as f : {0, 1}Vc → {0, 1} for
some appropriate variable set VC . We show how to obtain NAND2 as a restriction of f by
partitioning VC into X ′ := (D(vi) \ Z) ∩ VC , Y ′ := (D(W ) \ Z) ∩ VC , Z1 := Z ∩ VC , Z0 :=
VC \ (X ′ ∪ Y ′ ∪ Z1) and observing that
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f(
X′︷ ︸︸ ︷

0 . . . 0,
Y ′︷ ︸︸ ︷

0 . . . 0,
Z0︷ ︸︸ ︷

0 . . . 0,
Z1︷ ︸︸ ︷

1 . . . 1) = 1, [since aZ satisfies C]
f(1 . . . 1, 0 . . . 0, 0 . . . 0, 1 . . . 1) = 1, [since aD(vi) satisfies C]
f(0 . . . 0, 1 . . . 1, 0 . . . 0, 1 . . . 1) = 1, [since aD(W ) satisfies C]
f(1 . . . 1, 1 . . . 1, 0 . . . 0, 1 . . . 1) = 0. [since aD(W )∪D(vi) violates C] J

It remains to give the proof of Theorem 4.1.

Proof of Theorem 4.1. By Corollary 4.3, we may assume without loss of generality that F
is 0-valid. We repeat the following process g(k) many times: We use the above algorithm
to generate an Implications instance G, and return YES if G contains a closed set of
size k, which we determine using an optimal Implications algorithm. If none of the g(k)
iterations were successful, we return NO. Note that this approach can be implemented in time
g(k)O(g(k)ncF + TIMPL(n, k)) by (P1), and correctly decides the instance with probability
at least 1− (1− 1/g(k))g(k) ≥ 1− 1/e by (P2) and (P3).

The algorithm described above can be derandomized using the standard technique of
Color Coding [4]. In each iteration when vertex v is considered, a random vertex x is selected
from a set X of at most K = O(krk) vertices. As each vertex is considered at most k times,
we can represent the random choices by a function r : V → [K]k, with the meaning that
r(v) is the vector of choices made when considering vertex v. As discussed in the proof of
Lemma 4.4, when considering vertices v ∈ S, these random choices need to be consistent
with S to ensure that S is a closed set in the resulting graph. That is, for each v ∈ S there
is a vector c(v) ∈ [K]k such that if the random choice satisfies r(v) = c(v) for every v ∈ S,
then S is a closed set.

We say that a family H of functions h : [n] → [k] is a (n, k)-perfect family of hash
functions if for every S ⊆ V of size k, there is an h ∈ H that is injective on S, i.e., assigns
different values to different elements of S. It is known that a (n, k)-perfect family of size
2O(k) logn can be computed in time 2O(k)n logn [4]. The derandomized algorithm would
first compute such a family H over V and would iteratively go through every h ∈ H and
function q : [k]→ [K]k. For a given choice of h and q, we define the function r(v) = q(h(v))
and run the randomized algorithm using this function r instead of the random choices. It is
easy to see that the definition of (n, k)-perfect hash functions implies that there is at least
one choice of h and q where r(v) is exactly the prescribed value c(v) for every v ∈ S and
therefore the randomized algorithm correctly finds the solution S. As we are considering
at most |H| = 2O(k) logn functions h and Kk2 different functions q, there is a function f(k)
such that the total running time is at most f(k) logn times a single run of the randomized
algorithm. J

5 Algorithms for NAND-representing F : Reduction to Clique

In this section, we develop algorithm for constraint families that might represent NAND2,
but avoid NANDd for some d ≥ 3. To this end, we give a reduction to (d− 1)-uniform Hyper-
Clique for NANDd-avoiding families, giving in particular a f(k)n(ω/3)k+cF -time algorithm
for NAND3-avoiding families.

We first start with a natural reduction of SAT(F) for any F with arity bounded by r
to r-uniform HyperClique, based on color-coding. To this end, let Td-HC(n, k) denote the
optimal running time of finding a k-clique in a d-uniform hypergraph.

I Proposition 5.1. Let F be a constraint family of arity at most r. Then SAT(F) can be
solved in time f(k)(n2r + Tr-HC(n, k)) logn.
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Proof. Let φ be an arbitrary SAT(F) formula. Observe that any constraint C of φ depends
only on a set vars(C) ⊆ {x1, . . . , xn} of at most r variables. For an assignment a, we let
C(a) ∈ {0, 1} denote whether C is satisfied by a.

We first show how to determine, given a partition of x1, . . . , xn into k sets X1, . . . , Xk,
whether there is a solution that sets precisely one variable in each Xi to true. To this end, we
construct a hypergraph G with vertex setX1∪X2∪· · ·∪Xk and the following set of hyperedges:
we include each possible hyperedge e = {xj1 , . . . , xjr} with xj1 ∈ Xj1 , . . . , xjr ∈ Xjr and
distinct j1, . . . , jr ∈ [k] unless there exists a clause C with vars(C) ⊆ Xj1 ∪ · · · ∪Xjr which
is violated by the assignment that sets precisely the variables e = {xj1 , . . . , xjr} to 1, i.e.,
C(ae) = 0.

