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Abstract
For a metric µ on a finite set T , the minimum 0-extension problem 0-Ext[µ] is defined as follows:
Given V ⊇ T and c :

(
V
2

)
→ Q+, minimize

∑
c(xy)µ(γ(x), γ(y)) subject to γ : V → T, γ(t) =

t (∀t ∈ T ), where the sum is taken over all unordered pairs in V . This problem generalizes several
classical combinatorial optimization problems such as the minimum cut problem or the multiterminal
cut problem. The complexity dichotomy of 0-Ext[µ] was established by Karzanov and Hirai, which
is viewed as a manifestation of the dichotomy theorem for finite-valued CSPs due to Thapper and
Živný.

In this paper, we consider a directed version −→0 -Ext[µ] of the minimum 0-extension problem,
where µ and c are not assumed to be symmetric. We extend the NP-hardness condition of 0-Ext[µ]
to −→0 -Ext[µ]: If µ cannot be represented as the shortest path metric of an orientable modular graph
with an orbit-invariant “directed” edge-length, then −→0 -Ext[µ] is NP-hard. We also show a partial
converse: If µ is a directed metric of a modular lattice with an orbit-invariant directed edge-length,
then −→0 -Ext[µ] is tractable. We further provide a new NP-hardness condition characteristic of−→0 -Ext[µ], and establish a dichotomy for the case where µ is a directed metric of a star.
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1 Introduction

A metric on a finite set T is a function µ : T × T → R+ that satisfies µ(x, x) = 0, µ(x, y) =
µ(y, x), and µ(x, y) + µ(y, z) ≥ µ(x, z) for every x, y, z ∈ T , and µ(x, y) > 0 for every
x 6= y ∈ T . For a rational-valued metric µ on T , the minimum 0-extension problem 0-Ext[µ]
on µ is defined as follows:

0-Ext[µ]: Instance : V ⊇ T, c :
(
V

2

)
→ Q+

Min.
∑

xy∈
(
V
2

) c(xy)µ(γ(x), γ(y))

s.t. γ : V → T with γ(t) = t for all t ∈ T, (1)
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where
(
V
2

)
denotes the set of all unordered pairs of V , and xy denotes the unordered pair

consisting of x, y ∈ V . The minimum 0-extension problem was introduced by Karzanov [11],
and also known as the multifacility location problem in facility location theory [15]. Note
that the formulation (1) of 0-Ext[µ] is different from but equivalent to that of [11].

The minimum 0-extension problem generalizes several classical combinatorial optimization
problems: If T = {s, t}, then 0-Ext[µ] is nothing but the minimum s-t cut problem in an
undirected network. If T = {x, y, z} and µ(x, y) = µ(y, z) = µ(z, x) = 1, then 0-Ext[µ] is
the 3-terminal cut problem. Similarly, 0-Ext[µ] can formulate the k-terminal cut problem.
Moreover, 0-Ext[µ] appears as a discretized LP-dual problem for a class of maximum
multiflow problems [10, 11] (also see [7, 8]).

The computational complexity of 0-Ext[µ] depends on metric µ. In the above examples,
the minimum s-t cut problem is in P and the 3-terminal cut problem is NP-hard. In [11],
Karzanov addressed the classification problem of the computational complexity of 0-Ext[µ]
with respect to µ. After [5, 13], the complexity dichotomy of 0-Ext[µ] was fully established
by Karzanov [12] and Hirai [9], which we explain below.

A metric µ on T is called modular if for every s0, s1, s2 ∈ T , there exists an element
m ∈ T , called a median, such that µ(si, sj) = µ(si,m) + µ(m, sj) holds for every 0 ≤ i <

j ≤ 2. The underlying graph of µ is defined as the undirected graph Hµ = (T,U), where
U = {xy ∈

(
T
2

)
| ∀z ∈ T \ {x, y}, µ(x, y) < µ(x, z) + µ(z, y)}. We say that an undirected

graph is orientable if it has an edge-orientation such that for every 4-cycle (u, v, w, z, u), uv
is oriented from u to v if and only if wz is oriented from z to w.

The dichotomy theorem of the minimum 0-extension problem is the following:

I Theorem 1 ([12]). Let µ be a rational-valued metric. 0-Ext[µ] is strongly NP-hard if
(i) µ is not modular, or
(ii) Hµ is not orientable.

I Theorem 2 ([9]). Let µ be a rational-valued metric. If µ is modular and Hµ is orientable,
then 0-Ext[µ] is solvable in polynomial time.

