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—— Abstract

We introduce the PBS-calculus to represent and reason on quantum computations involving coherent
control of quantum operations. Coherent control, and in particular indefinite causal order, is known
to enable multiple computational and communication advantages over classically ordered models
like quantum circuits. The PBS-calculus is inspired by quantum optics, in particular the polarising
beam splitter (PBS for short). We formalise the syntax and the semantics of the PBS-diagrams,
and we equip the language with an equational theory, which is proved to be sound and complete:
two diagrams are representing the same quantum evolution if and only if one can be transformed
into the other using the rules of the PBS-calculus. Moreover, we show that the equational theory is
minimal. Finally, we consider applications like the implementation of controlled permutations and
the unrolling of loops.
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1 Introduction

Quantum computers can solve problems which are out of reach of classical computers [28, 19].
One of the resources offered by quantum mechanics to speed up algorithms is the superposition
phenomenon which allows a quantum memory to be in several possible classical states at
the same time, in superposition. Less explored in quantum computing models, one can also
consider a superposition of processes. Called coherent control or simply quantum control,
it can be illustrated with the following example called quantum switch: the order in which
two unitary evolutions U and V' are applied is controlled by the state of a control qubit. In
particular, if the control qubit is in superposition, then both UV and VU are applied, in
superposition.

Coherent control is loosely represented in usual formalisms of quantum computing. For
instance, in the quantum circuit model, the only available quantum control is the controlled
gate mechanism: a gate U is applied or not depending on the state of a control qubit. The
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o S QS[U, V] := ee’

Figure 1 (a) Intuitive behaviour of a polarising beam splitter: vertical polarisation goes through,
horizontal polarisation is reflected; (b) Quantum switch of two matrices U and V.

quantum switch cannot be implemented with a single copy of U and a single copy of V' in
the quantum circuit model, and more generally using any language with a fixed or classically
controlled order of operations. Quantum switch has however been realised experimentally
[24, 25]. Moreover, such a quantum control has been proved to enable various computational
and communication advantages over classically ordered models [3, 15, 16, 17, 1], for instance
for deciding whether two unitary transformations are commuting or anti-commuting [8] (see
Example 12).

Notice that other models of quantum computations (e.g. Quantum Turing Machines) or
programming languages (e.g. Lineal [13] or QML [2]), allow for arbitrary coherent control of
quantum evolutions, the price to pay is, however, the presence of non-trivial well-formedness
conditions to ensure that the represented evolution is valid. Indeed, the superposition (i.e.
linear combination) of two unitary evolutions is not necessarily a unitary evolution.

We introduce a graphical language, the PBS-calculus, for representing coherent control of
quantum computations, where arbitrary gates can be coherently controlled. Our goal is to
provide the foundations of a formal framework which will be further developed to explore the
power and limits of the coherent control of quantum evolutions. Contrary to the quantum
circuit model, the PBS-calculus allows a representation of the quantum switch with a single
copy of each gate to be controlled. Moreover, any PBS-diagram is valid by construction
(no side nor well-formedness condition). The syntax of the PBS-diagrams is inspired by
quantum optics and is actually already used in several papers dealing with coherent control
of quantum evolutions [1, 3]. Our contribution is to provide formal syntax and semantics
(both operational and denotational) for these diagrams, and also to introduce an equational
theory which allows one to transform diagrams. Our main technical contribution is the proof
that the equational theory is complete (if two diagrams have the same semantics then one
can be transformed into the other using the equational theory) and minimal (in the sense
that each of the equations is necessary for the completeness of the language).

The syntax of the PBS-calculus is inspired by linear optics, and in particular by the
peculiar behaviour of the polarising beam splitter. A polarising beam splitter transforms a
superposition of polarisations into a superposition of positions: if the polarisation is vertical
the photon is transmitted whereas it is reflected when the polarisation is horizontal (see
Figure 1.a). As a consequence a photon can be routed in different parts of a scheme, this
routing being quantumly controlled by the polarisation of the photon. This is a unique
behaviour which has no counterpart in the quantum circuit model for instance. Polarising
beam splitters can be used to perform a quantum switch, as depicted as a PBS-diagram in
Figure 1.b.

Related works. In the context of categorical quantum mechanics several graphical languages
have already been introduced: ZX-calculus [10, 20], ZW-calculus [18], ZH-calculus [4] and
their variants. Notice in particular a proposal for representing fermionic (non polarising)
beam splitters in the ZW-calculus [12]. An apparent difference between the PBS-calculus
and these languages, is that the category of PBS-diagrams is traced but not compact closed.
This difference is probably not fundamental, as for any traced monoidal category there is a
completion of it to a compact closed category [21]. The fundamental difference is the parallel
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composition: in the PBS-calculus two parallel wires correspond to two possible positions of a
single particle (i.e. a direct sum in terms of semantics), whereas, in the other languages it
corresponds to two particles (i.e. a tensor product).

The parallel composition makes the PBS-calculus closer to the graphical linear algebra
approach [7, 6, 5], however the generators and the fundamental structures (e.g. Frobenius
algebra, Hopf algebra) are a priori unrelated to those of the PBS-calculus.

