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—— Abstract

In a fan-planar drawing of a graph an edge can cross only edges with a common end-vertex. In this
paper, we study fan-planar drawings that use h (horizontal) layers and are proper, i.e., edges connect
adjacent layers. We show that if the embedding of the graph is fixed, then testing the existence
of such drawings is fixed-parameter tractable in h, via a reduction to a similar result for planar
graphs by Dujmovié et al. If the embedding is not fixed, then we give partial results for h = 2: It
was already known how to test the existence of fan-planar proper 2-layer drawings for 2-connected
graphs, and we show here how to test this for trees. Along the way, we exhibit other interesting
results for graphs with a fan-planar proper h-layer drawing; in particular we bound their pathwidth
and show that they have a bar-1-visibility representation.
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Layered Fan-Planar Graph Drawings

1 Introduction

A proper h-layer drawing of a graph is a drawing where each vertex is on one of h distinct
horizontal lines (layers) and edges connect pairs of vertices on consecutive layers. (Detailed
definitions are in the next section.) In a seminal paper, Dujmovié¢ et al. [4] showed that
testing whether a planar graph has a planar proper h-layer drawings is fixed-parameter
tractable in h. This is of interest since finding a proper layered drawing of minimum height is
NP-hard [6]. Dujmovi¢ et al. also study some variations, such as having an overall constant
number of crossings or permitting flat edges (i.e., with endpoints on the same layer) and
long edges (i.e., with endpoints connecting non-consecutive layers).

In this paper, we aim to generalize their results to so-called beyond-planar graphs, i.e.,
non-planar graphs that admit drawings with some restrictions on how crossings may occur
(rather than how many). Such graphs have been the object of great interest in graph drawing
and graph theory in recent years (refer to [3, 8] for surveys). In particular, we study two
central families of beyond-planar graphs, namely 1-planar graphs, which can be drawn such
that every edge has at most one crossing (but the overall drawing may have linearly many
crossings), and fan-planar graphs, which can be drawn such that an edge e may have many
crossings but all the edges crossed by e have a common endpoint. Our main result is that for
a fan-planar graph G with a fixed embedding, we can test in time fixed-parameter tractable
in h whether G has an embedding-preserving proper h-layer drawing. Our approach is to
modify G to obtain a planar graph G’ that has a planar f(h)-layer drawing if and only if
G has a fan-plane h-layer drawing. We then appeal to the result by Dujmovié et al. [4].
Nearly the same approach also works for short drawings where flat edges are allowed, and
for 1-planar graphs it also works for long edges when drawn as y-monotone polylines.

The above algorithms crucially rely on the given embedding. For fan-planar graphs where
the embedding can be chosen, the problem appears much harder; the only result we know
of is to test the existence of fan-planar proper 2-layer drawings for 2-connected fan-planar
graphs [2]. Based on their insights, we give here an algorithm to solve the problem for trees.

One crucial ingredient for the algorithm by Dujmovié et al. [4] is that a graph with a
planar proper h-layer drawing has pathwidth at most h — 1, and this bound is tight. We
similarly can bound the pathwidth for graphs that have a fan-planar proper h-layer drawing,
and again the bound is tight. The proof uses a detour: we show that graphs with a fan-planar
proper layered drawing have a bar-1-visibility representation, a result of independent interest.

Paper organization. After reviewing definitions (Section 2), we start with the results about
bar-1-visibility representations and pathwidth (Section 3), since these are convenient warm-
ups for dealing with fan-planar proper layered drawings. We then give the reduction from
fan-plane proper h-layer drawing to planar proper f(h)-layer drawing and hence prove fixed-
parameter tractability of the existence of fan-plane proper h-layer drawing (Section 4). Finally
we turn towards fan-planar proper 2-layer drawings, and show how to test the existence of
such drawings for trees in linear time (Section 5). All our algorithms are constructive, i.e.,
give such drawings in case of a positive answer. We conclude with open problems (Section 6).

2 Preliminaries

We assume familiarity with basic graph theoretic notions. Let G = (V, E) be a graph. We
assume throughout that G is connected and simple.
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Figure 1 A fan-planar proper 2-layer drawing and its graph (a stegosaurus [2]).