The minimum 0-extension problem constitutes a fundamental class of valued CSPs (valued
constraint satisfaction problem) [9] – a minimization problem of a sum of functions having
a small number of variables. More concretely, 0-Ext[µ] is precisely the finite-valued CSP
generated by a single binary function µ : T × T → Q+ that is a metric. From this viewpoint,
the above complexity dichotomy result (Theorem 1 and 2) is a manifestation of the dichotomy
theorem for finite-valued CSPs obtained by Thapper and Živný [16]. They gave a complete
characterization of tractable finite-valued CSPs in terms of the existence of a certain fractional
polymorphism. Actually Theorem 2 was proved by utilizing a related tractability condition
obtained by Kolmogorov, Thapper, and Živný [14]. However, it is a strong characterization
specialized for the minimum 0-extension problem, which yields an efficient and combinatorial
polynomial time testing algorithm for the tractability of 0-Ext[µ]. Indeed, we can verify
modularity of µ by checking whether m is a median of triple t1, t2, t3 for every m, t1, t2, t3 ∈ T .
We can also verify the orientability of Hµ by orienting each edge in depth first order with
respect to an adjacency relation such that edges uv and zw in each 4-cycle (u, v, w, z, u)
are said to be adjacent. Moreover, a known polynomial time testing algorithm [17] (that is
applicable to 0-Ext[µ]) is based on the ellipsoid method, and of much worse complexity. So
it is a natural direction to seek such an efficient combinatorial characterization for a more
general binary function µ : T ×T → Q+ for which the corresponding valued CSP is tractable.

Motivated by these facts, in this paper, we consider a directed version of the minimum
0-extension problem, aiming to extend the above results. Here, by “directed” we mean
that symmetry of µ and c is not assumed. A directed metric on a finite set T is a function
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µ : T ×T → R+ that satisfies µ(x, x) = 0 and µ(x, y) +µ(y, z) ≥ µ(x, z) for every x, y, z ∈ T ,
and µ(x, y) + µ(y, x) > 0 for every x 6= y ∈ T . For a rational-valued directed metric µ on T ,
the directed minimum 0-extension problem −→0 -Ext[µ] on µ is defined as follows:
−→0 -Ext[µ]: Instance : V ⊇ T, c : V × V → Q+

Min.
∑

(x,y)∈V×V

c(x, y)µ(γ(x), γ(y))

s.t. γ : V → T with γ(t) = t for all t ∈ T.

The minimum s-t cut problem on a directed network is a typical example of −→0 -Ext[µ] in
the case of T = {s, t}, µ(s, t) = 1, and µ(t, s) = 0. Also, the directed minimum 0-extension
problem contains the undirected version. Hence, the complexity classification of the directed
version is an extension of that of the undirected version.

In this paper, we explore sufficient conditions for which −→0 -Ext[µ] is tractable, and for
which −→0 -Ext[µ] is NP-hard. Our first contribution is an extension of Theorem 1 to the
directed version:

I Theorem 3. Let µ be a rational-valued directed metric. −→0 -Ext[µ] is strongly NP-hard if
one of the following holds:
(i) µ is not modular.
(ii) Hµ is not orientable.
(iii) µ is not directed orbit-invariant.

The modularity and the underlying graph Hµ of a directed metric µ are natural extensions
of those of a metric. In 0-Ext[µ], the condition (i) in Theorem 1 contains the condition (iii)
in Theorem 3. See Section 3 for the precise definitions of the terminologies.

We next consider the converse of Theorem 3. It is known [1] that a canonical example
of a modular metric is the graph metric of the covering graph of a modular lattice with
respect to an orbit-invariant edge-length. Moreover, a tractable metric µ in Theorem 2 is
obtained by gluing such metrics of modular lattices [9]. It turns out in Section 3 that a
directed metric excluded by (i), (ii), and (iii) in Theorem 3 also admits an amalgamated
structure of modular lattices. Our second contribution is the tractability for the building
block of such a directed metric.

I Theorem 4. Let µ be a rational-valued directed metric. Suppose that Hµ is the covering
graph of a modular lattice and µ is directed orbit-invariant. Then −→0 -Ext[µ] is solvable in
polynomial time.

See Sections 2 and 3 for the undefined terminologies.
The converse of Theorem 3 is not true: Even ifHµ is a tree (that is excluded by (i), (ii), and

(iii) in Theorem 3), −→0 -Ext[µ] can be NP-hard. On the other hand, 0-Ext[µ] for whichHµ is a
tree is always tractable (see [15]). This is a notable difference between 0-Ext[µ] and−→0 -Ext[µ].
Our third contribution is a new hardness condition capturing this difference. For x, y ∈ T , let
Iµ(x, y) := {z ∈ T | µ(x, y) = µ(x, z) + µ(z, y)}, which is called the interval from x to y. We
denote I := Iµ if µ is clear in the context. For x, y ∈ T , the ratio Rµ(x, y) from x to y is defined
as Rµ(x, y) := µ(x, y)/µ(y, x) (if µ(y, x) = 0, then Rµ(x, y) := ∞). A pair (x, y) ∈

(
T
2

)
is

called a biased pair if Rµ(x, z) > Rµ(z, y) holds for every z ∈ I(x, y) ∩ I(y, x) \ {x, y}, or
Rµ(x, z) < Rµ(z, y) holds for every z ∈ I(x, y)∩ I(y, x) \ {x, y}. A triple (s0, s1, s2) is called
a non-collinear triple if si /∈ I(si−1, si+1) ∩ I(si+1, si−1) holds for every i ∈ {0, 1, 2} (the
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indices of si are taken modulo 3). A non-collinear triple (s0, s1, s2) is also called a biased
non-collinear triple if (si, sj) is a biased pair for every i 6= j. We now state an additional
NP-hardness condition of −→0 -Ext[µ]:

I Theorem 5. Let µ be a rational-valued directed metric on T . If there exists a biased
non-collinear triple for µ, then −→0 -Ext[µ] is strongly NP-hard.