We claim that H := {xi1 , . . . , xik} with xi1 ∈ X1, . . . , xik ∈ Xk yields a k-clique in G if
and only if the assignment aH satisfies φ. Indeed, assume that there is a clause C violated by
aH . Note that as C has arity at most r, we have vars(C) ⊆ Xj1 ∪ · · · ∪Xjr for some distinct
i1, . . . , ir ∈ [k] (if C involves variables of less than r sets, we may use arbitrary additional
sets). Thus, e := {xj1 , . . . , xjr} cannot be an edge in G, since aH violates C, ae and aH
agree on vars(C), and thus also ae violates C. Conversely, if there is some e := {xi1 , . . . , xir}
with distinct i1, . . . , ir ∈ [k] such that e is not an edge in G, then there exists some clause C
with vars(C) ⊆ Xi1 ∪ · · · ∪Xir which is violated by ae. Since aH and ae agree on vars(C),
we conclude that also aH violates C and thus φ.

To create the desired k-partition of variables, we use a (deterministic) color-coding scheme:
Let H be a (n, k)-perfect family of hash functions h : [n]→ [k] – recall that this means that for
any S = {s1, . . . , sk} ⊆ [n], there exists some h ∈ H such that {h(s1), . . . , h(sk)} = {1, . . . , k}.
Known efficient constructions [32, 4] produce such assignments with ` = 2O(k) log(n) in time
2O(k)n logn. Given this family, we create for each h ∈ H the k-partition X(h)

1 , . . . , X
(h)
k with

X
(h)
j = {xs | h(s) = j} and solve the corresponding r-uniform HyperClique instance in time

Tr-HC(n, k). If any of these instances returns a solution, then indeed φ has a satisfiable
assignment of weight k. Conversely, if aS is a weight-k satisfying assignment for φ, then by
construction, there exists a hash function h ∈ H such that |S∩X(h)

j | = 1 for j = 1, . . . , k, and
thus the corresponding r-uniform HyperClique instance indeed contains a solution. For each
of the 2O(k) log(n) hash functions, the time to construct and solve the d-uniform HyperClique
instance is bounded by O(n2r + Tr-HC(n, k)), concluding the claim. J

The main result in this section is the following reduction from NANDd+1-avoiding
constraint families to d-uniform HyperClique.

I Theorem 5.2. Let d ≥ 2 and F be an NANDd+1-avoiding constraint family. If there are
constants γ ≥ d/(d+1) and c, and a computable g(k) such that d-uniform HyperClique can be
solved in time g(k)nγk+c, then there is a constant c′ and computable g′(k) such that SAT(F)
can be solved in time g′(k)nγk+c′ .

In particular, since we can find k-cliques in graphs in timeO(nω3 k+1), we obtain an g(k)nω3 k+c′ -
time algorithm for solving SAT(F) for all NAND3-avoiding constraint families. Similarly, if
for d ≥ 3 the d-uniform HyperClique conjecture is refuted by exhibiting a g(k)n(1−ε)k+c-time
algorithm for some constants 0 < ε < 1/(d+ 1) and c, we would obtain a g′(k)n(1−ε)k+c′ -time
algorithm for SAT(F) for NANDd+1-avoiding families F .

In the remainder of the section, we give the proof of Theorem 5.2. The main task of the
algorithm is to detect robust assignments, defined as follows.

I Definition 5.3. Let a : [n]→ {0, 1} be a weight-k assignment that satisfies φ. We say that
a is d-robust if there is no assignment a′ ≤ a of weight at most d that violates φ.
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The first step of the algorithm is the easier task of detecting satisfying assignments that
are not d-robust (if there exists any): Intuitively, an assignment that is not d-robust offers
an advantage to find it: Assume we correctly guess an assignment a′ ≤ a of weight w ≤ d

such that some clause C is violated by a′, then to extend a′ to the satisfying assignment a,
we know that at least one additional variable in C must be set to true. By bruteforcing over
the at most r−w ≤ r many possibilities, we gain an advantage. Specifically, by enumerating
O(nwr) = O(nw) many possibilities, we can fix w + 1 true variables in our solution.

Let T (n, k) denote the time our algorithms takes to solve an arbitrary SAT(F) instance for
a NANDd+1-avoiding family F . In a preprocessing step, we first enumerate all assignments a′
of weight at most d. If there exists a clause Ca′ that is violated by a′, then we enumerate
all variables x ∈ vars(Ca′) \ ones(a′) (recall that vars(C) is the set of variables involved
in C and ones(a) denotes the set of variables set to 1 under a). We recursively determine
satisfiability of the formula φa′,x obtained by restricting all variables in ones(a′)∪{x} to true.
Disregarding the time to determine existence of violated clauses Ca′ , this step takes time

d∑
w=0

∑
weight-w

assignment a′

∑
x∈vars(Ca′ )\ones(a′)

T (n, k − (w + 1)) ≤
d∑

w=0
O(nw)T (n, k − (w + 1)). (5)

To determine a violated clause Ca′ (if it exists) for all weight-(≤ d) assignments a′, we simply
traverse each clause C, determine the at most

∑d
w=0

(
r
w

)
= O(1) weight-(≤ d) assignments

violating C and store C as violated for each of these assignments (if no other clause is already
stored). This step takes time O(m) = O(nr) in the beginning.

