
Log-Seed Pseudorandom Generators via Iterated
Restrictions
Dean Doron
Department of Computer Science, Stanford University, CA, USA
https://cs.stanford.edu/~ddoron/
ddoron@stanford.edu

Pooya Hatami
Department of Computer Science & Engineering, Ohio State University, Columbus, OH, USA
https://pooyahatami.org/
pooyahat@gmail.com

William M. Hoza
Department of Computer Science, University of Texas at Austin, TX, USA
https://williamhoza.com/
whoza@utexas.edu

Abstract
There are only a few known general approaches for constructing explicit pseudorandom generators
(PRGs). The “iterated restrictions” approach, pioneered by Ajtai and Wigderson [2], has provided
PRGs with seed length polylogn or even Õ(logn) for several restricted models of computation. Can
this approach ever achieve the optimal seed length of O(logn)?

In this work, we answer this question in the affirmative. Using the iterated restrictions approach,
we construct an explicit PRG for read-once depth-2 AC0[⊕] formulas with seed length

O(logn) + Õ(log(1/ε)).

In particular, we achieve optimal seed length O(logn) with near-optimal error ε = exp(−Ω̃(logn)).
Even for constant error, the best prior PRG for this model (which includes read-once CNFs and
read-once F2-polynomials) has seed length Θ(logn · (log logn)2) [22].

A key step in the analysis of our PRG is a tail bound for subset-wise symmetric polynomials, a
generalization of elementary symmetric polynomials. Like elementary symmetric polynomials, subset-
wise symmetric polynomials provide a way to organize the expansion of

∏m

i=1(1 + yi). Elementary
symmetric polynomials simply organize the terms by degree, i.e., they keep track of the number of
variables participating in each monomial. Subset-wise symmetric polynomials keep track of more
data: for a fixed partition of [m], they keep track of the number of variables from each subset
participating in each monomial. Our tail bound extends prior work by Gopalan and Yehudayoff [17]
on elementary symmetric polynomials.

2012 ACM Subject Classification Theory of computation → Pseudorandomness and derandomiza-
tion

Keywords and phrases Pseudorandom generators, Pseudorandom restrictions, Read-once depth-2
formulas, Parity gates

Digital Object Identifier 10.4230/LIPIcs.CCC.2020.6

Funding Dean Doron: Supported by NSF grant CCF-1763311. Part of this work was done while at
UT Austin and supported by NSF grant CCF-1705028.
Pooya Hatami: Supported by NSF grant CCF-1947546. Part of this work was done while at UT
Austin and supported by a Simons Investigator Award (#409864, David Zuckerman).
William M. Hoza: Supported by the NSF GRFP under Grant DGE-1610403 and by a Harrington
Fellowship from UT Austin.

Acknowledgements We thank David Zuckerman for very helpful discussions.

© Dean Doron, Pooya Hatami, and William M. Hoza;
licensed under Creative Commons License CC-BY

35th Computational Complexity Conference (CCC 2020).
Editor: Shubhangi Saraf; Article No. 6; pp. 6:1–6:36

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-1862-8341
https://cs.stanford.edu/~ddoron/
mailto:ddoron@stanford.edu
https://orcid.org/0000-0001-7928-8008
https://pooyahatami.org/
mailto:pooyahat@gmail.com
https://orcid.org/0000-0001-5162-9181
https://williamhoza.com/
mailto:whoza@utexas.edu
https://doi.org/10.4230/LIPIcs.CCC.2020.6
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Log-Seed Pseudorandom Generators via Iterated Restrictions

1 Introduction

The famous “L vs. BPL” problem asks whether randomness is ever truly necessary for
space-efficient computation. To prove L = BPL, it suffices to design a suitable pseudorandom
generator (PRG), i.e., an efficient algorithm that stretches a short truly random seed to a
long bitstring that “looks random”. To be more specific, the action of a small-space algorithm
on its random bits can be modeled by a read-once branching program (ROBP). Therefore, to
prove L = BPL, it suffices to design an efficient PRG with seed length O(logn) that fools
polynomial-width ROBPs.

A large and growing body of work has made significant progress toward this ambitious
goal. Most work on L vs. BPL can be broadly divided into two main approaches.

1.1 The “Seed Recycling” Approach
The “classical” approach to L vs. BPL is based on the observation that there is limited
communication between the first half of an ROBP and its second half. Therefore, after using
a few truly random bits to generate the first half of a pseudorandom string, the truly random
bits can be efficiently recycled to generate the second half of the pseudorandom string. This
insight is essentially due to Nisan [26].

Of the line of work that uses this approach, some highlights include PRGs for polynomial-
width ROBPs with seed length O(log2 n) [26, 20, 15]; PRGs for constant-width “regular”
ROBPs with seed length Õ(logn) [7, 11, 21, 32, 6]; and derandomization techniques that
go beyond the construction of PRGs [27, 31]. More recently, this “seed recycling” approach
has been used to obtain improved generators for polynomial-width ROBPs when the error
parameter ε is very small [5, 19].

1.2 The “Iterated Restrictions” Approach
The more “modern” approach to L vs. BPL is to design a pseudorandom generator by iterated
pseudorandom restrictions. That is, we pseudorandomly assign values to a pseudorandomly
chosen subset of the variables, and then repeat the process to assign values to all variables.
Intuitively, designing a pseudorandom restriction for some function f is easier than fooling
f outright, because designing a pseudorandom restriction amounts to fooling a “smoothed
out” version of f [16], or equivalently, designing a PRG that would fool f if some noise
were added [18]. This “iterated restrictions” approach goes back to early work by Ajtai and
Wigderson [2], but its modern incarnation is largely due to Gopalan et al. [16].

Of the line of work that takes this approach, some highlights include PRGs for arbitrarily-
ordered ROBPs with seed length polylogn [33, 9, 14]; PRGs for width-3 ROBPs with seed
length Õ(logn) [16, 33, 24]; PRGs for bounded-depth read-once formulas with seed length
Õ(logn) [16, 10, 13]; and near-optimal PRGs for arbitrary-order product tests [18, 22].

1.3 Log-Seed PRGs and Our Main Result
At two extremes, one can either try to derandomize all of BPL as efficiently as possible
(e.g. [26, 31]), or else one can try to optimally derandomize as much of BPL as possible
(e.g. [28, 29]). Let us adopt the second goal.

In some cases, the “seed recycling” approach has indeed yielded PRGs with truly optimal
seed length, at least for moderate error. For example, PRGs are known with seed length
O(logn) that fool all O(logn)-space algorithms that use only polylog(n) random bits in the
first place [1, 28, 19]. For another example, PRGs for constant-width “permutation” ROBPs
are known with seed length O(logn) [11, 21, 32].

D. Doron, P. Hatami, and W.M. Hoza 6:3

The present work considers the question of whether the “iterated restrictions” approach
can also yield a PRG with seed length O(logn) for some interesting class of tests. At
first glance, this might seem doubtful, since after all we must pay for many pseudorandom
restrictions. Nevertheless, we answer in the affirmative, proving the following theorem.

I Theorem 1. For all n ∈ N and ε > 0, there is an explicit ε-PRG for read-once depth-2
AC0[⊕] formulas on n input bits with seed length

O(logn) + Õ(log(1/ε)).

Specifically, the seed length of our PRG is O
(
logn+ log(1/ε) · (log log(1/ε))5). One can

prove a lower bound of Ω(logn+ log(1/ε)) on the seed length of any PRG for this model.1

1.4 Read-Once Depth-2 AC0[⊕] Formulas
The class of functions that is fooled by our PRG (read-once depth-2 formulas over the basis
{∧,∨,⊕}, with negations allowed at the inputs for free) is certainly of interest. It includes
read-once CNFs and read-once F2-polynomials as special cases. The problems of fooling
these classes have both received a lot of attention [12, 16, 4, 23, 24, 22]. Previously, even for
read-once CNFs, PRGs with seed length O(logn) were only known for constant error [8, 12],
whereas our PRG maintains seed length O(logn) with near-optimal error ε = exp(−Ω̃(logn)).
Meanwhile, for read-once F2-polynomials, no PRGs with seed length O(logn) were known at
all prior to our work.

Gopalan et al. did give a PRG with near-optimal seed length Õ(log(n/ε)) for read-once
CNFs, and more generally for read-once depth-2 AC0[⊕] formulas with the property that
the output gate is not ⊕ [16]. They used their PRG to construct a near-optimal hitting
set for width-3 ROBPs [16]. A subsequent line of work provided near-optimal PRGs for all
read-once depth-2 AC0[⊕] formulas [23, 24, 22].2

Conversely, a read-once depth-2 AC0[⊕] formula can be simulated by a width-4 ROBP
(after suitably permuting the variables). The problems of designing improved PRGs for
width-4 ROBPs and for read-once AC0[⊕] formulas of any constant depth are two major
frontiers in unconditional pseudorandomness [24, 13]. The model we study in this paper is
an interesting special case.

1.5 Overview of Our Approach
Let us focus on the problem of designing a PRG with seed length O(logn), with ε as
small as possible. For simplicity, assume the test function is a read-once F2-polynomial
f = f1 ⊕ · · · ⊕ fm.

1.5.1 One Restriction
Ultimately, we wish to design a full PRG via iterated pseudorandom restrictions. To begin,
we will explain how to construct just one pseudorandom restriction that assigns values to
a constant fraction of the inputs. We use almost O(logn)-wise independence to select the
subset of inputs to keep “alive” for each coordinate, where the probability of staying alive is
a constant p ≈ 1. We use a small-bias distribution to assign values to the remaining inputs.
Sampling this pseudorandom restriction only costs O(logn) truly random bits.

1 This lower bound holds already for fooling parity functions.
2 The PRGs we are referring to were designed to fool read-once F2-polynomials, but in fact they fool all

of read-once depth-2 AC0[⊕].

CCC 2020

6:4 Log-Seed Pseudorandom Generators via Iterated Restrictions

We must show that our pseudorandom restriction X is correct. That is, we need to show
that∣∣∣∣ EX,U [f |X(U)]− E[f]

∣∣∣∣ ≤ ε,
where U is a uniform random variable over {0, 1}n.

We will outline three different arguments for proving correctness, each of which works
under certain assumptions about f . We defer to the full proof to explain how to stitch these
three arguments together to get a general proof of correctness for any f .

1.5.1.1 Argument 1: Keeping Many Terms Alive

Assume f is a homogeneous F2-polynomial of degree w � log logn, and assume there are
many terms, m ≥ 3w. (For simplicity, in this informal discussion, we are making stronger
assumptions than necessary.) Since f is the parity of all these terms, one can show from
these assumptions that f is approximately balanced, i.e., E[f] ≈ 1

2 . Under a truly random
restriction, for each term, the probability that all variables in the term remain alive would
be pw, so with high probability, the number of nonconstant terms after the restriction would
be at least m · pw ≥ (3p)w. Standard techniques suffice to derandomize this calculation, so
after our pseudorandom restriction, with high probability, there are still many terms alive –
enough that the restricted function is still approximately balanced.

1.5.1.2 Argument 2: The Forbes-Kelley Approach [14]

Building on prior work [30, 18, 9], Forbes and Kelley showed that a restriction based on
δ-biased distributions preserves the expectation of any arbitrary-order constant-width ROBP
to within error 1/n, where log(1/δ) = O(logn log logn) [14]. Our test function f can be
simulated by a width-4 ROBP under some variable order. Unfortunately, given our budget
of O(logn) truly random bits, we can only afford to sample from a (1/poly(n))-biased
distribution.

To move forward, let us turn things around a little: the analysis of Forbes and Kelley
shows that a restriction based on δ-biased distributions preserves the expectation to within
error ε, where ε = exp(−Ω(log(1/δ)/ log log(1/δ))). The point is that this latter statement
holds even for a relatively large δ, assuming the ROBP reads at most 1/ε variables. Therefore,
if we assume that our test function f only reads a few variables (say, polylogn many), then the
Forbes-Kelley approach shows that our pseudorandom restriction preserves the expectation
of f to within error ε = exp(−Ω(logn/ log logn)).

1.5.1.3 Argument 3: Subset-Wise Symmetric Polynomials

Assume this time that the degree of every term of f is in the interval [C log logn,C logn] for
some appropriate constant C. Assume also that for every w, there are at most 3w terms of
degree w. For this case, we return to an older approach based on symmetric polynomials
[16, 17, 24], introduced by Gopalan et al. [16]. The idea is as follows. Let Z ∈ {0, 1}n
indicate which variables will remain alive. For convenience, for any {0, 1}-valued function f ,
let f = (−1)f . Having already sampled Z, our remaining task is to argue that the small-bias
distribution Y fools the “bias function” defined by

f̃(x) = E
U

[f(x+ Z ∧ U)].

D. Doron, P. Hatami, and W.M. Hoza 6:5

Translating {0, 1} to {±1}, the ⊕ operation becomes multiplication, i.e., f =
∏
i fi. For

independent random variables, product and expectation can be interchanged, so the bias
function of f is the product of the bias functions of the fi-s. Define f̂i so that the bias
function of fi is E[fi] · (1 + f̂i). That way,

f̃ = E[f] ·
m∏
i=1

(1 + f̂i). (1)

The approach used in prior work [16, 17, 24] is to expand Equation (1) in terms of elementary
symmetric polynomials. Recall that for y ∈ Rm, the k-th elementary symmetric polynomial
Sk(y) is defined by

Sk(y) =
∑
I⊆[m]
|I|=k

∏
i∈I

yi.

