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Abstract
We show that the problem of deciding whether in a multi-player perfect information recursive game
(i.e. a stochastic game with terminal rewards) there exists a stationary Nash equilibrium ensuring
each player a certain payoff is ∃R-complete. Our result holds for acyclic games, where a Nash
equilibrium may be computed efficiently by backward induction, and even for deterministic acyclic
games with non-negative terminal rewards. We further extend our results to the existence of Nash
equilibria where a single player is surely winning. Combining our result with known gadget games
without any stationary Nash equilibrium, we obtain that for cyclic games, just deciding existence
of any stationary Nash equilibrium is ∃R-complete. This holds for reach-a-set games, stay-in-a-set
games, and for deterministic recursive games.
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1 Introduction

The most common solution concept for noncooperative games is that of a Nash equilibrium
(NE), which was shown by Nash [26] to be guaranteed to exist in finite games in strategic
form. On the other hand, existence of a NE is not guaranteed in more general models of
games, and one must therefore settle for weaker solutions. From a computational point
of view this leads to the natural problem of deciding whether a given game admits a NE.
Likewise, if a NE is guaranteed to exist this leads to the natural problem of computing a
NE. In case a NE exists it will generally not be unique, and some NE may be more desirable
than others. For instance, if comparing two different NE, all players may strictly prefer the
first NE and we might consider the second NE undesirable. From a computational point
of view this leads to the natural problem of deciding whether a given game admits a NE
in which every player receives payoff meeting a given payoff demand. The computational
complexity of these three basic problems naturally depends heavily on the model of games
under consideration.

In the basic setting of finite games in strategic form, the computational complexity of
these problems is now well understood. The problem of computing a NE was shown to be
PPAD-complete for 2-player games by Daskalakis, Goldberg, and Papadimitriou [13] and
Chen and Deng [11] and FIXP-complete for m-player games, when m ≥ 3, by Etessami and
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Yannakakis [15]. The problem of deciding existence of a NE meeting given payoff demands
was shown to be NP-complete for 2-player games by Gilboa and Zemel [18] and ∃R-complete
for m-player games, when m ≥ 3, by Garg et al. [17].

Littman et al. [25] studied the arguably much simpler case of two-player perfect information
extensive form games, which we shall refer to simply as tree games. Here a NE is guaranteed
to exist and may be computed efficiently by backward induction [34]. In this way one may
in fact always find a pure NE. On the other hand, players are in general required to make
probabilistic choices in order to ensure maximum possible payoff. While Littman et al. devise
an efficient algorithm for computing the set of NE payoffs for deterministic games, they
show that for two-player games with chance-nodes, it is NP-hard to decide existence of a NE
meeting given payoff demands. One may for two-player games also prove NP-membership of
this problem, thereby settling its complexity.

A more general setting where backward induction also show existence and efficient
computation of NE is that of perfect information games that are given as a directed acyclic
graph. We shall refer to these simply as acyclic games. Here the strategies of the players
may in general depend on past history, but we shall here mainly be interested in the simple
case when strategies just depend on the current node of the graph, i.e. stationary strategies.

Our main result is that for m-player perfect information acyclic games, m ≥ 7, it is ∃R-
complete to decide existence of a stationary NE meeting given payoff demands. This problem
is thus presumably significantly harder for acyclic games than for tree games. Recently
several works have proved ∃R-completeness for decision problems about NE in multiplayer
games, but these all concerns games in strategic form [28, 17, 2, 3, 21, 1], or the even more
general models of extensive-form games with perfect recall but imperfect information [21]
and extensive form games with imperfect recall [20]. In contrast, our results are the first
∃R-completeness results for perfect information games.

Acyclic games form a special case of perfect information recursive games, which again form
a special case of perfect information stochastic games. The complexity of deciding existence
of a NE meeting given payoff demands in multiplayer stochastic games was first studied
systematically by Ummels and Wojtczak [33, 31]. Motivated by applications to verification
and synthesis of reactive systems, they study the cases of games where players have ω-regular
objectives and of mean-payoff games, in addition to the special case of recursive games.
Ummels and Wojtczak show that the problem of existence of a NE meeting given payoff
constraints1 is undecidable for 10-player recursive games with non-negative terminal rewards
or for deterministic 14-player recursive games. Since then, Das et al. [12] improved this,
by showing undecidability of recursive games with non-negative terminal rewards with just
5 players. In the more general setting of concurrent games, Bouyer et al. [7] even showed
undecidability of the problem of existence of a NE where a given player is surely winning for
deterministic concurrent 3-players games with reachability objectives.

In order to obtain decidability, Ummels and Wojtczak considered positional and stationary
NE. For existence of stationary NE meeting given payoff constraints, they prove NP-hardness
for 2-player recursive games with non-negative terminal rewards and for n-player deterministic
recursive games (with n being part of the input), and they prove SqrtSum-hardness for
4-player recursive games with non-negative terminal rewards and for 8-player deterministic
recursive games. On the other hand, they show PSPACE-membership of existence of a NE

1 Ummels and Wojtczak consider having both lower bounds (i.e. demands) and upper bounds on payoffs.
Their results however also holds with few changes assuming just payoff demands.
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meeting given payoff constraint for recursive games, games with common ω-regular objectives,
and mean-payoff games. One may observe that their proofs in fact give ∃R-membership (cf.
Section 3.4).