A path decomposition P of G is a sequence Pi, ..., P, of vertex sets (“bags”) that satisfies:
(1) every vertex is in at least one bag, (2) for every edge (v, w) at least one bag contains both
v and w, and (3) for every vertex v the bags containing v are contiguous in the sequence.
The width of a path decomposition is max{|P;| —1:1 <t < p}. The pathwidth pw(G) of G
is the minimum width of any path decomposition of G.

Embeddings and drawings that respect them. We mostly follow the notations in [9]. Let
T be a drawing of G, i.e., an assignment of distinct points to vertices and non-self-intersecting
curves connecting the endpoints to each edge. In what follows, we usually identify the graph-
theoretic object (vertex, edge) with the geometric object (point, curve) that represents it.
All drawings are assumed to be good: (i) No edge contains a vertex (except at its endpoints),
(ii) two edges share at most one point, which is either a common endpoint or an interior
point (called crossing) where the two edges cross transversely, and (iii) no three edges cross
at the same point. An edge-segment is a maximal (open) subset of an edge that contains no
crossing or vertex. The rotation at a vertex v in the drawing is the cyclic order in which the
incident edges end at v. (Often we list the neighbours rather than the edges.) The rotation
system of a drawing consists of the set of rotations at all vertices. A region of a drawing
I is a maximal connected part of R? \ T'; it can be identified by listing the edge-segments,
crossings and vertices on it in clockwise order. The planarization of a drawing is obtained by
replacing every crossing by a new vertex of degree 4 (called a (crossing)-dummy-vertez).

A graph is called k-planar (or simply planar for k=0) if it has a k-planar drawing where
every edge has at most k crossings. In a planar drawing the regions are called faces and
the infinite region is called the outer-face. A drawing of G is called fan-planar if it has a
fan-planar drawing where for any edge e, all edges ey, ..., eq that are crossed by e have a
common endpoint v.! The set {ey,...,eq} is also called a fan with center-vertez v.

A planar embedding of a graph G consists of the rotation system obtained from some
planar drawing of G as well as a specification of outer-face. An embedding of a graph G
consists of a graph Gp with a planar embedding that is the planarization of some drawing of G.
Put differently, an embedding of G specifies the rotation system, the pairs of edges that cross,
the order in which the crossings occur along each edge, and the infinite region. A drawing of a
graph G with a specified embedding is called embedding-preserving if its planarization is Gp.
We use plane/1-plane/fan-plane for a graph G together with an embedding corresponding to
a planar/1l-planar/fan-planar drawing, and also for an embedding-preserving drawing of G.

Layered drawings. Let h > 1 be an integer. An h-layer drawing of a graph G is a drawing
where the vertices are on one of h distinct horizontal lines L1,..., Ly, called layers, and
edges are drawn as y-monotone polylines for which all bends lie on layers. We enumerate the
layers top-to-bottom. Layered drawings are further distinguished by what types of edges

! There are further restrictions, see e.g. [7]. These are automatically satisfied if the graph has a proper
layered drawing and so will not be reviewed here.
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(b)

Figure 2 A crossing-patch in a graph that is not fan-planar, and how to contract it.

are allowed; the following notation is from [10]. An edge is called flat if its endpoints lie on
the same layer, proper if its endpoints lie on adjacent layers, and long otherwise. A proper
h-layer drawing contains only proper edges, a short h-layer drawing contains no long edges,
an upright h-layer drawing contains no flat edges, and an unconstrained h-layer drawing
permits any type of edge.? Any graph with a planar unconstrained h-layer drawing has
pathwidth at most h [5], and at most h—1 if a planar upright h-layer drawing exists [4]. Any
graph with a fan-planar proper 2-layer drawing is a subgraph of a so-called stegosaurus (see
Fig. 1 and Section 5) [2]; those have pathwidth 2.

A key concept for us is where crossings can be in proper layered drawings and how to
group them. Let Gp be the planarization of some graph G with a fixed embedding. As in
Fig. 2, a crossing-patch C is a maximal connected subgraph of Gp for which all vertices are
crossing-dummy-vertices. Let E¢ be the edges of G that have crossings in C, let Vi be the
endpoints of E¢, and let G¢ be the graph (V¢, E¢). Since any edge connects two adjacent
layers, and a crossing-patch is connected, we can observe:

» Observation 1. If G has a proper embedding-preserving layered drawing I' then all crossings
of a crossing-patch C lie strictly between two consecutive layers, and the vertices in V¢ lie on
those layers.