After this preprocessing, it remains to consider d-robust assignments. To determine
whether a d-robust assignment satisfies φ, we define a formula φd that is satisfied only by
satisfying assignments of φ, and particularly by all d-robust satisfying assignments of φ. To
this end, let Fd contain all assignments of weight at most d that violate some clause C of φ,
and define

φd :=
∧
a∈Fd

NAND(ones(a)).

I Lemma 5.4. The constructed formula φd has the following properties:
(P1) If F is NANDd+1-avoiding, then any satisfying assignment a of φd is a satisfying

assignment of φ.
(P2) If a is a d-robust satisfying assignment of φ, then a satisfies φd.

Proof. To prove (P1), we will make use of the following property.

B Proposition 5.5. Let F be a NANDd+1-avoiding family. Then if an assignment a violates
some clause C (chosen from F), there is an assignment a′ ≤ a of weight at most d that
violates C.

Proof. We prove the claim via induction on the weight w of the clause C under a. If w ≤ d,
the claim trivially holds. To prove the inductive step, we may assume for contradiction
that there is an assignment a of weight w ≥ d+ 1 violating some clause C = f(x̄), but no
assignment a′ ≤ a of weight at most w − 1 violates C. We will show that NANDd+1 can be
obtained as a restriction of f . To this end, choose some set S ⊆ ones(a)∩vars(C) of size d+1
(which is possible as w ≥ d+ 1), and partition vars(C) into S, Z1 := (ones(a) ∩ vars(C)) \ S
and Z0 := vars(C) \ (S ∪ Z1). Observe that we have
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f(
S︷ ︸︸ ︷

y1 . . . yd+1,

Z0︷ ︸︸ ︷
0 . . . 0,

Z1︷ ︸︸ ︷
1 . . . 1) = 1, if (y1, . . . , yd+1) 6= (1, . . . , 1)

f( 1 . . . 1 , 0 . . . 0, 1 . . . 1) = 0. [since a violates C]

where the first line follows since no assignment a′ ≤ a of weight at most w − 1 violates C,
yielding a contradiction. C

To prove (P1), assume that an assignment a violates some clause C of φ. Since F is
NANDd+1-avoiding, by Proposition 5.5 there exists an assignment a′ ≤ a of weight at most d
such that a′ violates C. Thus, φd contains a clause NAND(ones(a′)), which is violated by a,
as a′ ≤ a.

To prove (P2), assume for contradiction that a d-robust assignment a satisfies φ but
not φd. Then there is some a′ ∈ Fd such that NAND(ones(a′)) is violated by a, i.e., a′ ≤ a.
As a′ ∈ Fd, there must be a clause C of φ that is violated by a′ ≤ a, which proves that a is
not d-robust and thus yields a contradiction. J

Note that φd is a SAT(F ′) formula with constraint family F ′ = {NANDj | 2 ≤ j ≤
d} of arity d. Thus, by Proposition 5.1, we can determine satisfiability of φd in time
f(k)(n2d + Td-HC(n, k)) logn. We obtain the following recurrence by combining (5), the
O(m)-time preprocessing to determine violated classes Ca′ , and f(k)(n2d +Td-HC(n, k)) logn
to solve φd:

T (n, k) = O(m) + f(k)(n2d + Td-HC(n, k)) logn+
d∑

w=0
O(nw)T (n, k − (w + 1)) (6)

Assume that there are γ ≥ d/(d+ 1) and c such that Td-HC(n, k) ≤ g(k)nγk+c. We will
show that T (n, k) = g′(k)O(nγk+c′) for any c′ > max{c, 2r} and g′(k) = f(k)g(k).

We prove the claim via induction on k. The base case is k < c′, in which case we can solve
SAT(F) in time f(k)(n2r + Tr-HC(n, k)) logn = f(k)O((n2r + nk) logn) ≤ O(nc′), satisfying
the claim. Thus, let us assume that k ≥ c′ and that the claim holds for all k′ ≤ k − 1.
Using (6), we obtain

T (n, k) ≤ O(m) + f(k)(n2d + g(k)nγk+c) logn+ g′(k)
(

d∑
w=0

O(nw)nγ(k−w+1)+c′
)

≤ g′(k) logn · O
(
n2r + nγk+c +

d∑
w=0

nw+γ(k−(w+1))+c′
)

≤ g′(k) logn · O
(
n2r + nγk+c + nγk+c′

)
= g′(k)O(nγk+c′),

where in the second line, we used that g′(k) = f(k)g(k), and in the last line we used that
γ(w + 1) ≥ w as γ ≥ d/(d + 1) ≥ w/(w + 1) for w ≤ d, as well as our choice of c′ which
satisfies c′ > c and γk + c′ ≥ c′ > 2r.

