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Abstract
We consider the bit-probe complexity of the set membership problem: represent an n-element subset
S of an m-element universe as a succinct bit vector so that membership queries of the form “Is x ∈ S”
can be answered using at most t probes into the bit vector. Let s(m, n, t) (resp. sN (m, n, t)) denote
the minimum number of bits of storage needed when the probes are adaptive (resp. non-adaptive).
Lewenstein, Munro, Nicholson, and Raman (ESA 2014) obtain fully-explicit schemes that show that

s(m, n, t) = O((2t − 1)m1/(t−min{2blog nc,n−3/2}))

for n ≥ 2, t ≥ blog nc+ 1 .
In this work, we improve this bound when the probes are allowed to be superlinear in n, i.e.,

when t ≥ Ω(n log n), n ≥ 2, we design fully-explicit schemes that show that

s(m, n, t) = O((2t − 1)m1/(t− n−1
2t/(2(n−1)) )),

asymptotically (in the exponent of m) close to the non-explicit upper bound on s(m, n, t) derived by
Radhakrishan, Shah, and Shannigrahi (ESA 2010), for constant n.

In the non-adaptive setting, it was shown by Garg and Radhakrishnan (STACS 2017) that for
a large constant n0, for n ≥ n0, sN (m, n, 3) ≥

√
mn. We improve this result by showing that the

same lower bound holds even for storing sets of size 2, i.e., sN (m, 2, 3) ≥ Ω(
√

m).
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28:2 Fully-Explicit Data Structures in the Bit-Probe Model

1 Introduction

In this paper, we consider the classical static set membership problem: given an n-element
subset S of the universe [m], represent it succinctly in memory as a sequence of bits, so that
membership queries of the form “Is x in S?” can be answered efficiently. How succinct can
such a data structure be? The number of subsets is

(
m
n

)
and clearly, each set must have a

different representation, so the data structure must use at least log
(
m
n

)
= Θ(n log(m/n))

bits (we assume n� m). Note that the standard data structure which stores the set as a
sorted table and uses binary search to answer queries uses not much more space than this
lower bound (ignoring constant factors). This data structure reads about (logn)(logm) bits
to answer membership queries. Can the membership queries be more efficient?

Several works have addressed this question. E.g., Fredman, Komlós and Szemerédi [6],
Brodnik, and Munro [4], Pagh [17] and Patrascu [18] construct data structures that use close
to log

(
m
n

)
bits of memory organized in (logm)-bit words and yet need to read only a constant

number of words (i.e., O(logm) bits in all) to answer membership queries. It can also be
shown that Ω(logm) bits must be read to answer queries if the data structure is restricted to
use O(n log(m/n)) space. Thus, the problem is well settled in the realistic cell probe model.

The trade-off between the space needed and the number of probes is not completely
settled in the bit probe model. The problem originated in the work of Minsky and Papert [15],
who considered representations of sets as a sequence of bits so that membership can be
determined by reading a small number of bits on average. The recent interest in the problem
can be traced to Buhrman, Miltersen, Radhakrishnan, and Venkatesh [5], who showed that
there exist randomized schemes that answer membership queries with just one bit probe
(while erring with some small probability). The survey article of Nicholson, Raman, and
Rao [16] describes several other data structure problems that have been addressed in the bit
probe model.

The set membership problem can also be viewed as a problem of data compression. An
n-element subset of [m] can be viewed as a sparse binary string of length m. The trade-off
that we have in the set membership problem then corresponds to the relationship between
compression that can be achieved and the number of bits of the compressed string that need
to be read to recover a bit of the original sparse string. For recent work in the information-
theoretic literature related to this, see Makhdoumi, Huang, Médard, Polyanskiy [14]. In
practice, Bloom filters [2] offer a solution for the set membership problem: with a small
number of bit probes they determine if an element is in the set; however, they do not
guarantee correct answers always, for they allow a small number of false positives. In this
paper, we are looking for solutions that allow no errors.