3 Bar-Visibility Representations and Pathwidth

We show that for a graph G with a fan-planar short h-layer drawing, we have pw(G) < 2h —1
(and pw(G) < 2h— 2 if the drawing is proper). The proof uses a bar-c-visibility representation,
which assigns to every vertex a horizontal line segment (bar) and to every edge a vertical
line segment connecting the bars of its endpoints in such a way that bars are disjoint and
every edge-segment contains at most ¢ points (excluding the endpoints) that belong to bars.

» Theorem 1. If G has fan-planar proper h-layer drawing ", then G has a bar-1-visibility
representation. Moreover, any vertical line intersects at most 2h—1 bars of the representation.

Proof. In the first step, make I' maximal, i.e., insert all edges that can be added while
keeping a fan-planar proper h-layer drawing. In the resulting drawing every crossing-patch is
enclosed by two planar edges (shown thick blue in Fig. 3). The subgraph between two such
planar edges consists (if it has crossings at all) of two crossing fans; we call this a fan-subgraph.
Studying all possible positions of these two fans, we see that the two center-vertices include
exactly one of the following two vertices: the top vertex of the left planar edge, or the bottom
vertex of the right planar edge. We remove the crossed edges incident to this center-vertex in
the fan-subgraph; see Fig. 3 where removed edges are red (dashed). The remaining graph G’

2 The terminology is slightly different in [4]; for them any h-layer drawing was required to be short.
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(a) (b) (d)

Figure 3 A fan-planar proper 2-layer drawing; planar edges that separate fan-subgraphs are blue
(thick). [For labelling-purposes we show the planar edges as vertex-disjoint, but consecutive ones
could have vertices in common.] We show the four possible locations of center-vertices (white).
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Figure 4 Bar-1-visibility representation for different types of fan-subgraphs.

is planar and has a planar proper h-layer drawing. We can convert this into a bar-0-visibility
representation IV where the layer-assignment and the order within layers is unchanged [1]; in
particular any vertical line intersects at most A bars.

Next, shift bars upward until bars of each layer lie “diagonally”, see the dark gray bars
in Fig. 4. More precisely, we process layers from bottom to top. For each layer we assign
increasing y-coordinates to the bars from left to right such that every bar has its own
y-coordinate.

Let the planar edges to the left and right of a fan-subgraph be (¢;,¢;11) and (r;,7;11),
with vertices indexed by layer. The process of removing edges ensures that all of the missing
edges are incident to r;41 or ¢;. If they were incident to ¢;, then we extend ¢; to the right
until it vertically sees its diagonally opposite corner r;y;. Otherwise, we extend r; 41 to
the left until it vertically sees its diagonally opposite corner ¢;. This extension (shown
light blue in Fig. 4) realizes all removed edges of the fan-subgraph, since the extended bar
can see vertically all other bars of vertices of the fan-subgraph. By our construction, the

extended bars do not cross the planar edges between ¢; and ¢; 1, or between r; and ;4.

Since for each fan-subgraph there is only one extended bar, the edges of G that belong
to G’ go through at most one extended bar. Therefore the computed representation is a
bar-1-visibility representation of G. In each fan-subgraph only one bar is extended, hence
every vertical line intersects at most h bars from the h layers and at most h — 1 bars from
the h — 1 fan-subgraphs that it traverses. |

With a minor change, we can prove a similar result for short layered drawings.
» Theorem 2. [f G has a fan-planar short h-layer drawing ', then G has a bar-1-visibility

representation where any vertical line intersects at most 2h bars of the visibility representation.