Our forth contribution says that the non-existence of a biased non-collinear triple implies
tractability, provided the underlying graph is a star.

I Theorem 6. Let µ be a rational-valued directed metric on T . If Hµ is a star and there
exists no biased non-collinear triple for µ, then −→0 -Ext[µ] is solvable in polynomial time.

The organization of this paper is as follows. Section 2 provides preliminary arguments
which are necessary for the proofs. Section 3 introduces some notions and shows several
properties in directed metric spaces. Section 4 provides a proof of Theorem 4 (see the full
version for a proof of Theorem 6). To show Theorem 4 and 6, we utilize the tractablity
condition of valued CSPs by Kolmogorov, Thapper, and Živný [14], as in the spirit of [9]
to prove Theorem 2. Section 5 shows one of the hardness results of −→0 -Ext[µ] (see the full
version for proofs of the other hardness results). We prove Theorem 3 and 5 by showing
polynomial-time reductions from the maximum cut problem, which are originated from the
hardness proof of the multiterminal cut problem [6], and were also used by [11, 12] to prove
Theorem 1. Also see the full version for proofs omitted in Section 2, 3, 4, 5.

Notation

Let R, Q, Z, and N denote the sets of reals, rationals, integers, and positive integers,
respectively. Let Q := Q ∪ {∞}, where ∞ is an infinity element. We also denote the sets of
nonnegative reals and rationals by R+ and Q+.

2 Preliminaries

2.1 Modular graphs
Let G = (V,E) be a connected graph. The graph metric dG : V × V → Z is defined as
follows:

dG(x, y) := the number of edges in a shortest path from x to y in G (x, y ∈ V ). (2)

We denote dG simply by d if G is clear in the context. We say that G is modular if its graph
metric dG is modular.

I Lemma 7 ([2]). A connected graph G = (V,E) is modular if and only if the following two
conditions hold:
(i) G is a bipartite graph.
(ii) For vertices p, q ∈ V and neighbors p1, p2 of p with d(p, q) = 1 + d(p1, q) = 1 + d(p2, q),

there exists a common neighbor p′ of p1, p2 with d(p, q) = 2 + d(p′, q).

Let (T, µ) be a metric space. For x, y ∈ T , we denote the interval of x, y by Iµ(x, y) :=
{z ∈ T | µ(x, y) = µ(x, z) + µ(z, y)}. We denote I := Iµ if µ is clear in the context. A
subset X ⊆ T is called a convex set if I(p, q) ⊆ X for every p, q ∈ X. A subset X ⊆ T is
called a gated set if for every p ∈ T , there exists p′ ∈ X, called the gate of p at X, such that
µ(p, q) = µ(p, p′) + µ(p′, q) for every q ∈ X. The gate of p at X is unique. Chepoi [4] showed
the following relation between convex sets and gated sets:
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I Lemma 8 ([4]). Let G = (V,E) be a modular graph. For the metric space (V, d) and a
subset X ⊆ V , the following conditions are equivalent:
(i) X is convex.
(ii) X is gated.

2.2 Modular lattices
Let L be a partially ordered finite set with a partial order �. By a ≺ b we mean a � b and
a 6= b. For a, b ∈ L, we denote by a ∨ b the minimum element of the set {c ∈ L | c � a and
c � b}, and denote by a ∧ b the maximum element of the set {c ∈ L | c � a and c � b}.
If for every a, b ∈ L there exist a ∨ b and a ∧ b, then L is called a lattice. A lattice L is
called modular if for every a, b, c ∈ L with a � c it holds that a ∨ (b ∧ c) = (a ∨ b) ∧ c. For
a � b ∈ L, we let [a, b] denote the interval {c ∈ L | a � c � b}. For a ≺ b ∈ L, a sequence
(a = u0, u1, . . . , un = b) is called a chain from a to b if ui−1 ≺ ui holds for all i ∈ {1, 2, . . . , n}.
Here the length of a chain (u0, u1, . . . , un) is n. We denote by r[a, b] the length of the longest
chain from a to b. For a lattice L, let 0 denote the minimum element of L, and let 1 denote
the maximum element of L. The rank r(a) of an element a is defined by r(a) := r[0, a].

I Lemma 9 (see [3, Chapter II]). Let L be a modular lattice. For a � b ∈ L, the following
condition (called Jordan-Dedekind chain condition) holds:

All maximal chains from a to b have the same length. (3)

By Lemma 9, we can see that for a modular lattice L and a ∈ L, r(a) is equal to the length
of a maximal chain from 0 to a. A modular lattice is also characterised by rank as follows:

I Lemma 10 (see [3, Chapter II]). A lattice L is modular if and only if for every a, b ∈ L,
r(a) + r(b) = r(a ∧ b) + r(a ∨ b) holds.