In the context of quantum programming languages, there are a few proposals for represent-
ing quantum control [13, 2, 29, 26]. Colnaghi et al. [11] have introduced a graphical language
with programmable connections. The language uses the quantum switch as a generator,
but does not aim to describe schemes with polarising beam splitters. Notice also that the
inputs/outputs of the language are quantum channels.

Structure of the paper. In Section 2, the syntax of the PBS-diagrams is introduced. The
PBS-diagrams are considered up to a structural congruence which allows one to deform the
diagrams at will. Section 3 is dedicated to the semantics of the language: two semantics, a
path semantics and a denotational semantics, are introduced. The denotational semantics is
proved to be adequate with respect to the path semantics. In Section 4, the axiomatisation
of the PBS-calculus is introduced, and our main result, the soundness and completeness of
the language, is proved. The axiomatisation is also proved to be minimal in the sense that
none of the axioms can be derived from the others. Finally, in Section 5, we consider the
application of the PBS-calculus to the problem of loop unrolling. We show in particular that
any PBS-diagram involving unitary matrices can be transformed into a trace-free diagram.
The paper is written such that the reader does not need any particular knowledge in category
theory. Basic definitions, in particular of Traced PROP, are however given for completeness
in the full version of the paper [9], as well as all omitted proofs.

2 Syntax

A PBS-diagram is made of polarising beam splitters ~&§ , polarisation flips (=) , and
gates for any matrix U € C?9*9, where ¢ is a fixed positive integer. One can also
use wires like the identity — or the swap _XC . Diagrams can be combined by means
of sequential composition o, parallel composition ®, and trace Tr(-). The trace consists in
connecting the last output of a diagram to its last input, like a feedback loop. The symbol
I represents the empty diagram. Any diagram has a type n — n which corresponds to the
numbers of input/output wires. The syntax of the language is the following:

» Definition 1. Given ¢ € N\ {0}, a PBS,-diagram D : n — n is inductively defined as:
0= 0 —:1—=1 (=r:1=1 X 122 22

U e C1x4 Di:n—n Dsy:n—n Di:n—n Dy :m—m D:n+1— n+tl
;1%1 Dy oDy :n—n Dy ® Dy : nt+m — n+m Tr(D):n—n

Sequential composition Dy o Dy, parallel composition Dy ® Do, and trace Tr(D) are respect-

ively depicted as follows:
zs
o

In the following, the positive integer ¢ will be omitted when it is useless or clear form the
context.
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Notice that two distinct terms, like {=)-o ({U Fo(=)) and ({=)-o-{U}-) 0(=), can lead
to the same graphical representation: . To avoid ambiguity, we define diagrams
modulo a structural congruence detailed in the full version of the paper [9]. Roughly speaking

the structural congruence guarantees that (7) two terms leading to the same graphical
representation are equivalent, and () a diagram can be deformed at will, e.g.:

== X - -— ey - @

In the categorical framework of PROP [23, 30], PBS-diagrams modulo the structural
congruence form a Traced PROP, i.e. they are morphisms of a traced strict symmetric
monoidal category whose objects are natural numbers. It is known (Theorem 20! of [27])
that two diagrams are equivalent according to the axioms of a traced PROP if and only if

they are isomorphic in a graph-theoretical sense, that is, if one can be obtained from the
other by moving, stretching and reorganising the wires in any way, while keeping their two
ends fixed.

3 Semantics

In this section, we introduce the semantics of the PBS-diagrams. First, we introduce an
operational semantics for PBS-diagrams with a classical control. The operational semantics,
called path semantics is based on the graphical intuition of a routed particle. Then we
introduce a denotational semantics for the general case, with a quantum control. We show the
adequacy between the two semantics, providing a graphical way to compute the denotational
semantics of a PBS-diagram.

In this paper, we only consider the case where a single particle, say a photon, is present
in the diagram. The particle is made of a polarisation and an additional data register. The
particle has: an initial polarisation, which is an arbitrary superposition of the horizontal
(—) and vertical (1) polarisations (that we call classical polarisations in the following); an
arbitrary position, which is a superposition of the possible input wires of the diagram; and
an input data state, which is a vector ¢ € C9.

3.1 Classical control — Path semantics

Classical control. We first consider input particles with a classical polarisation and a
classical position. Roughly speaking, the particle is initially located on one of the input
wires with a given polarisation in {—, 1}, and moves through the diagram depending on its
polarisation. The action of a PBS-diagram can be informally described as follows using a
token made of the current polarisation c¢ of the particle and a matrix U representing the
matrix applied so far to the data register:

The particle is either reflected or transmitted by a beam splitter, depending on its

polarisation:

(= U)& — & (—,U) (= U)& — ﬁ])

! Notice that in [27], the author points out that this result relies on a result by Kelly and Laplaza (Theorem
8.2, [22]) which is only proven for simple signatures — which is not the case for the PBS-diagrams. The
general case does not appear in the literature.
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(0) ﬁ — § (t,U) tU) & — & (1.0)

The polarisation may vary but remains classical (that is, in {—,1}) as the polarisation
flip — the only one which acts on the polarisation — interchanges horizontal and vertical

polarisations:
(=,0) t,U) t0) (=)
—O— o —O—— —O— - —O—

acts on the data register, transforming the state ¢ into V:

(e,U) (e, VU)

R i

The particle can freely move through wires, e.g.:

(e,U) (¢,U)

(U)X - (e, U) . - C_ 9D

Thus the token follows a path from the input to the output and accumulates a matrix
along the path. We formalise this intuitive behaviour as a big-step operational semantics
that we call path semantics in this context. A configuration is a triplet (D,c,p), where
D : n — nis a PBS-diagram, ¢ € {—,1} is the input polarisation of the particle, and
p € [n] :=={0,...,n — 1} its input position: 0 means that the particle is located on the first
upper input wire, 1 on the second one and so on. The result is made of the final polarisation
¢’ and position p’, and of the matrix U representing the overall action of D on the data
register.