6 Hardness Results

In this section, we give our hardness results. To this end, we first consider Implications =
SAT(IMPL) and give a f(k)n(ω/6−o(1)) 3√

k-lower bound under the k-clique conjecture. Af-
terwards, we handle the case of NANDd- or IMPL-representing families, by reducing from
d-uniform (Hyper)Clique or Implications, respectively.
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6.1 Hardness for Implications
I Theorem 6.1. If Implications can be solved in time f(k)n(ω/6−ε) 3√

k+c for some ε > 0, c
and f(k), then the k-Clique conjecture fails.

Proof. Let G = (V,E) be an undirected graph. We construct an Weighted DAG Impli-
cations instance G′ = (V ′, E′, w′) with parameter k′ = k ·K +

(
k
2
)
with K :=

(
k
2
)

+ 1 as
follows. The vertex set V ′ is the disjoint union of vertex nodes V ′V := {vu | u ∈ V } and edge
nodes V ′E := {ve | e ∈ E}. For every e = {u,w} ∈ E, we introduce the edges (ve, vu), (ve, vw)
to E′. Furthermore, we set the weights of vertex nodes to K, and the weights of edge nodes
to 1.

B Claim 6.2. There is a closed set X of weight k′ in G′ if and only if there is a k-clique in G.

Proof. Let C = {v1, . . . , vk} be a k-clique in G. Observe that X = {vu | u ∈ C} ∪ {ve | e ∈(
C
2
)
} is a closed set in G′ of weight |C|K +

(|C|
2
)

= k ·K +
(
k
2
)

= k′.
For the converse, assume that X is a closed set in G′ of weight k′. Setting XV := X ∩ V ′V

and XE := X ∩ V ′E , we show the following sequence of facts:
1) XE ⊆

(
XV
2
)
: note that X is only closed if for all v{u,w} ∈ XE , we have vu, vw ∈ XV .

2) |XV | = k and |XE | =
(
k
2
)
: note that if |XV | < k, then |XE | ≤

(
k−1

2
)
by 1) and thus the

weight of X is |XV |K + |XE | ≤ (k − 1)K +
(
k−1

2
)
< kK +

(
k
2
)

= k′. Furthermore, if
|XV | > k, then the weight of X is at least |XV |K ≥ (k+ 1)K = kK +

(
k
2
)

+ 1 > k′. Thus,
we have |XV | = k, and hence we must have |XE | =

(
k
2
)
for |XV |K + |XE | = k′ to hold.

3) XV forms a k-clique in G: Facts 1) and 2) require that XE =
(
XV
2
)
, which implies that

E contains all edges between vertices of XV .
The last statement concludes the proof of the claim. C

Assume that for some c and ε > 0, there is an Implications algorithm running in
time f(k)n(ω/6−ε) 3√

k+c. Given a k-clique instance G, we run the above reduction to create
a Weighted DAG Implications instance G′ with parameter k′ ≤ (k + 1)(

(
k
2
)

+ 1) =
(k3 + k + 2)/2 ≤ k3 for k ≥ 2. Observe that G′ has O(n2) nodes and can be converted to
an equivalent Implications instance G′′ with the same parameter k′ and O(k2n2) nodes
by simulating each node weight w by a cycle of w nodes. Now, we determine whether
G′′ has a closed set of weight k′ ≤ k3 using the Implications algorithm and thus decide
k-clique in time f(k3)O((k2n2)(ω/6−ε)k+c) = f(k3)kO(k)n(ω/3−2ε)k+2c, refuting the k-Clique
conjecture. J

6.2 Hardness for SAT(F)
In this section, we give our hardness results for general constraint families F by reducing
from (d-uniform Hyper-)Clique either via the independent set problem or via Implications.

To obtain these results, we frequently have to plug-in constant 0s or 1s to obtain our
desired constraints. Technically, this is a non-trivial step, as we need to enforce some variables
to be assigned fixed values without blowing up the number of variables or the weight of the
desired solution. To facilitate our proofs, we first formalize the problem variant that allows
us to plug-in constants freely.

I Definition 6.3. Let F be an arbitrary constraint family and Σ ⊆ {0, 1}. The problem
SATΣ(F) asks to determine whether a given formula φ with Boolean variables x1, . . . , xn
has a satisfying assignment of weight k, where φ is a conjunction of m constraints of the
form f(x), where f : {0, 1}r → {0, 1} is a constraint function in F and x is an r-tuple
over {x1, . . . , xn} ∪ Σ (any variable or constant c ∈ Σ may be used repeatedly). Note that
SAT∅(F) = SAT(F).
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Ideally, we would like to show that SAT{0,1}(F) is equivalent to SAT(F). More specifically,
we would like to employ reductions of the following form.

