
Ideal Membership Problem and a Majority
Polymorphism over the Ternary Domain
Arpitha P. Bharathi
IDSIA, Lugano, Switzerland
arpitha@idsia.ch

Monaldo Mastrolilli
IDSIA, Lugano, Switzerland
monaldo@idsia.ch

Abstract
The Ideal Membership Problem (IMP) asks if an input polynomial f ∈ F[x1, . . . , xn] with coefficients
from a field F belongs to an input ideal I ⊆ F[x1, . . . , xn]. It is a well-known fundamental problem
with many important applications, though notoriously intractable in the general case. In this paper
we consider the IMP for polynomial ideals encoding combinatorial problems and where the input
polynomial f has degree at most d = O(1) (we call this problem IMPd). Our main interest is
in understanding when the inherent combinatorial structure of the ideals makes the IMPd “hard”
(NP-hard) or “easy” (polynomial time) to solve.

Such a dichotomy result between “hard” and “easy” IMPs was recently achieved for Constraint
Satisfaction Problems over finite domains [5, 24] (this is equivalent to IMP0) and IMPd for the Boolean
domain [16], both based on the classification of the IMP through functions called polymorphisms.
For the latter result, each polymorphism determined the complexity of the computation of a suitable
Gröbner basis.

In this paper we consider a 3-element domain and a majority polymorphism (constraints under
this polymorphism are a generalisation of the 2-SAT problem). By using properties of the majority
polymorphism and assuming graded lexicographic ordering of monomials, we show that the reduced
Gröbner basis of ideals whose varieties are closed under the majority polymorphism can be computed
in polynomial time. This proves polynomial time solvability of the IMPd for these constrained
problems. We conjecture that this result can be extended to a general finite domain of size k = O(1).
This is a first step towards the long term and challenging goal of generalizing the dichotomy results
of solvability of the IMPd for a finite domain.
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1 Introduction

A polynomial ideal is a subset of the polynomial ring F[x1, . . . , xn] with two properties: for
any two polynomials f, g in the ideal, f + g also belongs to the ideal and so does hf for any
polynomial h in F[x1, . . . , xn]. The Hilbert Basis Theorem [10] states that every ideal I is
finitely generated by a set F = {f1, . . . , fm} ⊂ I, i.e., any polynomial in I is a polynomial
combination of elements from F . The polynomial Ideal Membership Problem (IMP) is to
find out if a polynomial f belongs to an ideal I or not, given a set of generators of the ideal.
This fundamental algebraic complexity problem was first pioneered by David Hilbert [11] and
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has important applications in solving polynomial systems and polynomial identity testing
[8, 23]. The IMP is, in general, EXPSPACE-complete and Mayr and Meyer show examples
that prove the double exponential growth of degree bounds [17, 18, 19].

The vanishing ideal of a set S ⊆ Fn is the set of all polynomials in F[x1, . . . , xn] that
vanish at every point of S. This set of polynomials forms an ideal. In this paper we consider
vanishing ideals of the sets S of feasible solutions that arise from combinatorial problems. The
vanishing ideal of the solution space S is defined as its combinatorial ideal. We consider the
IMP for polynomial ideals over the field of rationals (i.e., F = Q) that encode combinatorial
problems. We call such problems where the input polynomial has degree at most d = O(1)
as IMPd. The polynomial ideals that arise from combinatorial problems frequently have
special properties: these ideals are finite domain and therefore zero-dimensional and radical.
It is important to identify restrictions (combinatorial problems) for which IMPd is tractable,
since this has applications to Sum-of-Squares (SoS) proof systems (or Lasserre relaxations)
and theta bodies [9].

The SoS proof system is an increasingly popular tool to solve combinatorial optimization
problems. Especially over the last few decades, SoS has had several applications in continuous
and discrete optimization (see, e.g., [14]). It has often been claimed in recent papers that one
can compute a degree d SoS proof (if one exists) via the Ellipsoid algorithm in nO(d) time.
In a recent work, O’Donnell [20] observed that this often repeated claim is far from true.
O’Donnell gave an example of a polynomial system and a polynomial which had degree two
proofs of non-negativity with coefficients requiring an exponential number of bits, causing
the Ellipsoid algorithm to take exponential time. O’Donnell [20] raised the open problem to
establish useful conditions under which “small” SoS proof can be guaranteed automatically.
Raghavendra and Weitz [21] provided a sufficient condition on a polynomial system that
implies bounded coefficients in SoS proofs. In particular, the work of Raghavendra and
Weitz [21] shows that the IMPd tractability for combinatorial ideals implies polynomially
bounded coefficients in SoS proofs. Therefore, the IMPd tractability yields to degree d SoS
proof (if one exists) computation via the Ellipsoid algorithm in nO(d) time. Moreover an
efficient computation of the IMPd leads to the efficient construction of theta bodies SDP
relaxations for the considered problems [9, 15]. There are only very few examples of efficiently
constructible theta bodies relaxations.