» Definition 2 (Path semantics). Given a PBS-diagram D : n — n, a polarisation c € {—,1}
and a position p € [n], let (D,c,p) 2 (c,p') (or simply (D,c,p) = (c/,p') when U is the
identity) be inductively defined as follows:

(—e,0)=(c,0)  ({(D10) = (=0 (=0 = 10  ({UF.0) 2 (c0)

U \4
Dl,C,p) = (Cl7p,) D27C,7pl = c”7pl/
( >< > G p):>(67 1- p) ( (VU ) ( )(O)
(D2 o Dl,C,])) = (C//,pu)

U
Di:n—n <n Di,c,p) = (c,p
(=)= () 1 2 Preop) = (€8 (1)
(D1®D2,C,p): C/7p/)

. _ u s
(X top)=(h1-p) Drinzn _ pzn  (Poep=m) 2 (€] g,
(D1 ® Da,c,p) = (c/,p' +1n)

Din—n  Vie{0,... .k}, (Dcip) = (cippi)  (pis1 =n)e(i < k) )

Uy U,
(Tr(D), co, po) == (Ch+1, Pk+1)

with k € {0,1,2}.
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» Example 3. As expected, the path semantics of the quantum switch QS[U,V] :=
Tr (>C o % o (o} @ {v}) 0 X)) (see Figure 1.b) is (QS[U,V],1,0) =% (,0) and
(QS[U. V], —,0) £ (=,0).

» Example 4. PBS-diagrams implementing a controlled permutation are given in Figure 2.

Figure 2 Two diagrams having the same semantics, that implement a controlled permutation of

U, Uy Uy

3 unitary maps. Given a permutation (zyz) of (123), we have (D, ¢,z) =———= (¢, z), where D is
any of the two diagrams and ¢ =— if the signature of (zyz) is 1, ¢ =1 otherwise. A generalisation
to the controlled permutation of n unitary maps is given in the full version of the paper [9].

Notice that the path semantics does not need to be defined for the empty diagram: ..
Indeed, for any diagram D : 0 — 0 there is no valid configuration (D, c,p) as p should be
one of the input wires of D.

The (T )-rule is parametrised by an integer k. Intuitively, this parameter is the number
of times the photon goes through the corresponding trace. We show in the following that
roughly speaking, a particle can never go through a given trace more than twice. In other
words, the path semantics which assumes k < 2, is well-defined for any valid configuration:

» Proposition 5. For any diagram D : n — n and any (¢,p) € {—=,1} x [n], there exist
unique (¢',p') € {—=,1} x [n] and U € C?*? such that (D,c,p) z£ (c,p).

In the previous proposition, uniqueness means that the path semantics is deterministic:
since diagrams are considered modulo structural congruence (i.e. up to deformation), it
implies that these deformations preserve the path semantics.

Moreover, all PBS-diagrams are invertible in the following sense:

» Proposition 6. For any diagram D : n — n and any (¢,p) € {—,1} x [n], there exist
unique (¢',p') € {—,1} x [n] and U € CI*7 such that (D,c,p’) z (c,p).

As a consequence, any diagram D : n — n essentially acts as a permutation on {—, 1} X [n],
if one ignores its action on the data register. We introduce dedicated notations for representing
the corresponding permutation, as well as the actions on the data register:

» Definition 7. For any diagram D : n — n, we call Tp the permutation of {—,1} x [n] and
(D]

D],
for any ¢,p € {—,1} x[n], we call [D].,, € C1*? the matriz such that (D, c,p) =—== Tp(c,p).
In a PBS-diagram, the particle can go through each wire at most twice, otherwise, roughly
speaking, it would go back to the same position with the same polarisation and thus will
come back again and again to this same configuration and thus enter an infinite loop — which
is prevented by Proposition 5. In particular, each gate of the diagram is visited at most
twice:
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» Proposition 8. Any gate U of a diagram D contributes to at most two paths [D]cy.p, and
[Dle,pys t-e. given D' the diagram D where one occurrence of U has been replaced by an
arbitrary matriz V., ¥(c,p) ¢ {(po,co), (p1,¢1)}, [Dlep = [D]ep-

Proof. The proof is straightforward by induction on D. <

As a consequence the diagrams of Figure 2 are optimal in the number of uses of each
U;: since each of the 6 paths must depend on each U;, at least three copies of each U; are
required in a diagram which solves the permutation problem of 3 unitaries.