We can expand Equation (1) as

f̃ = E[f] ·
m∑
k=0

Sk(f̂1, . . . , f̂m). (2)

Therefore, the error of our pseudorandom restriction is captured by
∑m
k=1 Sk(f̂1, . . . , f̂m).

Now we can reason as follows. Pick a cutoff point k0.
For k ≤ k0, we do a Fourier L1 calculation to show that Sk(f̂1, . . . , f̂m) has near-zero
expectation even under the small-bias distribution Y .
For k ≈ k0, we do a variance calculation to show that Sk(f̂1, . . . , f̂m) is small with
high probability under the uniform distribution, hence also under Y by the previous L1
calculation.
Finally we invoke a tail bound [17], which says that if Sk0 and Sk0+1 are both small, then
the sum of all subsequent values is also small.

How should we choose the cutoff point k0? If f is a homogeneous F2-polynomial of degree w,
then we should pick k0 = Θ(logn

w). That way, k0 is small enough for the L1 calculation to
work out, because the number of monomials in Sk0(y1, . . . , ym) is(

m

k0

)
≤ mk0 ≤ 3wk0 ≤ poly(n).

But at the same time, k0 is large enough to sufficiently dampen Sk(f̂1, . . . , f̂m) for k ≈ k0.
In fact, one can show that

E[S2
k(f̂1(Y), . . . , f̂m(Y))] ≤ exp(−Ω(wk))

k! ,

which for k ≈ k0 is 1
poly(n)·k! . This is small enough for the tail bound to give an overall error

of 1/ poly(n).
The difficulty, of course, is that f is not necessarily homogeneous, i.e., the terms of

f do not necessarily all have the same degree. To address this difficulty, following prior
work, let us partition the terms of f into Q = O(log logn) buckets based on degree, say
f = F1 ⊕ F2 ⊕ · · · ⊕ FQ. For each bucket q ∈ [Q], there is a suitable cutoff point k0, so our
restriction preserves the expectation of Fq.

CCC 2020

6:6 Log-Seed Pseudorandom Generators via Iterated Restrictions

At this point, the approach taken by prior work has been to invoke a generic XOR lemma
(see Lemma 6) to argue that our restriction must also preserve the expectation of the parity
of the Fq’s, i.e., our test function f . This XOR lemma is a suitable generalization of the
fact that the Fourier L1 norm is submultiplicative. Unfortunately, invoking the XOR lemma
would require us to start with a smaller-bias distribution Y . Effectively, to invoke the XOR
lemma, we would have to pay a factor of Q in the seed length, which we cannot afford.

Therefore, we take a different approach. Our observation is that ideally, the cutoff point k0

should guarantee that every product
∏
i∈I f̂i appearing in Sk0(f̂1, . . . , f̂m) involves Θ(logn)

of the input variables x1, . . . , xn. Intuitively, that’s why the right choice is k0 = Θ(logn
w)

for degree w. When the terms of f do not all have the same degree, the products
∏
i∈I f̂i

appearing in Sk(f̂1, . . . , f̂m) do not all involve the same number of input variables x1, . . . , xn,
hence there isn’t a well-defined correct choice of k0. This suggests that Equation (2) is simply
not the best expansion of Equation (1).

These observations motivate the definition of subset-wise symmetric polynomials. We
defer to Section 2 for the precise definition, but the point is that they allow us to give a
more refined expansion of Equation (1), where instead of just keeping track of k (the number
of fi-s participating in each monomial of Sk) we keep track of a whole vector ~k giving the
numbers of fi-s from each bucket participating in each monomial of S~k. This allows us to
define a norm ‖~k‖ that measures the number of input variables x1, . . . , xn that participate
in each monomial of S~k(f̂1, . . . , f̂m).

We expand Equation (1) in terms of subset-wise symmetric polynomials by summing over
all vectors ~k:

f̃ = E[f] ·
∑
~k∈NQ

S~k(f̂1, . . . , f̂m).

Now we can cut off this sum at ‖~k‖ = Θ(logn). To complete the argument, we extend known
tail bounds for elementary symmetric polynomials [17] to the case of subset-wise symmetric
polynomials.

1.5.2 Iterating the Restriction to Get a Full PRG

So far, we have outlined the proof that our pseudorandom restriction preserves the expectation
of the test function f . Our pseudorandom restriction costs O(logn) truly random bits. But
our goal is to design a full PRG with seed length O(logn). It seems that one restriction
already uses up our entire budget of truly random bits, so how can we afford to iterate
the process?

A key insight is that if f only reads n′ variables (n′ ≤ n), then a pseudorandom restriction
for f ought to only cost O(logn′) truly random bits rather than O(logn). This intuition can
be justified using standard constructions of n′-wise small-bias distributions [25, 3], provided
n′ ≥ logn. (A similar insight was used previously by Lee and Viola [23].) Let C be a constant
such that one pseudorandom restriction costs C logn′ truly random bits.

To simplify the discussion, assume f is homogeneous of degree w = Θ(logn). Each
restriction keeps approximately a p-fraction of variables alive. For simplicity, assume that in
each term, exactly a p-fraction of variables remain alive, i.e., assume that after i pseudorandom
restrictions, the restricted F2-polynomial is homogeneous of degree piw.

D. Doron, P. Hatami, and W.M. Hoza 6:7

We divide into two cases. For the first case, suppose that the number of terms is always
at most exponential in the degree. Specifically, suppose the number of terms is at most 16w′ ,
where w′ is the degree at that stage. In this case, our pseudorandom restrictions get cheaper
and cheaper as we go. Quantitatively, after i restrictions, the restricted polynomial reads
only n′ variables, where n′ = piw · 16piw. Therefore, the cost of restriction i+ 1 is only

C log
(
piw · 16p

iw
)
≤ 5C · piw.

Therefore, if we do a total of t pseudorandom restrictions, the total cost is bounded by

t−1∑
i=0

5Cpiw.

This geometric sum is bounded by O(w) = O(logn), regardless of t. To optimize the error of
our PRG, we choose t = O(log log logn); after this many restrictions, the number of living
variables is small enough that we can stop the iteration and apply a prior near-optimal PRG
by Lee [22] to finish the job.

For the second case, suppose that at some stage the number of terms is enormous
compared to the degree: the degree is w′ and the number of terms is more than 16w′ . This
setting was studied previously by Meka, Reingold, and Tal [24], who gave an optimal PRG
for any function that can be written as a parity of an enormous number of functions on small
disjoint variable sets. Therefore, in this case, we can stop doing pseudorandom restrictions,
and instead fool the function outright using the PRG by Meka et al. [24].

Of course we do not know in advance which case we are in, but this difficulty can be
resolved by straightforward XORing.

2 Subset-Wise Symmetric Polynomials

In this section, we will formally define subset-wise symmetric polynomials and prove suitable
tail bounds for them. This section can be read on its own, independent of the application to
PRGs. We start by recalling known tail bounds for elementary symmetric polynomials.

2.1 Gopalan and Yehudayoff’s Bounds for Symmetric Polynomials

As a reminder, the k-th elementary symmetric polynomial is defined by

Sk(y) =
∑
I⊆[m],
|I|=k

∏
i∈I

yi.

We rely on the following tail bound by Gopalan and Yehudayoff [17]. As discussed in
Section 1.5.1, the bound says that if two Sk-s in a row are small, then all subsequent Sk-s
are small.

I Theorem 2 ([17]). Let y ∈ Rm, θ > 0, and ` ∈ N satisfy S2
` (y) ≤ θ`

`! and S2
`+1(y) ≤ θ`+1

(`+1)! .
Then, for every k ≥ `,

|Sk(y)| ≤
(

64e2θ`

k

)k/2
.

CCC 2020

6:8 Log-Seed Pseudorandom Generators via Iterated Restrictions

The exact statement of Theorem 2 does not appear in Gopalan and Yehudayoff’s work [17],
but it follows readily from their analysis, and it was used previously by Meka et al. [24,
Theorem 5.2].3

2.2 Our Tail Bounds for Subset-Wise Symmetric Polynomials
Let B = (B1, . . . , BQ) be a partition of [m], namely [m] = B1t· · ·tBQ. (The sets B1, . . . , BQ
correspond to the “buckets” discussed in Section 1.5.1.) Throughout this paper, let N denote
the set of nonnegative integers, N = {0, 1, 2, . . . }. For a vector ~k = (~k[1], . . .~k[Q]) ∈ NQ and
y ∈ Rm, we define the following polynomial:

S~k,B(y) =
∑
I⊆[m],

∀q,|Bq∩I|=~k[q]

∏
i∈I

yi.

We name these polynomials as subset-wise symmetric polynomials, since for every q ∈ [Q],
S~k(y) when restricted to the Bq variables is a degree ~k[q] symmetric polynomial.

Throughout this section we fix B = (B1, ..., BQ) to be a partition of [m]. When the
partition B is clear from the context, we will simply write S~k instead of S~k,B. To formulate
our tails bounds for the subset-wise symmetric polynomials, we will need the following
auxiliary polynomials:

R~k(y) def= S2
~k
(y) ·

Q∏
q=1

~k[q]!.

Given c > 1, we will assign each vector ~k ∈ NQ a weight, defined as

‖~k‖(c) =
Q∑
q=1

cq~k[q].

(In our PRG application, Bq will be the set of terms with approximately cq input variables,
so ‖~k‖(c) will be approximately the number of input variables participating in each monomial
of S~k, as outlined in Section 1.5.1.) It is easy to verify that the above weight function is
indeed a norm; however, we will not be using this observation.

The main result of this section is a tail-bound for subset-wise symmetric polynomials. In
Lemma 3, the parameter A is analogous to the “cutoff point” k0 discussed in Section 1.5.1.

I Lemma 3. Suppose c > 1 and Q,A ∈ N satisfy A > max
{(

106c
c−1

)
· cQ, 260Q2

}
. Let Y be

a random variable taking values in Rm. Moreover, suppose for every ~k ∈ NQ with ‖~k‖(c) ≤ A,

E
Y

[
R~k(Y)

]
≤ 2− 1

8‖~k‖(c) .

Then, except with probability 2−A/223 over y ∼ Y ,∑
~k∈NQ,
‖~k‖(c)>A

|S~k(y)| ≤ 2− A
1024 .

3 The careful reader will notice a slight discrepancy between the exact constants of Theorem 2 on the
one hand and the statements by Gopalan and Yehudayoff [17] and Meka et al. [24] on the other. This
discrepancy reflects a minor mistake in the original paper by Gopalan and Yehudayoff [17] that we have
here corrected.

D. Doron, P. Hatami, and W.M. Hoza 6:9

Lemma 3 is similar in spirit to Theorem 2: it says that if the “early” subset-wise sym-
metric polynomials are small (with high probability), then the “late” subset-wise symmetric
polynomials are all small (with high probability).

2.3 Non-probabilistic Tail Bound
Before moving to the proof of Lemma 3 in the next subsection, here we first give a tail-bound
in the case when the input y satisfies some useful properties. We will later prove Lemma 3,
by showing that a random Y satisfies these properties with high probability. Given a vector
~k ∈ NQ, we define the restriction of ~k to a set Q ⊆ [Q] by

~k|Q[q] =
{
~k[q] if q ∈ Q,
0 if q /∈ Q.

Our non-probabilistic tail bound goes as follows.

I Lemma 4. Suppose c > 1 and Q,A ∈ N satisfy A > max
{(

106c
c−1

)
· cQ, 260Q2

}
. Let

y ∈ Rm be a fixed vector. Suppose that for every ~k ∈ NQ, with A/105 ≤ ‖~k‖(c) ≤ A, and for
every pair of disjoint sets Q1,Q2 ⊆ [Q] satisfying {q : ~k[q] > 1} ⊆ Q1 ∪Q2, we have

R(~k|Q1)(y) ·R(~k|Q2)(y)4 ≤ 2− 1
32 ·‖~k‖(c) .

Then,∑
~k∈NQ,
‖~k‖(c)>A

∣∣S~k(y)
∣∣ ≤ 2− A

1024 .

Proof. For a fixed ` ∈ N and q ∈ [Q], define

S`,q =
∑

I⊆Bq,|I|=`

∏
i∈I

yi,

which is the `-th elementary symmetric polynomial applied to (yi)i∈Bq . Similarly, define

R`,q = S2
`,q(y) · `!.

Fix ~k with ‖~k‖(c) > A, let λ = 105 ·‖~k‖(c)/A and let ~k′ ∈ NQ be such that ~k′[q] = d~k[q]/λe.
Thus, A/105 ≤ ‖~k′‖(c) ≤ A/2. Let Q := {q ∈ Q : ~k[q] ≥ 1}, and for each q ∈ Q, let θq > 0
be the smallest4 number satisfying

R~k′[q],q ≤ θ
~k′[q]
q and R~k′[q]+1,q ≤ θ

~k′[q]+1
q . (3)

By Theorem 2,

∣∣∣S~k[q],q

∣∣∣ ≤ (64e2θq ~k′[q]
~k[q]

)~k[q]/2

.

4 It is possible that θq = 0 satisfies Equation (3). In this degenerate case, we must have S~k[q],q = 0. This
implies S~k(y) = 0, hence Equation (4) trivially holds.

CCC 2020

6:10 Log-Seed Pseudorandom Generators via Iterated Restrictions

Subset-wise symmetric polynomials by design can be expressed as a product of elementary
symmetric polynomials, hence

|S~k(y)| =
Q∏
q=1

∣∣∣S~k[q],q(y)
∣∣∣ ≤ ∏

q∈Q

(
64e2θq ~k′[q]

~k[q]

)~k[q]/2

=

∏
q∈Q

θ
~k[q]/λ
q

λ/2

·
∏
q∈Q

(
8e
√
~k′[q]/~k[q]

)~k[q]
.