For a poset L and a, b ∈ L, we say that b covers a if a ≺ b holds and there is no c ∈ L with
a ≺ c ≺ b. The covering graph of L is the undirected graph obtained by linking all pairs a, b
of L such that a covers b, or b covers a. Here we have the following relation between modular
lattices and modular graphs:

I Lemma 11 ([18]). A lattice L is modular if and only if the covering graph of L is modular.

Let L be a lattice. A function f : L → R is called submodular if f(p) + f(q) ≥
f(p∨ q) +f(p∧ q) holds for every p, q ∈ L. If a, b ∈ L are covered by a∨ b, then the pair (a, b)
is called a 2-covered pair. We have the following characterization of submodular functions on
modular lattices:

I Lemma 12. Let L be a modular lattice. A function f : L → R is submodular if and only
if f(a) + f(b) ≥ f(a ∨ b) + f(a ∧ b) holds for every 2-covered pair (a, b).

2.3 Valued CSP
Let D be a finite set. For a positive integer k, a function f : Dk → Q is called a k-ary cost
function on D. For a cost function f , let domf := {x ∈ Dk | f(x) <∞}. Let kf := k denote
the arity of f . Let Cn(D) be the set of all pairs of a cost function f on D of arity at most
n and an assignment σ : {1, 2, . . . , kf} → {1, 2, . . . , n}. The valued constraint satisfaction
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46:6 Minimum 0-Extension Problems on Directed Metrics

problem (VCSP) on D is defined as follows [19]:

VCSP: Instance : n ∈ N, C ⊆ Cn(D)

Min.
∑

(f,σ)∈C

f(xσ(1), xσ(2), . . . , xσ(kf ))

s.t. x = (x1, x2, . . . , xn) ∈ Dn.

Without loss of generality, we may assume that for any i ∈ {1, 2, . . . , n}, there exist j and
(f, σ) ∈ C that satisfy σ(j) = i (otherwise, we can erase unused variables).

Let Γ be a set of cost functions, which is called a language. The instance of VCSP is
called a Γ-instance if all cost functions in the instance belong to Γ. Let VCSP[Γ] denote the
class of the optimization problems whose instances are restricted to Γ-instances.

Let µ be a directed metric on T . The directed minimum 0-extension problem −→0 -Ext[µ]
is viewed as a language-restricted VCSP. Indeed, let

D := T,

f(x, y) := µ(x, y),
gt(x) := µ(x, t),
ht(x) := µ(t, x),

and let

Γ := {Cf | C ∈ Q+} ∪ {Cgt | t ∈ T, C ∈ Q+} ∪ {Cht | t ∈ T, C ∈ Q+}. (4)

Then we can conclude that −→0 -Ext[µ] is an instance-restricted VCSP[Γ] on D.
Kolmogorov, Thapper, and Živný [14] discovered a powerful criterion for a language Γ

such that VCSP[Γ] is tractable. A special case of this criterion is the following:

I Theorem 13 ([14]). Let D be a lattice, and Γ be a set of cost functions on D. Suppose
that for every f ∈ Γ and x, y ∈ domf , we have

f(x) + f(y) ≥ f(x ∨ y) + f(x ∧ y). (5)

Then VCSP[Γ] can be solved in polynomial time.

3 Directed metric spaces

3.1 Modular directed metrics
We first extend the notions of modularity, medians, and underlying graphs to directed
metric spaces. Let µ be a directed metric on T . We say that µ is modular if and only
if for every s0, s1, s2 ∈ T , there exists an element m ∈ T , called a median, such that
µ(si, sj) = µ(si,m) + µ(m, sj) for every 0 ≤ i, j ≤ 2 (i 6= j). See Figure 1 (a) for an example
of modular directed metrics. We define the underlying graph of µ as the undirected graph
Hµ = (T,U), where

U := {xy ∈
(
T

2

)
| ∀z ∈ T \ {x, y}, µ(x, y) < µ(x, z) + µ(z, y)

or ∀z ∈ T \ {x, y}, µ(y, x) < µ(y, z) + µ(z, x)}. (6)
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Figure 1 (a) a modular directed metric. (b) the underlying graph of (a).

For a directed metric µ on T and v0, v1, . . . , vn ∈ T , we say that a sequence (v0, v1, . . . , vn) is
µ-shortest if µ(v0, vn) =

∑n−1
i=0 µ(vi, vi+1). Bandelt [1] showed that for a modular (undirected)

metric µ, a µ-shortest sequence is also dHµ -shortest. We have the following directed version
of this property:

I Lemma 14. Let µ be a modular directed metric on T , and let v0, v1, . . . , vn ∈ T .
(1) If a sequence (v0, v1, . . . , vn) is µ-shortest, then the inverted sequence (vn, vn−1, . . . , v0)

is also µ-shortest.
(2) If a sequence (v0, v1, . . . , vn) is µ-shortest, then this sequence is also dHµ-shortest.

For a modular directed metric µ on T , let m be a median of x, y, z ∈ T in µ. Then, by
Lemma 14 m is also a median of x, y, z in Hµ. Hence, we have the following lemma:

I Lemma 15. If a directed metric µ is modular, then Hµ is also modular.