3.2 Quantum control — Denotational semantics

A crucial property of PBS-diagram is to offer the ability to have a quantum control, i.e. a
particle whose input state is a superposition of polarisations, positions, or both. To encounter
the quantum control, we introduce in this section a denotational semantics which associates
with any diagram a map acting on the state space H,, := C{=Tt @ C* ® C?. Using Dirac
notations, {|—), 1)} (resp. {|z) | 2 € {0...k—1}}) is an orthonormal basis of C{=T} (resp.
C*). Thus {le,p,z) | ¢ € {—=,1},p € [n],x € [g]} is an orthonormal basis of H,,.

» Definition 9. The denotational semantics of a PBS-diagram D : n — n is the linear map
[D] : Hpn — Hyp inductively defined as follows:

[[rjﬂ =0 [—1=l¢0,2) — |c,0,z)

=

[[DC]] = le;p,x) = [c,1 —p,x) [[]] =¢,0,z) = |c,0) U |x)
[@ﬂ:{|%,0,x)H|T,0,m> HKH :{|ﬁ,p,x>r—>|%,p,m>

|T,O,$>>—>|—>,O,$> |T,p,$>'—>|T,1—p,x>
[D20D1] = [Da] o [D:] [D1 ® Ds] = [D1] B [D] [Tr(D)] = T(IPD)

where:
fBg:=po(f®g)op L with o: Hy & Hyy — Husm the isomorphism defined as
(le;p, )|/, p', 2")) = le,p,x) + |/, p" +n,2").
T(f):= Zmo(fOWo)kOfoe witht : Hp—Hpt1 = e, 2,y) = e, 2,y), mo : Hpp1—=Hpt1 =
keN

ifx<n

0 C, T, ifr<n
le, z,y) — s and w1t Hpp1—=Hy e, 2,y) ey &
le,n,yy ifx=n

0 zf:z::n

Notice that while the semantics of the trace is defined by means of an infinite sum, this
sum is actually made of a finite number of nonzero elements, which guarantees that the
denotational semantics is well-defined:

» Proposition 10. For any diagram D : n — n, [D] € SLP,,, where SLP,, is the monoid of
the linear maps f: H, — Hy such that f e, p,z) = |7(c,p)) @ Uep |x) for some permutation
7 on {—,1} x [n] and matrices U, , € C1*1.
The denotational semantics is adequate with respect to the path semantics:
» Theorem 11 (Adequacy). For any D :n — n, [D] = |¢,p,x) — |mp(c,p)) @ [D]eyp |2),
D].
where Tp and [D].,, are such that (D, ¢, p) 1oy, Tp(c, p)

The adequacy theorem implies that two diagrams have the same denotational semantics
if and only if they have the same path semantics. As a consequence, it provides a graphical

24:7
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characterisation of the denotational semantics. Indeed, for any diagram D : n — n, [D]
is, by linearity, entirely defined by 7p and {[D]c,p}ce{—1},pe[n]- Since 7p and [D].,, have a
nice graphical interpretation as paths from the inputs to the outputs, the adequacy theorem
provides a graphical way to compute the denotational semantics of any PBS-diagram.

» Example 12. The quantum switch (Figure 1.b and Example 3) can be used to decide
whether U and V are commuting or anti-commuting [8]. The semantics of the quantum switch

—,0,z) = |=,00 @ VU

o 1S < 0 = 0 VU )
1,0,2) = [1,0) @ UV |z)

the quantum switch with a control qubit in a uniform superposition: [QS[U, V]

‘0 :E> _[=,000VUz)+1,000UV]z) _ |=,000VU|z)+(=1)* 1,000V U|z)
= V2 - 2

w ®VU |0, z). Thus, by measuring the control qubit in the { HE/;IT) , HEIT) }-basis,

. We assume that UV = (=1)*VU and call

=)+
\/E ®

one can decide whether U and V' are commuting or anti-commuting.

4 Equational theory — PBS-calculus

The representation of a quantum computation using PBS-diagrams is not unique, in the
sense that two distinct PBS-diagrams may have the same semantics (e.g. diagrams of Figure
2). In this section, we introduce 10 equations on PBS-diagrams (see Figure 3) as the
axioms of a language that we call the PBS-calculus. We prove that the PBS-calculus is
sound (that is, consistent with the semantics), complete (that is, it captures entirely the
semantic equivalence) and minimal (that is, all axioms are necessary to have completeness).
Completeness is proved by means of a normal form.

4.1 Axiomatisation

» Definition 13 (PBS-calculus). Two PBS-diagrams Dy, Ds are equivalent according to the
rules of the PBS-calculus, denoted PBS F Dy = Do, if one can transform Dy into Do using
the equations given in Figure 3. More precisely, PBS F - = - is defined as the smallest
congruence? which satisfies the equations of Figure 3.

