
Randomization in Non-Uniform Finite Automata
Pavol Ďuriš
Comenius University in Bratislava, Slovakia
duris@dcs.fmph.uniba.sk

Rastislav Královič
Comenius University in Bratislava, Slovakia
kralovic@dcs.fmph.uniba.sk

Richard Královič
Google Inc., Zürich, Switzerland
ri.kralovic@gmail.com

Dana Pardubská
Comenius University in Bratislava, Slovakia
pardubska@dcs.fmph.uniba.sk

Martin Pašen
Comenius University in Bratislava, Slovakia
martin.pasen@fmph.uniba.sk

Peter Rossmanith
RWTH Aachen, Germany
rossmani@cs.rwth-aachen.de

Abstract
The non-uniform version of Turing machines with an extra advice input tape that depends on
the length of the input but not the input itself is a well-studied model in complexity theory. We
investigate the same notion of non-uniformity in weaker models, namely one-way finite automata.
In particular, we are interested in the power of two-sided bounded-error randomization, and how it
compares to determinism and non-determinism. We show that for unlimited advice, randomization
is strictly stronger than determinism, and strictly weaker than non-determinism. However, when the
advice is restricted to polynomial length, the landscape changes: the expressive power of determinism
and randomization does not change, but the power of non-determinism is reduced to the extent that
it becomes incomparable with randomization.

2012 ACM Subject Classification Theory of computation → Automata extensions

Keywords and phrases finite automata, non-uniform computation, randomization

Digital Object Identifier 10.4230/LIPIcs.MFCS.2020.30

Funding This research has been partially supported by the grant 1/0601/20 of the Slovak Scientific
Grant Agency VEGA.

1 Introduction

Computational models traditionally employed in algorithmics and formal language theory
(e. g. Turing machines, automata, ...) are usually uniform in the sense that a single, finitely
described, device is used to process an infinite number of words in a given language L. On
the other hand, complexity theory often studies non-uniform models (e. g. circuits) where a
separate device is considered for each slice L ∩ Σn.

Since the uniformity of the model seems to have a significant impact on the complexity
of computational problems, there has been a lot of effort in comparing the uniform and
non-uniform classes. For one way, the inherently non-uniform models can be made uniform
by requiring that, for each n, the device used to process the slice L ∩ Σn must be generated

© Pavol Ďuriš, Rastislav Královič, Richard Královič, Dana Pardubská, Martin Pašen, and
Peter Rossmanith;
licensed under Creative Commons License CC-BY

45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020).
Editors: Javier Esparza and Daniel Král’; Article No. 30; pp. 30:1–30:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:duris@dcs.fmph.uniba.sk
mailto:kralovic@dcs.fmph.uniba.sk
mailto:ri.kralovic@gmail.com
mailto:pardubska@dcs.fmph.uniba.sk
mailto:martin.pasen@fmph.uniba.sk
mailto:rossmani@cs.rwth-aachen.de
https://doi.org/10.4230/LIPIcs.MFCS.2020.30
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 Randomization in Non-Uniform Finite Automata

by some resource-constrained Turing machine on input 1n (see e. g. [2]). For the other way,
one can consider non-uniform versions of models that are inherently uniform by allowing
a family of devices, each used to process a single slice L ∩ Σn. Since the Turing machine
model is powerful enough to contain the universal machine, this is equivalent to the standard
definition of Karp and Lipton [11], where the input word is prefixed with an advice string
that depends only on the length of the input (which may be the description of the TM used
to process this particular slice). Note that since every slice is a finite language, non-uniform
Turing machines can recognize, with sufficient advice, all languages. One then studies which
languages can be recognized with advice of limited size.

We are interested in non-uniform versions of simpler models, namely finite automata.
Since finite automata are much more limited when compared to Turing machines (in particular,
they don’t possess a universal machine), the way how the non-uniform version is defined
matters, and the various definitions are not equivalent.

Ibarra and Ravikumar [9] considered families of finite automata with bounded rate of
growth of their state complexity. Damm and Holzer [3] used a definition analogous to [11]
where the input word is prefixed by an advice string. Obviously, in this model only advice of
constant size is relevant, but there still is a hierarchy with increasing advice size (e. g. unary
languages are trivially recognized with 1-bit advice). In order to utilize non-constant advice,
the advice string must be made accessible to the automaton during various moments in the
computation. Tadaki et al. [16] considered the advice written in a separate track (i. e., one
advice symbol was assigned to every symbol of the input word). Freivalds [7] introduced
a model where the advice may be split into several tapes (and the measure is the sum of
the lengths of all advice tapes) with a prefix property, i. e., on each tape the string used as
advice for words of length n must be a valid advice for all words of lengths up to n. Finally,
Küçük et al. [13] introduced the model we use, with the advice written on a dedicated tape.

The introduction of non-uniformity into finite automata dramatically changes their
expressive power, and non-uniform versions of different types of automata which are equivalent
in the uniform version have different expressiveness. For example, one-way non-deterministic
automata (NFA) can recognize any language with sufficient advice, and the same holds also
for two-way deterministic automata (DFA), or one-way deterministic automata with two
advice tapes [13]. On the other hand, the language Lww = {ww | w ∈ {a, b}?} cannot be
recognized by a one-way DFA with any advice [4]. It has also been known [4] that for any
growing function f , there is a language that can be recognized by a one-way NFA with advice
O(f(n)), but cannot be recognized by one-way DFA regardless of advice.