3.2 Directed orbits and directed orbit invariance
Let G = (V,E) be an undirected graph. Let ←→E := {(u, v) | uv ∈ E} ⊆ V × V , and
←→
G := (V,←→E ). An element of ←→E is called an oriented edge of E. For a path P from s to t in
G, we orient each edge of P along the direction of P , and we denote by −→P the corresponding
path in←→G . Let −→P and −→W be paths in←→G such that the end point of −→P and the start point of−→
W are identified. Then we denote by −→P ∪ −→W the path obtained by concatenating −→P and −→W
in this order. In particular, if −→W consists of one oriented edge (p, q), then we simply denote
−→
W := (p, q) and −→P ∪ −→W := −→P ∪ (p, q). For −→e ,

−→
e′ ∈

←→
E , we say that −→e and

−→
e′ are projective

if there exists a sequence (−→e = −→e0 ,
−→e1 , ...,

−→em =
−→
e′ ) (−→ei = (pi, qi) ∈

←→
E for each i) such that

(pi, qi, qi+1, pi+1, pi) is a 4-cycle in G for each i. An equivalence class of the projectivity
relation is called a directed orbit. Then we have the following lemma about the number of
oriented edges of each directed orbit included in a shortest path. This is a sharpening of the
result for undirected graphs due to Bandelt [1], and is similarly shown by the proof of the
undirected version.

I Lemma 16 ([1]). Let G = (V,E) be a modular graph, and let −→Q be a directed orbit. For
x, y ∈ V , let P be a path from x to y, and let P ∗ be a shortest path from x to y. Then we
have

|
−→
P ∗ ∩

−→
Q | ≤ |

−→
P ∩

−→
Q |. (7)

MFCS 2020
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Let G = (V,E) be an undirected graph. If a function h :←→E → R+ satisfies h(−→e ) = h(
−→
e′ )

for every −→e ,
−→
e′ ∈

←→
E belonging to the same directed orbit, then we say that h is directed

orbit-invariant. Let µ be a directed metric on T with the underlying graph Hµ = (T,U).
We say that µ is directed orbit-invariant if µ(u1, u2) = µ(u′1, u′2) holds for every −→u =
(u1, u2),

−→
u′ = (u′1, u′2) ∈ ←→U belonging to the same directed orbit in Hµ. A 4-cycle (p, q, r, s, p)

in Hµ is called a directed orbit-varying modular cycle if µ(p, q)− µ(s, r) = µ(r, s)− µ(q, p) =
µ(p, s)− µ(q, r) = µ(r, q)− µ(s, p) 6= 0. The cycle (p, q, r, s, p) in Figure 1 (b) is an example
of a directed orbit-varying modular cycle.

Bandelt [1] showed that a metric µ is orbit-invariant if µ is modular. A directed metric
µ is not necessarily directed orbit-invariant even if µ is modular. For example, if Hµ is a
directed orbit-varying modular cycle, then µ is modular but not directed orbit-invariant.
The name “directed orbit-varying modular cycle” is motivated by this fact. We now have
the following sufficient condition of a directed metric to be directed orbit-invariant.

I Lemma 17. Let µ be a modular directed metric. Suppose that Hµ has no directed orbit-
varying modular cycle. Then, µ is directed orbit-invariant.

This lemma is used to prove Theorem 3 (iii) in the full version.
We now consider a sufficient condition for which the converse of Lemma 14 (2) holds. For

an undirected metric µ, Bandelt [1] showed that if µ is orbit-invariant and Hµ is modular,
then a dHµ -shortest sequence is also µ-shortest. The similar property also holds for a directed
metric as follows:

I Lemma 18. Let µ be a directed metric on T , and let v0, v1, . . . , vn ∈ T . If µ is directed
orbit-invariant and Hµ is modular, then the following condition holds:

If (v0, v1, . . . , vn) is dHµ-shortest, then it is also µ-shortest. (8)

4 Proof of tractablity

In this section, we give a proof of Theorem 4. Let µ be a directed metric on T , and Γ be the
language defined in (4). Then we see that −→0 -Ext[µ] is a subclass of VCSP[Γ]. Hence, by
Theorem 13 we can prove the tractability of −→0 -Ext[µ] by showing submodularity of µ. To
show submodularity, we imitate the proof of submodularity of metric functions on modular
semilattices in the undirected version [9].

4.1 Proof of Theorem 4
Note that the underlying graph Hµ of µ is the covering graph of a modular lattice L with
a partial order �. We define a partial order � on L × L by (a, b) � (c, d) ⇐⇒ a � c and
b � d (a, b, c, d ∈ L). Then L × L is also a modular lattice. If µ is a submodular function on
L × L, then by Theorem 13 we can conclude that −→0 -Ext[µ] is solvable in polynomial time.
Hence, the following property completes the proof:

I Theorem 19. Let µ be a directed metric. Suppose that Hµ is the covering graph of a
modular lattice L and µ is directed orbit-invariant. Then the function µ : L × L → R+ is
submodular.