Hence the following question poses itself: which restrictions on combinatorial problems
can guarantee an efficient computation of the IMPd? In this paper we make restrictions
on the constraint language (see Section 1.1), where each constraint language Γ produces
a particular polynomial ideal membership problem denoted IMPd(Γ) (see A.2.1 of [16] for
details on Ideal-CSP correspondence). The ultimate objective is to describe the complexity of
the IMPd(Γ) for all constraint languages Γ. By placing restrictions on constraint languages,
examinations regarding the computational complexity of the decision version of the Constraint
Satisfaction Problem (CSP) over a language Γ on a finite domain (denoted by CSP(Γ)), has
yielded successful results. The complexity classification of CSP(Γ) started with the classic
dichotomy result of Schaefer [22] for CSPs over the Boolean domain. Nearly thirty years
after [22], the renowned dichotomy result for ternary domains was proven by Bulatov [4].
It took another decade to generalize the latter to any finite domain (see Bulatov [5] and
Zhuk [24]), settling the long-standing Feder-Vardi dichotomy conjecture for finite domain
CSPs. We refer to [6] for an excellent survey. Note that CSP(Γ) corresponds to the very
special case of the IMPd(Γ) with d = 0, i.e. where we are only interested in testing if the
constant polynomial “1” belongs to the combinatorial ideal (see A.2.1 of [16] for more details).
In this paper we are interested in the problem with d ≥ 1.
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By following the constraint language approach, Mastrolilli [16] recently showed that the
question of ideal membership tractability for the Boolean setting admits a very clean answer.
He presented a dichotomy result on when IMPd(Γ) is decidable in polynomial time and
when it is NP-complete. Mastrolilli’s approach is based on the celebrated dichotomy result of
Schaefer [22], the modern view of Constraint Satisfaction Problems and Gröbner basis theory
introduced by Buchberger [3]. The modern approach of satisfiability of CSP is through
functions called polymorphisms [1, 12]. Solvability of CSP in the Boolean domain has a nice
dichotomy result: it is solvable in polynomial time if all constraints are closed under one
of six polymorphisms (majority, minority, MIN, MAX, constant 0 and constant 1), else it
is NP-complete. Mastrolilli [16] proved that the IMPd generalization of the CSP for the
Boolean domain also has a nice dichotomy result: it is solvable in polynomial time if all
constraints are closed under one of four polymorphisms (majority, minority, MIN, MAX),
else it is NP-complete.

In this paper, we attempt to begin the generalization of CSP(Γ) (viz. IMP0(Γ)) by
working on the corresponding IMPd(Γ) for any d = O(1) in the ternary domain, which
expands the known set of tractable IMPd cases by providing a suitable class of combinatorial
problems. The contribution of the paper can be viewed as the first step towards a long
term and challenging goal: to extend the dichotomy results of IMP0(Γ) for finite domain
to IMPd(Γ) for any constant d ≥ 1. This would imply a very clean classification on the
applicability of the approach in [21] for SoS and it would imply a dichotomy result on
the complexity of theta bodies for any finite domain constraint language. However, this
challenging goal is fraught with several difficulties, as partially underlined by the present
paper. To some extent, this is not a surprise and reflects the fact that even the generalization
from CSP(Γ) over the Boolean domain to the more general finite domain took about forty
years to complete. We refer to Section 5 for a discussion.

Throughout this paper we assume that the reader has some basic knowledge of both,
CSPs over a constraint language and algebraic geometry, more specifically Gröbner basis. We
use notations and basic properties as in standard textbooks and literature [6, 7, 8]. However,
in order to make this article accessible to non-expert readers, the appendix in [16] provides
the essential context needed with the adopted notation. We recommend the non-expert
reader to start with that section or refer to [6, 8]. We start with some basic definitions in
Section 1.1. In Section 1.2 we formally state our results and how they are obtained. Therein
we provide an overview of the proofs whose more detailed explanations are to be found in
the remaining parts of the paper. Due to space limitations, omitted proofs can be found in
the full version of this paper.

1.1 Preliminaries
Let D denote a finite set (domain). By a k-ary relation R on a domain D we mean a subset
of the k-th cartesian power Dk; k is said to be the arity of the relation. We often use relations
and (affine) varieties interchangeably since both essentially represent a set of solutions. A
constraint language Γ over D is a set of relations over D. A constraint language is finite
if it contains finitely many relations, and is Boolean if it is over the two-element domain
{0, 1}. In this paper, D is the ternary domain {0, 1, 2}.

A constraint over a constraint language Γ is an expression of the form R(x1, . . . , xk)
where R is a relation of arity k contained in Γ, and the xi are variables. A constraint is
satisfied by a mapping φ defined on the xi if (φ(x1), . . . , φ(xk)) ∈ R.

MFCS 2020
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I Definition 1. The (nonuniform) Constraint Satisfaction Problem (CSP) associated
with language Γ over D is the problem CSP(Γ) in which: an instance is a triple C = (X,D,C)
where X = {x1, . . . , xn} is a set of n variables and C is a set of constraints over Γ with
variables from X. The goal is to decide whether or not there exists a solution, i.e. a mapping
φ : X → D satisfying all of the constraints. We will use Sol(C) to denote the set of solutions
of C.