Equations (1) and (6) in Figure 3 reflect the monoidal structure of the matrices, with
the identity element (Equation (1)) and the associative binary operation (Equation (6)).
Equations (2) and (3) mean that both the polarising beam splitter and the polarisation flip
commute with a gate. Moreover, the polarising beam splitter is self inverse (Equation (8)).
Notice that the negation is also self-inverse and that this is a consequence of the axioms (see
Example 14). Equation (5) translates the fact that flipping the control state before and after
performing a control of the position results in flipping the final position. To give a meaning
to Equation (10), it is useful to flip it upside down, and to remark that in a two-wire diagram,
polarising beam splitters and negations on the bottom wire each perform a CNOT on the
qubits representing the polarisation and the position, in opposite ways, so that each side of
the equation combines 3 CNOTs and thus performs a swap between these two qubits. In
Equation (4), there are essentially two steps: first, the wire with the gate V is a dead code,
as no photon can go to the wire, so it can be discarded; the second step consists in merging
the two polarising beam splitters. Equation (9) is the only equation acting on three wires:

2 see the full version of the paper [9] for a formal definition of congruence in this context. Notice that any

congruence has to be consistent with the structural congruence in order to be well-defined.
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P
o &
» 4D
o <
\

oo - OCo -

Figure 3 Axioms of the PBS-calculus. Given ¢ a positive integer, U,V € C?*? are arbitrary
matrices, I € C?*? is the identity.

in this particular configuration given by the left hand side of the equation, two polarising
beam splitters can be replaced by swaps. Equation (7) reflects the fact that isolated parts of
a diagram have no effect on the rest.

» Example 14. The fact that the negation is self inverse can be derived in the PBS-calculus:
PBS + (=X =) = —. A more sophisticated example is the proof that the two diagrams of
Figure 2 are equivalent. The derivations are given in the full version of the paper [9].

All these equations preserve the semantics of the PBS-diagrams:

» Proposition 15 (Soundness). For any two diagrams D1 and Ds, if PBSF Dy = Dy then
[D1] = [D-].

4.2 Normal forms

In this section, we introduce a notion of diagrams in normal form which is used in the next
sections to prove both the universality and the completeness of the PBS-calculus. They
are made of two parts: the first one corresponds to a superposition of linear maps, and the
second one corresponds to a permutation of the polarisations and positions, written in a way
that is convenient here.

» Definition 16 (Normal Form). Diagrams in normal form are inductively defined as: {7} is
in normal form, and for any N : n — n in normal form,

are in normal form, where %)~ denotes either — or {=) , and oy : m — m = %z
m—1 :

24:9
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» Remark 17. For any U,V € C?*7 let E(U,V) := . A diagram in normal

H
form can be written in the form Po E, where E is of the form E(Up, Vp)®--- @ E(Un—1, Vi—1),
and P is built using only — , (), & , X, o and ®.

In the following we show that any diagram is equivalent to a diagram in normal form.
» Lemma 18. If N; and Ny are in normal form then N1 ® No is in normal form.
Proof. By definition of the normal forms. <

» Lemma 19. If Ny : n — n and N : n — n are in normal form then there exists N' :n — n
in mormal form such that PBSF Ny o Ny = N'.

Proof. Notice that using the axioms of PROP, Ny = gy o ... 0 gy where each gj consists of
either E(U, V), —, (=), “& or X acting on any one or two consecutive positions, in
parallel with the identity on the other positions. We show that every g, can be successively
integrated to the normal form (see the full version of the paper [9] for details). |

» Lemma 20. If N : n+1 — n+1 is in normal form then there exists N' : n — n in normal
form such that PBS+ Tr(N) = N'.

We are now ready to prove that any PBS-diagram can be put in normal form:

» Proposition 21. For any D : n — n, there exists a PBS-diagram N : n — n in normal
form such that PBS+ D = N.

Proof. Combining the previous three lemmas, it remains to prove that any generator of the
language can be put in normal form. We do so in the full version of the paper [9]. |

» Remark 22. By unfolding the proof of Proposition 21, one can obtain a deterministic
procedure to transform any diagram into its normal form. Its complexity, defined as the
number of transformations by one of Equations (1) to (10), is O(¢tm?), where m is the
number of generators (& , (=), and ), and ¢ the number of traces in the diagram.
Notice that this procedure has probably not the best possible complexity.

4.3 Completeness
The main application of the normal forms is the proof of completeness:

» Theorem 23 (Completeness). For any D, D’ :n — n, if [D] = [D'] then PBSF D = D'.

Proof. There exist N, N’ in normal form such that PBS - D = N and PBS + D' = N'.
Moreover, by soundness, [N] = [D] = [D’] = [N’]. Finally, one can show that [N] = [N']
implies that N = N’. In particular, one can show inductively that the normal form is entirely
determined by its semantics by considering the path semantics for a particle located on the
last input wire. |

4.4 Minimality of the set of axioms

In the following we show that each of the ten equations of Figure 3 is necessary for the
completeness of the PBS-calculus:

» Theorem 24 (Minimality). None of Equations (1) to (10) is a consequence of the others.
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Notice that all equations involving matrices, except Equation (1), are schemes of equations
i.e. one equation for each possible matrix (or matrices). In Theorem 24, we show that each
of these equations, for most of the matrices, cannot be derived from the other axioms. More

precisely, Equation (4) (resp. (7)) is not a consequence of the nine others for any U (resp.
any U, V); Equation (2) (resp. (6) ) is not a consequence of the others for any U # I (resp.
any U,V # I). Finally, if det(U) # 1, then Equation (3) is not a consequence of the others.