By our choice of θq,

θ
~k′[q]
q = max

{
R~k′[q],q(y), R~k′[q]+1,q(y)~k′[q]/(~k′[q]+1)

}
≤ max

{
R~k′[q],q(y), R~k′[q]+1,q(y),

√
R~k′[q]+1,q(y)

}
.

Observe that ~k[q]/λ ∈
[
~k′[q]− 1, ~k′[q]

]
, and thus θ

~k[q]/λ
q is between θ

~k′[q]−1
q and θ

~k′[q]
q . If

~k′[q] = 1, then θk
′
q−1
q = 1, and otherwise θ

~k′[q]−1
q is between θ

~k′[q]
q and

√
θ
~k′[q]
q . Therefore,

θ
~k[q]/λ
q ≤ max

{
θ
~k′[q]
q ,

√
θ
~k′[q]
q ,1~k′[q]=1

}
≤ max

{
R~k′[q],q(y), R~k′[q],q(y)1/4, R~k′[q]+1,q(y), R~k′[q]+1,q(y)1/4,1~k′[q]=1

}
.

For every q, choose ~k′′[q] ∈ {~k′[q], ~k′[q] + 1} such that

θ
~k[q]/λ
q ≤ max

{
R ~k′′[q],q(y), R ~k′′[q],q(y)1/4,1 ~k′′[q]=1

}
.

Note that ‖ ~k′′‖(c) ≥ ‖~k′‖(c) and

‖ ~k′′‖(c) ≤ ‖~k′‖(c) +
Q∑
q=1

cq ≤ ‖~k′‖(c) + A

106 < A.

Therefore, there exist disjoint sets Q1,Q2 ⊆ [Q] such that {q : ~k′′[q] > 1} ⊆ Q1 ∪ Q2, and
that for every q ∈ Q,

θ
~k[q]/λ
q ≤

R ~k′′[q],q(y) if q ∈ Q1,

R ~k′′[q],q(y)1/4 if q ∈ Q2,

1 otherwise.

Multiplying over q ∈ Q, we get∏
q∈Q

θ
~k[q]/λ
q ≤

∏
q∈Q1

R ~k′′[q],q(y) ·
∏
q∈Q2

R ~k′′[q],q(y)1/4

=
(
R(~k′′|Q1)(y)4 ·R(~k′′|Q2)(y)

)1/4
≤ 2− 1

128 ·‖ ~k′′‖(c) ≤ 2− 1
128 ·‖~k′‖(c) .

D. Doron, P. Hatami, and W.M. Hoza 6:11

As a result,

|S~k(y)| ≤ 2−
‖~k′‖(c)

128 ·λ2 ·
∏
q∈Q

(
8e
√
~k′[q]/~k[q]

)~k[q]

≤ 2−
‖~k′‖(c)

256 ·λ ·
∏
q∈Q

(
8e
√

2/105
)~k[q]

·
(√

105/2
)λ

≤ 2−
‖~k′‖(c)

256 ·λ · 28Q·λ · 4−‖~k‖1 ≤ 2−
‖~k′‖(c)

512 ·λ · 4−‖~k‖1 ≤ 2−
‖~k‖(c)

512 · 4−‖~k‖1 . (4)

To see the second inequality, observe that when ~k[q] > λ, then
(

8e
√
~k′[q]/~k[q]

)~k[q]
≤

(8e
√

2/105)~k[q], and otherwise
(

8e
√
~k′[q]/~k[q]

)~k[q]
≤ (8e)λ. Summing up over all choices of

~k we get,∑
~k∈NQ,‖~k‖(c)>A

|S~k(y)| ≤
m∑
L=1

∑
~k∈NQ,

‖~k‖(c)>A,‖~k‖1=L

2−
‖~k‖(c)

512 · 4−L

≤ 2− A
512 ·

m∑
L=1

4−L ·
∣∣∣{~k ∈ Nq : ‖~k‖1 = L

}∣∣∣
= 2− A

512 ·
m∑
L=1

4−L ·
(
Q− 1 + L

Q− 1

)

≤ 2− A
512 ·

m∑
L=1

4−L · 2Q−1+L ≤ 2− A
512 · 2Q−1 ·

m∑
L=1

2−L ≤ 2− A
1024 .J

2.4 Probabilistic Tail Bound: Proof of Lemma 3
Proof. Let ~k, Q1, and Q2 be as in the statement of Lemma 4. Using the Cauchy-Schwarz
inequality and the concavity of (·)1/4, we get

E
[(
R~k|Q1

(Y)
)1/8

·
(
R~k|Q2

(Y)
)1/2

]
≤
(
E
[(
R~k|Q1

(Y)
)1/4

]
· E
[
R~k|Q2

(Y)
])1/2

≤
(
E
[
R~k|Q1

(Y)
]1/4
· E
[
R~k|Q2

(Y)
])1/2

≤
(

2− 1
32 ·‖~k|Q1‖(c) · 2− 1

8 ·‖~k|Q2‖(c)
)1/2

≤ 2− 1
64 ·‖~k|Q1∪Q2‖(c)

≤ 2−
1

64 ·(‖~k‖(c)−(c
c−1)·cQ)

≤ 2−
1

64 ·(‖~k‖(c)− A
20000)

≤ 2− 1
128 ·‖~k‖(c) .

Therefore, by Markov’s inequality, except with probability at most 2−‖~k‖(c)/256 ≤
2−A/2560000, we have(

R~k|Q1
(Y)
)
·
(
R~k|Q2

(Y)
)4
≤ 2−

‖~k‖(c)
32 .

CCC 2020

6:12 Log-Seed Pseudorandom Generators via Iterated Restrictions

The above analysis was done for a fixed choice of ~k, Q1, and Q2. The number of choices for
such ~k is AQ (which is subexponential in A), and the number of such Q1, Q2 is at most 3Q
(which is a polynomial in A), thus Lemma 3 follows by a union bound. More precisely, one
can check that since A ≥ 260Q2, then (3A)Q · 2−A/2560000 ≤ 2−A/223

. J

3 Pseudorandomness Preliminaries

Having completed our analysis of subset-wise symmetric polynomials, we now move on to
setting the groundwork for our PRG construction and analysis.

3.1 Probability Basics
Let Un denote the uniform distribution over {0, 1}n. We will simply write U if n is clear
from context. For f : {0, 1}n → R, as a shorthand, we write E[f] to denote E[f(U)] and
Var[f] to denote Var[f(U)]. If X is a distribution over {0, 1}n, we say that X ε-fools f , or
X fools f with error ε, if

|E[f(X)]− E[f]| ≤ ε.

We say that X ε-fools a family F of functions, if it ε-fools every f ∈ F .

3.2 Small Bias
A parity function is a function of the form f(x) =

⊕
i∈I xi for some set I ⊆ [n]. We say that

a random variable Y ∈ {0, 1}n is δ-biased if it δ-fools all parity functions. We say that Y is
n′-wise δ-biased if it δ-fools all parity functions on at most n′ bits, i.e., all parity functions
with |I| ≤ n′. There are explicit constructions of n′-wise δ-biased distributions that can be
sampled with O(log(n′/δ) + log logn) truly random bits [25, 3].

Recall that for a function f : {0, 1}n → R with Fourier expansion f =
∑
S⊆[n] f̂(S) · χS ,

the L1 norm of f is defined by

L1(f) =
∑
S⊆[n]

|f̂(S)|.

This norm is subadditive (L1(f + g) ≤ L1(f) + L1(g)) and submultiplicative (L1(f · g) ≤
L1(f) · L1(g)). Functions with bounded L1 norm are fooled by small-bias distributions:

B Claim 5. If f : {0, 1}n → R and Y is δ-biased, then Y fools f with error 2δ · L1(f).

We will also rely on the following “XOR lemma” for small-bias distributions.

I Lemma 6 ([16, 24]). Let 0 < δ < ε ≤ 1. Let f1, . . . , fk : {0, 1}n → [−1, 1] depend on
disjoint variable sets, and define

f(x) =
k∏
i=1

fi(x).

If every δ-biased distribution ε-fools every fi, then every δk-biased distribution fools f with
error 16k · 2ε.

D. Doron, P. Hatami, and W.M. Hoza 6:13

3.3 Limited Independence
For p ∈ [0, 1], let Bernoulli(p)⊗n denote the distribution over {0, 1}n where the bits are
i.i.d. and each bit has expectation p. For example, Un = Bernoulli(1/2)⊗n. For a set
I = {i1 < i2 < · · · < i`} ⊆ [n] and a string z ∈ {0, 1}n, we let z|I = zi1zi2 . . . zi` ∈ {0, 1}`.
We say that Z ∈ {0, 1}n is γ-almost k-wise independent with marginals p if for every set
I ⊆ [n] with |I| ≤ k, the total variation distance between Z|I and Bernoulli(p)⊗|I| is at
most γ.

B Claim 7. For every n, k, C ∈ N and γ > 0, there is an explicit γ-almost k-wise independent
distribution with marginals p = 1−2−C that can be sampled with O(Ck+log(1/γ)+log logn)
truly random bits.

Proof. Sample Y ∈ {0, 1}Cn from a (Ck)-wise (2−Ck/2−1γ)-biased distribution. Note that
as discussed above Y can be sampled using

O
(
log(2Ck/γ) + log logn

)
= O (Ck + log(1/γ) + log logn)

truly random bits. Divide Y into n blocks Y (1), . . . , Y (n) ∈ {0, 1}C , and set

Zi = 0 ⇐⇒ Y (i) = 1C .

The desired distribution is Z ∈ {0, 1}n.
To prove correctness, let f : {0, 1}n → {0, 1} be any test function depending on only k

variables. There is a function g : {0, 1}Cn → {0, 1} depending on only Ck variables such that
f(Z) = g(Y). By Claim 5,

|E[f(Z)]− E[f(Bernoulli(p)⊗n)]| = |E[g(Y)]− E[g]|

≤ 2−Ck/2−1 · 2γ · L1(g) ≤ γ. C

The expectation parameter p can be “amplified” by drawing independent samples and
combining with a coordinate-wise conjunction:

B Claim 8. Let Z be γ-almost k-wise independent with marginals p. Draw t independent
samples z(1), . . . , z(t) ∼ Z, and let Z ′ = z(1) ∧ · · · ∧ z(t). Then Z ′ is (tγ)-almost k-wise
independent with marginals pt.

Proof sketch. The proof is a simple hybrid argument. Draw t independent samples r(1), . . . ,

r(t) ∼ Bernoulli(p)⊗n, and let

Z(i) = z(1) ∧ · · · ∧ z(i) ∧ r(i+1) ∧ · · · ∧ r(t).

One can show by induction on i that Z(i) is (iγ)-almost k-wise independent with marginals
pt. C

3.4 PARITY ◦ AND Formulas
Recall that our main result (Theorem 1) is a PRG for read-once depth-2 AC0[⊕]. For most
of the paper, we will focus on the special case that the root gate is ⊕ and its immediate
children are ∧ gates. That is, define a PARITY ◦AND formula to be a function of the form

f(x) =
m⊕
i=1

fi(x),

CCC 2020

6:14 Log-Seed Pseudorandom Generators via Iterated Restrictions

where each fi is a conjunction of literals, i.e., variables or their negations. We refer to
f1, . . . , fm as the terms of f . We say that the formula is read-once if each variable xi appears
in at most one term. Most of our effort will be spent fooling read-once PARITY ◦ AND
formulas. Note that this is a slight generalization of read-once F2-polynomials due to the
availability of ¬ gates. We will explain in Section 5.6 why it is sufficient to focus on this
special case.

The width of a term is the number of variables in the term; the width of f is the maximum
width of its terms. The length of f is m, the number of its terms.

For convenience, if f is a function taking values in {0, 1}, we let f = (−1)f . That way, if
f is a PARITY ◦AND formula,

f =
m∏
i=1

fi.

3.5 Restrictions
A restriction is a string x ∈ {0, 1, ?}n; intuitively, xi = ? means that xi has still not been
assigned a value. We define an associative composition operation on restrictions by the
formula

(x ◦ x′)i =
{
xi if xi 6= ?,

x′i otherwise.

For a function f on {0, 1}n, the restricted function f |x on {0, 1}n is defined by

f |x(x′) = f(x ◦ x′).

A restriction x can be specified by two strings y, z ∈ {0, 1}n using the following notation5.
Define Res: {0, 1}n × {0, 1}n → {0, 1, ?}n by

(Res(y, z))i =
{
? if zi = 1,
yi if zi = 0.

In words, z indicates the ? positions, and y provides the bits in the non-? positions.

3.6 Pseudorandom Restrictions
Let Y,Z be distributions over {0, 1}n, and let X = Res(Y, Z). For a function f : {0, 1}n → R,
we say that the distribution X preserves the expectation of f with error ε if

|E[f |X(U)]− E[f]| ≤ ε.

An equivalent condition is that |E[f(Y + Z ∧ U)]− E[f]| ≤ ε, where + denotes addition
over Fn2 and ∧ denotes coordinate-wise conjunction. This second condition is the “pseu-
dorandomness plus noise” perspective [18] (the string Z ∧ U can be thought of as a noise
vector.)

5 With apologies, we here flip the order of the arguments to Res compared to the notation used in the
authors’ prior work [13].