From our initial ∃R-completeness result we show that deciding existence of a stationary
NE meeting given payoff demands is ∃R-complete also for deterministic 13-player acyclic
games with non-negative terminal rewards. To prove this we make use of a modified version
of a gadget constructed by Ummels and Wojtczak [31] to simulate chance nodes. To use this
modified gadget we rely on the fact, that we have proved ∃R-hardness for acyclic games. In
passing, we also observe that the chance node gadget can be combined with the NP-hardness
result for tree games of Littman et al. [25] to give NP-hardness for deterministic tree games.
Due to space constraints, we refer to the full version of the paper for this result [23].

Combining our results with known gadget games without any stationary NE, we obtain
that for cyclic games, just deciding existence of any stationary NE is ∃R-complete. This
holds for reach-a-set games, stay-in-a-set games, and for deterministic recursive games.
Ummels previously proved NP-hardness and SqrtSum-hardness for deciding existence of
any stationary NE in reach-a-set games [30, Corollary 4.9]. The gadgets used for the last
two constructions were only constructed recently and to use them we again rely on the fact
that we have proved ∃R-hardness for acyclic games.

2 Preliminaries

For a finite set S, let ∆(S) denote the set of probability distributions on S. Denote by
∆n ⊆ Rn+1 the standard n-simplex {x ∈ Rn+1 | x ≥ 0∧

∑n+1
i=1 xi = 1}. We may then identify

∆n and ∆({1, . . . , n + 1}) in the natural way. Denote by ∆n
c ⊆ Rn the standard corner

n-simplex {x ∈ Rn | x ≥ 0 ∧
∑n
i=1 xi ≤ 1}.

We next define the types of games, payoffs, and equilibria we consider in this paper.
Striving for a uniform exposition we modify common definitions in slight and non-essential
ways.

2.1 Perfect Information Stochastic Games

An m-player perfect information stochastic game G is given by a directed graph (digraph)
D = (V,A). For u ∈ V denote by N+(u) = {v ∈ V | (u, v) ∈ A} the out-neighborhood of u.
Let T = {u ∈ V | N+(u) = ∅} denote the set of sink nodes of D, also called the terminals.
The non-terminal nodes are partitioned into disjoint sets V \ T = V0 ∪ V1 ∪ · · · ∪ Vm, where
V0 is the set of chance nodes and Vi is the set of Player i nodes, when i ≥ 1. To each v ∈ V0
is assigned a probability distribution πv ∈ ∆(N+(v)). We say the game G is deterministic if
V0 = ∅.

We fix an initial node u0 ∈ V from which play proceeds in rounds. A history of play is
an infinite sequence (uk)k≥0 such that (uk, uk+1) ∈ A when uk /∈ T and uk+1 = uk when
uk ∈ T . Let H∞ denote the set of all such histories. A finite history is a prefix of a history
of play. For i ≥ 0 and v ∈ Vi, let Hi,v denote the set of finite histories (uk)Kk=0 ending in
node uK = v. For i ≥ 0, let Hi = ∪v∈Vi

Hi,v denote the finite histories ending in a node in
Vi, and finally let H = ∪i≥0Hi denote the set of all finite histories. If some prefix of a play
is contained in Hi,v for some i and v ∈ Vi we say that the play reaches v. A finite history
h = (uk)Kk=0 ∈ H defines a subgame G[h] of G with uK being the initial node of G[h], play
proceeding from uK in rounds extending h.

MFCS 2020
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2.1.1 Strategies and Equilibria
A strategy τi for Player i assigns to each h ∈ Hi,v a probability distribution τi(h) ∈ ∆(N+(v)),
viewed as a function N+(v)→ [0, 1]. The strategy τi is stationary if τi(h) = τi(h′) for every
h, h′ ∈ Hi,v and every v ∈ Vi, i.e. when τi only depends on v. It is pure if τi(h) is a single-point
distribution for every h ∈ Hi. A positional strategy is a strategy that is simultaneously pure
and stationary.

A strategy profile τ = (τ1, . . . , τm) consists of a strategy for each player. The strategy
profile is stationary, pure, or positional if all of its strategies are stationary, pure, or positional,
respectively. The set of plays that extend a given finite history h = (uk)Kk=0 is called a
cylinder set. The total probability of these plays is given by the product

∏K−1
k=0 pk(uk+1)

where pk = τi(u0, . . . , uk) when uk ∈ Vi for some i ≥ 1 and where pk = πuk
when uk ∈ V0.

By Carathéodory’s extension theorem this defines a unique probability measure on the Borel
σ-algebra generated by the cylinders sets. Assume now that each Player i is equipped with
a bounded Borel measurable utility function ui : H∞ → R. Let u : H∞ → Rm denote the
vector function of utilities u(h) = (u1(h), . . . , um(h)). Given a strategy profile τ , the expected
payoff Ui(x) for Player i is given by Ui(τ) = Eτ [ui(h)]. We let U(τ) = (U1(τ), . . . , Um(τ))
denote the payoff profile of τ .

Given a strategy profile τ we let τ−i = (τ1, . . . , τi−1, τi+1, . . . , τm) denote the strategy
profile of all players except Player i. Given a strategy τ ′i for Player i, we let (τ−i; τ ′i) denote
the strategy profile (τ1, . . . , τi−1, τ

′
i , τi+1, . . . , τm). We also denote (τ−i; τ ′i) by τ \ τ ′i . We say

that τ ′i is a best reply for Player i to τ if ui(τ \ τ ′i) ≥ ui(τ \ τ ′′i ) for all strategies τ ′′i of Player i.
We say that τ is a Nash equilibrium (NE) if τi is a best reply to τ for every Player i.