Moreover, we follow the algebraic approach to Schaefer’s dichotomy result [22] formulated by
Jeavons [12] where each class of CSP(Γ) that is polynomial time solvable is associated with
a polymorphism of Γ.

I Definition 2. An operation f : Dm → D is a polymorphism of a relation R ⊆ Dk if
for any choice of m tuples from R (allowing repetitions), it holds that the tuple obtained
from these m tuples by applying f coordinate-wise is in R. If this is the case we also say
that f preserves R, or that R is invariant or closed with respect to f . A polymorphism of a
constraint language Γ is an operation that is a polymorphism of every R ∈ Γ.

In this paper we deal with a majority polymorphism[13, 2]: for a finite domain D, a ternary
operation f is called a majority polymorphism if f(a, a, b) = f(a, b, a) = f(b, a, a) = a for all
a, b ∈ D. There is only one majority polymorphism for the Boolean domain, but this is not
the case for larger domains. We focus on one of the majority polymorphisms in particular:

I Definition 3. The dual discriminator, denoted by ∇, is a majority polymorphism such
that ∇(a, b, c) = a for pairwise distinct a, b, c ∈ D.

We chose this particular majority polymorphism as there is a general consensus that the dual
discriminator is often used as a starting point in many CSP-related classifications [2].

I Example 4. Consider relations R1 = {(0, 1, 1), (2, 0, 2), (2, 2, 1), (2, 0, 1), (2, 1, 1)} and
R2 = {(1, 1), (2, 1)}. Observe that both R1 and R2 are ∇-closed. Consider an instance C
over Γ = {R1, R2} with constraints C1 = R1(x, y, z) and C2 = R2(x, z). The assignment φ
where φ(x) = 2, φ(y) = 0, φ(z) = 1 satisfies all constraints.

The well-known Boolean 2-SAT problem is another example of CSP closed under the majority
polymorphism.

For a given instance C of CSP(Γ), the combinatorial ideal IC is defined as the vanishing
ideal of the set Sol(C), i.e. IC = I (Sol(C)).We call polynomials of the form xi(xi− 1)(xi− 2)
domain polynomials, denoted by dom(xi), and it is easy to see that they belong to IC for
every i ∈ [n] as they describe the fact that Sol(C) ⊆ Dn. For a more detailed Ideal-CSP
correspondence we refer to A.2.1 of [16].

I Definition 5. The Ideal Membership Problem associated with language Γ is the
problem IMP(Γ) in which the input consists of a polynomial f ∈ F[X] and a CSP(Γ)
instance C = (X,D,C). The goal is to decide whether f lies in the combinatorial ideal IC.
We use IMPd(Γ) to denote IMP(Γ) when the input polynomial f has degree at most d.

1.2 Our contributions
In this paper we focus on instances C = (X = {x1, . . . , xn}, D = {0, 1, 2}, C) of CSP(Γ) where
Γ is a language that is closed under the dual discriminator. We identify certain structural
properties of the dual discriminator and exploit them in order to characterize varieties as
∇-closed or not. We claim that the reduced Gröbner basis of the combinatorial ideal IC , is a
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subset of a “well structured” set G (see Definition 17) that only depends on the number of
variables n, and is of size O(n3). We prove this by first showing that IC has a generating set
that is a subset of G. It is known that the Buchberger’s algorithm [3, 8] is one way to form a
Gröbner basis of the ideal from a generating set by computing S-polynomials for every pair
of polynomials in the generating set. We then show that polynomials in G have the property
that for any f, g ∈ G, there is a polynomial in G that divides S(f, g) and belongs to IC . Since
|G| = O(n3), we have the following main results:

I Theorem 6. The reduced Gröbner basis of a combinatorial ideal, whose variety is over
the domain {0, 1, 2} and is closed under the dual discriminator polymorphism, is a subset
of G and can be computed in polynomial time assuming the graded lexicographic ordering of
monomials.

This gives us proof of the following:

I Corollary 7. IMPd(Γ) can be solved in polynomial time for d = O(1) if the dual discrim-
inator is a polymorphism of Γ.

Overview of the proof structure of this paper: A high level description of the proof structure
is as follows. We first begin by observing in Section 2 that every ∇-closed variety V of
arity n can be written as the intersection of varieties ∩Vi,j where each Vi,j is the projection
of V onto its i-th and j-th coordinates. This implies that we can represent the vanishing
ideal of V as a sum of vanishing ideals of each of the projections as I(V ) =

∑
I(Vi,j) [8].

This prompts us to examine varieties of arity two that are ∇-closed. In Section 3, we find
a structural property of such varieties: where we say varieties of arity two are ∇-closed iff
they are L-closed (see Definition 10). This allows an easy examination of the (29 many)
possible varieties of arity two, based on the number of elements in the subset. In each case,
we produce a set of polynomials and prove that this is the reduced Gröbner basis of the
vanishing ideal of the variety. These polynomials partially make up the set G (recall that we
claim that the reduced Gröbner basis of IC can only come from G). We claim the remaining
polynomials in G can be obtained by the reduced Gröbner basis of the vanishing ideals of
certain varieties of arity three, as explained in Section 4.1.