I Definition 6.4. Let F be an arbitrary constraint family, and Σ,Σ′ ⊆ {0, 1} be disjoint.
We say that SATΣ(F) expresses Σ′, if there is a constant c such that the following holds: For
any formula φ of SATΣ∪Σ′(F) and parameter k, we can compute, in linear time, a formula
φ′ of SATΣ(F) with parameter k′ := k+ c such that φ has a satisfying assignment of weight k
if and only if φ′ has a satisfying assignment of weight k′.

Indeed, for 0-invalid F , we can show that SAT(F) expresses {0, 1} (this is straightforward
and was already shown in [28]). For 0-valid F , however, expressing the constant 1 in general
appears impossible. To still give tight hardness results for F whenever it represents a hard
function g, we make use of a stronger notion that captures whether we can obtain g already as
a restriction that avoids the constant 1. Formally, let f : {0, 1}r → {0, 1}, g : {0, 1}s → {0, 1}
be arbitrary Boolean functions. We say that a function f contains g as a 0-restriction if
g is obtained from f by replacing each argument of f either by an argument of g or the
constant 0, i.e., we can partition [r] into X1, . . . , Xs, Z0 such that

g(x1, . . . , xs) = f(
X1︷ ︸︸ ︷

x1 . . . x1, . . . ,

Xs︷ ︸︸ ︷
xs . . . xs,

Z0︷ ︸︸ ︷
0 . . . 0).

Using careful constructions, we can prove the following central technical lemma.

I Lemma 6.5. Let F be an arbitrary constraint family and let g be IMPL or NANDd for
some d ≥ 2. If some f ∈ F contains g as a restriction, then SAT(F) expresses {0, 1}, or
SAT(F) expresses 0 and f contains g already as a 0-restriction.

Postponing the proof of the above lemma to the Sections 6.3 and 6.4, we can give the
proof of our hardness results.

I Theorem 6.6 (Hardness for SAT(F)). Let F be a constraint family.
1. If F represents IMPL, then SAT(F) cannot be solved in time f(k)n(ω/6−ε) 3√

k+c for any
computable f(k) and constants c, ε > 0, unless the k-Clique conjecture fails.

2. If F represents NAND2, then SAT(F) cannot be solved in time f(k)n(ω/3−ε)k+c for any
computable f(k) and constants c, ε > 0, unless the k-Clique conjecture fails.

3. If F represents NANDd with d ≥ 3, then SAT(F) cannot be solved in time f(k)n(1−ε)k+c

for any computable f(k) and constants c, ε > 0, unless the d-uniform HyperClique
conjecture fails.

Proof. First, we observe that Implications reduces to SAT(IMPL) such that

TImplications(n, k) ≤ O(TSAT(IMPL)(n, k)). (7)

Indeed, given any directed graph G = (V,E) with V = {v1, . . . , vn}, we define the formula φ
with variables x1, . . . , xn and the set of constraints obtained by including xi ⇒ xj for all
(vi, vj) ∈ E. Note that for any S ⊆ [n], {vi}i∈S is a valid set in G iff aS is a satisfying
assignment of φ, yielding (7).

Similarly, we observe that the d-uniform HyperClique problem reduces to SAT(NANDd)
such that

Td-HC(n, k) ≤ O(TSAT(NANDd)(n, k)). (8)
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Indeed, given any d-uniform hypergraph G = (V,E) with |V | = n, we define the for-
mula φ with variables x1, . . . , xn and the constraints obtained by including, for each distinct
vi1 , . . . , vid ∈ V such that (vi1 , . . . , vid) /∈ E, the constraint NANDd(xi1 , . . . , xid). Observe
that (vi1 , . . . , vik) ∈ V k is a hyperclique in G iff the weight-k assignment with xi` = 1 for all
` ∈ [k] satisfies φ, yielding (8).

It remains to show that whenever some f ∈ F contains g ∈ {IMPL} ∪ {NANDd | d ≥ 2}
as a restriction, then there is a computable f ′(k) and constant c′ such that

TSAT(g)(n, k) ≤ f ′(k) · TSAT (F)(n, k + c′). (9)

Indeed, if SAT(F) expresses {0, 1}, then

TSAT(g)(n, k) ≤ O(TSAT{0,1}(F)(n, k)) ≤ f ′(k)O(TSAT(F)(n, k + c′)).

Here the first inequality follows by replacing each occurrence of a constraint g(xi1 , . . . , xid) of
SAT(g) by the corresponding restriction f(g1(xi1 , . . . , xid), . . . , gr(xi1 , . . . , xid)) of
SAT{0,1}(F). The second inequality follows from the definition of SAT(F) expressing {0, 1}.

In the other case, SAT(F) expresses only 0, but f contains g already as a 0-restriction.
Then we have

TSAT(g)(n, k) ≤ O(TSAT{0}(F)(n, k)) ≤ f ′(k)O(TSAT(F)(n, k + c′)),

as replacing each occurrence of a constraint g(xi1 , . . . , xid) of SAT(g) by the corresponding
restriction f(g1(xi1 , . . . , xid), . . . , gr(xi1 , . . . , xid)) does not require the use of the constant 1.
The second inequality again follows from the definition of SAT(F) expressing 0.