Any finite history h ∈ H induces a conditional strategy τi[h] in the subgame G[h] from a
strategy τi of Player i. We say that τ = (τ1, . . . , τm) is a subgame perfect equilibrium (SPE)
if the conditional strategy profile τ [h] = (τ1[h], . . . , τm[m]) is a NE in G(h), for every h ∈ H.

2.1.2 Utility Functions
We shall consider several different types of utility functions which in turn gives rise to different
classes of games. In a recursive game [16] only plays that reach a terminal are assigned
non-zero utility. We may thus view the utility functions as functions ui : T → R, also
known as terminal rewards. Recursive games where all terminal payoffs are non-negative or
non-positive are respectively called non-negative recursive games and non-positive recursive
games. If we normalize the utility functions to take values in the range [−1, 1], every terminal
reward vector u(v), for v ∈ T , can be written as a convex combination

∑k
i=1 αkpk of vectors

pk ∈ {−1, 0, 1}m. By replacing terminal nodes with payoff u(v) with an additional chance
node going to a terminal with payoff pk with probability αk, we transform a recursive game
into an equivalent recursive game with terminal reward vectors from the set {−1, 0, 1}m.

In a mean-payoff game [19, 14], Player i is given a reward function ri : V → R and the
utility assigned to a play h = (uk)k≥0 is ui(h) = lim inf

K→∞
1
K

∑K−1
k=0 ri(uk), for all i. Note that

a recursive game is a special case of a mean-payoff game, where all non-terminal nodes are
given reward 0.

Utility functions that are indicator functions of Borel sets of plays are called objectives.
For convenience we simply identify the objective with its defining set of plays. For S ⊆ V ,
the reachability objective Reach(S) is the set of plays that reach a node in S and the safety
objective Safe(S) is the set of plays that only reach nodes in S. Games in which all players
have reachability objectives are called reach-a-set games [10] and games in which all players
have safety objectives are called stay-in-a-set games [29]. We say that Reach(S) is a terminal
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reachability objective if S ⊆ T and similarly that Safe(S) is a terminal safety objective if
V \ T ⊆ S. Note that a reach-a-set game with terminal reachability objectives is equivalent
to a recursive game with terminal rewards from the set {0, 1}. Likewise, a stay-in-a-set
game with terminal safety objectives is equivalent to a recursive game with terminal rewards
from the set {−1, 0}. Other objectives of interest are the standard ω-regular objectives of
Büchi, co-Büchi, Parity, Streett, Rabin, Muller objectives, see e.g. [33] for definitions. These
objectives all generalize terminal reachability and safety objectives.

2.1.3 Games on Trees and DAGs
When the digraph D of a given perfect information stochastic game G is acyclic we refer to
G as an acyclic game. Likewise, when D is a tree we refer to G as a tree game. A tree game
is in particular an acyclic game.

In an acyclic game we have that every play reaches a terminal. For a general acyclic
game there may be multiple plays reaching the same terminal, but for a tree game there
is a unique play reaching each specific terminal. Thus for a tree game we may view the
utility functions simply as terminal payoffs. This also means that tree games correspond
exactly to perfect information extensive form games. The method of backward induction [34]
shows existence of a (pure) SPE for any terminal payoff acyclic game, and by considering
the unfolding of an acyclic game into a tree game, also a SPE for any acyclic game.

2.2 The Existential Theory of the Reals
The existential theory of the reals ETR is the set of all true sentences of the form ∃x1, . . . , xn ∈
R : ϕ(x1, . . . , xn), where ϕ is a quantifier-free Boolean formula of inequalities and equalities
of polynomials with integer coefficients. Schaefer and Štefankovič [28] defined the complexity
class ∃R as the closure of ETR under polynomial time many-one reductions. Alternatively,
∃R is equal to the constant-free Boolean part of the class NPR [8], which is the analogue
class to NP in the Blum-Shub-Smale model of computation [4]. Clearly NP ⊆ ∃R and from
the decision procedure by Canny [9] we have that ∃R ⊆ PSPACE.

A fundamental complete problem for ∃R is the problem Quad of deciding whether a
system S of quadratic polynomials in n variables with integer coefficients has a solution in
Rn [4]. Schaefer [27] proved that the similar problem Quad(B(0,1)) of deciding whether
the system S has a solution in the unit ball is also ∃R-complete. Analogously one can prove
(cf. [21]) that the problem Quad(∆c) of deciding whether the system S has a solution in the
corner simplex ∆n

c is ∃R-complete.
Define HomQuad(∆) as the problem of deciding whether a system S ′ of homogeneous

quadratic polynomials in n variables with integer coefficients has a solution in the unit
simplex ∆n−1. This problem will form the basis of our ∃R-hardness results.

I Proposition 1. HomQuad(∆) is ∃R-complete.