Thus far we have that the reduced Gröbner basis of each I(Vi,j) is a subset of G. In
Section 4.2 we prove that the reduced Gröbner basis of IC = I(V ) =

∑
I(Vi,j) is also a subset

of G. Theorem 18 and Lemma 19 prove that the reduced Gröbner basis of I(Vi,j) + I(Vk,l)
is a subset of G for any i, j, k, l ∈ [n]. Since we prove that the reduced Gröbner basis of∑

I(Vi,j) is a subset of G, and |G| = O(n3), proof of Theorem 6 follows.

2 Structure of ∇-closed varieties

In this section we explain a certain geometric structure of majority closed varieties.

I Definition 8. Let V be a variety of arity n. Let the n-arity variety Vi,j (1 ≤ i < j ≤ n)
be the projection of V along its (i, j)th coordinates such that the variety along the rest of the
coordinates is Dn−2.

For example, let V = {(0, 1, 2), (1, 1, 2)}. Then V1,2 = {(0, 1, 0), (0, 1, 1), (0, 1, 2), (1, 1, 0),
(1, 1, 1), (1, 1, 2)}, V1,3 = {(0, 0, 2), (0, 1, 2), (0, 2, 2), (1, 0, 2), (1, 1, 2), (1, 2, 2)} and V2,3 =
{(0, 1, 2), (1, 1, 2), (2, 1, 2)}.

We now state a result proved in [13] which is a structural property of any majority
polymorphism.

MFCS 2020
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I Lemma 9 (Proposition 5.4 [13]). If a variety V of arity n ≥ 2 is closed under any majority
polymorphism then V =

⋂
i<j Vi,j.

Any variety Vi,j can be represented by using a two dimensional grid with |D| rows and
columns, where every point (a, b) in the grid corresponds to the tuples in Vi,j whose ith and
jth coordinates are (a, b). Note that the other coordinates take all possible values from D.
For example, Figure 1 shows two varieties {(0, 1), (0, 2), (2, 1)} and {(0, 1), (0, 2), (2, 0)}. This
allows us to introduce the following important geometric view of ∇-closed varieties.

I Definition 10. Consider D2 as a two dimensional grid with |D| rows and columns. Let V
be a variety arity 2 with at least three elements such that two of its elements have the same
row (/column) and the third is in a different row and in a column different from the first
two. We say V is L-closed if for any such three elements, V contains the element that shares
the same row (/column) as the first two and the same column (/row) as the third. Varieties
containing less than three elements are trivially L-closed.

See Figure 1 for examples.

(a) L-closed (b) Not L-closed

Figure 1 L-closedness.

I Lemma 11. A variety V of arity 2 is ∇-closed iff it is L-closed.

Proof. If V is not L-closed, then without loss of generality it contains three elements of the
form (a, 0), (a, 1), (d, 2) where a, d ∈ D, a 6= d and (a, 2) /∈ V . Then ∇((d, 2), (a, 1), (a, 0)) =
(a, 2) /∈ V (see Definition 3). Hence V is not ∇-closed. Suppose V is not ∇-closed, then it
contains three elements whose majority is not in V . If the first coordinates are all distinct and
so are the second, then the majority of the three elements is one of the three, a contradiction,
hence there are at least two elements which agree on one coordinate. Without loss of
generality, we can assume that at least two elements agree on the first coordinate. Let the
three elements be (a, b), (a, c) and (d, e) where a, b, c, d, e ∈ D and b 6= c. d 6= a else the
majority of the three elements is one of them. The first coordinate of the majority is a
considering any order of the three elements. e 6= b, else the majority is (a, b), which is in V , a
contradiction. Similarly, e 6= c, so b, c, e are distinct. Then ∇((d, e), (a, b), (a, c)) = (a, e) /∈ V
and hence V is not L-closed. J

3 Polynomials that describe ∇-closed varieties of arity two

Suppose V is a ∇-closed variety of arity two. This section provides the reduced Gröbner
basis for every possibility of I(V ) based on the number of tuples the variety can contain. Let
the first coordinate of each tuple correspond to the variable x, the second to y with x > y and
we assume graded lexicographic ordering. We provide a set of generators G = {f1, f2, . . . , fs}
such that it is easy to see that V(〈G〉) = V implies 〈G〉 ⊆ I(V ). We then prove that (i)
〈G〉 = I(V ) (i.e., 〈G〉 is a radical ideal) and (ii) G is a Gröbner basis of I(V ).
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(a) P1 (b) P2 (c) P3 (d) P4

Figure 2 Polynomials describing non-linear varieties with three tuples with no shared coordinates.