D. Doron, P. Hatami, and W.M. Hoza 6:15

If f takes on values in {0, 1}, for each particular value z that Z might take on, we define
the bias function [16] f̃z : {0, 1}n → [−1, 1] by

f̃z(x) = E
[
f(x+ z ∧ U)

]
.

(We use f rather than f simply for convenience.) The statement that X preserves the
expectation of f with error ε is also equivalent to the condition∣∣∣E

Z

[
E
Y

[f̃Z(Y)]− E
[
f
]]∣∣∣ ≤ 2ε.

When z is clear from context, we will just write f̃ instead of f̃z.
If X is a distribution over {0, 1, ?}n and t ∈ N, let X◦t denote the distribution over

x ∈ {0, 1, ?}n obtained by drawing independent samples x(1), . . . , x(t) ∼ X and composing
them, x = x(1) ◦ · · · ◦ x(t).

Suppose F is a class of Boolean functions that is closed under restriction. If X preserves
the expectation of every f ∈ F with error ε, then X◦t preserves the expectation of every
f ∈ F with error tε. Furthermore, informally, if X “has ?-probability p”, then X◦t “has
?-probability pt”. To be precise, we can consider the case X = Res(Y,Z) where Z is γ-almost
k-wise independent with marginals p. Then the distribution of ? positions in X◦t is described
by Claim 8.

4 Applying a Single Restriction

In this section, we prove that the expectation of a PARITY ◦ AND formula is preserved
under a suitable pseudorandom restriction. The cost of the restriction is only O(logn) truly
random bits, the error is exp(−Ω̃(logn)) (near-optimal), and the restriction assigns values to
a constant fraction of the inputs.

4.1 Restriction Construction
Set C = 500, C = 2000C, c = 1.1, and β = 0.95, and consider the following two distributions.

Let Y be a δ3-biased distribution over {0, 1}n for δ = min
{
n−12C , 1

2n
− 5c
c−1−1

}
=

n−12,000,000.6
Let Z be a γ-almost k-wise independent distribution over {0, 1}n with marginals p =
1− 2−C , for k = 6 logn and γ = n−9.

Our restriction is Res(Y,Z), i.e., Z indicates where to put ? and Y fills in the non-? bits.

I Lemma 9. Let f be a read-once PARITY ◦ AND formula over n variables of width at
most C logn. Then, Res(Y, Z) preserves the expectation of f to within error 2−C

logn
log logn , i.e.,

|E[f(Y + Z ∧ U)]− E[f]| ≤ 2−C
logn

log logn .

4.2 Buckets
Toward proving Lemma 9, we first set some preliminary notations. Recall that f is of the
form

f =
m⊕
i=1

fi =
m⊕
i=1

wi∧
j=1

`ij ,

where every literal `ij is either some variable in {x1, . . . , xn} or its negation.

6 No attempt was made to optimize the constants.

CCC 2020

6:16 Log-Seed Pseudorandom Generators via Iterated Restrictions

Set Q = dlogc(C logn)e = O(log logn). We partition the terms of f into Q buckets
according to their width. Namely, for each q ∈ [Q] we define the interval Iq = [cq−1, cq) and
define Bq ⊆ [m] to be the set of indices i such that wi ∈ Iq. Also, for q ∈ [Q] we define

Fq =
⊕
i∈Bq

fi,

so f =
⊕Q

q=1 Fq. For every q ∈ [Q] we further denote mq = |Bq|.
We divide into two cases (Section 4.3 and Section 4.4) depending on whether there exists

a bucket with substantially many terms. Lemma 9 will follow immediately from Lemma 10
and Lemma 15, which cover these two cases respectively.

4.3 Case I – There Exists a Heavy Bucket
Say that bucket q ∈ [Q] is heavy if both mq > 3cq and mq > logC n. The first case is that
there exists a heavy bucket (i.e., there are many terms of roughly the same width, even
relative to q). In this case, we will argue that f itself is balanced and also that it stays
balanced, w.h.p., after a pseudorandom restriction.

I Lemma 10. Let f be a read-once PARITY ◦ AND formula over n variables of width at
most C logn. Suppose there exists a heavy bucket as defined above. Then, with probability at
least 1− 1

n over (y, z) ∼ Y × Z,

∣∣E[f |Res(y,z)]− E[f]
∣∣ ≤ 1

n
.

Toward proving Lemma 10, let us define a few more auxiliary notations. Write

f = frest ⊕ Fq,

where q is a heavy bucket.

B Claim 11. It holds that
∣∣E[f]

∣∣ ≤ 1
4n .

Proof. By the read-once property and the fact that frest is bounded,∣∣E[f]
∣∣ =

∣∣E[frest]E[Fq]
∣∣ ≤ ∣∣E[Fq]

∣∣ =
∏
i∈Bq

∣∣E[fi]
∣∣ .

Each term in Fq has width at least cq−1, so∣∣E[f]
∣∣ ≤ (1− 2 · 2−c

q−1
)mq

≤ e−2·2−c
q−1
·mq .

Recalling that mq ≥ 3cq , we have 2−cq−1 ≥ mγ
q for γ = log3 2c−1

< 3
4 . Thus, using that fact

that mq ≥ logC n,∣∣E[f]
∣∣ ≤ e−2m1−γ

q ≤ e−2 log(1−γ)C n ≤ 2− log100 n. C

Next, we must analyze the bias of f after the pseudorandom restriction. Let nq be the
number of variables read by Fq. Let b = dlog3 nqe. We will group the terms of Fq into
blocks, each of which reads roughly b variables. To define this grouping, first observe that

D. Doron, P. Hatami, and W.M. Hoza 6:17

b ≥ log3mq, as each term reads at least one variable. Recalling that cq < log3mq, we know
that b > cq. Therefore, since each term in Fq has width at most cq, we can write

Fq =
B⊕
i=1

gi,

where each block gi reads bi variables for bi ∈
[
b− 1

2c
q, b+ 1

2c
q
]
.

Let us now estimate B, the number of blocks. Since b > cq, bi ∈
[
b
2 ,

3b
2
]
. Also,mq > logC n

so b > C
2 log logn. Thus, on the one hand,

B ≥ 2nq
3b ≥

2 · 3b

9b ,

and on the other hand, B ≤ nq ≤ 3b.
Toward arguing that f is balanced after pseudorandom restrictions, we wish to show that

with high probability, z ∼ Z keeps many variables in many terms alive.

I Definition 12. For z ∈ {0, 1}n and a formula f , we say f is good under z if z assigns 1
to at least a (1− β)-fraction of the variables f reads.

B Claim 13. For a fixed z ∈ {0, 1}n, let Xz ⊆ [B] be the set of blocks gi that are not good
under z. Then, with probability at least 1− 1

2n over z ∼ Z,

|Xz| ≤
⌈

4 logn
b

⌉
.

Proof. Set k0 =
⌈

4 logn
b

⌉
. Let S ⊆ [B] be some subset of cardinality k0. We first bound

the probability p that every block gi for i ∈ S is bad under z ∼ Z. For a truly random
z ∼ Bernoulli(1− 2−C)⊗n, the above probability is bounded by∏

i∈S

(
bi
βbi

)
2−Cβbi ≤

∏
i∈S

2bi2−5bi ≤
(

2−4· b2
)|S|
≤ n−8.

Now, for every i ∈ [B], k ≥ k0bi so for z ∼ Z, we get that p ≤ n−8 + γ ≤ 2n−8. Thus, by the
union bound, with probability at most(

B

k0

)
p ≤ 2Bk0n−8 ≤ 2

(
3b
) 4 logn

b n−8 ≤ 2n−(2−log 3)4 ≤ n− 4
3 <

1
2n

there will be some S whose all blocks are bad. Taking the contrapositive, we infer that with
probability at least 1− 1

2n over z ∼ Z, at most k0 of the gi-s are bad under z. C

I Lemma 14. With probability at least 1− 1
n over (y, z) ∼ Y × Z, it holds that∣∣∣E [f |Res(y,z)

]∣∣∣ ≤ 1
2n.

Proof. Fix a good z, for which at most 4 logn
b of the gi-s are not good under it. By Claim 13,

z is good with probability at least 1− 1
2n . Let B

alive = [B] \Xz, so

f = frest ⊕

 ⊕
i∈Balive

gi

⊕
 ⊕
i∈[B]\Balive

gi

 .

For every i ∈ Balive, set the following notations.

CCC 2020

6:18 Log-Seed Pseudorandom Generators via Iterated Restrictions

For every y ∈ {0, 1}n, let gyi denote the function gi|Res(y,z).
Let Idead

i ⊆ [n] be the literals read by gi for which z = 0. As i ∈ Balive,
∣∣Idead
i

∣∣ ≤ βbi ≤ 3β
2 b.

Note that each literal j ∈ Idead
i is set by y ∼ Y .

Let Ialive
i ⊆ [n] be the literals read by gi for which z = 1. As i ∈ Balive,

∣∣Ialive
i

∣∣ ≥ (1−β)bi ≥
1−β

2 b.

Define the function hi so that hi(y) = 1 if gyi is a nonconstant function, and 0 otherwise.
Namely,

hi(y) =
∧

j∈Idead
i

y′j ,

where y′j is either yj or ¬yj depending on whether yj appears positively or negatively in gi.
Also, define

S(y) =
∑
i∈Balive

hi(y),

where the sum is over the reals. Denote

µ = E[S(U)] =
∑
i∈Balive

2−|I
dead
i |,

and note that µ ≥ |Balive| · 2−
3β
2 b. Set ∆S = S − µ. The spectral norm of the AND function

is 1, and so by the sub-additivity we get that L1(∆S) ≤ 2|Balive|. Set ` = 2
⌈

C logn
2 log(2|Balive|)

⌉
.

By the sub-multiplicativity of the spectral norm we have that

L1
(
∆S`

)
≤
(
2
∣∣Balive∣∣)` ≤ nC .

For ε = 1
2 , note that δ ≤ ε

2 · L1
(
∆S`

)−1. By Claim 5, Y ε-fools the function ∆S`, so∣∣∣E [(S(Y)− µ)`
]
− E

[
(S(U)− µ)`

]∣∣∣ ≤ ε. (5)

Next, observe that ∆S(U) is the sum of zero-mean independent random variables, as the
hi-s are supported over disjoint set of variables. Set A = |Balive| · 2−4βb. By the Chernoff
bound,

E
[
∆S(U)`

]
≤ E

[
∆S(U)` | ∆S(U)` ≤ A`

]
+ E

[
∆S(U)` | ∆S(U)` ≥ A`

]
· Pr

[
∆S(U)` ≥ A`

]
≤ A` +

∣∣Balive∣∣` · Pr [∆S(U) ≥ A] ≤
∣∣Balive∣∣` · (2−4βb` + e

− 2A2
|Balive|

)
.

Recall that b > C
2 log logn, so 3b ≥ 36 logn for a large enough n, and since B ≥ 2

9b3
b we get

that B ≥ 8 logn
b and |Balive| ≥ B − 4 logn

b ≥ B
2 . Next, we observe that

2A2

|Balive|
= 2

∣∣Balive∣∣ 2−8βb ≥ B · 2−8βb ≥ 2
9b2(log 3−8β)b ≥ 2b.

As b` ≤ Cb logn
logB ≤ C logn, we can conclude that 2b ≥ 4βb` and so e−

2A2
|Balive| ≤ 2−4βb`, which

implies that E
[
∆S(U)`

]
≤ 2|Balive|` · 2−4βb`.

D. Doron, P. Hatami, and W.M. Hoza 6:19

Using Equation (5) and the above bound yields a bound on E
[
∆S(Y)`

]
. By Markov’s

inequality,

Pr
[
S(Y) < µ

2

]
≤

E
[
(S(Y)− µ)`

]
(µ/2)` ≤ ε+ 2|Balive|` · 2−4βb`

(µ/2)` ≤

(
8
∣∣Balive

∣∣ 2−4βb

µ

)`
. (6)

Recalling that µ ≥ |Balive| · 2−
3β
2 b, Equation (6) becomes

Pr
[
S(Y) < µ

2

]
≤
(

8 · 2(−4β+ 3β
2)b
)`
< 2−2βb` ≤ 2− 1

2βC logn ≤ 1
2n,

where we have used the fact that b` ≥ C logn
4 .

Overall, with probability at least 1− 1
2n over y ∼ Y , gyi is nonconstant for at least µ

2 of
the i-s, and recall that each such gyi is over at least (1− β)bi variables. Fix such a good y,
and let G ⊆ [Balive] be the set of nonconstant gyi -s. Again, we can write

⊕
i∈Balive

gyi =
(⊕
i∈G

gyi

)
⊕

 ⊕
i∈Balive\G

gyi

 , t1 ⊕ t2.

Similarly to Claim 11, in order to bound the bias of f |Res(Y,Z) it is sufficient to bound the
bias of t1, and so

E[t1] ≤
(

1− 2− 3b
2

)µ
2
.

Using the fact that µ ≥ 1
2B · 2

− 3β
2 b ≥ 1

9b2
(log 3− 3β

2)b > 2 301
200 b, we get

E[t1] ≤ e−2−
3b
2 2

301b
200 ≤ e− log

C
400 n ≤ 1

2n. J

Proof of Lemma 10. Finally, the fact that with probability at least 1− 1
n over (y, z) ∼ Y ×Z,∣∣∣f̃z(y)− E[f]

∣∣∣ ≤ 1
n , follows immediately from Claim 11 and Lemma 14. J

4.4 Case II – There Are No Heavy Buckets
In this subsection, we prove that a single pseudorandom restriction preserves the expectation
in the case where there is no such a heavy Bq. Namely, for every q ∈ [Q], either mq ≤ 3cq or
mq ≤ logC n (or both).