Proof. Let G~ be the graph obtained by removing all flat edges; this has a fan-planar proper
h-layer drawing and therefore a bar-1-visibility representation using Theorem 1. Let T be

the visibility representation (of some subgraph of G~) used as intermediate step in this proof.
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Lengthen the bars of I maximally so that within any layer, the bar of one vertex v ends
exactly where the bar of the next vertex w begins. (Note that no vertical edge-segment lies
between the bars of v and w since there are no long edges.) We have some choice in how
much to extend v vs. how much to extend w into the gap between them, and do this such
that no two points where bars begin/end have the same z-coordinate.

Now convert this visibility representation into a bar-1-visibility representation I'™ of
G~ exactly as before. We claim that this is the desired bar-1-visibility representation of G.
Consider a flat edge e = (v, w), with (say) v left of w on their common layer. Let X, be the
z-coordinate where the bar of v ends and the bar of w begins in the modified IV. To obtain
I'~, these bars are first shifted to different y-coordinates (without changing z-coordinates
of their endpoints). Since v and w are consecutive within one layer of I, they end on
consecutive layers of I'". Next the bars are (possibly) lengthened, but never shortened.
Therefore edge (v, w) can be inserted with a-coordinate X, to connect the bars of v and w.

It was argued in Theorem 1 that any vertical line intersects at most 2h — 1 bars in that
construction. The only change in our construction is that sometimes endpoints of bars may
have the same x-coordinate X, (for some flat edge e), which means that the vertical line
with z-coordinate X, now may intersect more bars. However, we ensured that X, # X, for
any two flat edges e, ¢/, which means that even at z-coordinate X, the vertical line intersects
at most 2h bars. |

» Corollary 3. If G has a fan-planar proper h-layer drawing, then pw(G) < 2h —2. If G
has a fan-planar short h-layer drawing, then pw(G) < 2h — 1.

Proof. Take the bar-1-visibility representation of G from Theorem 1 [respectively Theorem 2]
and read a path decomposition P from it. To do so, sweep a vertical line ¢ from left to
right. Whenever ¢ reaches the xz-coordinate of an edge-segment, attach a new bag P at the
right end of P and insert all vertices that are intersected by ¢. The properties of a path
decomposition are easily verified since bars span a contiguous set of xz-coordinates, and for
every edge (v, w) the line through the edge-segment intersects both bars of v and w. Since
any vertical line intersects at most 2h — 1 [2h, respectively] bars, each bag has size at most
2h — 1 [2h] and the width of the decomposition is at most 2h — 2 [2h — 1]. <

We now show that the bounds of Corollary 3 are tight, even for trees.

» Theorem 4. For any h > 1, there are trees T2ph_2 and T3, _, such that
T3, 5 has a fan-planar proper h-layer drawing and pw(Ty, ) > 2h—2,
T35, has a fan-planar short h-layer drawing and pw(Ty, ;) > 2h—1.

Proof. Roughly speaking, for « € {s,p}, T is the complete ternary tree with some (but
not all) edges subdivided. To be more precise, for h = 1, define T} to be a single node ry,
which can drawn on one layer and has pathwidth 0 = 2h — 2. Define T5 to be an edge (r1,¢),
which can be drawn as a flat edge on one layer and has pathwidth 1 = 2h — 1.

For a € {s,p} and any ¢ where T is not yet defined, set T‘ix to be a new vertex r; with
three children, and make each child a root of T2 ;. Clearly pw(T; ) > pw(T2 ) + 1, since
removing r; from T; gives three components that each contain T ;. To obtain T from
T? we subdivide the edges incident to r;. This cannot decrease the pathwidth, so using
induction one shows that pw(T) > i.

Figure 5 shows that for all ¢ where T?_Q is defined, T? has a fan-planar drawing with one
more layer than used by T?_Q. Furthermore, r; is in the top row, and every edge is drawn
properly. Using induction therefore T3, , and T3, ; have fan-planar h-layer drawings. <«
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(a) (b) (c)

Figure 5 (a) The trees for h = 1. (b) Constructing 7;* from T;* 5 and (c¢) drawing it using one
added layer.

(a) (b)

Figure 6 (a) Constructing F;* from Fy¥ 5 and (b) drawing it using two added layers.

Note that the drawing in Fig. 5(c) is fan-planar, but not 1-planar. This naturally raises
the question: What is the pathwidth of a graph that has a 1-planar h-layer drawing? We
suspect that it cannot be more than ~ %h (this remains open), and can show that for the
above trees (subdivided differently) this bound would be tight. Refer to Fig. 6.