Proof. Membership of ∃R is straightforward. To obtain ∃R-hardness we reduce from
Quad(∆c). Suppose S is a system of quadratic equations in n − 1 variables x1, . . . , xn−1.
Introduce the slack variable xn = 1−

∑n−1
i=1 xi. We may then homogenize each polynomial of

S forming the set of homogeneous quadratic polynomials S ′, replacing constant terms of the
form a by

∑n
i=1
∑n
j=1 axixj and degree 1 terms of the form axi by

∑n
j=1 axixj . Solutions

of S in ∆n−1
c then correspond exactly to solutions of S ′ in ∆n, by either introducing or

dropping the slack variable xn. J

MFCS 2020



45:6 ∃R-Completeness of Stationary Nash Equilibria

3 ∃R-Completeness of Stationary NE

Consider an m-player game G and let L ∈ Rm be a vector of payoff demands. We say
that a strategy profile τ satisfies the payoff demands L if U(τ) ≥ L (with component-wise
comparison).

Our main result is a precise characterization of the complexity of deciding existence of
stationary NE in perfect information recursive games satisfying given payoff demands.

I Theorem 2. It is ∃R-complete to decide whether for a given m-player recursive game G
and payoff demands L ∈ Rm there exists a stationary NE τ with U(τ) ≥ L. The problem is
∃R-complete even for acyclic 7-player recursive games with non-negative rewards. The same
result holds for the analogous problem for stationary SPE.

Membership of ∃R follows by expressing that τ is a stationary NE (SPE) satisfying the
given payoff demands by an existential first-order formula over the reals. This is done by
expressing for all i that τi is an optimal solution of the Markov Decision Process (MDP) for
Player i that results from fixing the strategies of the other players according to τ−i. Ummels
and Wojtczak give a detailed proof for the (more general) case of mean-payoff games [31,
Theorem 7] (see the full version of the paper [32] for the actual proof). We return to this in
Section 3.4.

Our proof of ∃R-hardness is by reduction from the problem HomQuad(∆) and involves
several gadget games that we describe next. In the following let S be a system of homogeneous
quadratic polynomials q1(x), . . . , q`(x) in variables x = (x1, . . . , xn). We write qk(x) =∑n
i=1
∑n
j=1 a

k
ijxixj for k = 1, . . . , `, and assume that coefficients are scaled to be rational

numbers in the interval [−1, 1]. That is akij ∈ Q and −1 ≤ akij ≤ 1, for all i, j, k.
I Remark 3. For clarity, drawings of the many gadget games are provided in accompanying
figures. Chance nodes v ∈ V0 are diamond-shaped with out-going arcs labelled by the values
of πv. Nodes v ∈ Vi controlled by Player i are circular nodes labelled with i above and
unlabelled out-going arcs. Nodes themselves may also contain labels, though these labels are
only used to refer to the specific nodes inside the proofs.
The first gadget is the variable selection game Gvar shown in Figure 1. An initial chance
node leads to Player 1 nodes v1, . . . , vn, each chosen with probability 1

n . In node vi, Player 1
makes a binary choice between either giving payoff 1 to Player 2 and Player 4 or to Player 3
and Player 5 and all other players payoff 0. We let xi denote the probability of the former
choice, and let x = (x1, . . . , xn). Since 0 ≤ xi ≤ 1, it follows that x ≥ 0 and ‖x‖1 ≤ n.

vi

1

→
(0, 1, 0, 1, 0, 0, 0)

(0, 0, 1, 0, 1, 0, 0)

xi

1− xi

(a) The nodes vi of Gvar.

→

v1

vn

1
n

1
n

...

(b) The game Gvar.

Figure 1 The variable selection game Gvar.

The payoff analysis of Gvar is straightforward.

I Lemma 4. The payoff profile of the subgame of Gvar starting from node vi is equal to
(0, xi, 1− xi, xi, 1− xi, 0, 0), for i = 1, . . . , n. The payoff profile of the game Gvar itself is of
the form (0, 1

n‖x‖1, 1− 1
n‖x‖1,

1
n‖x‖1, 1− 1

n‖x‖1, 0, 0).
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We eventually want to enforce that x ∈ ∆n−1 by payoff demands. Note that this can be
obtained locally in Gvar by payoff demands 1

n for Player 2 and n−1
n for Player 3.

The second gadget is the multiplication game Gmul(i, j, α), defined for 1 ≤ i, j ≤ n and
α ∈ [0, 1] and shown in Figure 2. Note that it connects to nodes vi and vj of Gvar. By Lemma 4
these may be viewed as terminal nodes with reward vectors (0, xi, 1− xi, xi, 1− xi, 0, 0) and
(0, xj , 1−xj , xj , 1−xj , 0, 0), and we shall do so in the analysis in order to be able to analyze
Gmul(i, j, α) separately.

First Player 2 and Player 3 are able to threat to leave to node vi. Otherwise Player 1 is
given a binary choice: either continue or give Player 1 and Player 3 reward 1. We denote by
x′i the probability of the former choice. If Player 1 continues, Player 4 and Player 5 are able
to threat to leave to node vj . Otherwise Player 1 is given a binary choice between terminal
reward vectors (1, 1, 0, 1, 0, α, 1− α) and (1, 1, 0, 0, 1, 0, 0). We denote by x′j the probability
the former choice.

vi

w1

2

→ w2

3

w3

1

(1, 0, 1, 0, 0, 0, 0)

w4

4

w5

5

vj

w6

1

(1, 1, 0, 1, 0, α, 1− α)

(1, 1, 0, 0, 1, 0, 0)

x′
i

1− x′
i

x′
j

1− x′
j

Figure 2 The multiplication game Gmul(i, j, α).