Proof. Note that L × L is a modular lattice. By Lemma 12, µ is a submodular function
on L × L if and only if µ(a) + µ(b) ≥ µ(a ∨ b) + µ(a ∧ b) holds for every 2-covered pair
(a, b) (a, b ∈ L×L). Thus, it suffices to show that µ(a) + µ(b) ≥ µ(a∨ b) + µ(a∧ b) holds for
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any 2-covered pair (a, b). Let a = (a1, a2), b = (b1, b2) (a1, a2, b1, b2 ∈ L). Then, it suffices to
consider the following two cases:
(i) a1 = b1, and a2 ∨ b2 covers a2, b2.
(ii) a1 covers b1, and b2 covers a2.

We first consider the case (i). It suffices to show that µ(a1, a2) + µ(a1, b2) ≥ µ(a1, a2 ∨ b2) +
µ(a1, a2 ∧ b2). Let Y := [a2 ∧ b2, a2 ∨ b2]. Then, for every y ∈ Y \ {a2 ∧ b2, a2 ∨ b2}, it holds
that a2 ∨ b2 covers y and y covers a2 ∧ b2, because of Lemma 9 and Lemma 10. Hence, Y
is a convex set in the metric space (T, d) (in this proof, we denote d := dHµ for simplicity).
Since Hµ is modular, by Lemma 8 Y is a gated set. Hence, there exists y∗ ∈ Y such that
d(a1, y) = d(a1, y

∗) + d(y∗, y) holds for every y ∈ Y . Therefore, by Lemma 18, (a1, y
∗, y) is

µ-shortest for every y ∈ Y . If y∗ = a2, then we have

µ(a1, a2 ∨ b2) = µ(a1, a2) + µ(a2, a2 ∨ b2),
µ(a1, a2 ∧ b2) = µ(a1, a2) + µ(a2, a2 ∧ b2),

µ(a1, b2) = µ(a1, a2) + µ(a2, b2). (9)

Furthermore, since µ is directed orbit-invariant, we have µ(a2 ∨ b2, b2) = µ(a2, a2 ∧ b2). In
addition, by Lemma 18 we have µ(a2, b2) = µ(a2, a2 ∨ b2) + µ(a2 ∨ b2, b2). Hence, we have
µ(a1, b2) = µ(a1, a2)+µ(a2, a2∨b2)+µ(a2, a2∧b2). Therefore, we obtain µ(a1, a2)+µ(a1, b2) =
µ(a1, a2 ∨ b2) + µ(a1, a2 ∧ b2). Similarly, if y∗ = b2, we obtain µ(a1, a2) + µ(a1, b2) =
µ(a1, a2 ∨ b2) + µ(a1, a2 ∧ b2). If y∗ = a2 ∨ b2, then we have

µ(a1, a2) = µ(a1, a2 ∨ b2) + µ(a2 ∨ b2, a2),
µ(a1, b2) = µ(a1, a2 ∨ b2) + µ(a2 ∨ b2, b2),

µ(a1, a2 ∧ b2) = µ(a1, a2 ∨ b2) + µ(a2 ∨ b2, a2) + µ(a2, a2 ∧ b2). (10)

Since µ is directed orbit-invariant, we have µ(a2 ∨ b2, b2) = µ(a2, a2 ∧ b2). Hence, by (10) we
obtain µ(a1, a2) + µ(a1, b2) = µ(a1, a2 ∨ b2) + µ(a1, a2 ∧ b2). Similarly, if y∗ = a2 ∧ b2, then
we obtain µ(a1, a2) + µ(a1, b2) = µ(a1, a2 ∨ b2) + µ(a1, a2 ∧ b2). Thus, it suffices to consider
the case when y∗ 6= a2, b2, a2 ∨ b2, a2 ∧ b2. In this case, we have

µ(a1, a2) = µ(a1, y
∗) + µ(y∗, a2 ∨ b2) + µ(a2 ∨ b2, a2) ≥ µ(a1, a2 ∨ b2),

µ(a1, b2) = µ(a1, y
∗) + µ(y∗, a2 ∧ b2) + µ(a2 ∧ b2, b2) ≥ µ(a1, a2 ∧ b2). (11)

Hence, we have µ(a1, a2) + µ(a1, b2) ≥ µ(a1, a2 ∨ b2) + µ(a1, a2 ∧ b2).
For the next, we consider the case (ii). The submodularity is µ(a1, a2) + µ(b1, b2) ≥