To place the contributions of this paper in the context of previous work on the set
membership problem, we let s(m,n, t) denote the minimum number of bits needed to
represent set S of size at most n from the universe [m] so that membership queries of the
form “Is x in S?” can be answered using at most t bit probes. We will be interested in the
setting where n � m. Buhrman et al. [5] showed that s(m,n, t) = Ω(tn1−1/tm1/t). The
current best general upper bound, due to Garg and Radhakrishnan [9], gives s(m,n, t) =
O(exp(e2t)n1−2/(t+1)m2/(t+1) logm) (assuming n = m1−ε for ε > 0 and t ≥ 3 and t ≤
(log logm)/10). We restrict attention to situations where n and t are small (large constants),
in which case the most significant difference between the lower and upper bounds is the
exponent of m: we have 1/t in the lower bound and 2/(t+ 1) in the upper bound.

For n = 1, it is straightforward to show that s(m, 1, t) = O(m1/t). We do not, however,
have tight bounds for larger t. The best bounds we know for the case n = 2 and t = 2 are

c1m
4/7 ≤ s(m, 2, 2) ≤ c2m

2/3,
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where c1 and c2 are constants [23, 22]. Remarkably, it is known that s(m, 3, 2) = θ(m2/3): the
upper bound was shown by Baig and Kesh [1] and the lower bound was shown by Kesh [12].

The works of Radhakrishnan, Shannigrahi, and Shah [23] and Lewenstein, Munro,
Nicholson, and Raman [13] address the question by constructing schemes showing that for
a certain range of parameters (t � n), the exponent of m in s(m,n, t) comes close to 1/t.
Radhakrishnan et al. used a probabilistic argument to show that

s(m,n, t) = O(ntm1/(t−nt2−t+1)), (1)

for t > n ≥ 2.
Later, Lewenstein et al. built fully-explicit schemes that show that

s(m,n, t) = O((2t − 1)m1/(t−min{2blognc,n−3/2})), (2)

for n ≥ 2 and t ≥ 2dlogne+ 1. A scheme is fully-explicit if the locations of the probes to
be made are computable in time polynomial in t and logm given the query, and the bits
to be stored in the data structure are computable in time polynomial of its size, given the
subset to be stored [5]. Though the bound in (2) is weaker than the bound in (1) for t� n,
it is based on fully-explicit constructions. They obtained an explicit scheme showing that
s(m, 2, 3) = O(m2/5) (the same bound was shown by Radhakrishnan et al., but the proof
was based on non-explicit existence arguments [23]). Note that in this bound the exponent
of m is of the form 1/t+ Θ(logn/t2) when t� logn. We construct a fully-explicit scheme
with better space complexity than Equation (2).

I Theorem 1 (Result 1). s(m,n, t) = O((2t − 1)m1/(t− n−1
2t/(2(n−1)) ))

The exponent of m in our bound has the form 1/t+ (n− 1) · 2−t/(2(n−1))/t2. (For example, if
we set t = n2 log logm, we get that s(m,n, t) = O(m1/t), whereas the RHS of (2) is ω(m1/t).)
For n = 2, however, Lewenstein et al. obtain a bound of the form

s(m,n, t) = O((2t − 1)m1/(t−22−t) (3)

However, they do not present a comparable generalization for larger n. Our Theorem 1 can
be seen as an analog of (3) for n > 2. We now describe at a high level the relationship
between our work and that of Lewenstein et al. [13]. If only about t bit probes are allowed,
it is natural to split the universe into blocks of size approximately m1/t and build a tree over
them, with each internal node having degree approximately m1/t. At each internal node,
an array of size m1/t helps determine which path down the tree a particular query must
take. While deriving (3), Lewenstein et al. observed that there is some choice available in
the way the various arrays are populated. This redundancy can be used to provide some
more information to the query algorithm. They further used the fact that if exactly one of
several bits is 1, then their parity is also 1, that is, one parity bit is enough to detect one
error. All this points to the possibility that error-correcting codes may have a role to play in
the design of such data structures. Our construction makes direct use of error correcting
codes to exploit the freedom available.