I Lemma 5. Any NE payoff profile of Gmul(i, j, α) in which Player 1 receives payoff 1 is of
the form (1, xi, 1− xi, xixj , xi(1− xj), αxixj , (1− α)xixj).

Proof. For Player 1 to receive payoff 1, neither of Player 2, 3, 4, or 5 execute their threats to
leave to vi or vj with positive probability. Conditioned on play reaching node w3, Player 2
and Player 3 receives payoff x′i and 1− x′i, respectively. Thus, unless x′i = xi, either Player 2
or Player 3 would gain by leaving to vi in node w1 or w2. Similarly, conditioned on play
reaching node w6, Player 4 and Player 5 receive payoff x′j and 1 − x′j , respectively. Thus,
unless x′j = xj , either Player 4 or Player 5 would gain by leaving to vj in node w4 or w5. It
follows that the payoff profile is as claimed. J

The third gadget is the polynomial evaluation game Gpoly(k) defined by the polynomial
qk(x) and shown in Figure 3. First Player 6 and Player 7 are in turn able to threat to leave
to a terminal giving payoff 1/(2n2) (and all other players payoff 0). Otherwise a chance node
leads to the game Gmul(i, j, (1 + akij)/2), with probability 1/n2, for i, j = 1, . . . , n.

The analysis of Gpoly(k) follows by using Lemma 5.

I Lemma 6. Any NE payoff profile of Gpoly(k) in which Player 1 receive payoff 1 is of the
form(

1, 1
n
‖x‖1, 1− 1

n
‖x‖1, ( 1

n
‖x‖1)2, 1

n
‖x‖1(1− 1

n
‖x‖1), 1

2n2 (‖x‖2
1 + qk(x)), 1

2n2 (‖x‖2
1 − qk(x))

)
.

Proof. For Player 1 to receive payoff 1, neither Player 6 nor Player 7 execute their threats
to leave directly to the terminal nodes. Likewise, Player 1 must receive payoff 1 in each
of the games Gmul(i, j, (1 + akij)/2), each of which by Lemma 5 then has the payoff profile

MFCS 2020
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6

→

(0, 0, 0, 0, 0, 1
2n2 , 0)

7

(0, 0, 0, 0, 0, 0, 1
2n2 )

Gmul(1, 1,
1+ak

1,1
2 )

Gmul(i, j,
1+ak

i,j

2 )

Gmul(n, n,
1+ak

n,n

2 )

1
n2

1
n2

Figure 3 The polynomial evaluation game Gpoly(k).

(1, xi, 1 − xi, xixj , xi(1 − xj), (1 + akij)xixj/2, (1 − akij)xixj/2). Taking the average of this
over all pairs i, j ∈ {1, . . . , n} is easily seen to yield the claimed payoff vector. For instance,
the payoff of Player 6 is equal to

1
n2

n∑
i=1

n∑
j=1

(
1 + ak

ij

2

)
xixj = 1

2n2

((
n∑

i=1

xi

n∑
j=1

xj

)
+

n∑
i=1

n∑
j=1

ak
ijxixj

)
= 1

2n2 (‖x‖2
1 + qk(x)) .

J

I Corollary 7. If ‖x‖1 = 1 and Player 1 receives payoff 1 in a NE of Gpoly then qk(x) = 0.

Proof. Again, for Player 1 to receive payoff 1, neither of Player 6 and Player 7 execute their
threats to leave directly to the the terminal nodes. For this to happen it is required that

1
2n2 (‖x‖2

1 + qk(x)) ≥ 1
2n2 and 1

2n2 (‖x‖2
1 − qk(x)) ≥ 1

2n2 . When ‖x‖1 = 1 this implies that
1

2n2 qk(x) ≥ 0 and − 1
2n2 qk(x) ≥ 0, and thus qk(x) = 0. J

v0

↓

Gvar

Gpoly(1)

Gpoly(`)
1
2

1
2

1
`

1
`

...

Figure 4 The game G(S).

We now have all the ingredients needed for our ∃R-hardness proof.

Proof of Theorem 2. We already discussed the proof of ∃R-membership. For proving ∃R
hardness we reduce from HomQuad(∆). As above, let S be a system of homogeneous
quadratic polynomials q1(x), . . . , q`(x) in variables x = (x1, . . . , xn). We construct the
game G(S) as shown in Figure 4. Using initial chance nodes, play proceeds to Gvar with
probability 1

2 and to Gpoly(k) with probability 1
2` , for k = 1, . . . , `.

We shall prove that G(S) has a stationary NE satisfying the payoff demands

L =
(

1
2 ,

1
n
, 1− 1

n
,

1 + n

2n2 ,
n2 − 1

2n2 ,
1

4n2 ,
1

4n2

)
,

if and only if there exists x ∈ ∆n−1 such that qk(x) = 0, for all k.
Suppose first that G(S) has a NE satisfying the payoff demands L. Since Player 1

receives payoff 0 in Gvar, Player 1 must receive payoff 1 in every game Gpoly(k). Thus by
Lemma 6 Player 2 and Player 3 receive payoff 1

n‖x‖1 and 1− 1
n‖x‖1, respectively, which by
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Lemma 4 also is their payoff in Gvar. We conclude that 1
n‖x‖1 and 1 − 1

n‖x‖1 is also the
payoff of Player 2 and Player 3 in G(S). The payoff demands L gives that 1

n‖x‖1 ≥ 1
n and

1− 1
n‖x‖1 ≥ 1− 1

n , which implies ‖x‖1 = 1. By Corollary 7 this implies qk(x) = 0 for all k.
Suppose now that x ∈ ∆n−1 is such that qk(x) = 0 for all k. We let Player 1 play

according to x in Gvar and consistent to that (i.e. also according to x) in Gmul(i, j, (1+akij)/2),
for all i, j, k. We let all other players not execute any of their threats. It remains to be
shown that this strategy profile τ is a NE. No strategy profile yields payoff larger than 1