In [13] it has been shown that one-way DFA with advice nk+1 recognize strictly more
languages than the one-way DFA with advice nk. A similar hierarchy was proved in [4]
for non-deterministic automata: one-way NFA with advice g(n) recognize strictly more
languages that one-way NFA with advice f(n) for any two functions f(·), g(·) such that
f(n) log(f(n)) = o(g(n)) and g(n) ≤ n2 n

2 .

The relation between determinism and randomization is a central question in complexity
theory, and it seems that uniformity plays an important role here. For example, it is not known
whether randomization increases the power of polynomial-time Turing machines, i.e., whether
BPP) P, but for the non-uniform case the answer is negative, since BPP/poly = P/poly
[1]. For space bounded classes it is known that randomized Turing machines with space
complexity f(n) can be simulated by deterministic ones with space complexity f(n)2 [10].
On the other hand, [8] non-deterministic Turing machines can be simulated by randomized
ones in the same space complexity.

P. Ďuriš, R. Královič, R. Královič, D. Pardubská, M. Pašen, and P. Rossmanith 30:3

When considering simpler models of finite automata, Rabin [15] proved that a one-way
finite automaton with bounded error can recognize only regular languages. On the other
hand, Freivalds [6] showed that the non-regular language {anbn | n ∈ N} can be accepted by
a 2-way finite automaton with bounded error.

Very little has been known so far for non-uniform randomized automata. Notably, Küçük
[13] mentions that the language Leq3 = {w ∈ {a, b, c}? | |w|a = |w|b = |w|c} can be recognized
with linear advice by a 1-sided-error randomized automaton, but cannot be recognized with
linear advice by a deterministic automaton.

2 Our contribution

We focus on one-way automata only. It has been known that the expressive power of NFA
increases with increased advice size up to n2 n

2 , which is essentially a tight bound, since an
advice of size O(n2n) is sufficient to recognize all languages. For DFA, a similar hierarchy has
been only known for polynomials. We prove that this is in fact the best possible result, since
a DFA cannot utilize more than polynomial-sized advice (Theorem 4): every language can
either be recognized by a DFA with polynomial advice, or cannot be recognized by a DFA with
any advice. Using this fact, we prove the same statement for PFA (Theorem 5). We further
investigate the relationship between determinism, randomization, and non-determinism. We
show that Leq3 cannot be recognized by a DFA with any advice (Theorem 7), from which we
conclude that both randomization, and non-determinism require only linear advice in order
to recognize languages that cannot be recognized deterministically at all.

Since non-determinism with unlimited advice can recognize all languages, we have a strict
separation between determinism, randomization, and non-determinism.

We then focus on advice of polynomial length. From Theorems 4 and 5 we know that the
power of determinism and randomization does not change. To consider the non-determinism,
it has been known [4] that the language of repeated words, Lww, cannot be recognized by a
NFA with polynomial advice. We show (Lemma 11) that Lww can be recognized by a PFA
with cubic advice. For the other direction, we show (Corollary 15) that there is a language
that cannot be recognized by a PFA, but can be recognized by a NFA with linear advice.

Some technical proofs have been omitted due to space constraints.

3 Model and preliminaries

We briefly summarize some standard notions from automata theory we shall use; for more
detailed definitions see the respective references. We use the model of multi-tape automata
(see e. g. [5]): a non-deterministic two-tape one-way automaton (NFA) A is a tuple A =
(Q,Σ1,Σ2, δ, q0, F), where Q is a finite set of states, Σ1, Σ2 are finite alphabets of the two
tapes, q0 is the initial state, F ⊆ S is the set of accepting states, and the transition function
is δ : Q × (Σ1 ∪ {/}) × (Σ2 ∪ {/}) 7→ 2OUT where OUT = Q × {→,⊥} × {→,⊥}. The
meaning is the usual one: the transition is based on the current state of the automaton, and
the symbols scanned by both heads (or end-delimiter / 6∈ Σ1 ∪ Σ2, if the head is already
past the end of the input word). The transition results in an action that changes the state,
and possibly moves each of the heads independently to the next symbol. The automaton A

MFCS 2020

30:4 Randomization in Non-Uniform Finite Automata

accepts a word (w1, w2) ∈ Σ1 × Σ2 if there is an accepting computation of A starting from
(q0, w1/, w2/). If |δ(q, a, b)| = 1 for all q ∈ Q, a ∈ Σ1 ∪ {/}, b ∈ Σ2 ∪ {/} the automaton is
called deterministic (DFA).

We focus our attention on randomized computation, in particular on two-sided bounded-
error computations. A probabilistic automaton (PFA) is an extension of a NFA in the sense
that the action OUT = R×Q× {→,⊥} × {→,⊥} contains also a real number, and for all
fixed a ∈ Σ1∪{/}, b ∈ Σ2∪{/}, q ∈ Q, the respective numbers in δ(q, a, b) form a probability
distribution. For (p, q′, d1, d2) ∈ δ(q, a, b) we say that p is the probability of action (q′, d1, d2).

Since the introduction of probabilistic finite automata by Rabin [15], the standard way of
defining their acceptance is in terms of isolated cut-point λ: a PFA A accepts a language LA
if there exists an ε > 0 such that for each w ∈ LA the probability of accepting w is at least
λ+ ε, and for each w 6∈ LA the probability of accepting w is at most λ− ε. In this paper we
assume λ = 1/2.