» Theorem 5 (*). For any odd h > 1 (say h = 2k +1 with k > 0), there are trees F}, and
F3,. 1 such that
FL has a 1-planar proper h-layer drawing and pw(F3,)>3k = %h — %, and

F3y..1 has a I-planar short h-layer drawing and pw(Fy,. ) > 3k+1 = %h — %

4 Testing Algorithm for Embedded Graphs

This section presents FPT-algorithms to determine whether an embedded graph G has an
embedding-preserving h-layer drawing. The first algorithm tests the existence of a proper
drawing, and can be applied to fan-planar graphs. (In fact, the algorithm works for any
embedded graph if we allow the order of crossings along an edge to change.) A minor change
allows to test the existence of short drawings instead. For the smaller class of 1-planar
graphs, yet another change allows to test the existence of an unconstrained drawing. All
algorithms require crucially that the embedding is fixed.

Recall that Dujmovi¢ et al. [4] gave an algorithm for this problem for planar graphs

where the embedding is not fixed; in the following we refer to their algorithm as PLANARDP.

The idea for our algorithm is to convert G into a planar graph G’ such that G has an
embedding-preserving h-layer drawing if and only if G’ has a plane h'-layer drawing (where
h' = 2h—1). One might be tempted to then appeal to PLANARDP. However, it is not at
all clear whether PLANARDP could be modified to guarantee that the planar embedding is
respected. We therefore further modify G’ (in two steps) into a planar graph G’ that has a
planar h"’-layer drawing (where "/ = 12h/+1) if and only if G’ has a plane h'-layer drawing.
Then call PLANARDP on G".

14:7
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This latter step is of interest in its own right: For plane graphs, we can test the existence
of a plane h-layer drawing in time FPT in h. This improves on PLANARDP, which permitted
changes of the embedding.

To simplify the reductions, we observe that PLANARDP allows further restrictions. We
will not review all details of PLANARDP (it is quite complicated), but need a few properties.
It is a dynamic program with table-entries indexed (among other things) by the bags of a
path decomposition P and specifying (among other properties) the layer for each vertex in
the bag. Hence it is possible to impose restrictions on the layers that a vertex may be on, or
even on the layers for a group of vertices, as long as they all appear within one bag.

4.1 Proper drawings: contracting crossing patches

This section applies when we want to test the existence of a proper h-layer drawing (i.e., no
long or flat edges are allowed). Observation 1 implies:

» Lemma 6 (*). Let G be an embedded graph with a crossing-patch C, and assume G has an
embedding-preserving proper h-layer drawing I'. Then in the embedding of G¢ induced by the
one of G, all vertices of Ve are on the infinite region.

Note that the conclusion of Lemma 6 depends only on the embedding of G, not on I', and
as such can be tested given the embedding of G. In the rest of this subsection we assume
that it holds for all crossing-patches, as otherwise G has no embedding-preserving proper
layered drawing and we can stop.

As depicted in Fig. 2, the operation of contracting a crossing-patch C consists of contracting
all the edge-segments within C to obtain one vertex ¢ that is adjacent to all of V. Hence,
the rotation at c lists the vertices of V¢ in the order in which they appeared on the infinite
region of G¢. As Fig. 2 suggests, we can convert a proper layered drawing I' of G into a
layered drawing I'V of G’ with roughly twice as many layers. To be able to undo such a
conversion, observe that IV has special properties. First, it is 2-proper, by which we mean
that for any edge (v, w) of G the vertices v and w are exactly two layers apart, and the edges
incident to a contracted vertex c are proper. It also preserves monotonicity: for any edge
(v,w) of G that had a crossing, the edges (v, ¢) and (¢, w) are drawn such that their union is
a y-monotone curve.? Since G’ is obtained from G by contracting all crossing-patches, and
each contracted vertex ¢ can be placed at a dummy-layer between the two layers surrounding
the crossing-patches, we have:

» Lemma 7. Let G be an embedded graph with an embedding-preserving proper h-layer
drawing T'. Then the graph G’ obtained from G by contracting crossing-patches has a plane
monotonicity-preserving 2-proper (2h—1)-layer drawing.