We prove this by showing that for all f ∈ I(V ), we have f |G = 0. We use f |G to denote
the normal form of f , i.e. the remainder of the division of f by polynomials of G (in any
order) such that no polynomial in G can further divide the remainder. Clearly ∀f ∈ I(V ) if
we have f |G = 0 then (i) holds because we can express f =

∑s
i=1 hifi where we obtain hi by

dividing f by the ordered tuple in G. (ii) also holds because f |G generalises S(fi, fj)|G (see
Buchberger’s criterion in [8] for more details). We let f |G = p(x, y) in the following cases.
We observe that in the set G, no leading monomial of fi should divide any term of p. Since
p ∈ I(V ), we use the fact that p(a, b) = 0 ∀(a, b) ∈ V to prove that p is the zero polynomial.
Once proved that p = 0, the reader can see that G is actually a reduced Gröbner basis as no
leading monomial of fi will divide any monomial of fj (i 6= j). In what follows below, let
Case i represent the case where the variety V contains i tuples.
Case 1: Suppose V = {(α, β)}, α, β ∈ D. We propose G = {x−α, y−β}. Clearly, p(x, y) = 0

here.
Case 2: Suppose V = {(α1, β1), (α2, β2)}, where α1, β1, α2, β2 ∈ D. If β1 = β2 then we

propose G = {y − β1, (x − α1)(x − α2)}. The leading monomials of polynomials in G
are y and x2, therefore p has to be linear in x. As p(x) = ax + b = 0 ∀x ∈ {α1, α2},
we have p = 0. If β1 6= β2 we simply take the line passing through the points of V , i.e,
G = {x − α2 − (y − β2)(α1 − α2)/(β1 − β2), (y − β1)(y − β2)}. The reasoning for the
Gröbner basis remains the same, except that p has to be linear in y.

Case 3: If the three tuples are points that are collinear, then they can be described by one of
the following lines: x−α, y−β, x− y, x+ y− 2, where α, β ∈ D. They form the reduced
Gröbner basis of the vanishing ideal along with the domain polynomial in y (except for
y−β in which case we need the domain polynomial in x): suppose the variety in question
is described by a line with x as the leading monomial. Then p must not contain x and y3.
This implies that p is a polynomial in y with degree at most 2. But since the line passes
through three points, p(y) = ay2 + by + c = 0 ∀y ∈ D implies p = 0.
Suppose the three points are non-collinear in such a way that no two points share
neither the first nor the second coordinates. Then there are 4 possibilities of such an
arrangement and all are ∇-closed (see intersection points of the polynomials in Figure 2):
V1 = {(0, 1), (1, 2), (2, 0)}, V2 = {(0, 1), (1, 0), (2, 2)}, V3 = {(0, 0), (1, 2), (2, 1)} and
V4 = {(0, 2), (1, 0), (2, 1)}.
The reduced Gröbner basis of the vanishing ideal of Vi is {Pi(x, y)} where

P1(x, y) := x2 − 5
3x+ 2

3y −
2
3 , xy − 2

3x−
4
3y + 4

3 , y2 − 2
3x−

7
3y + 4

3

P2(x, y) := x2 − 5
3x−

2
3y + 2

3 , xy − 4
3x−

4
3y + 4

3 , y2 − 2
3x−

5
3y + 2

3

P3(x, y) := x2 − 7
3x+ 2

3y, xy − 2
3x−

2
3y, y2 + 2

3x−
7
3y

P4(x, y) := P1(y, x)

In each case, the polynomial with leading monomial x2, xy, y2 is denoted by the curve in
red, black and purple respectively. It is easy to see that these are the reduced Gröbner

MFCS 2020
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basis, because p cannot contain the leading monomials x2, xy, y2, hence can only be
linear in x, y. But the fact that p is a line that has 3 non-linear solutions would imply
p(x, y) = 0.
The only case that is left to consider which is L-closed is if the three points are non-
collinear but of the form V = {(α1, β1), (α1, β2), (α2, β2)} where α1, β1, α2, β2 ∈ D. In
this case, G = {(x − α1)(x − α2), (y − β1)(y − β2), (x − α1)(y − β2)}. The reasoning
behind why G is the reduced Gröbner basis is the same as the one above. This concludes
Case 3.
In the following cases, we need to consider specifically the arrangement of points which
are ∇-closed. Let Ci (/Ri), be the set of points of the variety whose x (/y) coordinate is
i, where i ∈ D. Suppose α1, α2, α3 ∈ D and are all distinct.

Case 4: We claim that such a variety can be described by the following polynomials: (x−
α)(x− β), (x− α)(y − β), (y − α)(y − β).
1. |Cα1 | = 3, |Cα2 | = 1. Then G = {(x−α1)(x−α2), (x−α1)(y− β), dom(y)} where the

point in Cα2 has y−coordinate β. Now p can be written as p(x, y) = yp1(y) + p2(x)
where deg(p1), deg(p2) ≤ 1. We have p(x, y) = 0 ∀(x, y) ∈ V . Since (α1, 0) ∈ V ,
p2(α1) = 0. Since all points of Cα1 are in V and yp1(y) is at most quadratic in y,
we now have yp1(y) = 0 ∀y ∈ D ⇐⇒ p1 = 0. Now p(x, y) = p2(x), but both α1, α2
satisfy p2 and p2 is linear, which implies p2 = 0 and hence p(x, y) = 0.