Apart from the above general results, we focus attention on query schemes that make
three non-adaptive probes, i.e., the probes are made in parallel. It is not known if such
schemes can give significant savings over the characteristic vector for large sets (if n� logn).
Let sN (m,n, t) denote the minimum number of bits needed to represent sets S of size at
most n from the universe [m] so that membership queries of the form “Is x in S?” can be
answered using at most t non-adaptive bit probes. The most efficient schemes we know for
small n are obtained using the inequality sN (m,n, 3) ≤ s(m,n, 2) and appealing to the fact
that any two-probe adaptive scheme can be implemented as a three-probe non-adaptive
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28:4 Fully-Explicit Data Structures in the Bit-Probe Model

scheme. It was shown by Garg and Radhakrishnan [8] that for a large constant n0, for n ≥ n0,
we have sN (m,n, 3) ≥

√
mn (In fact, they considered how the non-adaptive complexity

depended on the type of query function used; they obtained a lower bound of the form
sN (m,n, t) = Ω(m1−1/(cn)), for a constant c and n ≥ 4, for all but two of the twenty-two
possible classes of functions. Their methods yield a lower bound of

√
m provided n ≥ 4.)

We show the following.

I Theorem 2 (Result 2). sN (m, 2, 3) = Ω(
√
m)

We follow the method of Garg and Radhakrishnan [8], who classified all three input query
functions into a small number of equivalence classes and provided either combinatorial or
algebraic arguments for each class.

In the rest of this paper, we provide detailed proofs for the above results.

2 Fully-Explicit Adaptive Set Membership scheme

I Theorem 3. For every n ≥ 2 and t ≥ cn logn for some sufficiently large constant c,
there exists a fully explicit adaptive (n,m, (2t − 1)m1/(t− n−1

2t/(2(n−1)) )
, t) scheme for the set

membership problem.

We will use letters x, y, . . . to refer to elements of [m], but view them as strings of length
L = logm. We will use the following notation in connection with strings. For a string z, we
use z[i] to refer to its i-th component and z[1, i] to refer to the substring z[1]z[2] . . . z[i]. For
a sequence of indices B ⊆ [L], we use x[B] to refer to the substring (x[i] : i ∈ B).

On query “Is x ∈ S?”, we will probe locations of our data structure using parts of the
bit string x as address. For this, we partition the set of indices into t blocks: B1, B2, . . . , Bt,
where each Bi is a set/sequence of indices from [L]. Notice that the number of blocks is
equal to the number of bit probes into the data structure that will be needed to answer
membership queries. For i = 1, 2, . . . , t− 1 (every block except the last is of equal length),
each such block Bi will be further partitioned into t′ sub-blocks: Bi1, . . .Bit′ , of equal length.
See the example in Figure 1. We denote the length of each of the first t− 1 blocks by lb, the
length of the final block by lf , and the length of each sub-block within the first t− 1 blocks
by ls. The parameters t′, lb, ls, and lf will be fixed later.

B1 B2 B3 B4

B11 B12 B21 B22 B31 B32

Figure 1 Address of an element divided into blocks (colored blue, t = 4, lb = 2, lf = 1) and
sub-blocks (t′ = 2, ls = 1), where the universe is of size 128.

The data structure must be able to distinguish elements in the set from those not in the
set. For this, we will identify some blocks and sub-blocks which will be used to differentiate
the elements. In the following definition, we assume that the set S ⊆ [m] that we wish to
represent in the data structure has been fixed. For x ∈ S, we will designate some blocks as
branching blocks. Simultaneously, we will construct and associate a string in {0, 1}t−1 with
x, which we refer to as AuxPathx (the auxiliary path of x). The strings AuxPathx can be
thought of as paths leading from a root to a leaf in a binary tree. The pattern of left and
right turns that the element x takes down the tree will be closely related to the paths that
the corresponding query take in a tree-like data structure.
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[Branching block, branching sub-block, AuxPath]

For i = 1, 2, . . . , t− 1, we will determine inductively for each x ∈ S if Bi is a branching block
for x and the value of the bit AuxPathx[i]. We will later extend these definitions to z 6∈ S.
Assume AuxPathx[1, i] has been determined for all x ∈ S. We say that the block Bi is a
branching block for x ∈ S if there exists a y ∈ S, such that

AuxPathx[1, i− 1] = AuxPathy[1, i− 1];
x[Bi] 6= y[Bi].

If Bi is a branching block for x, then we will designate one of its sub-blocks as a branching
sub-block for x. See the example in Figure 2. A sub-block Bij is a branching sub-block of
the branching block Bi for x if j is the smallest index (in [t′]) such that there exists y ∈ S
such that

AuxPathx[1, i− 1] = AuxPathy[1, i− 1];
x[Bij ] 6= y[Bij ].

x 0 1 1 0 1 1 0

y 0 1 1 0 0 1 1

Figure 2 Data structure to store x = 0110110 and y = 0110011: Branching block (colored blue)
is B3 and branching sub-block (colored red) is B31.