I Lemma 15. Let f be a read-once PARITY ◦AND formula over n variables in which the
width of every term is at most C logn, and in which there are no heavy buckets as described
above. Then, with probability at least 1− 1

2 · 2
−C logn

log logn over z ∼ Z it holds that∣∣∣E [f̃z(Y)
]
− E[f]

∣∣∣ ≤ 1
2 · 2

−C logn
log logn .

Toward proving Lemma 15, we partition the Q buckets into two sets and treat terms that
fall into each set of buckets separately. Namely, define the two sets as follows.
A =

{
q ∈ [Q] : mq ≤ log2C n

}
. We refer to these buckets as the sparse buckets.

B = [Q] \ A. We refer to these buckets as the well-behaved buckets.

CCC 2020

6:20 Log-Seed Pseudorandom Generators via Iterated Restrictions

For each set T ∈ {A,B} we denote

fT =
⊕
i∈T

Fi,

and so f = fA⊕fB. The next two subsections will be devoted to proving that the expectation
of each fT is preserved after a single pseudorandom restriction. In Section 4.4.3 we will
combine the two results using the XOR lemma for small-bias distributions (Lemma 6) to
prove Lemma 15.

4.4.1 Handling Sparse Buckets
For the sparse buckets, we will follow the Forbes-Kelley approach [14] to prove the following.

I Lemma 16. With probability at least 1− 1
4 · 2

−C logn
log logn over z ∼ Z, it holds that∣∣∣E [(f̃A)

z
(Y)
]
− E[fA]

∣∣∣ ≤ 1
4 · 2

−C logn
log logn .

As outlined in Section 1.5.1, Lemma 16 follows readily from the work by Forbes and
Kelley [14]. We require our restriction to work with high probability over z ∼ Z, not merely
in expectation, so we must redo some of Forbes and Kelley’s analysis. (No substantial
modification is needed.) The details follow.

Proof of Lemma 16. First, recall that each term in fA is of width at most C logn. There
are at most log2C n terms in each bucket, and at most Q = O(log logn) such buckets, so
overall fA reads at most n′ = log2C+2 n variables.

Note that fA can be computed by a width-4 ROBP of length n′. We follow [14] and let
G : {0, 1}n

′
→ R4×4 encode the transition of the branching program. Namely, perhaps after

renumbering the variables, we have G(x) = G1(x1) · . . . ·Gn′(xn′) where Gi(xi) = Ai,xi for
Ai,b being the transition matrix that corresponds to taking the bit b while at layer i. Set
k0 = 8 logn

log logn , and note that k0 ≤ k. By [14, Lemma 4.1], G can be written as

G = E[G] + L+
n′∑
i=1

Hi ·G>i,

where L has degree7 less than k0, Hi is of degree exactly k0, G>i is a width-4 ROBP, and
Hi and G>i are on disjoint set of variables. More specifically,

L =
∑

α∈Fn′2 ,0<|α|<k0

Ĝαχα

is the truncated Fourier expansion of G, G>i(xi+1, . . . , xn) = Gi+1(xi+1) · . . . ·Gn′(xn′), and

Hi =
∑

α∈Fn′2 ,|α|=k0,αi=1

Ĝ≤iαχα,

whereG≤i(x1, . . . , xi) = G1(x1)·. . .·Gi(xi). Let ‖·‖ be the Frobenius norm. By sub-additivity,
we have

7 We say a function H : {0, 1}n → Rw×w having Fourier expansion
∑

α∈Fn2
Ĥαχα has degree d if Ĥα is

the zero matrix for every α with Hamming weight larger than d.

D. Doron, P. Hatami, and W.M. Hoza 6:21

E
Z

[∥∥∥∥ E
Y,U

[G(Y + Z ∧ U)]− E[G]
∥∥∥∥] ≤ E

Z

[∥∥∥∥ E
Y,U

[L(Y + Z ∧ U)]
∥∥∥∥]+

n′∑
i=1

E
Z

[∥∥∥∥ E
Y,U

[
(Hi ·G>i)(Y + Z ∧ U)

]∥∥∥∥] . (7)

Just as in [14], the low-degree term L is dealt with a δ-biased distribution. From the work of
Chattopadhyay, Hatami, Reingold, and Tal [9] we know that

L1(L) =
k0∑
k′=1

(cCHRT logn′)4k′ ≤ 2(cCHRT logn′)4k0

for some universal constant cCHRT ≥ 1. Thus, by Claim 5, we get that the first term of
Equation (7) is bounded by

2δ · 2(cCHRT logn′)4k0 ≤ 2−C logn · 28k0 log log logn ≤ n−C2 ,

taking into account the fact that E[L(U)] = 0.
For each i of the second term of Equation (7), we use sub-multiplicativity and the fact

that Hi and G>i are on disjoint set of variables to get

E
Z

[∥∥∥∥ E
Y,U

[
(Hi ·G>i)(Y + Z ∧ U)

]∥∥∥∥] ≤ E
Y,Z

[∥∥∥E
U

[Hi(Y + Z ∧ U)]
∥∥∥ · ∥∥∥E

U
[G>i(Y + Z ∧ U)]

∥∥∥] .
As G>i is a width-4 ROBP,

∥∥EU [G>i(y + z ∧ U)]
∥∥ ≤ 2 for all y ∼ Y and z ∼ Z. Continuing

the above bound, by Cauchy-Schwarz we get

E
Z

[∥∥∥∥ E
Y,U

(Hi ·G>i)[Y + Z ∧ U]
∥∥∥∥] ≤ 2

√
E
Y,Z

[∥∥∥E
U

[Hi(Y + Z ∧ U)]
∥∥∥2
]
.

Following [14, Lemma 7.1]8, using the bound by Chattopadhyay et al. [9] and Parseval’s
identity [14, Proposition 3.1], we get

E
Y,Z

[∥∥∥E
U

[Hi(Y + Z ∧ U)]
∥∥∥2
]
≤
(
2−Ck0 + γ

)
·

δ
 ∑
α∈Fn′2

∥∥∥(Ĥi)α
∥∥∥
2

+
∑
α∈Fn′2

∥∥∥(Ĥi)α
∥∥∥2

≤
(
2−Ck0 + γ

)
·
(
δ · L2

1
(
G≤i

)
+ E

[∥∥G≤i(U)
∥∥2])

≤ 8 · 2−Ck0 .

Overall, we get that

E
Z

[∥∥∥∥ E
Y,U

[G(Y + Z ∧ U)]− E[G]
∥∥∥∥] ≤ n−C2 + 2n′

√
8 · 2−Ck0 ≤ 1

16 · 2
−C4 k0 = 1

16 · 2
− 2C log

log logn ,

and we can choose the encoding G so that fA(x) = G(x)1,1. Markov’s inequality completes
the proof. J

8 Forbes and Kelley [14] take the bits of Z to have marginals p = 1
2 , but one can extend the lemma easily

for the case of a general p.

CCC 2020

6:22 Log-Seed Pseudorandom Generators via Iterated Restrictions

4.4.2 Handling Well-Behaved Buckets
We will use our tail bounds for subset-wise symmetric polynomials to prove the following
lemma.

I Lemma 17. With probability at least 1− 1
2n over z ∼ Z, fB can be written as fB = f ′B⊕f ′′B ,

where f ′B and f ′′B are over disjoint set of variables, and for every g ∈ {f ′B, f ′′B} it holds that

|E [g̃z(Y)]− E [g]| ≤ 1
n
.

The proof of Lemma 17 will follow immediately from Claim 20 and Lemma 21. Toward
proving the above lemma, let us set some preliminaries.

B Claim 18. If q ∈ B then cq ∈ [C log logn,C logn] and mq ≤ 3cq .

Proof. The upper bound on cq follows immediately from the assumption in Lemma 15 that
every term has width at most C logn. Also, mq > log2C n since q /∈ A. Since we are at
Case II, mq > log2C n implies that mq ≤ 3cq . From the fact that log2C n < 3cq we get
cq > log3(log2C n) > C log logn. C

Recall that a term fi is good under z if the variables read by fi intersects with z in at
least 1− β fraction.

B Claim 19. For a fixed z ∈ {0, 1}n, let Xz ⊆ [m] be the set of terms in fB that are not
good under z. Then, with probability at least 1− 1

2n over z ∼ Z,

|Xz| ≤
3c
c− 1 logn.

Proof. The proof is very similar to Claim 13. Fix a bucket q ∈ B, set kq = 3 logn
cq and observe

that k ≥ kq. Let S ⊆ Bq be some subset of cardinally kq. We first bound the probability p
that every term fi for i ∈ S is bad under z ∼ Z.

For a truly random z ∼ Bernoulli(1− 2−C)⊗n, the above probability is bounded by

∏
i∈S

(
wi
βwi

)
2−βCwi ≤

∏
i∈S

2wi2−5wi ≤
(

2−4·cq−1
)kq
≤ 2−3kqcq ≤ n−9.

For z ∼ Z, we get that p ≤ n−9 +γ ≤ 2n−9. Thus, with probability at most
(
mq
kq

)
p over z ∼ Z

there exists a set of kq terms in Bq whose all terms are bad under z. By using Claim 18, we
get(

mq

kq

)
p ≤ mkq

q · 2−9 logn+1 ≤ 3kqc
q+log3 2·(−9 logn+1) ≤ 3− 9

4 logn ≤ n−3.

Moreover, with probability at most |B|n−3 ≤ n−2 over z ∼ Z there exists a q ∈ B and a set
of kq terms in Bq whose all terms are bad under z. Taking the contrapositive, we infer that
with probability at least 1− n−2 ≥ 1− 1

2n over z ∼ Z, we have at most

∑
q∈B

kq ≤
Q∑
q=1

3 logn
cq

≤ 3c
c− 1 logn.

terms that are bad for z. C

D. Doron, P. Hatami, and W.M. Hoza 6:23

From here onwards, we fix a z satisfying |Xz| ≤ 3c
c−1 logn. Write

fB =
⊕

i∈C\Xz

fi ⊕
⊕
i∈Xz

fi , f ′B ⊕ f ′′B ,

where C =
⋃
q∈B Bq ⊆ [m] is the set of all terms that belong to B’s buckets. Simply put, we

divide fB to the parity of exceptional terms f ′′B and non-exceptional terms f ′B for whom we
will refer to as good terms. We stress that both f ′B and f ′′B depend on z.

B Claim 20 (Exceptional terms).∣∣∣E [(f̃ ′′B)
z

(Y)
]
− E[f ′′B]

∣∣∣ ≤ 1
n
.

Proof. For brevity, let g = f ′′B . For a fixed w ∈ {0, 1}n, let gw(x) = g(x+ w). The proof will
follow from bounding the spectral norm of gw. Indeed, gw is a multiplication of at most
3c
c−1 logn terms, each of which has spectral norm at most 3. By sub-multiplicativity,

L1 (gw) ≤ 3
3c
c−1 logn ≤ n

5c
c−1 .

Now, δ ≤ 1
2n
− 5c
c−1−1, so by Claim 5 we get that |E[gw(Y)]−E[gw]| ≤ 1

n for every w ∈ {0, 1}n.
Fooling gw is sufficient to fool g̃z. To see this, note that

|E [g̃z(Y)]− E[g]| = |E[g(Y + z ∧ U)]− E[g(U + z ∧ U ′)]|

=
∣∣∣ E
w∼U

[E [gw(Y)]− E [gw]]
∣∣∣ ≤ 1

n
,

where U ′ is an independent copy of U . C

Next, we prove:

I Lemma 21 (Good terms).∣∣∣E [(f̃ ′B)
z

(Y)
]
− E[f ′B]

∣∣∣ ≤ 1
n
.

Proof. For brevity, let g = f ′B and recall that its set of terms is given by C \Xz. Shifting
the bias function g̃ = g̃z to mean zero, recall that we define

ǧ(x) = g̃(x)
E[g̃] − 1.

Thus, we can write

g̃ = E[g]
∏

i∈C\Xz

(
1 + ĝi

)
= E[g]

∑
I⊆C\Xz

∏
i∈I

ĝi = E[g]
∑
~k∈NQ

∑
I⊆C\Xz,K(I)=~k

∏
i∈I

ĝi,

where by K(I) = ~k we mean that for every q ∈ [Q], there are ~k[q] terms in I that belong
to the q-th bucket, i.e., |I ∩Bq| = ~k[q]. For simplicity, we reorder the terms of g and write
g =

⊕
i∈[m′] gi for m′ = |C \Xz|, and for q ∈ [Q], Bq ⊆ [m′] is the set of terms in g that

belong to the q-th bucket. We abbreviate ~g = (ĝ1, . . . , ĝm′), and write

S~k(~g) =
∑

I⊆[m′],K(I)=~k

∏
i∈I

ĝi.

Under these notations, g̃ = E[g]
∑
~k∈NQ S~k(~g).

CCC 2020

6:24 Log-Seed Pseudorandom Generators via Iterated Restrictions

Let Ig(x) be the Boolean-valued function which is 1 if and only if∑
~k∈NQ,‖~k‖(c)>A

∣∣S~k (~g(x))
∣∣ ≤ 2− A

1024 ,

where A = C logn and ‖~k‖(c) =
∑Q
q=1 c

q · ~k[q]. Section 4.4.4 will be devoted to showing that
E[Ig(Y)] is very close to 1. Namely,

I Lemma 22. The following two inequalities hold.
1. E[Ig(Y)] ≥ 1− e−cIA for cI = ln 2

223 .
2. E

[
S2
~k
(~g(Y))

]
≤ 2− 1

8‖~k‖(c) .