We conjecture that the condition det(U) # 1 can be relaxed to U # I.

4.5 Universality

A PBS-diagram represents a superposition of linear maps together with a permutation

of polarisations and positions. Indeed, Proposition 10 shows that for any diagram D :

n — n, [D] € SLP,, where SLP,, is the monoid of the linear maps f: H, — H, such
that flc,p,x) = |7(¢,p)) ® Uep |x) for some permutation 7 on {—,1} x [n] and matrices
U.p € C9*9. We show in the following that the PBS-calculus is universal, in the sense that
any linear map in SLP,, can be represented by a PBS-diagram:

» Theorem 25. The PBS-calculus is universal: for any f € SLP,, AD : n — n, [D] = f.

Proof. The proof relies on the normal forms: given a linear map f € SLP, one can
inductively construct a diagram in normal form, by considering the image of f when the
particle is located on the last position (p = n — 1). <

Notice that SLP,, is strictly included in the set of linear maps from #H,, to H,. Thus
while being universal for SLP,, the PBS-diagrams are not expressive enough to represent a
(non-polarising) beam splitter for instance.

5 Removing the trace — Loop unrolling

We consider in this section an application of the PBS-calculus. The semantics of the language
points out that each trace, or feedback loop, is used at most twice. As a consequence, a
natural question is to decide whether all loops can be unrolled, in order to transform any
PBS-diagram into a trace-free PBS-diagram. Such a transformation is possible when all
matrices are invertible:

» Proposition 26. Let D : n — n with n > 2 be a PBS-diagram such that all matrices

appearing in some gate in D are invertible. Then there exists a trace-free PBS-diagram
D’ such that PBS+ D = D'.

Notice that Proposition 26 is not true for PBS-diagrams with a single input/output.

Indeed a trace-free diagram of type 1 — 1 is made of generators acting on 1 wire only, so in
particular it has no polarising beam splitter and as a consequence cannot have a behaviour
which depends on the polarisation. For instance, the diagram E(U, V') used in the normal
forms (see Remark 17) cannot be transformed into a trace-free diagram unless U = V.

On the other hand, PBS-diagrams involving at least one non-invertible matrix are not
necessarily equivalent to a trace-free one. Indeed, we have the following property:

» Lemma 27. For any trace-free PBS-diagram D, either all [D]., are invertible or at least
two of them are not.

This prevents the following diagram from being equivalent to a trace-free one:

24:11
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» Example 28. If U is not invertible, then the diagram Dy : 2 — 2 = ¢¢ is not

equivalent, according to the rules of the PBS-calculus, to any trace-free diagram. Indeed, for
any (c,p) # (—, 1) we have [Dy]l.,p = I, which is invertible, whereas [Dy]_ 1 = U.

Another interesting property is that loop unrolling, when it is possible, requires the use of
matrices that were not present in the original diagram. This is a consequence of the following

lemma:

» Lemma 29. Given any diagram D :n — n, let us define |D| := H det ([D]c.p)-
ce{—,1},p€[n]

Then for any trace-free diagram D, we have |D| = H det (U(G))? where U(G) denotes

G gate in D
the matriz with which G is labelled.

Proof. Intuitively, due to the invertibility of the PBS-diagrams (Proposition 6), for each
wire of a trace-free diagram D, there are exactly two initial configurations which are going
through this particular wire. As a consequence each gate of D contributes twice to |D| (see
the full version of a paper [9] for a formal proof). <

» Example 30. Unless det(U) is a kth root of unity for some odd integer k, the following
diagram Dy does not have the same semantics as any trace-free diagram in which all gates

U
are labelled by U: eée . Indeed, we have |Dy| = det(U), and by Lemma 29, if
Dy is equivalent through PBS to a trace-free diagram Dj; in which all gates are labelled
by U, then we have |Dy| = det(U) = det(U)?", where N is the number of gates in Dj,. By
Lemma 27, we have det(U) # 0, so that det(U)?N~! = 1, that is, det(U) is a kth root of
unity with ¥ = 2N — 1 odd (if N = 0 then det(U) = 1 so the result is still true).

6 Conclusion and Perspectives

In this paper, we have introduced a rigorous framework to reason on quantum computations
involving coherent control, which are sometimes informally represented by schemes involving
polarising beam splitters and black boxes. The main result is the introduction of an equational
theory which makes the PBS-calculus sound and complete. We have also proved that the
axiomatisation is minimal in the sense that each axiom is necessary for the completeness.
Moreover, we have demonstrated for instance that the PBS-calculus can be used for loop
unrolling.

So we have introduced the foundations of a formal framework, that we believe will be
a useful tool to study the power and the limits of computations and protocols involving
coherent control. We mention here three perspectives in the development of the PBS-calculus.

First, the expressivity of the language can be increased by adding, for instance, a (not
polarising) beam splitter as a generator of the language, or by allowing more than one particle
in the diagrams. Both are necessary for the representation of Boson sampling for instance.

Another perspective is to allow the gates to be arbitrary quantum channels. Indeed
recent results [14, 1] point out interesting and unexpected behaviours of coherently controlled
quantum channels. Our objective is to make the PBS-calculus a formal framework to explore
and study such phenomena.