For any automaton A, the recognized language is denoted by L (A). The symbol X
denotes any class of considered automata: DFA, NFA or PFA. The non-uniformity is
modelled according to [4, 13], the class of languages recognized by automata of type X with
advice of size f(n) is denoted by L (X)/f(n):

I Definition 1. Let X be a class of automata. Let α : N 7→ Σ?
2 be a function such that

∀n, |α(n)| = f(n). Let Σ?α
1 = {(w,α(n)) | w ∈ Σ?

1, n = |w|} ⊆ (Σ?
1 × Σ?

2). For a language
L ⊆ Σ?1, let Lα = {(w,α(n)) | w ∈ L, n = |w|} ⊆ (Σ?1×Σ?2). Then a language L is recognized
by an X automaton A with advice α, if each word (w1, w2) ∈ Lα is accepted, and each word
(w1, w2) ∈ Σ?α1 − Lα is rejected. The class of recognized languages is

L (X)/f(n) := {L ⊆ Σ?1 | ∃α, and an X automaton A which recognizes L with advice α}

We write L (X)/? if the size of the advice is unlimited, L (X)/exp if it is at most exponential,
and L (X)/poly if it is at most polynomial in the input length.

Often it will be useful to consider the advice tape to be real-time, i. e., the automaton
advances the advice head in every step. We show that we can assume this without loss of
generality (note that real-time input head severely reduces the expressive power, since only
advice of linear length can be effectively used).

I Lemma 2. Let A be an X automaton. Then there exists an X automaton B such that
B advances the head on the advice tape in every step, and L (B) = L (A). Moreover, if A
works with advice α, B works with advice β where |β(n)| = O(n |α(n)|).

Proof. Let A = (Q,Σ1,Σ2, δ, q0, F). We distinguish three cases. First, let A be a DFA with
k = |Q| states. Clearly, A can perform at most k steps without moving any of its heads.
Fix n, and let the A’s advice be α(n) = a1a2 · · · . Let b be a new symbol. Let the advice be
β(n) = a1b

kna2b
kn · · · . Construct a DFA B that uses advice β, and simulates A in rounds.

At the beginning of each round, B’s advice head is positioned on a symbol ai. B scans the
symbol on the advice tape, and remembers it in its state. Then it simulates A until A moves
the advice head, with the difference that B moves the advice head in each step (the head
is positioned on a b symbol). A may perform at most kn steps before moving its advice
head, so B can simulate A with its advice head in the block of b’s. Once A moves the advice
head, B remembers A’s state, and moves the advice head to the next ai+1, and a new round
begins.

P. Ďuriš, R. Královič, R. Královič, D. Pardubská, M. Pašen, and P. Rossmanith 30:5

If A is an NFA then the situation is similar: there may be some computations of A that
perform more than k steps without moving any head, however, for each accepted word there
is an accepting computation that makes at most k steps without moving any head. Hence,
the same simulation as in the deterministic case works with one exception: if B encounters
the end of the block of b’s before the simulated computation of A moves the advice head, B
rejects.

Finally, let A be a PFA. This case requires more care than the NFA since all accepting
computations contribute to the probability of acceptance. We first transform A into a PFA
A′ that always moves at least one head, i. e., contains no actions of the form (p, q,⊥,⊥), and
then use the padding technique from the DFA case. J

For some of the proofs we shall use a normal form of automata with real-time advice tape
which doesn’t scan the input tape when the input head is not moved, as follows:

I Lemma 3. Let A = (QA,Σ1,Σ2, δA, q0, FA) be a DFA (or NFA) with real-time advice tape.
There exists a DFA (or NFA) B = (QB ,Σ1,Σ2, δB , q0, FB) with real-time advice tape using
the same advice as A such that L (A) = L (B) and the following holds: The states QB can
be partitioned into QB = Q→B ∪QεB such that

1. if (q′,⊥,→) ∈ δB(q, a, b) for some q ∈ QB, a ∈ Σ1, b ∈ Σ2 then q′ ∈ QεB, and
2. for any q ∈ QεB, b ∈ Σ2 it holds δB(q, a, b) = δB(q, a′, b) for all a, a′ ∈ Σ1.

4 Upper bound on advice for DFA and PFA

Our first contribution is an upper bound on the advice that can be utilized by DFA and
PFA. It has been proven in [4] that there are languages that cannot be recognized by DFA
with any amount of advice, which is in contrast with NFA that can recognize all languages
with advice O(n2n). Here we show that DFA cannot utilize more than polynomial advice.

I Theorem 4. L (DFA)/poly = L (DFA)/ ? .

Proof. Consider a DFA A with the form of Lemma 3 with k = |Q| states, working with
advice a1, . . . , a`. A pair (i, q), 1 ≤ i ≤ `, q ∈ Q is called a point. We say a point (i, q) is
active, if q ∈ Q→A , and passive otherwise. The computation on any input word of length n
defines a trace, which is a sequence of points containing exactly n active points 1. Altogether,
there are 2n traces. Let P be the set of points that are included in some trace.

We prove that there may be at most 2k(n + 1)k active points in P . In particular, we
prove by induction on m the following claim:

Consider an interval j1, . . . , j2 of positions on the advice tape. Suppose that for some m,
1 ≤ m ≤ k, there are at least m traces that are point-wise disjoint on the interval j1, . . . , j2,
i. e., they don’t share any point of the form (i, q), j1 ≤ i ≤ j2. Moreover, suppose that none
of these m traces contain an active point of the form (i, q) for j1 < i < j2. Then there are at
most 2k(n+ 1)k−m active points from P of the form (i, q), j1 ≤ i ≤ j2.