The other direction is not true. It is easy to convert a plane monotonicity-preserving
2-proper (2h—1)-layer drawing of G’ to an h-layer drawing of G with the correct rotation
system and pairs of crossing edges (the drawing is weakly isomorphic [9]). But the order of
crossings may change when connecting vertices by straight-line segments. For example, in
Fig. 2(a), moving the top left vertex much farther left would change the order of crossings
while keeping the rotation scheme unchanged. So we give the other direction only for
fan-planar graphs, where this is impossible.*

3 As discussed later these properties can be tested within PLANARDP.

4 Another resolution would be to use polylines between two layers, without requiring their bends to be on
layers. One can argue that if G had a straight-line embedding-preserving drawing, then such curves
could be made y-monotone.
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» Lemma 8. Let G be a fan-plane graph, and let G’ be the graph obtained by contracting all
crossing-patches. If G’ has a plane monotonicity-preserving 2-proper (2h—1)-layer drawing
IV then G has a fan-plane proper h-layer drawing.

Proof. Consider any crossing patch C of G that was contracted into vertex ¢, say c is on
layer L; in I, Since the drawing is 2-proper, all neighbours of ¢ are on L;_1 or L;;1. Since
for any edge (v, w) in E¢ the endpoints are two layers apart, we have v € L;_1 and w € L;1
or vice versa. Remove the edges incident to ¢ and re-insert the edges in E¢ as straight-line
segments. Since the rotation at c¢ is respected, the order of Vi on L; 1 U L;;1 reflects the
order along the infinite region of G¢. Two edges e, €’ in E¢ crossed in G if and only if their
endpoints alternated in the order along the infinite region of G¢, and so they cross in the
resulting drawing as needed.

Assume an edge e = (u,w) in E¢ crosses edges e1, ..., eq in G, in this order while walking
from u to w. It suffices to argue that the same order of crossings happens in the created
drawing. Let v be the common endpoint of e1, ..., eq, say e; = (v,w;) for t =1,...,d. We

know that endpoints of e, eq, ..., eq are on the infinite region of G¢ since they belong to V.

Furthermore, their (clockwise or counter-clockwise) order along the infinite region must be
exactly v, u,wi,...,wq,w since we have a good drawing. Namely, for any i € 1,...,d vertex
v must be separated from w; in the order by {u,w}, otherwise e and e, would have to cross
twice since they cross at least once. Also, for any ¢ < j, if the order along the infinite region
is u, w;, w;, v while the order along e is u, e;, e;,v, then e; and e; would have to cross each
other between where they cross e and their endpoints w; and w;. In a good drawing no two
edges cross twice and edges with a common endpoint do not cross, so both are impossible.

Assume up to symmetry that v € L;_1, which means that wy,...,wgq are on L; 7. Since
the rotation at ¢ contains v, u,ws,...,wy, w in this order, wy,...,wy are on layer L;;; in
this order, and edge e crosses eq,...,eq in this order as desired.

Repeating this operation at all crossing patches hence gives a drawing of G that respects
the embedding. After deleting even-indexed layers (which contained no vertices of G), we
obtain a fan-plane proper h-layer drawing of G. <

4.2 Flat and long edges

We will discuss in a moment how to test whether a graph has a plane (2h—1)-layer drawing
that is monotonicity-preserving and 2-proper, but first study modifications that allow us to
test for short drawings (i.e., to allow flat edges) and unconstrained drawings.

Only minimal changes are needed when flat edges are allowed. Observation 1, and
therefore Lemma 6 continue to hold. When there are no long edges, flat edges never have
crossings. So it suffices to allow edges without crossings to be flat in G’. We say that a
layered drawing IV of G’ is 2-short if for any edge (v, w) of G the vertices v, w are either
zero or two layers apart, and the edges incident to a contracted vertex c are proper. As in
Lemma 7 and 8 one shows:

» Lemma 9 (*). Let G be a fan-plane graph, and let G’ be the graph obtained by contracting
crossing-patches. Then, G has a fan-plane short h-layer drawing if and only if G’ has a plane
monotonicity-preserving 2-short (2h—1)-layer drawing.