2. |Cα1 | = 2, |Cα2 | = 2. This case is L-closed only if the elements in Cα1 and Cα2 lie
on the same rows, say β1 and β2. Then, G = {(x − α1)(x − α2), (y − β1)(y − β2)}.
Now p can be written as p(x, y) = xp1(y) + p2(y) where deg(p1), deg(p2) ≤ 1 and
p(x, y) = 0 ∀(x, y) ∈ V . Since (α1, β1), (α1, β2) ∈ V , p2(βi) = −α1p1(βi) for i =
1, 2. Since (α2, β1), (α2, β2) ∈ V , p2(βi) = −α2p1(βi) for i = 1, 2. Hence we have
(α1 − α2)p1(βi) = 0 implies p1(βi) = 0 for i = 1, 2 because α1 6= α2. Since p1 is linear,
this implies p1 = 0. Now p(x, y) = p2(y), but both β1, β2 satisfy p2 and p2 is linear,
which implies p2 = 0 and hence p(x, y) = 0.

3. |Cα1 | = 2, |Cα2 | = |Cα3 | = 1. In keeping with L-closedness, three of the points must
lie in the same row, and is hence similar to the first point.

In the following cases, since it is easy to prove, we simply state the polynomials that form
the reduced Gröbner basis for the only possible ∇-closed varieties.

Case 5: The ∇-closed varieties are specifically those whose points lie on one horizontal and
one vertical line, hence G = {(x− α)(y − β), dom(x), dom(y)}.

Case 6: The ∇-closed varieties are specifically those whose points lie on two vertical or two
horizontal lines, hence G is either {(x− α)(x− β), dom(y)} or {(y − α)(y − β), dom(x)}
for distinct α, β.

Cases 7 and 8 can similarly be examined to see that there are no arrangements that are
∇-closed. Case 9 implies I(V ) = 〈dom(x), dom(y)〉. This proves the following lemma:

I Lemma 12. The vanishing ideal of a ∇-closed variety of arity 2 has reduced Gröbner
basis which is polynomial in size. Specifically, the polynomials from the basis are of the form
xi−α, xi−α2− (xj − β2)(α1−α2)/(β1− β2) where α1 6= α2 and β1 6= β2, (xi−α)(xi− β),
(xi − α)(xj − β), xi(xi − 1)(xi − 2) or belong to Pa(xi, xj) where α, α1, α2, β, β1, β2 ∈ D and
a ∈ [4] assuming xi > xj.

We can also deduce the following corollary:

I Corollary 13. Any polynomial p in up to two variables (say xi and xj , i 6= j and xi > xj)
from the polynomials listed in the above lemma belongs to the reduced Gröbner basis of the
ideal 〈p, dom(xi), dom(xj)〉.
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The proof follows from the fact that 〈p, dom(xi), dom(xj)〉 has variety that is one of the
cases1 already considered in Lemma 12.

4 Closedness

4.1 Defining the set G
For a ∇-closed variety of arity 2, the reduced Gröbner basis of its vanishing ideal comes from
polynomials listed in Lemma 12. These polynomials define a part of the set G from Theorem 6.
Although polynomials from Lemma 12 can generate I(V ) for an arbitrary ∇-closed variety
V of arity greater than 2, they need not form the reduced Gröbner basis of I(V ). However,
we only need two more polynomials to complete the definition of G. These two polynomials
come from two particular ∇-closed varieties of arity 3. It is easy to see from our previous
proof strategy that the following holds:

I Lemma 14. Consider the ∇-closed varieties V1 = {(0, 1, 2), (1, 2, 0), (2, 0, 1)} and V2 =
{(0, 2, 1), (1, 0, 0), (2, 1, 2)} (see Tables 1a and 1c). The reduced Gröbner basis of the vanishing
ideal of V1 is {x+ y + z − 3, P1(y, z)}. Similarly that of V2 is {x+ y − z − 1, P3(y, z)} with
the ordering x > y > z.

Note that each column of V1 and V2 contains all elements of D and the projection along any
two columns xi, xj is V({Pa(xi, xj)}) for some a ∈ [4].

Table 1 Plausible varieties of x+ y + z − 3 and x+ y − z − 1.

(a) V1.

x y z

0 1 2
1 2 0
2 0 1

(b) V ′
1 .

x y z

0 2 1
1 0 2
2 1 0

(c) V2.

x y z

0 2 1
1 0 0
2 1 2

(d) V ′
2 .

x y z

0 1 0
1 2 2
2 0 1

I Lemma 15. If V is of arity 3 and ∇-closed such that x+ y + z − 3 belongs to the reduced
Gröbner basis of I(V ), then V is either V1 or V ′1 . Similarly, if x+ y − z − 1 belongs to the
reduced Gröbner basis, , then V is either V2 or V ′2 .

For the case of x + y + z − 3, the set of points in |D3| that satisfy x + y + z − 3 = 0 is
V1 ∪ V ′1 ∪ {(1, 1, 1)}. Using the fact that V is L-closed and x+ y + z − 3 is in the reduced
Gröbner basis of I(V ), it can be deduced that V is either V1 or V ′1 . We can see from
Lemmas 14 and 15 that the following is true.