1 We assume without loss of generality that A reads the whole input.

MFCS 2020

30:6 Randomization in Non-Uniform Finite Automata

Figure 1 The trace τ1 has no active point (square) in the interior of the ji, . . . , j2 interval. The
trace τ2 splits the interval into n+ 1 sub-intervals; each of them apart from the last one has two
point-wise disjoint traces.

First note that there are k points of the form (i, q) for a fixed i, so in any interval there
may be at most k point-wise disjoint traces. For the base of the induction, assume that
m = k. Then each point of the j1, . . . , j2 interval belongs to exactly one of the k disjoint
traces. Since the interior points are not active, there are at most 2k active points in the
interval.

For the induction step consider an interval j1, . . . , j2 with m point-wise disjoint traces. If
there are no active points in the interval, the claim holds. Otherwise, take the trace τ that
contains the right-most active point of the form (i, q) for j1 < i < j2. The trace τ contains at
most n active points in the interval, so it splits the interval into at most n+ 1 sub-intervals.
By the choice of τ , the last sub-interval does not contain any active points. Note that, since
the automaton is deterministic, once two traces share a point, they follow the same sequence
of points until an active point is reached, at which they may diverge. Since none of the m
traces contain an active point in the interior of the interval, τ is disjoint with all of them on
all but the last sub-interval. Hence, the last sub-interval does not contain any active points,
and each of the remaining sub-intervals contains at least m+ 1 disjoint traces. Applying the
induction hypothesis on all but the last sub-interval, we get the claim.

Now we have proved that there are only polynomially many active points. To finish the
proof consider an interval j1, . . . , j2 of positions on the advice tape that does not contain an
active point. This means that no computation on any word queries the input tape in this
window; the automaton only considers the state and the advice symbol. Hence, the advice in
this window can be replaced by an advice of constant length specifying the state-to-state
transition relation. J

We have just proved that a DFA cannot utilize more than polynomial advice. We use
this fact, and show that the same is true also for PFA.

I Theorem 5. L (PFA)/? ⊆ L (PFA)/poly

Proof. Consider a PFA A with real-time advice tape, working with advice α. Let Σ1, Σ2 be
the input, and advice alphabet, respectively. We first construct a DFA B with input alphabet
Σ1, and advice alphabet Σ2. Also, for each n we construct a probability distribution πn over
strings Σ|α(n)|

2 such that for each w ∈ Σn1 the probability that A accepts w with advice α(n)
is the same as the probability that B accepts w with an advice that is selected at random

P. Ďuriš, R. Královič, R. Královič, D. Pardubská, M. Pašen, and P. Rossmanith 30:7

from πn. The overall idea is that B’s advice contains an encoding of the choices made by
A. Since A has real-time advice tape, it makes one probabilistic decision per advice symbol
in every computation. B shall use a two-track advice tape, with the second track used to
simulate the random decisions of A. However, A may read a given advice symbol in different
states and different positions on the input tape in each of its computations. For our purposes
we need to encode the probabilistic decisions is a uniform way. Consider a particular q ∈ QA,
a ∈ Σ1, b ∈ Σ2. Let p1, . . . , pz be the probabilities of actions in δA(q, a, b). Let Sq,a,b be a
subdivision of the unit interval (0, p1), (p1, p1+p2), (p1+p2, p1+p2+p3), . . . , (

∑z−1
i=1 pi, 1). Let

S = (s0, s1), (s1, s2), . . . , (sc−1, sc) for some c, with s0 = 0, sc = 1 be a common subdivision
of all Sq,a,b’s. Let Σ2 = Σ2 ×Zc. A string from πn is obtained by first taking α(n), and then
adding to each symbol a value i ∈ Zc such that each i is taken with probability si+1 − si.

s0 s1 s2 s3 s4 s5 si si+1 sc−1 sc

p1 p2 p3 p4

i

Figure 2 Specifying the transition probabilities of A. If the current advice symbol contains
i ∈ Zc, which corresponds to the random choice of interval (si, si+1), B selects the third action in
δA(q, a, b). If each i ∈ Zc is selected with probability si+1 − si, the probability of choosing the third
action is p3.

B uses the advice from πn to simulate A with the advice α(n) as follows (see Figure 2):
in each step when A is in state q, and symbols a ∈ Σ1, b ∈ Σ2 are on the input, and advice
tapes, respectively, B considers also the symbol i ∈ Zc from the advice tape, and based upon
where the interval (si, si+1) is located within the subdivision Sq,a,b selects the appropriate
action from δA(q, a, b).

Consider a computation ξ of A. The overall probability of ξ is p =
∏
pi where pi is the

probability of choosing the corresponding action from δA(q, a, b). Since the probability that
B chooses the same action as A in the i-th step is pi, the probability that B simulates ξ with
random advice is p. Hence, for any word w the probability of acceptance of w is the same
for A with advice α(n), and B with random advice from πn.

The distribution πn is defined over an exponential set of strings from Σ2, each of them of
possibly super-polynomial length. We can use the construction from the proof of Theorem 4 to
shorten each of them to polynomial length without affecting B’s behavior. Note that the proof
modifies the automaton (when an interval of the advice without active points is removed, it
is replaced by a state-to-state transition for this interval; the modified automaton has to read
this specification, and change the state accordingly), but the modification to the automaton
does not depend on the content of the advice tape. Hence, we can consider a modified
automaton B′ working with a shortened advice, selected randomly from a distribution that
ranges over the shortened strings, and maintains the probabilities from πn (we shall abuse
the notation and refer to this distribution by πn).