Long edges pose difficulties because Observation 1 no longer holds. However, in a 1-plane
graph G crossing-patches are single crossings, i.e., contracting crossing-patches is simply
planarizing G. A crossing either lies between two layers or (if a long edge crosses a flat edge)
exactly on a layer. A drawing of G’ is called 2-unconstrained if every vertex of G lies on
an odd-indexed layer. The next lemma is shown almost exactly as Lemmas 7-9; we omit
the details.
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(a) (b) (c) (d)

Figure 7 (a) A very small plane graph G’. (b)-(c) Replacing a proper, flat or long edge with a
tripler-graph. (d) Graph G” obtained by filling all angles. Some edges from the tripler-graphs are
not shown. Filler paths are given in bold.

» Lemma 10. Let G be a 1-plane graph and let G' be its planarization. Then G has a
1-plane unconstrained h-layer drawing if and only if G’ has a plane monotonicity-preserving
2-unconstrained (2h—1)-layer drawing.

4.3 Enforcing a planar embedding

Recall that we want a plane drawing of G’ while PLANARDP tests the existence of planar
drawings. As the next step we hence turn G’ into a graph G” that is a subdivision of a
3-connected planar graph (hence has a unique planar rotation scheme). There are many
ways of making a planar graph 3-connected (e.g. we could triangulate the graph or stellate
every face), but we need to use a technique here that allows to relate the height of layered
drawings of G’ and G”, and this seems hard when using triangulation or stellation.

Instead we use a different idea, which is easier to describe from the point of view of angles
of G', i.e., incidences between a vertex v and a region f. The operation of filling the angles of
G’ consists of two steps. First, replace every edge e of G’ by a tripler-graph H (see Fig. 7(b)).
Then connect the tripler-graphs incident to each face via filler paths of length 2. One can
argue that G is a subdivision of a 3-connected planar graph, and as Fig. 7 illustrates, it can
be drawn using three times as many layers.

Recall that we had some restrictions on drawings of G’, such as being 2-proper and
monotonicity-preserving. All of them can be expressed as a subgraph-restriction, where we
are given a (connected, constant-sized) subgraph H of G’ and restrict the indices of layers
used by V(H). Such restrictions can naturally be translated to G”, since layer-indices relate
via i <+ 3i—2 in drawings of G’ and G”. We add as further restrictions to G” that vertices
of G’ can only be on every third layer and the length-2 paths that replace edges of G’ must
be drawn y-monotonically. One can then easily argue:

» Lemma 11 (*). Let G’ be a plane graph. Let G” be a graph obtained by filling the angles
of G'. Then G’ has a plane subgraph-restricted h-layer drawing if and only if G" has a plane
subgraph-restricted (3h)-layer drawing.
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Figure 8 Routing the escape-paths (thick solid) along the outer-face. For illustration purposes
we chose paths that are longer than needed.

We can enforce (see also Fig. 8) that the drawing respects a given outer-face f by inserting
a new vertex r and adding three escape-paths from r to three vertices on the face f. The
resulting graph G’ then can be drawn using roughly 4 times as many layers as G, and the
relationship goes both ways if we restrict vertices of G” to use only every fourth layer and r
to be on the bottommost layer.

4.4 Putting it all together

» Theorem 12. There are O(f(h)poly(n)) time algorithms to test the following:
Given a fan-plane graph G, does it have a fan-plane proper h-layer drawing?
Given a fan-plane graph G, does it have a fan-plane short h-layer drawing?
Given a 1-plane graph G, does it have a 1-plane unconstrained h-layer drawing?

Proof. First test whether the conclusion of Lemma 6 is satisfied for all crossing-patches (this
is trivially true for 1-plane graphs). If not, abort. Otherwise contract the crossing-patches
of G to obtain G', and add the subgraph-restrictions that G’ must be drawn monotonicity-
preserving and 2-proper/2-short/2-unconstrained. Fill the angles of G’ to obtain G”, and
add escape paths to obtain G’”. Inherit the above subgraph-restrictions into G and G"”.
Also add the restrictions discussed when building G and G'””. We have argued that G’
contains a planar subgraph-restricted (24h—11)-layer drawing if and only if G has the desired
embedding-preserving h-layer drawing.