µ(a1, b2)+µ(b1, a2). Since Hµ is bipartite, d(a1, b2) is equal to either d(b1, a2) or d(b1, a2)+2
or d(b1, a2) − 2. If d(a1, b2) is equal to d(b1, a2) + 2 or d(b1, a2) − 2, then by Lemma
18 we have µ(a1, a2) + µ(b1, b2) = µ(a1, b2) + µ(b1, a2). Thus, it suffices to consider the
case when d(a1, b2) = d(b1, a2). In this case, d(a1, a2) is equal to either d(a1, b2) − 1 or
d(a1, b2) + 1. Suppose that d(a1, a2) = d(a1, b2) + 1. Then, by Lemma 18 we have µ(a1, a2) =
µ(a1, b2)+µ(b2, a2). Hence, we obtain µ(a1, a2)+µ(b1, b2) = µ(a1, b2)+µ(b2, a2)+µ(b1, b2) ≥
µ(a1, b2) + µ(b1, a2). Consider the case when d(a1, a2) = d(a1, b2)− 1. Similarly, d(b1, b2) is
equal to either d(a1, b2)− 1 or d(a1, b2) + 1, and by the similar argument, we may assume
that d(b1, b2) = d(a1, b2)− 1. Let P be a shortest path in Hµ from a1 to a2. Let z be the
vertex in P that is adjacent to a1. Then, we have d(z, b2) = d(b1, b2) = d(a1, b2)− 1. Hence,
by Lemma 7, there exists a common neighbor w of z, b1 with d(w, b2) = d(a1, b2)− 2. Then,
we have d(z, b2) = d(w, a2) = d(a1, b2)− 1, d(z, a2) = d(z, b2)− 1, and d(w, b2) = d(z, b2)− 1.
Furthermore, since a1 covers b1, we see that z covers w. Hence, we can apply the same
argument to z, w, a2, b2 which we apply to a1, b1, a2, b2 above. By repeating this argument,
we can see that a2 covers b2, but this is a contradiction. J
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5 Proof of hardness

In this section, we give a proof of Theorem 3 for the case (i) (see the full version for proofs
of the other cases and Theorem 5). We prove them by reductions from the maximum cut
problem (MAX CUT). In each reduction, we construct a “gadget” which is a counterexample
to submodularity of the objective function of −→0 -Ext[µ] (in a certain sense). This type of
reduction is originated from the proof of hardness of the 3-terminal cut problem [6]. Also,
Karzanov [11, 12] showed the hardness of the minimum 0-extension problems on undirected
metrics by using similar reductions (Theorem 1). We extend these reductions to directed
cases. We first describe the main idea of a reduction from MAX CUT to −→0 -Ext[µ] in Section
5.1. For the next, we prove Theorem 3 for the case (i) by using this reduction in Section 5.2.

5.1 Approach

Let µ be a rational-valued directed metric on T . Suppose that we are given V ⊇ T and
c : V × V → Q as an instance of −→0 -Ext[µ]. For s0, s1, . . . , sk ∈ T and x0, x1, . . . , xk ∈
V \ T , we denote by τc(s0, x0|s1, x1| · · · |sk, xk) the optimal value of −→0 -Ext[µ] subject to
γ(x0) = s0, γ(x1) = s1, . . . , γ(xk) = sk. We simply denote τ(s0, x0|s1, x1| · · · |sk, xk) :=
τc(s0, x0|s1, x1| · · · |sk, xk) if c is clear in the context. Let τ∗ be the optimal value of −→0 -
Ext[µ] subject to no constraint. Imitating the constructions in [6, 11, 12], we call a pair
(V, c) a gadget if it satisfies the following properties (in other words, “violates submodularity,”
cf. [6]) for specified elements s, t ∈ T and x, y ∈ V \ T .

(i) τ(s, x|t, y) = τ(t, x|s, y) = τ∗,

(ii) τ(s, x|s, y) = τ(t, x|t, y) = τ∗ + δ for some δ > 0,
(iii) τ(s′, x|t′, y) ≥ τ∗ + δ for all other pairs (s′, t′) ∈ T × T. (12)

We now show that there exists a polynomial-time reduction from MAX CUT to −→0 -Ext[µ] if
there exists a gadget (V, c) that satisfies (12) with respect to some s, t ∈ T and x, y ∈ V \ T .
Suppose that we are given a graph G = (U,E) and a positive integer k as an instance of
MAX CUT. In MAX CUT, we are asked whether there exists a partition (S,U \S) such that
the number of edges between S and U \ S is at least k. Let (V, c) be a gadget which satisfies
(12) with respect to s, t ∈ T, x, y ∈ V \ T . For each edge e = uv ∈ E, we replace e by a
copy of (V, c), identifying x with u, and y with v. We also identify copies of each element in
T which belong to different copies of (V, c). The other copied elements are distinct. Then,
for the gadget (V ′, c′) constructed above, the optimal value of −→0 -Ext[µ] with respect to
(V ′, c′) is at most |E|τ∗ + (|E| − k)δ if and only if there exists a cut in G whose size is at
least k (if a partition (S,U \ S) cuts the maximum number of edges, then the optimal value
of −→0 -Ext[µ] is achieved when γ(u) = s for every u ∈ S, and γ(u) = t for every u ∈ U \ S).
This is a polynomial-time reduction from MAX CUT to −→0 -Ext[µ].

5.2 Proof of Theorem 3 for the case (i)

We first introduce the following lemma, which is originated from the proof of Theorem 1 (i)
in [12].

I Lemma 20. Let µ be a rational-valued directed metric on T . If there exists a gadget (V, c)
which satisfies the following properties for a non-collinear triple (s0, s1, s2) in T and distinct
elements zi ∈ V \ T (i = 0, . . . , 5), then −→0 -Ext[µ] is strongly NP-hard.
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(i) τ(si0+1, z0|si1−1, z1|si2 , z2|si3+1, z3|si4−1, z4|si5 , z5) = τ∗ (ij ∈ {0, 1} for each j),
(ii) τ(s′0, z0|s′1, z1|s′2, z2|s′3, z3|s′4, z4|s′5, z5) ≥ τ∗ + δ

for all other sextuplets s′0, s′1, s′2, s′3, s′4, s′5, s′6 and some δ > 0, (13)

where the indices of si are taken modulo 3.