Now we have an exponential number of polynomially-sized advice strings, such that for
each input word, an advice string randomly chosen from πn is good (i. e., if the word is in the
language, B′ accepts, and if not then B′ rejects) with probability 1/2 + ε for some constant ε.

MFCS 2020

30:8 Randomization in Non-Uniform Finite Automata

Consider a set of (not necessarily distinct) κ advice strings sampled from πn. Let w be
a fixed input word, and let Xi be the selector random variable indicating whether the i-th
advice string from the set is good for w. Since Pr [Xi = 1] ≥ 1/2 + ε, we can use Chernoff
bound to conclude that with probability 1− c−κ for some c > 1, at least κ(1/2 + ε′) of the
advice strings are good for w for an arbitrary ε′ < ε.

Using union bound we can argue that the probability that at least κ(1/2 + ε′) strings
from the set are good for any of the 2n input words is at least 1− 2nc−κ. For κ > n

log2 c
this

probability is non-zero, so we can conclude that for any κ > n
log2 c

there exists a set of at
most κ advice strings such that for any input word w, at least κ(1/2 + ε′) of them are good.

Finally, consider a PFA C that works as follows. The advice string is formed by the κ
strings from the set described above, divided by a sequence of log2 κ delimiters. C selects
one of the strings uniformly at random, and simulates B′ on that string. C can select one of
the strings uniformly at random by making a random choice on each of the delimiters: the
probability of the event that all choices are positive is 1/κ. Since for any input word w, at
least a fraction 1/2 + ε′ of the strings are good, simulating B′ on a randomly selected advice
string yields a probability 1/2 + ε′ of the computation to be good. J

I Corollary 6. PFA with unlimited advice have a normal form where the advice consists of
polynomially many blocks of polynomial size. The automaton simulates a fixed DFA on a
block of advice chosen uniformly at random.

5 Separation of L (DFA), L (PFA), and L (NFA)

In this section we develop results that separate various classes. We start with determinism.
Our first aim is to show that L (DFA)/? is strictly contained in both L (PFA)/poly and
L (NFA)/poly. From Theorem 4 we know that L (DFA)/? ⊆ L (PFA)/poly, and similarly
L (DFA)/? ⊆ L (NFA)/poly. There have been known examples of languages than cannot be
recognized by DFA (with any advice), e. g. Lc

ww ∈ L (NFA)/O(n2)−L (DFA)/?, see [4]2,
however, it was not clear whether they are accepted by a PFA.

We not only ask the question whether L (DFA)/? (L (PFA)/?, but more precisely, we
ask what is the smallest advice a PFA or NFA needs to be able to recognize a language that
is not in L (DFA)/?. We can prove the following 3:

I Theorem 7. Leq3 ∈ L (PFA)/O(n)−L (DFA)/?.

Let an (i, j)-class of n-letter words be [i, j]n = {w ∈ {a, b, c}n | |w|a = n−j, |w|b = n−i, },
i. e., the set of n-letter words w such that |w|a − |w|c = i and |w|b − |w|c = j. Suppose that
some DFA recognizes Leq3. Then, after reading the first k symbols, it must be in different
configurations (i. e., different pair state, and position on the advice tape) for prefixes from
different classes [i, j]k. In the proof we shall consider intervals of positions on the advice
tape, and we shall argue that the automaton must represent a growing number of classes in
configurations with positions within this interval. To achieve this we use the following lemma

2 recall that Lww = {ww | w ∈ {a, b}?}
3 recall that Leq3 = {w ∈ {a, b, c}? | |w|a = |w|b = |w|c}

P. Ďuriš, R. Královič, R. Královič, D. Pardubská, M. Pašen, and P. Rossmanith 30:9

concerning the growth of sets of classes: consider a set S of (i, j)-classes of n-letter words.
Let S′ (called the boundary of S) be the set of classes formed by words wx for each word
w ∈ [i, j]n ∈ S, and x ∈ Σ. Hence, for a set of classes S the boundary is (see Figure 3a):

S′ =
{

[i, j]n+1 | [i− 1, j]n ∈ S ∨ [i, j − 1]n ∈ S ∨ [i+ 1, j + 1]n ∈ S
}

We argue that S′ must be large enough:

I Lemma 8. For a fixed n, let S be a set of classes of n-letter words, and let S′ be the
boundary of S. Then |S′| ≥ |S|+

√
|S|/3.

Proof. Let I = {i | ∃j : [i, j]n ∈ S}, and J = {j | ∃i : [i, j]n ∈ S}. Clearly at least one of
|I|, |J | is at least

√
|S|. Without loss of generality, let |I| ≥

√
|S|. Each class in [i, j]n ∈ S

contributes to three classes in S′, and each class [i, j]n+1 can receive contributions from at
most three classes from S. Let C ⊆ S′ be the classes from S′ that receive contribution from at
most two classes from S. Hence, for the overall contribution of S it holds 3|S| ≤ 2|C|+3|S′−C|
from which |S′| ≥ |S|+ |C|/3. We show that |C| ≥ |I| ≥

√
|S| thus completing the proof.