We now define AuxPathx[i].
If Bi is not a branching block for x, then AuxPathx[i] = 0.
If Bi is a branching block for x, and x[Bij ] is the lexicographically first string in the set

{y[Bij ] : y ∈ S and AuxPathy[1, i− 1] = AuxPathx[1, i− 1]},

then AuxPathx[i] = 0, otherwise AuxPathx[i] = 1.
We now extend the definition of AuxPath to z 6∈ S. Again we define AuxPathz[i] inductively
for i = 1, 2, . . .. Suppose AuxPathz[1], . . . ,AuxPathz[i− 1] have been determined.

If z[Bi] = x[Bi] for some some x ∈ S, where AuxPathx[1, i− 1] = AuxPathz[1, i− 1], then
AuxPathz[i] = AuxPathx[i].
If Bi is not a branching block for any x ∈ S, where AuxPathx[1, i−1] = AuxPathz[1, i−1],
then AuxPathz[i] = 1. (Note that if Bi is a branching block for some x ∈ S such that
AuxPathx[1, i− 1] = AuxPathz[1, i− 1], then it is a branching block for all such x ∈ S.)
Otherwise, let Bij be the branching sub-block of the branching block Bi for some x ∈ S
with AuxPathx[1, i − 1] = AuxPathz[1, i − 1]. (Note that Bij does not depend on the
choice of x.) Then AuxPathz[i] = 1 iff z[Bij ] is the lexicographically first string in
{y[Bij ] : y ∈ S and AuxPathy[1, i− 1] = AuxPathz[1, i− 1]}. Note that z 6∈ S are treated
differently compared to x ∈ S here: AuxPathz[i] is set 1 precisely when AuxPathx[i] would
be set to 0 for an x ∈ S in the same situation. This fact will be exploited later. See
Figure 4 for an example.

I Proposition 4. There are at most n−1 branching blocks and hence at most n−1 branching
sub-blocks. (Recall that n = |S|)

I Remark. Note that AuxPathx[i] depends only on x[B1 ∪ · · · ∪Bi]; that is, if x, y ∈ S and
x[B1 ∪ · · · ∪Bi] = y[B1 ∪ · · · ∪Bi], then AuxPathx[i] = AuxPathy[i].

MFCS 2020



28:6 Fully-Explicit Data Structures in the Bit-Probe Model

2.1 The storage scheme
The data structure is organized in the form of a binary tree of depth t− 1. Thus, the tree
has t levels of nodes; the root is at level 1 and the leaf is at level t. We will use binary strings
as names for the nodes of this binary tree. The root is named by the empty string λ; the left
child of the root is named 0 and the right child is named 1. In general, the left child of the
node with name σ is named σ0, and its right child is named σ1. Thus, there is one leaf for
each binary string in {0, 1}t−1.

At node σ of the tree we place an array Aσ that can store 2lb bits. The storage scheme
determines the values of Aσ as follows. First, based on the set S, we compute a message
M of t − 1 bits. We describe the construction of the string M and its properties below.
For each x, we let TruePathx[i] = AuxPathx[i] +M [i] (mod 2). Now we wish to arrange the
contents of the various arrays at levels 1 to t− 1 in our tree so that TruePathx can be read
off from their contents. For all x, we set ATruePath[1,i−1][x[Bi]] = TruePathx[i]. Note that the
above description assigns values to arrays that reside in our tree at levels 1 to t− 1. Now,
we describe how the bits in Aσ are set, where σ ∈ {0, 1}t−1 (this array resides at level t).
For each x ∈ S, let

Ix = {(i, j) : Bij is a branching sub-block for x}.

Then, let ax, the address of the final probe, be obtained by concatenating x[Bt] in the end
with the strings (x[Bij ] : (i, j) ∈ Ix) (note that x[Bt] has not been used in the previous
probes), adding 0’s at the end if necessary so that ax has exactly lb bits. Then, set
ATruePathx[1,t−1][ax] = 1. Finally, set all bits whose values are not specified above to 0. An
example is illustrated in Figure 3. To complete the description of the storage scheme, we
need to specify how the string M ∈ {0, 1}t−1 is obtained and fix the parameters lb, lf , ls
and t′.