2 to
Player 1, so Player 1 has no incentive to change strategy. What remains to prove is that
no player gains from executing a threat. In Gmul(i, j, (1 + akij)/2), if either Player 2 or 3
execute their threat to vi in Gvar then their payoff stays unchanged, since Player 1 is playing
according to xi in both vi and w3. Likewise, the payoffs for Player 4 and Player 5 are neither
improved by executing their threat to vj . In Gpoly(k), since ‖x‖1 = 1 and qk(x) = 0, Player 6
and Player 7 are both receiving payoff 1

2n2 which is also exactly what they would receive by
executing their threat. This concludes the proof that x defines a NE. Let us finally note that
the payoff profile of Gvar is (0, 1

n , 1−
1
n ,

1
n , 1−

1
n , 0, 0) and the (average of) the payoff profiles

of Gpoly(k) is (1, 1
n , 1−

1
n ,

1
n2 ,

1
n (1− 1

n ), 1
2n2 ,

1
2n2 ), and the average of these is exactly L. Let

us finally note that τ is easily seen to in fact be a SPE. J

I Remark 8. We only used the first 3 entries of the payoff demands L to argue a NE satisfying
the payoff demand implies the system S is satisfied. We could therefore equivalently have
used the demands L = ( 1

2 ,
1
n ,

n−1
n , 0, 0, 0, 0).

3.1 Deterministic Games
Ummels and Wojtczak [31] constructed a gadget that allows for simulation of a chance node
by a deterministic game under certain conditions. Ummels and Wojtczak used this to prove
that deciding existence of a stationary NE is SqrtSum-hard for 8-player recursive games.
Their proof constructs games with both positive and negative terminal rewards. Terminals
with negative rewards are used to make a player prefer infinite play away from terminals to
such a terminal. We describe their gadget below, modified to have non-negative terminal
rewards (and thus not applicable in the reduction of Ummels and Wojtczak). In acyclic
games, as we have constructed, any play reaches a terminal, and in turn makes non-negative
rewards sufficient.

Let p ∈ ∆n
c with ‖p‖1 < 1. We construct a gadget game Gchance(p) with designated nodes

u1 . . . , un in order to simulate a single chance node that for each i = 1, . . . , n continues play
in nodes ui with probability pi and with the remaining probability 1− ‖p‖1 > 0 leads to a
terminal ⊥.

Define q1, . . . , qn by

qi =
1−

∑n
j=i pj

1−
∑n
j=i+1 pj

.

Note that
∏n
j=i qj = 1 −

∑n
j=i pj for all i = 1, . . . , n. The chance node described above

can be simulated by the following stochastic process in steps k = 0, . . . , n. When k < n,
we select node un−k as the outcome with probability 1 − qn−k, and otherwise proceed to
the next step k + 1 with probability qn−k. When k = n, we end with outcome ⊥. Then
the probability of outcome ui is equal to (1 − qi)

∏n
j=i+1 qj = (

∏n
j=i+1 qj) − (

∏n
j=i qj) =

(1−
∑n
j=i+1 pj)− (1−

∑n
j=i pj) = pi as required.

The game Gchance(p) shown in Figure 5 consists of non-terminal nodes si, ti, ri and ui, for
i = 1, . . . , n, with the initial node being sn. Player 1 has the role of implementing the chance
node, whereas Player 2 and Player 3 incentivize Player 1 to play using the probabilities

MFCS 2020
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sn

2

→ ti+1

1

si

2

ri

3

ti

1

t1

1

(1, 0, 1)· · · · · ·
q′

i+1 q′
1

(0, 1− q̂n, 0) ui+1 (0, 1− q̂i, 0) (0, 0, q̂i) ui u1

1− q′
i+1 1− q′

i 1− q′
1

Figure 5 The game Gchance(p).

q1, . . . , qn by means of threats. In nodes ti Player 1 has the choice between node ui, or
when i > 1 continuing in node si−1 and when i = 1 end in a terminal with rewards (1, 0, 1),
corresponding to ⊥. Before each node ti, Player 2 and Player 3 are able to threat to end in
terminals with rewards (0, 1− q̂i, 0) and (0, 0, q̂i) from nodes si and ti, respectively, where
we define q̂i by

q̂i =
i∏

j=1
qj =

1−
∑n
j=1 pj

1−
∑n
j=i+1 pj

.

I Lemma 9. Consider the game derived from Gchance(p) where each node ui is changed to be
a terminal node with rewards (1, 1, 0). Then, play according to any stationary NE in which
Player 1 receives payoff 1 reaches terminal ui with probability pi, for all i.