We now show Theorem 3 for the case (i) by use of Lemma 20. The proof we describe below
is a directed version of that of Theorem 1 (i) in [12]. Let µ be a nonmodular rational-valued
directed metric on T . For x, y, z ∈ T , we denote ∆(x, y, z) := µ(x, y) + µ(y, x) + µ(y, z) +
µ(z, y) + µ(z, x) + µ(x, z). Let (s0, s1, s2) be a medianless triple such that ∆(s0, s1, s2)
is minimum. Let ∆̄ := ∆(s0, s1, s2). Take six elements z0, z1, . . . , z5, and let V := T ∪
{z0, z1, . . . , z5}. Let µi := µ(si−1, si+1)+µ(si+1, si−1) and ai := (µi−1 +µi+1−µi)/µi−1µi+1
for i = 0, 1, 2, where the indices of si and µi are taken modulo 3. Then we define a function
c : V × V → Q+ as follows:

c(si, zi+1) = c(zi+1, si) = 1 (0 ≤ i ≤ 5),
c(si, zi+2) = c(zi+2, si) = 1 (0 ≤ i ≤ 5), (14)

where the indices of zi are taken modulo 6. Also we define a function c′ : V × V → Q+ as
follows:

c′(si, zj) = c′(zj , si) = ai (0 ≤ i ≤ 2, 0 ≤ j ≤ 5). (15)

Let N be a sufficiently large positive rational. We define a function c̃ by c̃ := Nc+ c′. We
now show that a gadget (V, c̃) satisfies (13). We first observe that τc̃(γ) is not the optimal
or nearly optimal value if γ(zi) /∈ I(si−1, si+1) ∩ I(si+1, si−1) for some i. Consider the case
when γ(zi) ∈ I(si−1, si+1) ∩ I(si+1, si−1) holds for each i. We show the following claim:

B Claim 21. Let x ∈ I(si−1, si+1) ∩ I(si+1, si−1). Then at least one of the following
conditions holds:
(i) Both of sequences (si, si−1, x) and (x, si−1, si) are µ-shortest.
(ii) Both of sequences (si, si+1, x) and (x, si+1, si) are µ-shortest.

Proof. Suppose that (ii) does not hold. Let i = 1. By the assumption, we have µ(s1, x) <
µ(s1, s2)+µ(s2, x) or µ(x, s1) < µ(x, s2)+µ(s2, s1). Then we have ∆(s0, s1, x) < ∆(s0, s1, s2).
Hence, there exists a median m of s0, s1, x. If m = s0, then (i) holds. If m 6= s0, then we
have

∆(s1,m, s2) = µ(s1, s2) + µ(s2, s1) + µ(s1,m) + µ(m, s1) + µ(s2,m) + µ(m, s2)
< µ(s1, s2) + µ(s2, s1) + µ(s1, s0) + µ(s0, s1) + µ(s2, x) + µ(x,m)
+ µ(m,x) + µ(x, s2)
< ∆(s0, s1, s2). (16)

Hence, there exists a median w of s1,m, s2. However, w is also a median of s0, s1, s2, and
this is a contradiction. J

For each i ∈ {0, 1, . . . , 5}, let gi be the contribution to the value τc̃(γ) from c′(zi, s0), c′(zi, s1),
c′(zi, s2), c′(s0, zi), c′(s1, zi), c′(s2, zi). If γ(zi) = s0, then we have gi = a1µ2 + a2µ1 =
(µ0 +µ2−µ1)/µ0 +(µ1 +µ0−µ2)/µ0 = 2. Similarly, we have gi = 2 when γ(zi) = s1 or s2. We
next consider the case when γ(zi) ∈ I(si−1, si+1)∩ I(si+1, si−1) \ {si−1, si+1}. Let i = 0 and
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ε := µ(s1, γ(z0))+µ(γ(z0), s1). By Claim 21, we may assume that µ(s0, γ(zo))+µ(γ(z0), s0) =
µ2 + ε holds. Hence, we have

g0 = a0(µ2 + ε) + a1ε+ a2(µ0 − ε)
= a0µ2 + a2µ0 + ε(a0 + a1 − a2)
= 2 + ε(a0 + a1 − a2). (17)

Note that we have

µ0µ1µ2(a0 + a1 − a2) = µ0(µ1 + µ2 − µ0) + µ1(µ0 + µ2 − µ1)− µ2(µ0 + µ1 − µ2)
= 2µ0µ1 − µ2

1 − µ2
0 + µ2

2

= µ2
2 − (µ0 − µ1)2 > 0. (18)

Hence, we have g0 > 2. Similarly, for each i ∈ {0, 1, . . . , 5}, we have gi > 2 if γ(zi) ∈
I(si−1, si+1) ∩ I(si+1, si−1) \ {si−1, si+1}. Hence, the gadget (V, c̃) satisfies (13).
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