The message M

When we answer a query, the message M will help us identify the branching sub-blocks on
the query element’s auxiliary path. Note that the true path and the message differ in at
most n − 1 positions. Thus, if M can be recovered even when up to n − 1 of its bits are
flipped, then we can extract M from the path (i.e., TruePathx) the element takes down the
tree. The values in the arrays are so arranged that they simultaneously achieve two goals: (i)
they ensure elements in the set and those outside are sent to different leaves; (ii) if despite
(i) an element in the set and an element outside reach the same leaf, the path allows us to
extract the message M , using which we ensure that these two elements read different bits on
their last probe.

As observed above, the total number of branching sub-blocks is at most n − 1. The
address of all these sub-blocks put together will be encoded using an error-correcting code
of length t − 1. The resulting codeword will be the string M . The main property of this
codeword that we need now is that it is has a distance greater than 2(n− 1), so that up to
n− 1 errors can be corrected.

Fixing the parameters of the data-structure

Since there are t′ sub-blocks within each block, we have

t′ · ls = lb. (4)
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The length of the final address is (n− 1)ls + lf . Since the array at each node stores 2lb bits,
we have

lb = (n− 1)ls + lf . (5)

Finally, since the entire address of x ∈ [m] is partitioned into blocks B1, B2, . . . , Bt, we have

(t− 1)lb + lf = L. (6)

Solving Equations (4) to (6) while fixing t and t′, we get lb = L
t−n−1

t′
, lf = L − L(t−1)

t−n−1
t′

and ls = L
tt′−(n−1) . Therefore, the size of the data structure that we constructed is (2t −

1)m1/(t−(n−1)/2t′ ). Observe that, asymptotically, the size of the data-structure increases
as we increase t′. Later, we will show that for the existence of error-correcting codes with
properties described in 2.1, we need t′ ≥ t/(2(n − 1)). Therefore, the optimal choice of t′
that minimizes the size of the data-structure is t′ = t/(2(n− 1)).

2.2 The query scheme
In this section, we describe how given an element x ∈ [m], we can make t probes to the data
structure and determine with certainty if x ∈ S. The first t− 1 probes are easy to anticipate
based on the description of the storage scheme above: Having read b1, b2, . . . , bi−1 in the first
i− 1 probes, we set the i-th bit bi = Ab[1,i−1][x[Bi]], probing the data structure once more.
After t− 1 such probes have been made, the query scheme obtains b[1, t− 1]. Note that this
string corresponds to TruePath[x] defined above. In some cases, we will be able to answer
the query based on just b[1, i− 1]. In other cases, the final probe will be made, as expected,
into the array Ab[1,t−1]. Some care is needed in determining the location. The bit read in
this location will be the answer to the query “Is x in S?”.

If b[1, t− 1] is not within distance n− 1 of any codeword, then we declare that x is not
in S. Else, we decode b[1, t − 1] to obtain M . Note that for x ∈ S, TruePathx[i] 6= M [i]
iff AuxPathx[i] = 1 (and Bi is a branching block). Therefore, ∆(TruePath[x],M) ≤ n − 1,
where ∆(·) is the Hamming distance function. Since the code we chose has distance at least
2(n− 1), we can decode TruePath[x] to obtain M and hence, all the branching sub-blocks,
say, Bi1j1 , Bi2j2 , . . . , Birjr

, where r is at most n− 1. The location for the final probe will be
obtained by concatenating these strings as follows: x[Bi1j1 ] · · ·x[Birjr ]x[Bt].

2.3 Proof of correctness
In this section, we show that the above scheme answers every query correctly: for every
element z ∈ [m], we show that the bit read in the final probe is 1 iff z ∈ S. Let az denote
the address of the final probe corresponding to z.