Proof. For Player 1 to receive payoff 1, play must reach either one of the terminals ui or ⊥
with probability 1, so no threat is executed by Player 2 and Player 3. Suppose Player 1
chooses node ui with probability 1− q′i, for every i. Since Player 3 only receives a positive
reward in ⊥, play must reach ⊥ with positive probability which means q′i > 0 for all i. For
a given i and conditioned on play reaching si, Player 2 receives payoff 1 −

∏i
j=1 q

′
j and

Player 3 receives payoff
∏i
j=1 q

′
j . For Player 2 and Player 3 to not execute their threats in si

and ri it is required that 1−
∏i
j=1 q

′
j ≥ 1−

∏i
j=1 qj and

∏i
j=1 q

′
j ≥

∏i
j=1 qj , which implies∏i

j=1 q
′
j =

∏i
j=1 qj . Since this must hold for all i, we have q′i = qi for all i, and thus play

reaches terminal ui with probability pi for all i. J

Using the construction above, we replace the chance nodes in G(S) used to prove Theorem
2. We combine v0 and its two immediate chance nodes into a single one, that leads to
v1, v2, . . . , vn in Gvar with probability 1

4n and Gpoly(1), . . . ,Gpoly(`) with probability 1
4` . With

the remaining probability of 1
2 it leads to a new terminal ⊥0 where all 7 original players of

G(S) receive payoff 0. This modified chance node is replaced by the gadget of Lemma 9,
adding 3 new players. In the terminals of all subgames (including the terminals added next),
the first two newly added players receive payoff 1 while the third receives 0. Similarly, the
chance node within each Gpoly(k) can altered to lead with probability 1

2 to a terminal ⊥k
and with probability 1

2n2 to Gmul(i, j, (1 + aki,j)/2), for all i, j, k. To compensate that original
players receive payoff 0 in ⊥k, the payoff in the threats by the original sixth and seventh
player is decreased to 1

4n2 . Since each Gpoly(k) is independent of the other, then all chance
nodes can be implemented by only another 3 players, the first two of which gain payoff 1 in
all Gmul(i, j, (1 + aki,j)/2) and the last gains payoff 0, while all three gain 0 in the ⊥0 and in
Gvar.

We therefore obtain the following result for deterministic recursive games.
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I Theorem 10. It is ∃R-complete to decide whether for a given m-player deterministic
recursive game G and payoff demands L ∈ Rm there exists a stationary NE τ with U(τ) ≥ L.
The problem is ∃R-complete even for 13-player acyclic deterministic recursive games with
non-negative rewards. The same result holds for the analogous problem for stationary SPE.

Proof. The result follows by similar argumentation as in the proof of Theorem 2 on the
payoff vector L = ( 1

8 ,
3

8n ,
3
8 (1− 1

n ), 0, 0, 0, 0, 1, 0, 0, 1
4 , 0, 0) together with Lemma 9. J

3.2 Stationary NE where a Player Wins Almost Surely
Theorem 2 was proven using a payoff demand L that is non-zero for more than one player.
In applications of verification and synthesis it is of interest to discern whether there exists a
Nash equilibria in a game with terminal rewards in {0, 1}, where a single player can expect
payoff 1.

t1

1

→ t2

2

t3

3

G(S)

( 1
2 ,

1
n ,

n−1
n , 0, 0, 0, 0, 0

)
Figure 6 The game Gsure(S).

Consider the game Gsure(S) in Figure 6, where Player 1, Player 2, and Player 3 can choose
to not continue into the game G(S) used in the proof of Theorem 2, but instead end the
game early at a terminal with payoff L of Remark 8. An eighth player is added, who always
gains payoff 1 in G(S) but only payoff 0 at the newly added terminal. Since this construction
only consists of non-negative fractional terminal rewards, then one may replace all terminals
with chance nodes that lead to binary terminal rewards without altering the expected payoff.
From Theorem 2 we then obtain.

I Theorem 11. It is ∃R-complete to decide whether for a given m-player recursive game
G, in which all rewards are 0 or 1, and a given k, there exists a stationary NE in which
Player k is almost surely winning. The problem is ∃R-complete even for acyclic 8-player
recursive games. The same result holds for the analogous problem for stationary SPE.

Proof. In a stationary NE of Gsure(S), Player 8 is almost surely winning if and only if neither
Player 1, Player 2, nor Player 3 execute their threat to end the game early. Their expected
payoff for executing the threat is respectively 1

2 ,
1
n , and

n−1
n , which also is their expected

payoff in the proof of Theorem 2. That is, the three players effectively enforce the payoff
demand L to G(S). J

3.3 Stationary NE without Payoff Demands
Theorem 2 settles the complexity of deciding existence of stationary NE satisfying payoff
demands. While deciding the mere existence of any NE may seem an easier problem, we
show it is just as hard.

Suppose that we have an m-player gadget game GnoNE which does not have a stationary
NE and Player 1, 2, and 3 receive payoff 0 for all strategy profiles of the players; examples
of such gadgets will be elaborated below. Let L be given by Remark 8. Construct now
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the game G∃NE(S) shown in Figure 7a, where similar to Gsure(S) the first three players can
choose not to go into G(S) but into a different subgame. On this alternative path, a chance
node t4 leads with probability 1

2 to a terminal, which has twice the payoff demand L. In the
other case, the chance node leads to GnoNE.

t1

1

→ t2

2

t3

3

t4

G(S)

GnoNE 2 ·
( 1

2 ,
1
n ,

n−1
n , 0, . . . , 0

)
1
2

1
2

(a) The game G∃NE(S).

t1

1

→

t2

2 t3

3

t8

8

t11

11

G(S)′

GnoNE

(b) The game G′
∃NE(S).