Finally, the calculus can be made more resource-sensitive, by allowing only the equations
for which the number of occurrences of each gate (or black box) is preserved. For instance,
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we have seen examples in which loop unrolling requires to introduce new gates that were
not present in the initial diagram. Transforming a diagram into its normal form is another
example that does not, in general, preserve the number of occurrences of each gate.

—— References

1

10

11

12

13

14

15

16

Alastair A. Abbott, Julian Wechs, Dominic Horsman, Mehdi Mhalla, and Cyril Branciard.
Communication through coherent control of quantum channels. arXiv preprint, October 2018.
arXiv:1810.09826.

Thorsten Altenkirch and Jonathan Grattage. A functional quantum programming language.
In 20th Annual IEEE Symposium on Logic in Computer Science (LICS’05), pages 249-258.
IEEE, 2005. doi:10.1109/LICS.2005.1.

Mateus Aratjo, Fabio Costa, and Caslav Brukner. Computational advantage from quantum-
controlled ordering of gates. Physical review letters, 113(25):250402, 2014. doi:10.1103/
PhysRevLett.113.250402.

Miriam Backens and Aleks Kissinger. ZH: A complete graphical calculus for quantum
computations involving classical non-linearity. Electronic Proceedings in Theoretical Computer
Science, 287:23-42, January 2019. doi:10.4204/eptcs.287.2.

Filippo Bonchi, Joshua Holland, Robin Piedeleu, Pawel Sobocinski, and Fabio Zanasi. Diagram-
matic algebra: from linear to concurrent systems. Proceedings of the ACM on Programming
Languages, 3(POPL):1-28, 2019. doi:10.1145/3290338.

Filippo Bonchi, Robin Piedeleu, Pawel Sobocinski, and Fabio Zanasi. Graphical affine algebra.
In 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages
1-12. IEEE, 2019. doi:10.1109/LICS.2019.8785877.

Filippo Bonchi, Pawel Sobocinski, and Fabio Zanasi. Interacting hopf algebras. Journal of
Pure and Applied Algebra, 221(1):144-184, 2017. preprint available from https://eprints.
soton.ac.uk/406232. doi:10.1016/j.jpaa.2016.06.002.

Giulio Chiribella. Perfect discrimination of no-signalling channels via quantum superposition of
causal structures. Physical Review A, 86(4):040301, 2012. doi:10.1103/PhysRevA.86.040301.
Alexandre Clément and Simon Perdrix. PBS-calculus: A graphical language for coherent
control of quantum computations. arXiv preprint, 2020. arXiv:2002.09387.

Bob Coecke and Ross Duncan. Interacting quantum observables: categorical algebra and
diagrammatics. New Journal of Physics, 13(4):043016, 2011. doi:10.1088/1367-2630/13/4/
043016.

Timoteo Colnaghi, Giacomo Mauro D’Ariano, Stefano Facchini, and Paolo Perinotti. Quantum
computation with programmable connections between gates. Physics Letters A, 376(45):2940—
2943, 2012. doi:10.1016/j.physleta.2012.08.028.

Giovanni de Felice, Amar Hadzihasanovic, and Kang Feng Ng. A diagrammatic calculus
of fermionic quantum circuits. Logical Methods in Computer Science, 15(3), 2019. doi:
10.23638/LMCS-15(3:26)2019.

Gilles Dowek and Pablo Arrighi. Lineal: A linear-algebraic lambda-calculus. Logical Methods
in Computer Science, 13(1), 2017. doi:10.23638/LMCS-13(1:8)2017.

Daniel Ebler, Sina Salek, and Giulio Chiribella. Enhanced communication with the assistance of
indefinite causal order. Physical review letters, 120(12):120502, March 2018. arXiv:1711.10165.
doi:10.1103/PhysRevLett.120.120502.

Stefano Facchini and Simon Perdrix. Quantum circuits for the unitary permutation problem.
In International Conference on Theory and Applications of Models of Computation, pages
324-331. Springer, 2015. doi:10.1007/978-3-319-17142-5_28.

Adrien Feix, Mateus Aratjo, and Caslav Brukner. Quantum superposition of the order of
parties as a communication resource. Physical Review A, 92(5):052326, 2015. doi:10.1103/
PhysRevA.92.052326.

24:13

MFCS 2020


http://arxiv.org/abs/1810.09826
https://doi.org/10.1109/LICS.2005.1
https://doi.org/10.1103/PhysRevLett.113.250402
https://doi.org/10.1103/PhysRevLett.113.250402
https://doi.org/10.4204/eptcs.287.2
https://doi.org/10.1145/3290338
https://doi.org/10.1109/LICS.2019.8785877
https://eprints.soton.ac.uk/406232
https://eprints.soton.ac.uk/406232
https://doi.org/10.1016/j.jpaa.2016.06.002
https://doi.org/10.1103/PhysRevA.86.040301
http://arxiv.org/abs/2002.09387
https://doi.org/10.1088/1367-2630/13/4/043016
https://doi.org/10.1088/1367-2630/13/4/043016
https://doi.org/10.1016/j.physleta.2012.08.028
https://doi.org/10.23638/LMCS-15(3:26)2019
https://doi.org/10.23638/LMCS-15(3:26)2019
https://doi.org/10.23638/LMCS-13(1:8)2017
http://arxiv.org/abs/1711.10165
https://doi.org/10.1103/PhysRevLett.120.120502
https://doi.org/10.1007/978-3-319-17142-5_28
https://doi.org/10.1103/PhysRevA.92.052326
https://doi.org/10.1103/PhysRevA.92.052326