As a consequence, by (7) and (9), a f(k) · O(n(ω/6−ε) 3√
k+c) SAT(F) algorithm for an

IMPL-representing family F would then give an Implications algorithm running in time

f(k)f ′(k)O(n(ω/6−ε) 3√k+c′+c) = f ′′(k)O(n(ω/6−ε) 3√
k+c′′),

where f ′′(k) = f(k)f ′(k) and c′′ ≤ c + 3
√
c′. This would refute the k-Clique conjecture by

Theorem 6.1, concluding 1.
Similarly, a f(k) · O(nγk+c) SAT(F) algorithm for an NANDd-representing family F

would give a d-uniform HyperClique algorithm running in time

f(k)f ′(k)O(nγk+c+c′) = f ′′(k)O(nγk+c′′),

where f ′′(k) = f(k)f ′(k) and c′′ = c+ c′. This yields 2. and 3. by the k-Clique or d-uniform
HyperClique conjecture, respectively. J

In the remainder of the section, we prove Lemma 6.5. We split the proof in two cases,
depending on whether f is 0-invalid (Lemma 6.7) or 0-valid (Corollary 6.14).

6.3 Proof of Lemma 6.5: 0-invalid case
Let f be such that we can obtain IMPL or NANDd for d ≥ 2 as a restriction. Note that if it
contains NANDd, d > 2 then it also must contain NAND2 as a restriction.

In this section, we consider the case that f(y1, . . . , yr) is not 0-valid, i.e., the all-zeroes
assignment u1 = · · · = ur = 0 does not satisfy f .

I Lemma 6.7. If f contains IMPL or NAND2 as a restriction and f is 0-invalid, then
SAT(F) expresses {0, 1}.
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The above result in fact follows from the following claim.

B Claim 6.8. Let f be as above. Given a parameter k′, we can compute, in time O(k′), a
formula φ0,1 of SAT(F) with variables y, z1, . . . , zk′+1 such that the only satisfying assignment
of weight at most k′ is y = 1, z1 = · · · = zk′+1 = 0.

Indeed, let us assume the above claim, and take any formula φ of SAT{0,1}(F) with
parameter k. We construct φ0,1 with parameter k′ := k + 1 and define the formula φ′

on variable set x1, . . . , xn, y, z1, . . . , zk′+1 where we include all constraints of φ0,1 and all
constraints of φ, replacing each use of the constant 0 by z1 and each use of the constant 1
by y. This yields a formula of SAT(F) with the property that for any weight-k solution
x1, . . . , xn of φ, the corresponding assignment that sets y = 1 and z1 = · · · = zk′+1 = 0 is a
weight-(k + 1) solution of φ′. Conversely, any (k + 1)-weight solution of φ′ must set y = 1
and z1 = 0 by the above claim, and hence the assignment to x1, . . . , xn must also satisfy φ.
Observe that this proves Lemma 6.7.

Proof of Claim 6.8. We first give a set of constraints that enforces y = 1. To this end, let
S ⊆ [r] be such that aS satisfies f ; observe that S exists and is non-empty (otherwise f
contains neither IMPL nor NAND2 as a restriction). For each j = 1, . . . , k′ + 1, define the
constraint Cj obtained by plugging in y for each ui with i ∈ S (i.e., all arguments set to 1
under aS), and zj for all other values. We claim that any weight-(≤ k′) assignment satisfying∧k′+1
j=1 Cj sets y = 1: by the weight restriction, at least one of z1, . . . , zk′+1 must be equal

to 0, say zj∗ . Then setting y = 0 would falsify Cj∗ , as then all its arguments are 0. Note,
however, that the desired assignment y = 1, z1 = · · · = zk′+1 = 0 satisfies

∧k′+1
j=1 Cj .

It remains to give additional constraints enforcing that zj = 0 for all j ∈ [k′ + 1]. As
a first step, we find S ( T such that f(aS) = 1 but f(aT ) = 0: Since f represents IMPL
or NAND2, there is a partition of [r] into X,Y, Z0, Z1 such that one of the following set of
equalities hold:

f(
X︷ ︸︸ ︷

0 . . . 0,
Y︷ ︸︸ ︷

0 . . . 0,
Z0︷ ︸︸ ︷

0 . . . 0,
Z1︷ ︸︸ ︷

1 . . . 1) = 1,
f(0 . . . 0, 1 . . . 1, 0 . . . 0, 1 . . . 1) = 1,
f(1 . . . 1, 1 . . . 1, 0 . . . 0, 1 . . . 1) = 1,
f(1 . . . 1, 0 . . . 0, 0 . . . 0, 1 . . . 1) = 0.

f(
X︷ ︸︸ ︷

0 . . . 0,
Y︷ ︸︸ ︷

0 . . . 0,
Z0︷ ︸︸ ︷

0 . . . 0,
Z1︷ ︸︸ ︷

1 . . . 1) = 1,
f(1 . . . 1, 0 . . . 0, 0 . . . 0, 1 . . . 1) = 1,
f(0 . . . 0, 1 . . . 1, 0 . . . 0, 1 . . . 1) = 1,
f(1 . . . 1, 1 . . . 1, 0 . . . 0, 1 . . . 1) = 0.