Figure 7 The games G∃NE(S) and G′
∃NE(S).

I Lemma 12. The game G∃NE(S) has a stationary NE if and only if there is a stationary
NE of G(S) satisfying the payoff demands L.

Proof. Since GnoNE does not permit a stationary NE, the game G∃NE(S) has a NE if and
only if none of Player 1, Player 2, and Player 3 execute their threat to go to t4. Similarly
to the proof of Theorem 11, the three players enforce the payoff demand L of Remark 8 to
G(S). J

Boros and Gurvich [5] and Kuipers et al. [24] (cf. [30, Proposition 3.3]) construct a (cyclic)
3-player recursive game with non-negative rewards which has no stationary NE. We may let
Player 4, 5, and 6 take the role of playing in this game, letting Player 1, 2, and 3 receive
reward 0 in all terminals. Together with Theorem 2 we obtain the following result.

I Theorem 13. It is ∃R-complete to decide whether a given m-player recursive game has a
stationary NE, even for 7-player recursive games with non-negative rewards.

In continuation of Section 3.1 we would like to dispense with the chance node t4 to
thereby combine Theorem 10 with Theorem 13. We thus consider the game in Figure 7b,
where t4 has been removed in favor of going directly to GnoNE and a threat is added for the
chance node implemented by Player 8 and 11. Unlike above, since play never reaching a
terminal results in payoff 0, then it is not possible to guarantee positive payoffs in the GnoNE.
Instead, let G(S)′ be the game obtained from G(S) of Theorem 10 where all terminal rewards
of Player 1, 2, 3, 8, and 11 have been decreased by 1

8 ,
3

8n ,
3n−3

8n , 1, and 1
4 , respectively. Since

the game is acyclic, and hence reaches a terminal with probability 1, this does not change
the NE of the game, but just subtracts 1

8 ,
3

8n ,
3n−3

8n , 1, and 1
4 from the NE payoffs of Player 1,

2, 3, 8, and 11, respectively.
Boros et al. [6] recently constructed a deterministic 3-player recursive game without a

stationary NE. As above, we can let Player 4, 5, and 6 take the role of playing in this game .
Repeating the arguments in the proof of Lemma 12 and Theorem 10 we obtain the following
result.

I Theorem 14. It is ∃R-complete to decide whether a given m-player deterministic recursive
game has a stationary NE, even for m = 13.
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3.4 ω-Regular Objectives and Mean-Payoff Games
Ummels and Wojtczak proved membership of PSPACE by giving reductions to ETR for
the problem of deciding existence of a stationary NE meeting given payoff constraints in
several classes of perfect information games. For stochastic games where all players have
Streett or Rabin objectives (Streett-Rabin games) or all players have Muller objectives, the
reduction is non-determistic [33]. For mean-payoff games a deterministic reduction to ETR
is given [31]. Using the characterization of ∃R in terms of nondeterministic Blum-Shub-Smale
machines, the many-one reductions may be combined with decision of ETR, thereby proving
∃R-membership for these problems.

Street-Rabin games generalize reach-a-set games and stay-in-a-set games where all object-
ives are terminal. One may prove ∃R-membership for general reach-a-set and stay-in-a-set
games in a similar way as Ummels and Wojtczak did.

I Theorem 15. It is ∃R-complete to decide whether a given m-player perfect information
reach-a-set game has a stationary NE, even for m = 7.

Proof. Recursive games with non-negative rewards may, after normalizing rewards to [0, 1],
be viewed as a special case of reach-a-set games. The result then follows from Theorem 13. J

I Theorem 16. It is ∃R-complete to decide whether a given m-player perfect information
stay-in-a-set game has a stationary NE, even for m = 7.

Proof. Hansen and Raskin [22] constructed a 2-player perfect information stay-in-a-set
game without any stationary NE. We may use this game in place of GnoNE in the proof of
Theorem 13. Namely, consider transforming the game G∃NE(S) by first dividing all rewards
by 2 and then subtracting 1 from all rewards. This does not alter the set of NE of the game,
but maps all rewards to the interval [−1, 0], which may then be viewed as a stay-in-a-set game
with terminal safety objectives. We may then replace GnoNE by the 2-player stay-in-a-set
game of Hansen and Raskin, where we let Player 4 and Player 5 take the role of the 2 players
and all nodes of this game are excluded from the safe sets of Player 1, 2, and 3. J

Let us finally consider mean-payoff games. Ummels and Wojtczak [31] note that non-
negative fractional terminal rewards may in mean-payoff games be simulated with a simple
cycle where all rewards are chosen from the set {0, 1}. Since the construction of G(S) used
to prove Theorem 2 and 10 only uses non-negative fractional terminal rewards, then with
the ∃R-membership result above we thus obtain analogous results to Theorem 2 and 10 for
mean-payoff games with binary rewards.

I Theorem 17. It is ∃R-complete to decide whether a given m-player perfect information
mean-payoff game where all rewards are 0 or 1 has a stationary NE that satisfies a given
payoff demand, even for m = 7. The same result holds for the analogous problem for
stationary SPE.

I Theorem 18. It is ∃R-complete to decide whether a given m-player deterministic perfect
information mean-payoff game with binary rewards has a stationary NE that satisfies a given
payoff demand, even for m = 13. The same result holds for the analogous problem for
stationary SPE.
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