For x ∈ S, our storage scheme ensures that ATruePathx[1,t−1][ax] = 1. Now, fix z /∈ S.
From the definition of the storage scheme, it follows that if ATruePathz [1,t−1][az] = 1, then
∃x ∈ S such that TruePathz[1, t − 1] = TruePathx[1, t − 1] and az = ax. Fix x such that
TruePathz[1, t− 1] = TruePathx[1, t− 1]; we will argue that for az 6= ax. Let i ∈ [t] such that
z[Bi] 6= x[Bi]. If i = t, then clearly az 6= ax, and we are done. Hence assume that i < t.
Since TruePathz[1, t−1] = TruePathx[1, t−1], we have AuxPathz[1, t−1] = AuxPathx[1, t−1].
In particular, since AuxPathz[1, i− 1] = AuxPathx[1, i− 1] and AuxPathz[i] = AuxPathx[i], it
follows from the definition of the storage scheme that Bi is a branching block. Let Bij be the
branching sub-block of Bi. Observe that AuxPathz[i] = 1 iff z[Bij ] is the lexicographically
first string in {y[Bij ] : y ∈ S and AuxPathy[1, i − 1] = AuxPathz[1, i − 1]}. On the other

MFCS 2020



28:8 Fully-Explicit Data Structures in the Bit-Probe Model

hand, AuxPathx[i] = 1 iff x[Bij ] is the NOT the lexicographically first string in {y[Bij ] : y ∈
S and AuxPathy[1, i− 1] = AuxPathx[1, i− 1]}. Therefore, AuxPathz[i] = AuxPathx[i] only if
z[Bij ] 6= x[Bij ]. Since z[Bij ] is a substring of az and x[Bij ] is a substring of ax (they occupy
identical locations), it follows that az 6= ax. See Figure 4 for an example.

B1
00 01 10 11
0 1 0 0

0 1
B2 0 0 0 0

0
B3 0 0 0 0

0
B31||B4 0 0 0 0

0 0 1 0
1

1 0 0 1

0 1

0 0 1 0

0
0 0 0 0

0
0 0 0 0

0 1 0 0B31||B4

Figure 3 Data structure to store x = 0110110 and y = 0110011: AuxPathx = 001 and AuxPathy =
000 and M = 110 (not encoded in this example, for simplicity), where 11 indicates the branching
block and 0 is the branching sub-block; TruePathx = 111 (colored blue) and TruePathy = 110 (colored

green); last bit read is 1.

B1
00 01 10 11
0 1 0 0

0 1
B2 0 0 0 0

0
B3 0 0 0 0

0
B31||B4 0 0 0 0

0 0 1 0
1

1 0 0 1

0 1

0 0 1 0

0
0 0 0 0

0
0 0 0 0

0 1 0 0B31||B4

Figure 4 Verifying correctness: paths taken by elements which resemble x and y, i.e., differ only
in one bit and agree on the branching sub-block B31; z1 = 0110100 (colored red) and z2 = 0110001

(colored violet); the last bit read is 0.

Existence of error-correcting codes

Let C[N,K,D] denote a binary code of block length N , dimension K, and distance D. The
following proposition gives sufficient conditions for the existence of such a code.

I Proposition 5. For N, k,D ∈ N such that 2N ≥ 2K
(
N
D−1

)
D and N > 2(D − 1), there

exists a C[N,K,D] code.

Proof. Consider the vector space FN2 . The volume of a Hamming ball of radius D − 1
centered at any point in FN2 is

∑D−1
i=0

(
N
i

)
. When N > 2(D − 1), this volume is at most

2
(
N
D−1

)
D. Since 2N ≥ 2K

(
N
D−1

)
D, we can greedily pick a code C ⊆ FN2 of size 2K such that

the distance between any two codewords in C is at least D. J
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The message that we want to encode consists of the addresses of all branching sub-blocks,
padded with 0’s in the end, if necessary, to maintain uniform length. Let K denote the
length of this message to be encoded. Since each sub-block is indexed by log(t− 1) + log t′
bits and there are at most n− 1 branching sub-blocks, we take K = (n− 1)[log(t− 1) + log t′].
The desired length of the codeword is N = t − 1 (equal to the number of bits read until
the final probe) and we need the distance D ≥ 2(n− 1) + 1. It follows from Proposition 5
that for t′ = 2t/(2(n−1)) and t ≥ cn logn, for a sufficiently large constant c, there exists a
C[t− 1, (n− 1)[log(t− 1) + log t′], 2(n− 1) + 1] code.