For now, let us take Lemma 22 as given and continue with the proof of Lemma 21. We
proceed by writing

|E[g̃(Y)]− E[g̃]| ≤ |E [g̃(Y) | Ig(Y) = 1]− E[g̃]|+ 2 Pr [Ig(Y) = 0] . (8)

By Lemma 22, we have that Pr[Ig(Y) = 0] ≤ e−cIA. Next, observe that

|E [g̃(Y) | Ig(Y) = 1]− E[g̃]| =

∣∣∣∣∣∣∣E[g]
∑

~k∈NQ,‖~k‖(c)>0

E
[
S~k(~g(Y)) | Ig(Y) = 1

]∣∣∣∣∣∣∣ ,
and set

∆ =

∣∣∣∣∣∣∣
∑

~k∈NQ,‖~k‖(c)>0

E
[
S~k(~g(Y)) | Ig(Y) = 1

]∣∣∣∣∣∣∣ ,
so Equation (8) gives us

|E[g̃(Y)]− E[g̃]| ≤∆ + 2e−cIA. (9)

We bound ∆ as follows.

∆ ≤

∣∣∣∣∣∣∣
∑

~k∈NQ,0<‖~k‖(c)≤A

E
[
S~k(~g(Y)) | Ig(Y) = 1

]∣∣∣∣∣∣∣+ max
y∈{0,1}n,Ig(y)=1

∑
~k∈NQ,‖~k‖(c)>A

∣∣S~k(~g(y))
∣∣ .

By definition, the second term is at most 2− A
1024 . The first term, call it ∆1, can be split into

two terms as follows.

∆1 = 1
Pr[Ig(Y) = 1]

∣∣∣∣∣∣∣
∑

~k∈NQ,0<‖~k‖(c)≤A

E
[
S~k(~g(Y)) · Ig(Y)

]∣∣∣∣∣∣∣
≤ 2

∣∣∣∣∣∣∣
∑

~k∈NQ,0<‖~k‖(c)≤A

E
[
S~k(~g(Y)) · Ig(Y)

]∣∣∣∣∣∣∣ (10)

≤ 2

∣∣∣∣∣∣∣∣∣∣
∑
~k∈NQ,

0<‖~k‖(c)≤A

E
[
S~k(~g(Y))

]
∣∣∣∣∣∣∣∣∣∣

+ 2

∣∣∣∣∣∣∣∣∣∣
∑
~k∈NQ,

0<‖~k‖(c)≤A

E
[
S~k(~g(Y)) · (1− Ig(Y))

]
∣∣∣∣∣∣∣∣∣∣

D. Doron, P. Hatami, and W.M. Hoza 6:25

≤ 2

∣∣∣∣∣∣∣∣∣∣
∑
~k∈NQ,

0<‖~k‖(c)≤A

E
[
S~k(~g(Y))

]
∣∣∣∣∣∣∣∣∣∣

+ 2
√

E[1− Ig(Y)] ·
∑
~k∈NQ,

0<‖~k‖(c)≤A

√
E
[
S2
~k
(~g(Y))

]
, (11)

where the last inequality follows from the triangle inequality followed by Cauchy-Schwarz.
By Lemma 22, the second term of Equation (11), ∆1,2, is at most

∆1,2 ≤ 2 · e−cIA ·
∑

~k∈NQ,0<‖~k‖(c)≤A

√
2− 1

8‖~k‖(c)

≤ 2 · e−cIA ·
A−1∑
w=1

∣∣∣{~k ∈ NQ : w < ‖~k‖(c) ≤ w + 1
}∣∣∣ 2− 1√

8
w

≤ 2 · e−cIA(A+ 1)Q
A∑
w=1

2−
1√
8
w ≤ 8(A+ 1)Qe−cIA ≤ 2

2
log c (log logn)2

e−cIA ≤ 1
8n.

To finish bounding ∆1, it is left to bound the first term of Equation (11), denoted by ∆1,1.

B Claim 23. ∆1,1 = 2
∣∣∣∑~k∈NQ,0<‖~k‖(c)≤A E

[
S~k(~g(Y))

]∣∣∣ ≤ 1
8n .

Proof. The proof goes by bounding the spectral norm of the function S~k(~g(x)). As for every
~k ∈ NQ with ‖~k‖(c) 6= 0, E[S~k(~g(U))] = 0, the claim will follow by using Claim 5, together
with sub-additivity and sub-multiplicativity. First, note that:

B Claim 24. For every i ∈ [m], L1(ĝi) ≤ 4.

Proof. Consider the function hi = 1−gi, so L1(g̃i) ≤ L1(h̃i)+1 and E[h̃i] = E[hi] = 1−E[gi] ≥
1
2 . Now, L1(ĥi) ≤ 1

E[hi]L1(h̃i) + 1 ≤ 2L1(h̃i) + 1. Recalling that h̃i(x) = E[hi(x + z ∧ U)],
we get L1(h̃i) ≤ 1 as every shift of hi is a negated conjunction of literals. Thus, L1(ĥi) ≤ 3
and L1(ĝi) ≤ 4. C

Then, for every such ~k ∈ NQ,

L1
(
S~k(~g)

)
≤

∑
I⊆C\XT ,K(I)=~k

∏
i∈I

L1
(
ĝi
)
≤

∑
I⊆C\XT ,K(I)=~k

4|I|

=
∑

I⊆C\XT ,K(I)=~k

∏
q∈[Q]

4~k[q] =
∏
q∈[Q]

(~k[q]
mq

)
4~k[q].

Recall that Claim 18 tells us that mq ≤ 3cq , so

L1
(
S~k(~g)

)
≤
∏
q∈[Q]

3c
q(1+log3 4)~k[q] ≤ 12‖~k‖(c) . (12)

Finally,

L1

 ∑
~k∈NQ,0<‖~k‖(c)≤A

E
[
S~k(~g(Y))

] ≤ (A+ 1)Q · 12A ≤ 26A ≤ n6C ,

and the claim follows by observing that δ ≤ 1
32nn

−6C . C

CCC 2020

6:26 Log-Seed Pseudorandom Generators via Iterated Restrictions

Incorporating the above claim, we get that ∆1 = ∆1,1 + ∆1,2 ≤ 1
8n + 1

8n ≤
1

4n , which
readily gives ∆ ≤ 1

4n + 2− A
1024 ≤ 1

2n . Plugging-it in Equation (9), we finally get

|E[g̃(Y)]− E[g̃]| ≤ 1
2n + 2e−cIA ≤ 1

n

and the desired result. J

4.4.3 Putting It Together
Here we finally incorporate Lemma 16 and Lemma 17.

Proof of Lemma 15. By Lemma 16 and Lemma 17, with probability at least 1 − 1
4 ·

2−C
logn

log logn − 1
n ≥ 1− 1

2 · 2
−C logn

log logn over z ∼ Z, we can write

f = fA ⊕ f ′B ⊕ f ′′B ,

where the three functions are over disjoint set of variables, and it holds that for each
T ∈ {A,B,B′},∣∣∣(f̃T)

z
(Y ′)− E

[
fT
]∣∣∣ ≤ 1

4 · 2
−C logn

log logn

for any δ-biased distribution Y ′. Using the XOR lemma for small-biased spaces (see Lemma 6),
taking into account that our distribution Y is in fact δ3-biased, we conclude that∣∣∣E[f̃z(Y)]− E[f]

∣∣∣ ≤ 163 · 2 · 1
4 · 2

−C logn
log logn ≤ 1

2 · 2
−C logn

log logn ,

and the lemma follows. J

4.4.4 Ig Almost Always Happens
We keep using the notations of Section 4.4.2. Specifically, recall that g = f ′B =

⊕
i∈[m′] gi for

m′ = |C \Xz|, and for q ∈ [Q], Bq ⊆ [m′] is the set of terms in g that belong to the q-th
bucket. Also, for ~g = (ĝ1, . . . , ĝm′),

S~k(~g) =
∑

I⊆[m′],K(I)=~k

∏
i∈I

ĝi.

Recall that Ig(x) ∈ {0, 1} is 1 if and only if∑
~k∈NQ,‖~k‖(c)>A

∣∣S~k (~g(x))
∣∣ ≤ 2− A

1024 ,

where A = C logn and ‖~k‖(c) =
∑
q∈[Q] c

q · ~k[q].

Proof of Lemma 22. As in Section 2, we define

R~k(~g) = S2
~k
(~g) ·

∏
q∈[Q]

~k[q]!.

By Lemma 3, to prove the bound on Pr[Ig(Y) = 0] it is sufficient to prove that for every
~k ∈ NQ with ‖~k‖(c) ≤ A we have that

E
[
R~k(~g(Y))

]
≤ 2− 1

8‖~k‖(c) .

D. Doron, P. Hatami, and W.M. Hoza 6:27

By now a standard course of action, we aim at bounding the spectral norm of the function
R~k(~g), together with its expectation under the uniform distribution. To this end, let us
define, for q ∈ [Q] and an integer `,

Š`,q =
∑

I⊆Bq,|I|=`

∏
i∈I

ĝi,

so R~k(~g) =
∏
q∈[Q] Š

2
~k[q],q

~k[q]!. First, we record that:

B Claim 25. For every i ∈ [m′], E
[
ĝi

2
]
≤ 2−(2−2β)wi .

Proof. Let Vi ⊆ [n] be the set of variables read by gi, of cardinality wi, and let `i =
|Vi ∩ {j ∈ [n] : zj = 1}| be the number of live variables read by gi. Note that

g̃i(x) = E[gi(x+ z ∧ U)] =
{

0 if there exists j ∈ Vi such that xj = zj = 0,
2−`i otherwise.

Then,

E
[
g̃i

2
]

= 2−2`i Pr
x∼U

[for everyj ∈ Vi s.t. zj = 0 it holds that xj = 1]

= 2−2`i2−(wi−`i) = 2−wi−`i .

Recalling that `i ≥ (1−β)wi (gi is good under z), we have E[g̃i2] ≤ 2−(2−β)wi . Let hi = 1−gi,
and note that

E
[
ĥi

2
]

= Var
[
ĥi

]
= Var[g̃i]

E2[hi]
≤ 4 · E

[
g̃i

2
]
≤ 4 · 2−(2−β)wi ≤ 2−(2−2β)wi .

The fact that Var[ĥi] = Var[ĝi] = E[ĝi
2] finishes the proof. C

Now,

E
[
Š2
`,q

]
=

∑
I⊆Bq,|I|=`

∏
i∈I

E
[
ĝi

2
]
≤

∑
I⊆Bq,|I|=`

∏
i∈I

2−(2−2β)wi

≤
∑

I⊆Bq,|I|=`

2−(2−2β)cq` ≤
(
mq

`

)
2−(2−2β)cq` ≤ 3cq`e`2−(2−2β)cq`

`! ≤ 1
`! 2
− cq`4 .

Plugging it in our expression for R~k, we get

E
[
R~k(~g)

]
=
∏
q∈[Q]

E
[
Š~k[q],q

~k[q]!
]
≤
∏
q∈[Q]

2−
cq~k[q]

4 = 2− 1
4‖~k‖(c) . (13)

Finally, let us bound L1(R~k(~g)). In Equation (12) we established the fact that L1(S~k(~g)) ≤
12‖~k‖(c) ≤ 12A. Thus,

L1
(
R~k(~g)

)
≤ 122A

∏
q∈[Q]

~k[q]! ≤ 122Ae

∑
q∈[Q]

~k[q] ln~k[q] ≤ 122Ae
(lnA)

∑
q∈[Q]

~k[q]
.

As ‖~k‖(c) =
∑
q∈[Q] c

q~k[q] ≤ A and cq ≥ C log logn (see Claim 18),
∑
q∈[Q]

~k[q] ≤ A
C log logn

and we get

L1
(
R~k(~g)

)
≤ 122AelnA A

C log logn ≤ 122A2CC logn ≤ n10C .

CCC 2020

6:28 Log-Seed Pseudorandom Generators via Iterated Restrictions

Note that δ ≤ 1
32n
−10C2−A4 . Thus, by Claim 5,

E
[
R~k(~g(Y))

]
≤ 2− 1

4‖~k‖(c) + δ · n10C ≤ 2− 1
8‖~k‖(c) ,

and we are done with bounding Pr[Ig(Y) = 0]. For the bound on E
[
S2
~k
(~g(Y))

]
, simply

observe that E
[
S2
~k
(~g(Y))

]
< E

[
R~k(~g(Y))

]
. J

5 Full PRG via Iterated Restrictions

So far, we have shown how to pseudorandomly assign values to a constant fraction of the
inputs of any read-once PARITY◦AND formula using O(logn) truly random bits, preserving
the expectation of the formula to within near-optimal error. In this section, to complete the
proof of Theorem 1, we show how to pseudorandomly assign values to all the inputs, i.e., we
give a genuine PRG.

For convenience, we make the following definitions.

I Definition 26. Let w > 0. A w-proper formula is a read-once PARITY ◦AND formula of
width at most w and length most 28w. We say that such a formula is short if its length is at
most 24w; otherwise, we say that the formula is long.

Our main goal is to fool (C logn)-proper formulas, but along the way, we will obtain a PRG
for w-proper formulas with seed length O(w) and error exp(−Ω̃(w)), even for w substantially
smaller than logn.