I Lemma 16. If V is of arity 3 and ∇-closed such that f ∈ {x+ y + z − 3, x+ y − z − 1}
belongs to the reduced Gröbner basis of I(V ), then the reduced Gröbner basis of I(V ) is
{f, Pa(y, z)} for some a ∈ [4] assuming x > y > z.

We now define a set of polynomials G which we later prove to contain all the polynomials
that appear in the reduced Gröbner basis of vanishing ideals of ∇-closed varieties.

1 For example, considering p = x− α (where α ∈ D), the variety of 〈p, dom(x), dom(y)〉 is {(α, 0), (α, 1),
(α, 2)}. This variety having three elements implies we are in Case 3 of Lemma 12, from which we can
see that the reduced Gröbner basis of 〈p, dom(x), dom(y)〉 is {p, dom(y)}.

MFCS 2020



13:10 IMP for Majority-Closed Constraints over a Ternary Domain

I Definition 17. For distinct i, j, k ∈ [n], α, α1, α2, β, β1, β2 ∈ D, α1 6= α2 and β1 6= β2, let
G = D ∪Q ∪ L ∪ Z where

D = {xi(xi − 1)(xi − 2) : i ∈ [n]}
Q = {Pa(xi, xj) : i, j ∈ [n], a ∈ [4]} ∪ {(xi − α)(xi − β) : i ∈ [n]}∪

{(xi − α)(xj − β) : i, j ∈ [n]}
L = {xi − α : i ∈ [n]} ∪ {xi − α2 − (xj − β2)(α1 − α2)/(β1 − β2) : i, j ∈ [n]}∪

{xi + xj + xk − 3 : i, j, k ∈ [n]} ∪ {xi + xj − xk − 1 : i, j, k ∈ [n]}
Z = {0, 1}.

4.2 G contains the reduced Gröbner basis
From Lemmas 9 and 12, we know that for an instance C of CSP(Γ), where the dual
discriminator is a polymorphism of Γ, IC can be described by a set of input polynomials
which is a subset of G as defined in Definition 17. For every f, g ∈ G, if it were true that
S(f, g)|f,g ∈ G, then we would be able to find a Gröbner basis of IC by using Buchberger’s
algorithm as explained by Mastrolilli [16]. However, this is true only for the Boolean case,
and in order to generalize this to a 3-element domain, we look at IC rather than f and g
alone.

The sum of two ideals I and J is defined as the set I + J that contains f + g for every f
in I and every g in J [8] (see Ch.4, p.189). Not only is I + J the smallest ideal containing I
and J , but the union of the set of generators of I and J generates I + J . Subsequently, if
V = Sol(C), we see that

V =
⋂

1≤i<j≤n
Vi,j (see Lemma 9) =⇒ I(V ) =

∑
1≤i<j≤n

I(Vi,j) (1)

where the second equality comes from [8] (see Th.4 p.190). Thus the polynomials from
Lemma 12 can generate I(V ) = IC , but this need not mean that the reduced Gröbner basis
of IC also comes from Lemma 12.

One of the crucial elements of this paper is that, given that a polynomial p ∈ G belongs
to the reduced Gröbner basis of I(V ) for some ∇-closed variety V with arity at least two, we
can say with certainty that a few other polynomials from G belong to I(V ) as well. We list
out these polynomials in Table 2. We call p the representative polynomial and denote the
list of polynomials that accompany p as A(p) and call them accompanying polynomials. We
see that this is true for p with less than three variables from Corollary 13, and for p with
exactly three variables from Lemma 16. It also follows that not only do the accompanying
polynomials belong to I(V ), but {p,A(p)} is the reduced Gröbner basis of 〈p,A(p)〉.

I Theorem 18. Suppose f, g ∈ G and If = 〈f,A(f)〉 and Ig = 〈g,A(g)〉, then the reduced
Gröbner basis of If + Ig is contained in G.

Proof. For every pair of f, g ∈ G, we produce G ⊂ G and claim it is the reduced Gröbner
basis of If + Ig. We prove the theorem (as done similarly in section 2) by observing that
V(〈G〉) = V(If + Ig) and proving that (i) 〈G〉 = If + Ig (i.e., 〈G〉 is a radical ideal) and (ii)
G is the reduced Gröbner basis of If + Ig. We do this by fixing an order of the elements of
G and proving that for all h ∈ If + Ig, we have h|G = p is the zero polynomial.

The case when either f or g is a domain polynomial or 1 is straightforward. So we prove
the claim by distinguishing between the following cases:
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Table 2 Representative and accompanying polynomials.