We can test for the existence of a planar (24h—11)-layer drawing of G"’ using PLANARDP,
the algorithm from [4]. To ensure subgraph-restrictions Hy, ..., Hy, we proceed as follows.
Observe that every edge of G’ belongs to a constant number of subgraph-restrictions, and
that each H; has constant size. Let P be a path decomposition of G"’ of width at most 24h
(this must exist, otherwise G”’ has no (24h—11)-layer drawing). The path decomposition
P is found as part of PLANARDP. Modify P as follows: For each H; that is not a single
vertex, and every bag P that contains at least one edge of Hj;, add all vertices of H; to
P. The result P’ is a path decomposition since H; is connected. Since bag P represents
O(h) edges (it induces a planar graph), and edges belong to constant number of restriction
subgraphs of constant size, the bags of P’ have size O(h). Call the dynamic programming
algorithm PLANARDP on G’ using this path decomposition P’. Recall that each table-entry
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of PLANARDP specifies the layer-assignment, and since each H; appears in at least one bag
P of P, we can enforce the subgraph-restriction by permitting (among the table-entries
indexed by bag P) only those that satisfy the restriction on Hj. |

Sadly, our results are mostly of theoretical interest. Algorithm PLANARDP is FPT in h,
but the dependency on h is a very large function. Our algorithm, where h gets replaced by
24h and then increased by another constant factor to accommodate the subgraph-restrictions,
makes this even larger.

5 Testing Algorithm for 2-Layer Fan-planarity

Finally we turn to fan-planar drawings when the embedding is not fixed.

» Theorem 13 (*). Let T be a tree with n vertices. We can test in O(n) time whether T
admits a fan-planar proper 2-layer drawing.

Proof sketch. We know that T admits a fan-planar proper 2-layer drawing if and only if it
is a subgraph of a so-called stegosaurus [2]. This imposes severe restrictions on the possible
degrees in T. In particular, if 7" is the subtree obtained by deleting all leaves of T', and II is
the longest path in 77, then all vertices of T’ have degree at most 4, and vertices of T" \ TI
of degree 3 or more can only occur in specific places in a stegosaurus. We now parse the
vertices of II in order and reconstruct at each vertex how this could possibly have fit into
the structure of a stegosaurus (there may be multiple ways of doing this; we find the one
that is “best” in the sense that it leaves the most space for future insertions). There are
numerous cases here, making the analysis lengthy. In all cases, we either conclude that T'
was not a subgraph of a stegosaurus or we find the best-possible way in which 7" can fit
into a stegosaurus. Then we re-insert the leaves of T' while maintaining a stegosaurus (or
conclude that T was not a subgraph of a stegosaurus, since we found the best-possible one).
Finally, we obtain a fan-planar proper 2-layer drawing using the result in [2]. <

6 Summary and Future Directions

We studied layered drawings of fan-planar graphs. Motivated by the algorithm by Dujmovié¢
et al. [4], and using it as a subroutine, we gave an algorithm that tests the existence of a
fan-plane proper h-layer drawing and is fixed-parameter tractable in h. (Variations can handle
fan-plane short or 1-plane unconstrained drawings.) For the situation where the embedding
of the graph is not fixed, we studied the existence of fan-planar proper 2-layer drawings for
trees. Along the way, we also bounded the pathwidth of graphs that have a fan-planar (short
or proper) h-layer drawing, and argued that such graphs have a bar-1-visibility representation.
Many open problems remain.

Are there FPT algorithms to test whether a graph has a fan-planar h-layer drawing for
h > 2, presuming we can change the embedding? This problem was non-trivial even for
trees, h = 2, and proper drawings.

Our FPT algorithm for fan-plane drawings only worked for proper or short drawings. Is
there an FPT algorithm if long edges are allowed?

Does every graph with a fan-planar unrestricted h-layer drawing have pathwidth O(h)?
Does it have a bar-1-visibility representation? Note that fan-planar graphs are not closed
under edge subdivision, so we cannot subdivide long edges.

Last but not least, what do we know about layered drawings of k-planar graphs for k > 17
Note that these are not necessarily fan-planar.
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