5.1 Restrictions for Proper Formulas
Recall that Lemma 9 provides a pseudorandom restriction that uses only O(logn) truly
random bits. We now generalize this fact in two respects. First, in the case of w-proper
formulas (log logn ≤ w ≤ C logn), we improve the seed length to O(w). Second, in the case
of short w-proper formulas, we argue that the restriction simplifies the formula, in the sense
that it transforms it into a (w/2)-proper formula.

I Lemma 27. For every w, n ∈ N with w ≤ C logn, there is a distribution X over {0, 1, ?}n
with the following properties.
1. (Seed length) There is an explicit algorithm to sample from X using just O(w + log logn)

truly random bits.
2. (Expectation preservation) If f is a w-proper formula, then X preserves the expectation

of f with error exp(−Ω(w/ logw)).
3. (Simplification) If f is a short w-proper formula, then

Pr[f |X is a (w/2)-proper formula] ≥ 1− 2−w.

Proof. Let n′ = 28w · w. Let Y be an n′-wise δ3-biased distribution where δ = (n′)−12C ,
and let Z be γ-almost k-wise independent with marginals 1− 2−C , where k = 6 logn′ and
γ = (n′)−9. Our restriction is

X = Res(Y,Z)◦2
C+4

.

By standard constructions [25, 3] and Claim 7, X can be explicitly sampled using O(w +
log logn) truly random bits.

D. Doron, P. Hatami, and W.M. Hoza 6:29

Now, to prove expectation preservation, let f be a w-proper formula. By w-properness,
there is some set of indices I ⊆ [n], |I| ≤ n′, such that f(x) only depends on x|I . Let
g : {0, 1}|I| → {0, 1} be the w-proper formula such that f(x) = g(x|I). Since Y |I is δ3-
biased and Z|I is γ-almost k-wise independent with marginals 1− 2−C , Lemma 9 implies
that Res(Y |I , Z|I) preserves the expectation of g with error exp(−Ω(logn′

log logn′)), which is
exp(−Ω(w/ logw)). It follows that Res(Y, Z) preserves the expectation of f with the same
error. The error of X is only larger by a constant factor 2C+4, because any restriction of a
w-proper formula is trivially another w-proper formula.

Finally, to prove simplification, let f be a short w-proper formula, and let fi be a term.
Since k > w/2, by Claim 8, the probability that more than w/2 variables from fi are assigned
? by X is bounded by(

w

w/2

)
·
(

(1− 2−C)2C+4·w/2 + 2C+4γ
)
≤ 2w ·

(
e−2−C ·2C+3w + 2C+4 · (n′)−9

)
< 2−5w.

The number of terms in f is at most 24w, so by the union bound, except with probability
2−w, f |X has maximum width at most w/2. Furthermore, restricting cannot increase the
number of terms, so the number of terms is still bounded by 24w = 28(w/2). Therefore, in
this case, f |X is (w/2)-proper. J

5.2 Full PRGs for Long Proper Formulas [24]
The simplification clause of Lemma 27 only applies if f is short. If f is long, we will therefore
need a different approach. We will take a similar approach as Meka, Reingold, and Tal [24].
A full PRG for long w-proper formulas follows readily from their work.

I Lemma 28 ([24]). For every w, n ∈ N, there is an explicit (2−w)-PRG for long w-proper
formulas with seed length

O(w + log logn).

Proof sketch. In short, the PRG is one of the PRGs by Meka et al. [24, full version,
Lemma 6.2], except we replace every δ-biased distribution with a (·)-wise δ-biased distribution
to optimize the seed length.

In more detail, let n′ = 28w · w. Sample v ∈ {0, 1}wn from an (n′w)-wise (c−wMRT)-biased
distribution, where cMRT is a suitable constant. Think of v as n blocks of w bits. Define a
set I ⊆ [n] as follows: include i in I if and only if the i-th block of v is 1w.

Sample x(0), x(1), . . . , x(16) ∈ {0, 1}n independently from an (n′)-wise (c−wMRT)-biased
distribution. The PRG outputs the string x defined by

xi =
{
x

(0)
i if i 6∈ I⊕16
j=1 x

(j)
i if i ∈ I.

By standard constructions [25, 3], the seed length of this PRG is

O(logn′ + w + log logn) = O(w + log logn).

As for correctness, let f be a long w-proper formula. Let J ⊆ [n] be the set of indices
of variables that f reads, so there is some long w-proper formula g on |J | input bits such
that f(x) = g(x|J). Let X be the distribution output by the PRG. Since |J | ≤ n′, the

CCC 2020

6:30 Log-Seed Pseudorandom Generators via Iterated Restrictions

distribution X|J is exactly the pseudorandom distribution designed by Meka et al. [24, full
version, Lemma 6.2]. Furthermore, since f is long, |J | > 24w. It follows that g is in the
class of functions fooled by Meka et al.’s pseudorandom distribution: g is an XOR of m
non-constant Boolean functions on disjoint variables, where each function is on at most w
variables, with 16w < m ≤ 162w and log log(|J |/2w)� w ≤ log |J |. Therefore, X|J fools g
with error 2−w, and hence X fools f with error 2−w. J

5.3 Full PRGs for Width-O(log n) Formulas
For short proper w-formulas, to get a full PRG, we will iterate the restriction of Lemma 27
several times, assigning values to more and more variables. Eventually, we’ll stop this
recursive process and use a different PRG. Specifically, for the “base case,” we’ll use a PRG
by Lee [22] with minor modifications:

I Lemma 29 ([22]). For every w, n ∈ N and every ε > 0, there is an explicit ε-PRG for
w-proper formulas with seed length

O((w + log(1/ε)) · (logw + log log(1/ε))2) + poly(log log(n/ε)).

Proof sketch. In short, the PRG is one of the PRGs by Lee [22, Theorem 6], except we
replace every δ-biased distribution with a (·)-wise δ-biased distribution to optimize the seed
length, just like the proofs of Lemma 27 and Lemma 28.

To give a little more detail, let n′ = 28w · w; a w-proper formula only reads n′ variables.
Lee’s PRG [22, Theorem 6] is designed to fool arbitrary-order combinatorial checkerboards,
i.e., parities of functions on disjoint variable sets of size at most w. This class includes
w-proper formulas as a special case. Lee’s original PRG has seed length

O((w + log(n/ε)) · (logw + log log(n/ε))2).

After making suitable replacements, one can show that the seed length is reduced to

O((w + log(n′/ε)) · (logw + log log(n′/ε))2) + poly(log log(n/ε)).

(We omit the full proof, since it repeats much of Lee’s analysis [22].) Plugging in the value
of n′, we get the claimed seed length. J

We now give our full PRG for general formulas of width at most C logn. The PRG follows a
similar approach to one of the PRGs by Meka et al. [24, full version, Algorithm 3]: iteratively
apply the restriction of Lemma 27, but at each step, XOR with the PRG of Lemma 28 in
case the formula is long.

I Lemma 30. For every n ∈ N, there is an explicit PRG for read-once PARITY ◦ AND
formulas of width at most C logn with seed length O(logn) and error

2−Ω
(

logn
(log logn)3

)
.

Proof. Define

w0 = logn
(log logn)2 .

We recursively define a PRG Gw for w-proper formulas, w0 ≤ w ≤ C logn, as follows.

D. Doron, P. Hatami, and W.M. Hoza 6:31

(Base case) If w ≤ 2w0, then Gw is the (2−w0)-PRG of Lemma 29 based on Lee’s work [22].
(Recursive case) If w > 2w0, sample X ∈ {0, 1, ?}n from the distribution guaranteed
by Lemma 27 based on the work in Section 4. Sample Y ∈ {0, 1}n using the PRG of
Lemma 28 based on Meka et al.’s work [24]. Recursively sample Gdw/2e, and set

Gw = Y ⊕ (X ◦Gdw/2e).

For the analysis, observe first that in the base case w ≤ 2w0, Gw fools w-proper formulas
with error 2−w0 . Now, for the inductive step, consider some w > 2w0. Assume Gdw/2e fools
dw/2e-proper formulas with error εdw/2e; we will show that Gw fools w-proper formulas with
error εw, where

εw = εdw/2e + 2−Ω(w/ logw).

Let f be a w-proper formula, and for brevity, let G = Gdw/2e. For the first case, suppose
f is long. Any shift of f is also a long w-proper formula, so

|E[f(Gw)]− E[f]| =
∣∣∣∣ EX,G [EY [f(Y ⊕ (X ◦G))]

]
− E[f]

∣∣∣∣
≤ E
X,G

[∣∣∣E
Y

[f(Y ⊕ (X ◦G))]− E[f]
∣∣∣]

= E
X,G

[∣∣∣E
Y

[f(Y ⊕ (X ◦G))]− E
U

[f(U ⊕ (X ◦G))]
∣∣∣]

≤ 2−w.

For the second case, suppose f is short. For each y ∈ {0, 1}n, define fy(x) = f(y⊕x), another
short w-proper formula. Fix y ∼ Y , and let E be the event that fy|X is (w/2)-proper, so
whether E occurs depends only on X. Then

|E[(fy|X)(G)]− E[f]|

≤
∣∣∣E
X

[
E
G

[(fy|X)(G)]
∣∣∣ E]− E[f]

∣∣∣+ Pr[¬E]

≤
∣∣∣E
X

[
E
U

[(fy|X)(U)]
∣∣∣ E]− E[f]

∣∣∣+ εdw/2e + Pr[¬E] (Induction)

≤
∣∣∣E
X

[
E
U

[(fy|X)(U)]
]
− E[f]

∣∣∣+ εdw/2e + 2 Pr[¬E]

≤ 2−Ω(w/ logw) + εdw/2e + 2 Pr[¬E] (Item 2 of Lemma 27)

≤ 2−Ω(w/ logw) + εdw/2e + 2 · 2−w (Item 3 of Lemma 27).

Let εw be the final right-hand side, so indeed εw = εdw/2e + exp(−Ω(w/ logw)). Then

|E[f(Gw)]− E[f]| ≤ E
Y

[∣∣∣∣ EX,G[(fY |X)(G)]− E[f]
∣∣∣∣]

≤ εw.

Now, let us add up all these errors. Since w ≥ w0 always holds, we have εw ≤
εdw/2e + exp(−Ω(w0/ logw0)). Starting at w = C logn, we only need to halve w a to-
tal of O(log log logn) times to reach the base case w ≤ 2w0. Therefore, the total error of
GC logn is bounded by

2−w0 + 2−Ω(w0/ logw0) ·O(log log logn) = 2−Ω
(

logn
(log logn)3

)
.

CCC 2020

6:32 Log-Seed Pseudorandom Generators via Iterated Restrictions

Finally, let us bound the seed length of Gw. In the base case w ≤ 2w0, by our choice of
w0, the seed length sw of Gw is bounded by some value sbase ≤ O(logn). In the recursive
case w > 2w0, the seed length sw of Gw is bounded by

sw = sdw/2e +O(w + log logn) = sdw/2e +O(w).

The point is that this is essentially a geometric series. More precisely, let cseed be a constant
such that sw ≤ sdw/2e + cseed ·w for all w > 2w0. Then by induction, for all w ≥ w0, we have

sw ≤ sbase + 3cseedw,

because

sw ≤ sdw/2e + cseedw

≤ sbase + 3cseeddw/2e+ cseedw (Induction)
< sbase + 3cseedw.

Therefore, we can take the desired PRG to be GC logn, because sC logn ≤ O(logn), and any
read-once PARITY ◦AND formula of width at most C logn is (C logn)-proper. J

5.4 Arbitrary-Error PRGs for Width-O(log(n/ε)) Formulas
At this point, the main work of proving Theorem 1 is complete. We just need to address
three minor issues: small ε, large width, and formulas not of the form PARITY ◦ AND.
We begin by addressing the case of small ε. Recall that we wish to achieve seed length
O(logn) + Õ(log(1/ε)) for an arbitrary error ε. This follows readily by combining the PRG
of Lemma 30 with Lee’s PRG (Lemma 29).

I Lemma 31. For any n ∈ N, ε > 0, there is an explict ε-PRG for read-once PARITY◦AND
formulas of width at most C

2 log(n/ε) with seed length

O(logn+ log(1/ε) · (log log(1/ε))5).

Proof. Let ε0 be the error parameter in Lemma 30, so ε0 = exp(−Ω(logn
(log logn)3)). If ε ≥ ε0,

the PRG of Lemma 30 works, because C
2 log(n/ε) < C logn. If ε < ε0, use Lee’s PRG [22],

i.e., the ε-PRG of Lemma 29 for (C2 log(n/ε))-proper formulas, which has seed length

O(log(n/ε) · (log log(n/ε))2) ≤ O(log(1/ε) · (log log(1/ε))5). J

(In the proof of Lemma 31, we could just as well have used Lee’s original PRG [22,
Theorem 6] instead of the slightly modified version given by Lemma 29.)

5.5 PRGs for Any Width
In this section, we eliminate the assumption that the maximum width is bounded.

I Lemma 32. For all n ∈ N and ε > 0, there is an explicit ε-PRG for read-once PARITY ◦
AND formulas on n input bits with seed length

O
(
logn+ log(1/ε) · (log log(1/ε))5) .

D. Doron, P. Hatami, and W.M. Hoza 6:33

Proof. Sample G from the (ε/3)-PRG for formulas of width C
2 log(3n/ε) guaranteed by

Lemma 31. Sample Y from an (ε
6n)-biased distribution. Our final PRG outputs

H
def= G⊕ Y.