In both cases, the first and fourth line yield sets S ( T with f(aS) = 1 and f(aT ) = 0
(specifically, for S = Z1 and T = X ∪ Z1 or for S = Z1 and T = X ∪ Y ∪ Z1).

Given such S, T , for each j, j′ ∈
([r]

2
)
, we define the constraint C ′j,j′ obtained from

f(u1, . . . , ur) by plugging-in y for all ui with i ∈ S, zj for all i ∈ T \ S and zj′ for all other i.
Note that any satisfying assignment of weight at most k sets at least one of z1, . . . , zk′+1
to 0, say zj∗ . Observe that the constraint C ′j,j∗ is satisfied iff zj = 0, as setting zj to
0 or 1 corresponds to the assignments aS (satisfying) or aT (unsatisfying), respectively.
Furthermore, observe that setting y = 1 and z1 = · · · = zk′+1 = 0 indeed satisfies all
C ′j,j′ . This concludes the claim that the only satisfying assignment of weight at most k′ is
y = 1, z1 = · · · = zk′+1 = 0. C

6.4 Proof of Lemma 6.5: 0-valid case
In this section, we consider the case that f(y1, . . . , yr) is 0-valid, i.e., the all-zeroes assignment
u1 = · · · = ur = 0 satisfies f . We first observe that we can still express at least the constant 0.

I Lemma 6.9. If some f ∈ F contains IMPL or NAND2 as a restriction and f is 0-valid,
then SAT(F) expresses 0.
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Proof. Observe that it suffices to show how to construct, given a parameter k, a formula
on variables z1, . . . , zk+1 such that the only satisfying assignment of weight at most k sets
z1 = · · · = zk+1 = 0.

To this end, assume first that f is not satisfied by the all-ones assignment. Then, the
formula

∧k+1
i=1 f(zi, . . . , zi) is trivially only satisfied by the assignment z1 = · · · = zk+1 = 0.

Otherwise, observe that there must be a non-empty set S ( [r] such that aS does not
satisfy f (otherwise f would be a trivial constraint and could contain neither of IMPL and
NAND2). For each i, i′ ∈ [k + 1], we define the constraint Ci,i′ obtained by using zi for all
arguments in S, and zi′ for all arguments not in S. Observe that Ci,i′ ∧ Ci′,i forces zi = zi′ ,
and thus z1 = · · · = zk+1, which is satisfied by an assignment of weight at most k if and only
if the common value is 0. J

Interestingly, for 0-valid f , containing IMPL as a restriction is equivalent to containing
IMPL already as a 0-restriction.

I Lemma 6.10. If f contains IMPL as a restriction and is 0-valid, then f contains IMPL
already as a 0-restriction.

Proof. Since f : {0, 1}r → {0, 1} contains IMPL as a restriction, we can partition [r] into
sets X,Y, Z0, Z1 and write

f(
X︷ ︸︸ ︷

0 . . . 0,
Y︷ ︸︸ ︷

0 . . . 0,
Z0︷ ︸︸ ︷

0 . . . 0,
Z1︷ ︸︸ ︷

1 . . . 1) = 1,
f(0 . . . 0, 1 . . . 1, 0 . . . 0, 1 . . . 1) = 1,
f(1 . . . 1, 1 . . . 1, 0 . . . 0, 1 . . . 1) = 1,
f(1 . . . 1, 0 . . . 0, 0 . . . 0, 1 . . . 1) = 0.

(10)

Assume first that

f(
X︷ ︸︸ ︷

0 . . . 0,
Y︷ ︸︸ ︷

1 . . . 1,
Z0︷ ︸︸ ︷

0 . . . 0,
Z1︷ ︸︸ ︷

0 . . . 0) = 0. (11)

Then, we obtain IMPL as a 0-restriction by setting X ′ := Y, Y ′ := Z1, Z
′ := X ∪ Z0 and

observing that

f(
X′=Y︷ ︸︸ ︷
0 . . . 0,

Y ′=Z1︷ ︸︸ ︷
0 . . . 0,

Z′=X∪Z0︷ ︸︸ ︷
0 . . . 0 ) = 1, [f is 0-valid]

f(0 . . . 0, 1 . . . 1, 0 . . . 0) = 1, [by (10)]
f(1 . . . 1, 1 . . . 1, 0 . . . 0) = 1, [by (10)]
f(1 . . . 1, 0 . . . 0, 0 . . . 0) = 0. [by (11)]

Otherwise, if (11) does not hold, then we obtain IMPL as a 0-restriction by setting X ′ :=
X ∪ Z1, Y

′ := Y,Z ′ := Z0 and observing that

f(
X′=X∪Z1︷ ︸︸ ︷

0 . . . 0 ,

Y ′=Y︷ ︸︸ ︷
0 . . . 0,

Z′=Z0︷ ︸︸ ︷
0 . . . 0) = 1, [f is 0-valid]

f(0 . . . 0, 1 . . . 1, 0 . . . 0) = 1, [by ¬(11)]
f(1 . . . 1, 1 . . . 1, 0 . . . 0) = 1, [by (10)]
f(1 . . . 1, 0 . . . 0, 0 . . . 0) = 0. [by (10)]

J

It remains to handle the case that f contains NANDd as a restriction. We first observe
that if f contains IMPL as a 0-restriction, then SAT0(F) even expresses the constant 1.
(Thus, afterwards, we may assume that f does not contain IMPL as a 0-restriction.)
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I Lemma 6.11. If some f ∈ F contains IMPL as a 0-restriction, then SAT0(F) expresses 1.