We say that class the [i, j]n is located in column i and row j. Consider each i ∈ I in
decreasing order, and for each of them we find a unique class ci ∈ C. The ci will be located
either in column i or i− 1. Let ji be the smallest number such that [i, ji]n ∈ S, or ∞ if no
such class is in S. When considering a column i, we distinguish two cases: If ji−1 ≥ ji−1 (see
Figure 3b), we assign ci = [i− 1, ji − 1]n+1. Now suppose that ji−1 < ji − 1 (see Figure 3c).
The class [i, ji−1]n+1 ∈ S′ because [i− 1, ji−1]n ∈ S, and has at most two neighbors because
[i, ji−1 − 1]n 6∈ S, so we would like to assign ci = [i, ji1]n+1. However, it may happen that
this class has already been assigned as ci+1. In the latter case let ki be the maximum j such
that [i, ki]n ∈ S, and distinguish two sub-cases. If ki−1 ≤ k+ i (see Figure 3d) we can assign
ci = [i, ki + 1]n+1, since there is only one ci+1. Finally, if ki−1 > k + i (see Figure 3e) we
can assign ci = [i− 1, ki−1 + 1]n+1.

S
S′

S′

S′

S′
S

S
S

i

j

(a)

i

S ji

Sji−1

S′

·

(b)

i

S ji

Sji−1
·
S′

(c)

i

S ji

Sji−1

Ski−1

S ki
S′

S′

·

(d)

i

S ji

Sji−1

Ski−1

S ki

S′

S′

·

(e)

Figure 3 (a) A class [i, j]n ∈ S contributes to the border S′ with classes [i+ 1, j]n+1, [i, j + 1]n+1,
[i− 1, j − 1]n+1. Hence, a class in S′ receives contributions from the three classes in S. (b) The
case ji−1 ≥ ji − 1. The class [i− 1, ji − 1]n+1 is in S′ because of [i, ji]n ∈ S, and has at most two
neighbors, since [i− 1, ji − 2]n 6∈ S. (c) The basic case ji−1 < ji − 1. (d) The sub-case ji−1 < ji − 1,
and ki−1 ≥ ki. (e) The sub-case ji−1 < ji − 1, and ki−1 > ki.

J

Now we are able to prove the theorem.

MFCS 2020

30:10 Randomization in Non-Uniform Finite Automata

Proof of Theorem 7. The fact that Leq3 ∈ L (PFA)/O(n) comes from [13]. We show that
Leq3 6∈ L (DFA)/?. For the sake of contradiction, let us suppose that a DFA A in the normal
form from Lemma 3 recognizes Leq3, and fix some n. Note that each word u ∈ Σ∗, |u| < n/3
is the prefix of some word from Leq3. Consider all computations of A on all words from Leq3
of length n. For a given `, consider the moment when A has just read a prefix u, |u| = `,
i. e., the step when A for the first time moves the input head beyond u; we say that this is
the situation after ` rounds.

A configuration of A is the pair containing the state and the position on the advice tape.
For two words u, u′, |u| = |u′| = ` < n/3, if A is in the same configuration after reading
u and u′ in the first ` rounds, then u,u′ belong to the same (i, j)-class; otherwise there
would be some word of the form uz that is not recognized correctly by A. Hence, for each
` ≤ n/3, each configuration belongs to at most one class [i, j]`, and each position on the
advice tape belongs to at most k such classes, where k is the number of states of A. There
are

∑`
i=0(`− i) =

(
`+1

2
)
classes of `-letter words, and for ` < n/3 all of them contain prefixes

of some n-letter words from Leq3.

Now consider the situation after ` rounds. Fix some interval I = x1, . . . , x2 of positions
on the advice tape. Suppose that the configurations with the advice head in I after ` rounds
belong to more than 9k2 distinct classes [i, j]`, i. e., for each such class c there is a word
u ∈ c such that A has the advice head in I when the input head is being moved beyond u.
We say that I is full after ` rounds. Note that whenever an interval I is full after ` < n/3− 1
rounds, the number of classes it contains grows in the next round. To see this, note that for
each class c = [i, j]` that is contained in I, there is a word u ∈ c such that A has its advice
head in I after reading u. Since ua, ub, uc are all prefixes of some words from Leq3 belonging
to distinct classes, the respective classes must be represented by A after `+ 1 rounds. Due
to Lemma 8 if I contained p > 9k2 classes after ` rounds, more than p + k classes must
be represented by A after `+ 1 rounds. However, words from at most k classes may have
computations in which the advice head ends outside of I: since A is in the normal form from
Lemma 3, if two computations pass through the same configuration, they must continue
together. Hence, the number of classes that must be contained in I after ` + 1 rounds is
more than p.

Since the number of classes belonging to a full interval grows, if an interval I is full
after ` rounds, after `+ 9k2 + k rounds I = x1, . . . , x2 contains more than 18k2 + k distinct
classes. Let i be the first index in I such that the interval x1, . . . , i is full. Since the interval
x1, . . . , i− 1 contained at most 9k2 classes, and at most k classes can share the advice-head
position i, the interval i+ 1, . . . , x2 is full, too.

Finally, a simple induction yields that after t(9k2 + k) < n/3 steps, the advice tape
contains at least 2t−1 disjoint full intervals. Since k is constant, the length of the advice tape
of A must be super-polynomial, which is a contradiction due to Theorem 4. J

From Theorem 4 and Theorem 7 we get

I Corollary 9. L (DFA)/? (L (PFA)/poly.

We show analogous result for NFA.

I Theorem 10. Lc
eq3 ∈ L (NFA)/O(n)−L (DFA)/?.