24:14

A Graphical Language for Coherent Control of QC

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Philippe Allard Guérin, Adrien Feix, Mateus Aratjo, and Caslav Brukner. Exponential commu-
nication complexity advantage from quantum superposition of the direction of communication.
Physical review letters, 117(10):100502, 2016. doi:10.1103/PhysRevLett.117.100502.
Amar Hadzihasanovic. The algebra of entanglement and the geometry of composition. PhD
thesis, University of Oxford, 2017. arXiv:1709.08086.

Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for linear systems
of equations. Physical Review Letters, 103(15), October 2009. doi:10.1103/physrevlett.
103.150502.

Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. A complete axiomatisation of
the ZX-calculus for Clifford4+7T quantum mechanics. In Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science, pages 559-568, 2018. doi:10.1145/
3209108.3209131.

André Joyal, Ross Street, and Dominic Verity. Traced monoidal categories. Mathematical
Proceedings of the Cambridge Philosophical Society, 119(3):447-468, 1996. doi:10.1017/
S0305004100074338.

Gregory M Kelly and Miguel L Laplaza. Coherence for compact closed categories. Journal of
pure and applied algebra, 19:193-213, 1980. doi:10.1016/0022-4049(80)90101-2.

Saunders Mac Lane. Categorical algebra. Bull. Amer. Math. Soc., 71:40-106, 1965. doi:
10.1090/S0002-9904-1965-11234-4.

Lorenzo M Procopio, Amir Moganaki, Mateus Aratjo, Fabio Costa, Irati Alonso Calafell,
Emma G Dowd, Deny R Hamel, Lee A Rozema, Caslav Brukner, and Philip Walther. Ex-
perimental superposition of orders of quantum gates. Nature communications, 6:7913, 2015.
doi:10.1038/ncomms8913.

Giulia Rubino, Lee A Rozema, Adrien Feix, Mateus Aratijo, Jonas M Zeuner, Lorenzo M
Procopio, Caslav Brukner, and Philip Walther. Experimental verification of an indefinite
causal order. Science advances, 3(3):€1602589, 2017. doi:10.1126/sciadv.1602589.

Amr Sabry, Benoit Valiron, and Juliana Kaizer Vizzotto. From symmetric pattern-matching
to quantum control. In International Conference on Foundations of Software Science and
Computation Structures, pages 348-364. Springer, 2018. doi:10.1007/978-3-319-89366-2_19.
Peter Selinger. A survey of graphical languages for monoidal categories. In Bob Coecke, editor,
New Structures for Physics, volume 813 of Lecture Notes in Physics, pages 289-355. Springer,
2011. Also available from arXiv:0908.3347. doi:10.1007/978-3-642-12821-9_4.

Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms
on a quantum computer. SIAM Journal on Computing, 26(5):1484-1509, October 1997.
doi:10.1137/S0097539795293172.

Mingsheng Ying, Nengkun Yu, and Yuan Feng. Alternation in quantum programming: from
superposition of data to superposition of programs. arXiv preprint, 2014. arXiv:1402.5172.
Fabio Zanasi. Interacting Hopf Algebras- the Theory of Linear Systems. PhD thesis, Ecole nor-
male supérieure de lyon - ENS LYON, October 2015. URL: https://tel.archives-ouvertes.
fr/tel-01218015.


https://doi.org/10.1103/PhysRevLett.117.100502
http://arxiv.org/abs/1709.08086
https://doi.org/10.1103/physrevlett.103.150502
https://doi.org/10.1103/physrevlett.103.150502
https://doi.org/10.1145/3209108.3209131
https://doi.org/10.1145/3209108.3209131
https://doi.org/10.1017/S0305004100074338
https://doi.org/10.1017/S0305004100074338
https://doi.org/10.1016/0022-4049(80)90101-2
https://doi.org/10.1090/S0002-9904-1965-11234-4
https://doi.org/10.1090/S0002-9904-1965-11234-4
https://doi.org/10.1038/ncomms8913
https://doi.org/10.1126/sciadv.1602589
https://doi.org/10.1007/978-3-319-89366-2_19
http://arxiv.org/abs/0908.3347
https://doi.org/10.1007/978-3-642-12821-9_4
https://doi.org/10.1137/S0097539795293172
http://arxiv.org/abs/1402.5172
https://tel.archives-ouvertes.fr/tel-01218015
https://tel.archives-ouvertes.fr/tel-01218015

	Introduction
	Syntax
	Semantics
	Classical control – Path semantics
	Quantum control – Denotational semantics

	Equational theory – PBS-calculus 
	Axiomatisation
	Normal forms
	Completeness
	Minimality of the set of axioms
	Universality

	Removing the trace – Loop unrolling
	Conclusion and Perspectives 