To prove that this works, let f be a read-once PARITY ◦AND formula. Write f = f ′ ⊕ f ′′,
where every term in f ′ has width at most C2 log(3n/ε) and every term in f ′′ has width greater
than C

2 log(3n/ε).
Since any shift of a width-w read-once PARITY ◦ AND formula is another width-w

read-once PARITY ◦AND formula, H fools f ′ with error ε/3. Meanwhile, since each term
f ′′i of f ′′ is a conjunction of more than C

2 log(3n/ε) literals,

E[f ′′i] ≤
(ε

3n

)C/2
<

ε

6n.

Furthermore, the L1 norm of any conjunction of literals is 1, and H is (ε
6n)-biased, so by

Claim 5, E[f ′′i (H)] < ε
3n . Therefore, by the union bound, for either distribution X ∈ {H,U},

E[f ′′(X)] < ε/3.

This allows us to bound the error of the final PRG as follows:

|E[f(H)]− E[f]| ≤ |E[f(H)]− E[f ′(H)]|+ |E[f ′(H)]− E[f ′]|+ |E[f ′]− E[f]|
≤ E[|f(H)− f ′(H)|] + |E[f ′(H)]− E[f ′]|+ E[|f ′ − f |]
= E[f ′′(H)] + |E[f ′(H)]− E[f ′]|+ E[f ′′]
< ε/3 + ε/3 + ε/3 = ε. J

5.6 Proof of Theorem 1
In this section, we finally complete the proof of Theorem 1 by showing that fooling read-once
PARITY ◦AND formulas is sufficient for fooling read-once depth-2 AC0[⊕]:

I Lemma 33. Let X be a distribution over {0, 1}n, and let ε > 0. If X fools all read-once
PARITY ◦AND formulas with error ε, then X fools all read-once depth-2 AC0[⊕] formulas
with error 2ε.

Proof. Let f be a read-once depth-2 AC0[⊕] formula.
For the first case, suppose the output gate of f is ⊕. By merging the output gate with

any ⊕ children and introducing trivial ∧ gates with fan-in 1 as necessary, we see that without
loss of generality, every child of the output gate is either ∧ or ∨. By de Morgan’s laws, it
follows that either f or ¬f can be computed by a read-once PARITY ◦AND formula. Either
way, this implies that X ε-fools f .

For the second case, suppose the output gate of f is ∧, say f =
∧m
i=1 fi. Using the Fourier

expansion of the m-input AND function, we get

f =
∑
I⊆[m]

(−1)|I|

2m ·
∏
i∈I

(−1)fi

=
∑
I⊆[m]

(−1)|I|

2m ·

(
1− 2 ·

⊕
i∈I

fi

)
.

CCC 2020

6:34 Log-Seed Pseudorandom Generators via Iterated Restrictions

By our analysis for the first case, X fools
⊕

i∈I fi with error ε. Therefore, by the triangle
inequality,

|E[f(X)]− E[f]| ≤
∑
I⊆[m]

∣∣∣∣ (−1)|I| · (−2)
2m

∣∣∣∣ ·
∣∣∣∣∣E
[(⊕

i∈I
fi

)
(X)

]
− E

[⊕
i∈I

fi

]∣∣∣∣∣
≤
∑
I⊆[m]

2
2m · ε = 2ε.

For the final case, suppose the output gate of f is ∨. By de Morgan’s laws, ¬f can be
computed by a read-once depth-2 AC0[⊕] formula with output gate ∧. By our analysis for
the second case, X fools ¬f with error 2ε, hence X fools f with the same error. J

6 Directions for Further Work

Is there any setting where the iterated restrictions approach (with ω(1) iterations) can give
a pseudorandom generator (or even a hitting set generator) with truly optimal seed length
O(log(n/ε))?

Suppose X,X ′, X ′′ are three independent small-bias distributions. Does X +X ′ ∧X ′′
fool read-once CNFs with optimal seed length O(log(n/ε))?

References
1 M. Ajtai, J. Komlos, and E. Szemeredi. Deterministic simulation in LOGSPACE. In Proceedings

of the Nineteenth Annual ACM Symposium on Theory of Computing (STOC), pages 132–140,
New York, NY, USA, 1987. ACM. doi:10.1145/28395.28410.

2 Miklos Ajtai and Avi Wigderson. Deterministic simulation of probabilistic constant depth
circuits. Advances in Computing Research, 5(199-222):1, 1989.

3 Noga Alon, Oded Goldreich, Johan Håstad, and René Peralta. Simple constructions of almost
k-wise independent random variables. Random Structures & Algorithms, 3(3):289–304, 1992.

4 Louay Bazzi and Nagi Nahas. Small-bias is not enough to hit read-once CNF. Theory of
Computing Systems, 60(2):324–345, February 2017. doi:10.1007/s00224-016-9680-6.

5 Mark Braverman, Gil Cohen, and Sumegha Garg. Pseudorandom pseudo-distributions
with near-optimal error for read-once branching programs. SIAM Journal on Computing,
0(0):STOC18–242–STOC18–299, 2020. doi:10.1137/18M1197734.

6 Mark Braverman, Anup Rao, Ran Raz, and Amir Yehudayoff. Pseudorandom generators for
regular branching programs. SIAM Journal on Computing, 43(3):973–986, 2014.

7 J. Brody and E. Verbin. The coin problem and pseudorandomness for branching programs.
In 2010 IEEE 51st Annual Symposium on Foundations of Computer Science (FOCS), pages
30–39, October 2010. doi:10.1109/FOCS.2010.10.

8 Suresh Chari, Pankaj Rohatgi, and Aravind Srinivasan. Improved algorithms via approxima-
tions of probability distributions. Journal of Computer and System Sciences, 61(1):81–107,
2000. doi:10.1006/jcss.1999.1695.

9 Eshan Chattopadhyay, Pooya Hatami, Omer Reingold, and Avishay Tal. Improved pseudoran-
domness for unordered branching programs through local monotonicity. In Proceedings of the
50th Annual ACM Symposium on Theory of Computing (STOC), pages 363–375, New York,
NY, USA, 2018. ACM. doi:10.1145/3188745.3188800.

10 Sitan Chen, Thomas Steinke, and Salil Vadhan. Pseudorandomness for read-once, constant-
depth circuits. arXiv preprint, 2015. arXiv:1504.04675.

11 Anindya De. Pseudorandomness for permutation and regular branching programs. In Proceed-
ings of the 26th Annual IEEE 26th Annual Conference on Computational Complexity (CCC),
pages 221–231. IEEE, 2011.

https://doi.org/10.1145/28395.28410
https://doi.org/10.1007/s00224-016-9680-6
https://doi.org/10.1137/18M1197734
https://doi.org/10.1109/FOCS.2010.10
https://doi.org/10.1006/jcss.1999.1695
https://doi.org/10.1145/3188745.3188800
http://arxiv.org/abs/1504.04675

D. Doron, P. Hatami, and W.M. Hoza 6:35

12 Anindya De, Omid Etesami, Luca Trevisan, and Madhur Tulsiani. Improved pseudorandom
generators for depth 2 circuits. In Approximation, randomization, and combinatorial opti-
mization, volume 6302 of Lecture Notes in Computer Science, pages 504–517. Springer, Berlin,
2010. doi:10.1007/978-3-642-15369-3_38.

13 Dean Doron, Pooya Hatami, and William M Hoza. Near-optimal pseudorandom generators
for constant-depth read-once formulas. In 34th Computational Complexity Conference (CCC),
2019.

14 Michael A. Forbes and Zander Kelley. Pseudorandom generators for read-once branching
programs, in any order. In Proceedings of the 59th Annual IEEE Symposium on Foundations
of Computer Science (FOCS). IEEE, 2018.

15 Anat Ganor and Ran Raz. Space pseudorandom generators by communication complexity
lower bounds. In LIPIcs-Leibniz International Proceedings in Informatics, volume 28. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2014.

16 Parikshit Gopalan, Raghu Meka, Omer Reingold, Luca Trevisan, and Salil Vadhan. Better
pseudorandom generators from milder pseudorandom restrictions. In Proceedings of the 53rd
Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 120–129. IEEE,
2012.

17 Parikshit Gopalan and Amir Yehudayoff. Inequalities and tail bounds for elementary symmetric
polynomial with applications. arXiv preprint, 2014. arXiv:1402.3543.

18 Elad Haramaty, Chin Ho Lee, and Emanuele Viola. Bounded independence plus noise fools
products. SIAM Journal on Computing, 47(2):493–523, 2018. doi:10.1137/17M1129088.

19 William M. Hoza and David Zuckerman. Simple optimal hitting sets for small-success RL.
In Proceedings of the 59th Annual IEEE Symposium on Foundations of Computer Science
(FOCS). IEEE, 2018.

20 Russell Impagliazzo, Noam Nisan, and Avi Wigderson. Pseudorandomness for network
algorithms. In Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of
Computing (STOC), pages 356–364. ACM, 1994.

21 Michal Koucký, Prajakta Nimbhorkar, and Pavel Pudlák. Pseudorandom generators for group
products. In Proceedings of the 43rd Annual ACM Symposium on Theory of Computing
(STOC), pages 263–272. ACM, New York, 2011. doi:10.1145/1993636.1993672.

22 Chin Ho Lee. Fourier bounds and pseudorandom generators for product tests. In Amir
Shpilka, editor, 34th Computational Complexity Conference (CCC), volume 137 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 7:1–7:25, Dagstuhl, Germany, 2019.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.CCC.2019.7.

23 Chin Ho Lee and Emanuele Viola. More on bounded independence plus noise: Pseudorandom
generators for read-once polynomials. In Electronic Colloquium on Computational Complexity
(ECCC), volume 24, page 167, 2017.

24 Raghu Meka, Omer Reingold, and Avishay Tal. Pseudorandom generators for width-3
branching programs. In Proceedings of the 51st Annual ACM Symposium on Theory of
Computing (STOC), pages 626–637. ACM, New York, 2019.

25 Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and
applications. SIAM Journal on Computing, 22(4):838–856, 1993.

26 Noam Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,
12(4):449–461, 1992.

27 Noam Nisan. RL ⊆ SC. computational complexity, 4(1):1–11, March 1994. doi:10.1007/
BF01205052.

28 Noam Nisan and David Zuckerman. Randomness is linear in space. Journal of Computer and
System Sciences, 52(1):43–52, 1996. doi:10.1006/jcss.1996.0004.

29 Omer Reingold. Undirected connectivity in log-space. Journal of the ACM, 55(4):Art. 17, 24,
2008. doi:10.1145/1391289.1391291.

CCC 2020

https://doi.org/10.1007/978-3-642-15369-3_38
http://arxiv.org/abs/1402.3543
https://doi.org/10.1137/17M1129088
https://doi.org/10.1145/1993636.1993672
https://doi.org/10.4230/LIPIcs.CCC.2019.7
https://doi.org/10.1007/BF01205052
https://doi.org/10.1007/BF01205052
https://doi.org/10.1006/jcss.1996.0004
https://doi.org/10.1145/1391289.1391291

6:36 Log-Seed Pseudorandom Generators via Iterated Restrictions

30 Omer Reingold, Thomas Steinke, and Salil Vadhan. Pseudorandomness for regular branch-
ing programs via Fourier analysis. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, pages 655–670. Springer, 2013.

31 Michael E. Saks and Shiyu Zhou. BPHSPACE(S) ⊆ DSPACE(S3/2). Journal of Computer
and System Sciences, 58(2):376–403, 1999.

32 Thomas Steinke. Pseudorandomness for permutation branching programs without the group
theory. In Electronic Colloquium on Computational Complexity (ECCC), 2012.

33 Thomas Steinke, Salil Vadhan, and Andrew Wan. Pseudorandomness and Fourier-growth
bounds for width-3 branching programs. Theory of Computing, 13(12):1–50, 2017. doi:
10.4086/toc.2017.v013a012.

https://doi.org/10.4086/toc.2017.v013a012
https://doi.org/10.4086/toc.2017.v013a012

	Introduction
	The ``Seed Recycling'' Approach
	The ``Iterated Restrictions'' Approach
	Log-Seed PRGs and Our Main Result
	Read-Once Depth-2 AC^0[oplus] Formulas
	Overview of Our Approach
	One Restriction
	Iterating the Restriction to Get a Full PRG

	Subset-Wise Symmetric Polynomials
	Gopalan and Yehudayoff's Bounds for Symmetric Polynomials
	Our Tail Bounds for Subset-Wise Symmetric Polynomials
	Non-probabilistic Tail Bound
	Probabilistic Tail Bound: Proof of Lemma 3

	Pseudorandomness Preliminaries
	Probability Basics
	Small Bias
	Limited Independence
	PARITY o AND Formulas
	Restrictions
	Pseudorandom Restrictions

	Applying a Single Restriction
	Restriction Construction
	Buckets
	Case I – There Exists a Heavy Bucket
	Case II – There Are No Heavy Buckets
	Handling Sparse Buckets
	Handling Well-Behaved Buckets
	Putting It Together
	I_{g} Almost Always Happens

	Full PRG via Iterated Restrictions
	Restrictions for Proper Formulas
	Full PRGs for Long Proper Formulas Meka et al., 2019
	Full PRGs for Width-O(log n) Formulas
	Arbitrary-Error PRGs for Width-O(log(n/epsilon)) Formulas
	PRGs for Any Width
	Proof of Theorem 1

	Directions for Further Work