P. Ďuriš, R. Královič, R. Královič, D. Pardubská, M. Pašen, and P. Rossmanith 30:11

Proof. Note that since for each F , L (DFA)/F is closed under complement, the fact that
Lc

eq3 6∈ L (DFA)/? comes directly from Theorem 7.

To show that Lc
eq3 ∈ L (NFA)/O(n), note that Lc

eq3 = {w ∈ Σ? | ∃x ∈ Σ : |w|x > |w|/3}.
The following NFA A with real-time advice tape can recognize Lc

eq3 with linear advice: A
checks in state that |w| = 3m, and rejects otherwise. In parallel, A guesses x ∈ Σ, and moves
the advice head twice if the scanned symbol is x, and once otherwise. The length of the
advice is 4n/3. If the length of the advice tape is reached before the end of the input, it
holds that |w|x > n/3. J

In the rest of this section we deal with the relationship of randomization and non-
determinism. For the following results, we use standard notions from communication
complexity; for a general primer see e. g. [14]. In particular, we use the notation from [12]:
for a boolean function f : X × Y 7→ {0, 1}, we denote RA→Bε (f) the randomized private-coin
one-round communication complexity of f with two-sided error probability ε. When speaking
about protocols, we always mean this type of protocols. It is easy to see using Chernoff bound
that running some constant number of copies of the protocol and then deciding based upon
majority reduces the error probability below an arbitrary constant. Since we are interested
only in O(RA→Bε (f)), we can leave the ε out and write only RA→B(f). We start by showing
how a PFA can accept Lww.

I Lemma 11. Lww ∈ L (PFA)/O(n3).

Proof idea. The proof follows from standard communication complexity ideas (compare e. g.
[14], example 3.13). A randomized protocol for equality function with public random bits
can be transformed into a PFA. J

Since Lww 6∈ L (NFA)/poly, we have

I Corollary 12. L (PFA)/O(n3) 6⊆ L (NFA)/poly

On the other hand, we present a language that can be recognized non-deterministically,
but not probabilistically. The following simple observation states that it is possible to use a
PFA to construct a communication protocol:

I Lemma 13. Let ` : N 7→ N, and {fn}n∈N be a family of functions fn : Σn×Σ`(n) 7→ {0, 1}.
Let L = {u#v | ∃n : fn(u, v) = 1}. If L ∈ L (PFA)/s(n), then RA→B(f) = O(log s(n)).

Proof. Let A be the PFA that recognizes L with advice α(n). The protocol works as follows:
The first party receives u, computes n = |u| + `(|u|) + 1, and starts to simulate A on the
(prefix of the) input tape u# with advice α(n). When the # is reached in the input tape,
the state of A, and the position on the advice tape are encoded in O(log |α(n)|) bits, and
transmitted to the second party that finishes the simulation. J

I Theorem 14 ([12]). For x, y ⊆ {1, . . . , n}, DISJ(x, y) is defined to be 1 if and only if
x ∩ y = ∅. The communication complexity is RA→B(DISJ) = Ω(n).

I Corollary 15. L (NFA)/O(n) 6⊆ L (PFA)/?

MFCS 2020

30:12 Randomization in Non-Uniform Finite Automata

Proof. For x, y ⊆ {1, . . . , n}, DISJ(x, y) is defined to be 1 if and only if x ∩ y 6= ∅. Due
to symmetry, we have from Theorem 14 that RA→B(DISJ) = Ω(n). Consider a language
L = {u#v | u, v ∈ Z?2, |u| = |v| ∧ ∃i : ui 6= vi}. If L ∈ L (PFA)/poly, then Lemma 13
would yield RA→B(DISJ) = O(logn) – a contradiction. Hence, L 6∈ L (PFA)/poly.

On the other hand, it is easy to see that L ∈ L (NFA)/O(n): the advice α(n) = anbnan.
The automaton (with real-time advice tape) first moves the advice and input heads in
synchrony, and non-deterministically decides to check a given position. It remembers the
current input symbol, moves the advice head to the beginning of the block of b’s, and moves
both heads in synchrony for the next n times (until the advice head encounters an a). Finally,
it checks whether the input symbols on the corresponding positions are the same. J

6 Conclusion

We presented the first systematic attempt at mapping the power of randomization in non-
uniform finite automata. First, we showed the strict separation L (DFA)/? (L (PFA)/? (
L (NFA)/?. We also showed that both PFA and NFA need only linear advice to be able to
recognize languages not in L (DFA)/?. Finally, we showed that if the advice is restricted
to polynomial size, the power of determinism and randomization does not change. How-
ever, L (DFA)/? (L (NFA)/poly (L (NFA)/?, and L (NFA)/poly is incomparable to
L (PFA)/poly.

L (DFA)/poly = L (DFA)/?

L (PFA)/poly = L (PFA)/?
)

L (NFA)/poly

(

=

L (NFA)/?
()

Figure 4 Relationship of the classes of non-uniform one-way finite automata.

Since there is a significant gap between L (NFA)/? and L (NFA)/poly, it might be
beneficial to investigate the impact of advice size to the power of non-determinism in a more
fine-grained way. In particular, we have shown that linear advice is sufficient for NFA to
recognize languages outside of L (PFA)/?, and cubic advice is sufficient for PFA to recognize
languages outside of L (NFA)/poly. It would be interesting to know where are the precise
boundaries when L (PFA)/f(n) 6⊆ L (NFA)/g(n) and vice-versa.