Note that we may also explicitly construct the desired error-correcting code as a linear
BCH code [3, 11], which is an [N,K,D] code with K ≥ N − 1

2 (D − 1) log(N + 1) (this bound
appears, e.g., in the lecture notes of Guruswami [10, Notes 6, Lemma 5]). Substituting
N = t− 1 and D = 2(n− 1) + 1, we obtain a code with message length

K ≥ (t− 1)− (n− 1) log t ≥ (n− 1)[log(t− 1) + log t′],

for t ≥ cn logn, for a sufficiently large constant c. This explicit use of BCH codes will enable
us to use their efficient encoding and decoding algorithms [3, 11]. In particular, the running
time of these algorithms is bounded by a polynomial in n and t. In our application, we have
n, t � logm; so the running time of the query algorithm is bounded by a polynomial in
logm.

3 Non-adaptive Set Membership

In this section, we discuss our result on deterministic query schemes with three non-adaptive
probes. Theorem 8 is an improvement of the lower bound proved by Garg and Radhakrishnan
[8].

In principle, there can be different query functions for different elements. But since there
are only a finite number (256) of boolean functions on three variables, by the pigeon-hole
principle, some set of at least m/256 elements of the universe use a common query function.
We may thus restrict our attention to this part of the universe, and assume that the query
function is the same for every element.

I Definition 6 (Equivalence). A boolean function f(x1, x2, . . . , xk) : {0, 1}k → {0, 1} is said
to be equivalent to a boolean function g(x1, x2, . . . , xk) : {0, 1}k → {0, 1} if f can be obtained
from g through a sequence of negations and permutations of the variables in g.

I Proposition 7. Let f, g : {0, 1}k → {0, 1} be equivalent. If s1 and s2 are the minimum bits
of space required for non-adaptive (m,n, s1, t) and (m,n, s2, t)-schemes with query functions
f and g respectively, then s1 = s2.

For three-variable boolean functions, Polýa counting yields that there are twenty-two
equivalence classes [24, 20]; they are listed explicitly on this page [19]. We prove Theorem
8 for each of these equivalence classes separately. We omit the proofs for certain classes of
functions when the argument is essentially the one given by Garg and Radhakrishnan [7]
and refer the reader to that paper for more details.

I Theorem 8. sN (m,n = 2, t = 3) = Ω(
√
m).

Proof. We focus on the function that the query algorithm applies to the three bits read
to answer the query. Since there are only a finite number of such three-variable boolean
functions, we may restrict ourselves to a constant fraction of the universe for which the query
function is the same, which we denote by f . We also assume that the memory consists of

MFCS 2020
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three arrays A1, A2, A3, each of size s, and each probe is made on a different array. We
will show that s ≥

√
m/3. Let us assume to the contrary that s <

√
m/3. To arrive at a

contradiction, we will show that there exists a set S ⊆ [m] of size at most 2 that cannot be
stored in the data structure. We need to cover all possible query functions f . As observed by
Garg and Radhakrishnan [7], these functions fall into a small number of equivalence classes.
For most classes, their arguments already yield the result.

If there is a polynomial (which we may assume is multilinear) of degree at most two (in
variables (x, y, z) over any field) that is 0 whenever the function f evaluates to 0, then there
will be a set of size at most 2 that cannot be stored in the data structure [21]. This covers
the following functions (the first column lists a representative from the equivalence class).
In the second column, the polynomials listed are over the field F2 except when the query
function is x+ y + z = 1.

Table 1 Polynomial representation of query functions.

Query function Polynomial
CONSTANT 0, 1

x x

x + y + z 6= 1 x + y + z − 1
x + y + z = 1 x + y + z + xy + yz + zx (over F3)

x ∧ y xy

¬x ∨ ¬y 1 + xy

(x ∧ y) ∨ (¬x ∧ z) z + xy + xz

(x ∧ y) ∨ (¬x ∧ ¬y) 1 + x + y

MAJORITY(x, y, z) xy + yz + zx

PARITY(x, y, z) x + y + z

(x ∧ y)⊕ z z + xy

(x⊕ y) ∧ z yz + zx

¬[(x⊕ y) ∧ z] 1 + yz + zx

ALL-EQUAL(x, y, z) 1 + x + y + z + xy + yz + zx

NOT ALL-EQUAL(x, y, z) x + y + z + xy + yz + zx

The remaining query functions are equivalent to one of the following six functions.
f(x, y, z) = (x ∨ y) ∧ z or its complement.
f(x, y, z) = x ∧ y ∧ z or its complement.
f(x, y, z) = (x ∧ y ∧ z) ∨ (¬y ∧ ¬z) or its complement.