Representative polynomial (p) Accompanying polynomials (A(p))
dom(x) or dom(y) dom(y) or dom(x) respectively

Any polynomial of Pa(x, y) The other two polynomials of Pa(x, y)
(x− α)(x− β) or (y − α)(y − β) dom(y) or dom(x) respectively

(x− α)(y − β) dom(x), dom(y)
x− α or y − α dom(y) or dom(x) respectively

x+ y − 2 or x− y dom(y)
Lines that pass through only (α1, β1), (α2, β2) (y − β1)(y − β2)

x+ y + z + 3 or x+ y − z − 1 Pa(y, z) for some a ∈ [4]
1 None

1. Case Q: where both f, g ∈ Q.
2. Case L: where both f, g ∈ L.
3. Case Q-L: where f ∈ Q and g ∈ L.
The proofs for these cases can be found in the full version of this paper. J

For V = Sol(C), using Theorem 18, Equation (1) and a result in [8] (see Cor.3, p.190),

I(V ) =
∑

1≤i<j≤n
I(Vi,j) =⇒ I(V ) =

s∑
i=1
〈fi〉 =

s∑
i=1
〈fi, A(fi)〉

where every fi ∈ G since we know the reduced Gröbner basis of each I(Vi,j) is a subset of G
from Lemma 12. It is to be noted that it could be possible that 〈fi, A(fi)〉 = 〈fj , A(fj)〉 for
i 6= j (this happens when fi, fj ∈ Pa(x, y) and fi 6= fj). In this case the ideals are retained
because the representative polynomials offer different leading monomials which is needed to
find the reduced Gröbner basis.

I Lemma 19. The reduced Gröbner basis of I(V ) =
∑
〈fi, A(fi)〉 is a subset of G.

Proof. Consider just 〈f1, A(f1)〉 + 〈f2, A(f2)〉. Suppose this ideal has {p1, . . . , pu} ⊂ G as
the reduced Gröbner basis (from Theorem 18). We then replace 〈f1, A(f1)〉 + 〈f2, A(f2)〉
with 〈p1, . . . , pu〉 =

∑u
i=1〈pi, A(pi)〉.

Thus, for every pair of ideals, we have two representative polynomials and their accompa-
nying polynomials which are always in G. We repeat this process of summing ideals, using
Theorem 18 and using accompanying polynomials until we have

I(V ) =
v∑
i=1
〈qi, A(qi)〉

where the reduced Gröbner basis of 〈qi, A(qi)〉+ 〈qj , A(qj)〉 is a subset of {q1, q2, . . . , qv} for
every i, j ∈ [v]. This process terminates as the degrees of the leading monomials do not
increase.

We now claim that the reduced Gröbner basis of I(V ) is {q1, . . . , qv}. We have I(V ) =
〈q1, . . . , qv, A(q1), . . . , A(qv)〉. We drop those polynomials in A(qi) that are equal to some
qj . Hence we have I(V ) = 〈q1, . . . , qv, hk1,1, hk1,2, . . . , hk2,1, hk2,2, . . . , hkr,1, hkr,2, . . . 〉 where
k1, . . . , kr ∈ [v] (r ≤ v) and hkj ,i is in A(qkj

). We now prove that hkj ,i|{q1,...,qv} = 0 for
1 ≤ j ≤ r. Since hkj ,i is not equal to any qm (m ∈ [v]), hkj ,i does not not belong to the
reduced Gröbner basis of 〈qkj

, A(qkj
)〉 + 〈qm, A(qm)〉. Let the reduced Gröbner basis of

〈qkj , A(qkj )〉+ 〈qm, A(qm)〉 be Q ⊆ {q1, . . . , qv}. Since hkj ,i belongs to the ideal, hkj ,i|Q = 0.
Hence we have I(V ) = 〈q1, . . . , qv〉, and since we have the property that qi|qj

= qi for every
distinct i, j ∈ [v], {q1, . . . , qv} is the reduced Gröbner basis of I(V ). J
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By Lemma 19 and Theorem 18, the proof the main theorem follows, which is restated below:

I Theorem. The reduced Gröbner basis of a combinatorial ideal, whose variety is over the
domain {0, 1, 2} and is closed under the dual discriminator polymorphism, is a subset of
G and can be computed in polynomial time assuming the graded lexicographic ordering of
monomials.

5 Conclusions and Future Work

It is only relatively recently that the solvability of CSP problems in ternary domain was
characterized, at least when compared to that of the Boolean domain. There are also fewer
polymorphims to deal with in the case of solvabilty of IMP in the Boolean case (for example
there is only one majority polymorphism in the Boolean domain when comapared to 36

majority polymorphisms in the ternary domain). We have dealt with the IMP of constrained
problems with respect to the dual discriminator, which we have mentioned to be a good
representative for the general majority polymorphim [2].

In the case for the 3-element domain examined in this paper, G can be constructed only by
looking at ∇-closed varieties of arity 3. We believe this should extend to a general domain as
well. So we ask, for the dual discriminator polymorphism and a domain D of size k = O(1),
do all possible polynomials in the reduced Gröbner basis of the corresponding ideal come
from that of the vanishing ideal of ∇-closed varieties of arity k? This would imply that the
combinatorial ideal of problems preserved by the dual discriminator for any finite domain has
a Gröbner basis that can be computed in polynomial time. It would certainly be unexpected
and interesting if this does not extend to majority polymorphisms in general. This is a step
in identifying the borderline of tractability, if it exists, for the general IMPd. We believe
that generalizing the dichotomy results of solvability of the IMPd for a finite domain is an
interesting and challenging goal that we leave as an open problem.
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