Also, our results hold for one-way automata. We expect that the situation for two-way
automata would be significantly different. Since the relation of one-way versus two-way is in
general important, we believe it would be beneficial to investigate it also in the non-uniform
case.

References

1 Leonard M. Adleman. Two theorems on random polynomial time. In 19th Annual Symposium
on Foundations of Computer Science, Ann Arbor, Michigan, USA, 16-18 October 1978, pages
75–83. IEEE Computer Society, 1978. doi:10.1109/SFCS.1978.37.

https://doi.org/10.1109/SFCS.1978.37

P. Ďuriš, R. Královič, R. Královič, D. Pardubská, M. Pašen, and P. Rossmanith 30:13

2 Allan Borodin. On relating time and space to size and depth. SIAM J. Comput., 6(4):733–744,
1977. doi:10.1137/0206054.

3 Carsten Damm and Markus Holzer. Automata that take advice. In Jirí Wiedermann and
Petr Hájek, editors, Mathematical Foundations of Computer Science 1995, 20th International
Symposium, MFCS’95, Prague, Czech Republic, August 28 - September 1, 1995, Proceedings,
volume 969 of Lecture Notes in Computer Science, pages 149–158. Springer, 1995. doi:
10.1007/3-540-60246-1_121.

4 Pavol Duris, Rafael Korbas, Rastislav Královic, and Richard Královic. Determinism and
nondeterminism in finite automata with advice. In Hans-Joachim Böckenhauer, Dennis Komm,
and Walter Unger, editors, Adventures Between Lower Bounds and Higher Altitudes - Essays
Dedicated to Juraj Hromkovič on the Occasion of His 60th Birthday, volume 11011 of Lecture
Notes in Computer Science, pages 3–16. Springer, 2018. doi:10.1007/978-3-319-98355-4_1.

5 Patrick C. Fischer and Arnold L. Rosenberg. Multitape one-way nonwriting automata. J.
Comput. Syst. Sci., 2(1):88–101, 1968. doi:10.1016/S0022-0000(68)80006-6.

6 Rusins Freivalds. Probabilistic two-way machines. In Jozef Gruska and Michal Chytil, editors,
Mathematical Foundations of Computer Science 1981, Strbske Pleso, Czechoslovakia, August
31 - September 4, 1981, Proceedings, volume 118 of Lecture Notes in Computer Science, pages
33–45. Springer, 1981. doi:10.1007/3-540-10856-4_72.

7 Rusins Freivalds. Amount of nonconstructivity in deterministic finite automata. Theor.
Comput. Sci., 411(38-39):3436–3443, 2010. doi:10.1016/j.tcs.2010.05.038.

8 John Gill. Computational complexity of probabilistic turing machines. SIAM J. Comput.,
6(4):675–695, 1977. doi:10.1137/0206049.

9 Oscar H. Ibarra and Bala Ravikumar. Sublogarithmic-space turing machines, nonuniform
space complexity, and closure properties. Mathematical Systems Theory, 21(1):1–17, 1988.
doi:10.1007/BF02088003.

10 H. Jung. Relationships between probabilistic and deterministic tape complexity. In Jozef Gruska
and Michal Chytil, editors, Mathematical Foundations of Computer Science 1981, Strbske
Pleso, Czechoslovakia, August 31 - September 4, 1981, Proceedings, volume 118 of Lecture Notes
in Computer Science, pages 339–346. Springer, 1981. doi:10.1007/3-540-10856-4_101.

11 Richard M. Karp and Richard J. Lipton. Turing machines that take advice. Enseignement
Mathématique, 28(2):191–209, 1982.

12 Ilan Kremer, Noam Nisan, and Dana Ron. On randomized one-round communication com-
plexity. Comput. Complex., 8(1):21–49, 1999. doi:10.1007/s000370050018.

13 Ugur Küçük, A. C. Cem Say, and Abuzer Yakaryilmaz. Finite automata with advice tapes.
Int. J. Found. Comput. Sci., 25(8):987–1000, 2014. doi:10.1142/S012905411440019X.

14 Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University Press,
1997.

15 Michael O. Rabin. Probabilistic automata. Information and Control, 6(3):230–245, 1963.
doi:10.1016/S0019-9958(63)90290-0.

16 Kohtaro Tadaki, Tomoyuki Yamakami, and Jack C. H. Lin. Theory of one-tape linear-time
turing machines. Theor. Comput. Sci., 411(1):22–43, 2010. doi:10.1016/j.tcs.2009.08.031.

MFCS 2020

https://doi.org/10.1137/0206054
https://doi.org/10.1007/3-540-60246-1_121
https://doi.org/10.1007/3-540-60246-1_121
https://doi.org/10.1007/978-3-319-98355-4_1
https://doi.org/10.1016/S0022-0000(68)80006-6
https://doi.org/10.1007/3-540-10856-4_72
https://doi.org/10.1016/j.tcs.2010.05.038
https://doi.org/10.1137/0206049
https://doi.org/10.1007/BF02088003
https://doi.org/10.1007/3-540-10856-4_101
https://doi.org/10.1007/s000370050018
https://doi.org/10.1142/S012905411440019X
https://doi.org/10.1016/S0019-9958(63)90290-0
https://doi.org/10.1016/j.tcs.2009.08.031

	Introduction
	Our contribution
	Model and preliminaries
	Upper bound on advice for DFA and PFA
	Separation of L(DFA), L(PFA), and L(NFA)
	Conclusion