Using the fact that dense graphs have short cycles, Garg and Radhakrishnan show that
when the query function is equivalent to f(x, y, z) = (x ∧ y ∧ z) ∨ (¬y ∧ ¬z), the size of the
data structure is at least (1/7)m1−1/(bn/4c+1), which implies a lower bound of Ω(

√
m) only

if n ≥ 4. For the functions equivalent to f(x, y, z) = (x ∨ y) ∧ z, f(x, y, z) = (x ∧ y ∧ z)
and their complements, they proved a linear lower bound for n ≥ 3. Their proof crucially
relied on the notion of a private vertex : a private vertex for an element u ∈ [m] is a memory
location that is probed only for the query corresponding to u and for no other query. These
arguments do not seem to be directly applicable when n = 2. We define a closely related
notion of private edge and use it to prove an Ω(

√
m) lower bound for the remaining six

classes of functions mentioned above.
We say that an element u has a private edge if |{l1(u), l2(u), l3(u)}∩{l1(v), l2(v), l3(v)}| ≤ 1

for all v ∈ [m] \ {u}; that is, no pair of locations probed for query element u is probed also
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for a different query element v. At most 3s2 elements have private edges. Since s ≤
√
m/3,

we infer that U = {u ∈ [m] : u has no private edge} has at least 2m/3 elements.
Now suppose the query function is f(x, y, z) = (x ∧ y ∧ z) ∨ (¬y ∧ ¬z). Fix distinct

u, v ∈ U such that (l2(u), l3(u)) = (l2(v), l3(v)) (then l1(u) 6= l1(v)). Since v has no private
edge, there exists w ∈ [m] \ {u, v} such that (l1(v), l3(v)) = (l1(w), l3(w)). That is, u and v
make their second and third probes to identical locations, and v and w make their first and
third probes to identical locations. We claim that any assignment under which the queries
for both u and w evaluate to 1, the query for the element v also evaluates to 1; thus the set
{u,w} cannot be stored by this data structure. Since u ∈ S and v 6∈ S, the nature of our
function implies that A1[l1(u)], A2[l2(u)], A3[l3(u)] = 1, implying that A2[l2(v)], A3[l3(v)] = 1.
But then, A3[l3(w)] = 1, and again the form of our function implies that A1[l1(w)] = 1. But
l1(w) = l1(v); so all together we have that A1[l1(v)], A2[l2(v)], A3[l3(v)] = 1, but then the
query for v will return 1, as claimed. For the complement of f(x, y, z) = (x∨y∨z)∧(¬y∨¬z),
note that an analogous argument shows that whenever the query function returns 0 for u
and w then it returns 0 on v as well, that is, no such scheme can store the set {v} – a
contradiction.

Next, suppose the query function is f(x, y, z) = (x ∨ y) ∧ z. Consider an element u ∈ U .
Since u does not have a private edge, there exist distinct elements v, w ∈ [m] \ {u} such
that (l1(u), l3(u)) = (l1(v), l3(v)) and (l2(u), l3(u)) = (l2(w), l3(w)). Let S = {u} be the
set stored in the data structure. Since u ∈ S, it must be the case that A3[l3(u)] = 1 and,
A1[l1(u)] = 1 or A2[l2(u)] = 1. It follows that A3[l3(v)] = A3[l3(w)] = 1 and, A1[l1(v)] = 1
or A2[l2(w)] = 1 and hence the query function returns value 1 for at least one of v and w;
but neither of them is in S – a contradiction. The argument for the complement of this
function is analogous: the set {v, w} cannot be stored.

Finally, suppose the query function is f(x, y, z) = (x ∧ y ∧ z). There exist two distinct
elements u, v ∈ U such that (l2(u), l3(u)) = (l2(v), l3(v)). Since v has no private edge, there
exists w ∈ [m] \ {u, v} such that (l1(v), l3(v)) = (l1(w), l3(w)). Let S = {u,w} be the set
stored in the data structure. Then, A1[l1(v)], A2[l2(v)], A3[l3(v)] = 1. But then the query
function for v will also return 1, but v is not in S – a contradiction. The argument for the
complement of this function is analogous: the set S = {v} cannot be stored.

Thus, we have an Ω(
√
m) lower bound on sN (m, 2, 3) for all query functions. J
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