Proof. Given any formula φ of SAT{0,1}(F) on variables x1, . . . , xn, we construct a formula φ′
on variables x1, . . . , xn, y as follows: Since some f ∈ F contains IMPL as a 0-restriction, we
can express, for any variables v, v′, the implication v ⇒ v′ by a corresponding constraint of
SAT0(F). We construct n such constraints to enforce

∧n
j=1(xj ⇒ y). Subsequently, we may

use y to replace any use of the constant 1 to convert the constraints of φ to constraints of
the SAT0(F)-formula φ′.

To argue correctness, note that any satisfying weight-k assignment of φ yields a satisfying
weight-(k + 1) assignment of φ′ by setting y = 1. Conversely, note that any weight-(k + 1)-
assignment of φ′ must set y = 1 (since k ≥ 1 implies that at least one variable xi is set to
one, which enforces y = 1 by the corresponding implication xi ⇒ y) and thus corresponds to
a weight-k assignment to x1, . . . , xn satisfying φ. J

In the remainder of this section, we assume that f contains NANDd as a restriction,
but does not contain IMPL as a 0-restriction, and the aim is to find NANDd already as a
0-restriction.

I Lemma 6.12. For any 0-valid f , if f does not contain IMPL as a 0-restriction, then
whenever f(aS) = f(aT ) = 1 with S ⊆ T , then f(aT\S) = 1.

Proof. If S = T , there is nothing to show, so let S ( T and assume for contradiction that
f(aT\S) = 0. We obtain IMPL as a 0-restriction as follows:

f(
X=T\S︷ ︸︸ ︷
0 . . . 0 ,

Y=S︷ ︸︸ ︷
0 . . . 0,

Z=[r]\T︷ ︸︸ ︷
0 . . . 0 ) = 1, [f is 0-valid]

f(0 . . . 0, 1 . . . 1, 0 . . . 0) = 1, [f(aS) = 1]
f(1 . . . 1, 1 . . . 1, 0 . . . 0) = 1, [f(aT ) = 1]
f(1 . . . 1, 0 . . . 0, 0 . . . 0) = 0. [by assumption]

This yields the claim. J

We can finally obtain NANDd as a 0-restriction.

I Lemma 6.13. If f contains NANDd as a restriction, does not contain IMPL as a 0-
restriction and is 0-valid, then f contains NANDd already as a 0-restriction.

Proof. Since f : {0, 1}r → {0, 1} contains NANDd as a restriction, we can partition [r] into
sets X1, . . . , Xd, Z0, Z1 such that XI :=

⋃
i∈I Xi with I ⊆ [d] satisfies:

f(aXI∪Z1) =
{

0 if I = [d],
1 if I ( [d].

(12)

We claim that the partition X ′i := Xi for i < d, X ′d := Xd∪Z1, Z ′ := Z0 provides NANDd

as a 0-restriction: Letting X ′I :=
⋃
i∈I X

′
i, this follows from

f(aX′
I
) =

{
0 if I = [d],
1 if I ( [d].

(13)

To verify (13), note first that f(aX′[d]
) = f(aX[d]∪Z1) = 0 by (12). Second, let I ( [d].

If d ∈ I, then f(aX′
I
) = f(aXI∪Z1) = 1 by (12). Otherwise, if d /∈ I, then we have

f(aX′
I
) = f(aXI ) = 1 by Lemma 6.12 (for this, note that f does not contain IMPL as

0-restriction and that f(aXI∪Z1) = f(aZ1) = 1). This concludes the claim. J
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The proof of this section is summarized in the following corollary.

I Corollary 6.14. If f contains g ∈ {IMPL}∪
⋃
d≥2{NANDd} and f is 0-valid, then SAT(f)

expresses {0, 1}, or SAT(f) expresses 0 and contains g as a 0-restriction.

Proof. If g = IMPL, then f contains g already as a 0-restriction by Lemma 6.10 and SAT(f)
expresses {0, 1} by Lemmas 6.9 and 6.11.

If g = NANDd, then either f also contains IMPL as a 0-restriction, in which case SAT(f)
expresses {0, 1} by Lemmas 6.9 and 6.11, or it does not contain IMPL as a 0-restriction, and
thus f contains g as a 0-restriction by Lemma 6.13 and SAT(f) expresses 0 by Lemma 6.9. J
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