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—— Abstract

Recently, a few papers considering the polynomial equation satisfiability problem and the circuit

satisfiability problem over finite supernilpotent algebras from so called congruence modular varieties
were published. All the algorithms considered in these papers are quite similar and rely on checking
a not too big set of potential solutions. Two of these algorithms achieving the lowest time complexity
up to now, were presented in [1] (algorithm working for finite supernilpotent algebras) and in [5]
(algorithm working in the group case). In this paper we show a deterministic algorithm of the same
type solving the considered problems for finite supernilpotent algebras which has lower computational
complexity than the algorithm presented in [1] and in most cases even lower than the group case
algorithm from [5]. We also present a linear time Monte Carlo algorithm solving the same problem.
This, together with the algorithm for nilpotent but not supernilpotent algebras presented in [17], is
the very first attempt to solving the circuit satisfiability problem using probabilistic algorithms.
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1 Introduction

Solving equations is one of the most important mathematical problems with applications in
many areas. We are interested in the computational complexity of the equation satisfiab-
ility problem for a fixed finite algebra. The most-studied version of this problem (called
PoOLSAT(A)) asks if a given equation of polynomials over a fixed algebra A has a solution
or not. There is a number of papers which characterized algebras for which this problem
is tractable in polynomial time and for which it is hard in terms of some well-established
complexity assumptions (i.e. P # NP). Most of these papers consider only well-known
structures like groups [8], [15], [12], [13], [5], [6], rings [12], [20] or lattices [25]. However there
is a number of papers considering more general cases e.g. [10], [9], [1]. A new look on the
problem was proposed in [19]. This paper was the first systematic study on solving equations
in quite general setting. The authors of [19] decided to allow a more compact representation
of polynomials on the input of the problem, so to represent them as multi-valued circuits. It
leads to the following definition of the problem:
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CsAT(A) given a circuit over A with two output gates g1, g2 is there a valuation of input
gates T that gives the same output on g1, ga, i.e. g1(T) = g2(T).
Under this definition, the computational complexity of CSAT(A) depends only on the
polynomial clone of A and, in consequence, can be characterized in terms of algebraic
properties of A.

Several articles considering this new approach to solving equations have appeared e.g.
[23], [16], [1], [21], [24], [17]. In this paper, we also study CSAT problems. However, for clarity
we mention that all the algorithms and upper bounds presented here apply also to POLSAT
since polynomials can be represented by circuits expanding the size of the representation
only by a constant factor.

Algebras generating congruence modular varieties form a wide class of algebras containing
among others many popular algebraic structures like groups, rings and lattices. We will call
this class of algebras CM for short. Analyzing a partial characterization of the computational
complexity of CsAT for algebras from CM presented in [19] and also the results of [16],
[24] and [17], we can see the truly rich world in which one can find problems of different
complexities: NP-complete problems, problems contained in P and those, that are natural
candidates for NP-intermediate problems. Surprisingly, there are only three known essentially
different polynomial time algorithms solving CSAT over algebras from congruence modular
varieties. Two of them are black-box algorithms i.e. algorithms which treat circuits as a
black-box and try to find the solution by checking some not too big set of potential solutions
(so called hitting set). One of them originally was proposed for nilpotent groups [8] and the
second one works for distributive lattices [25]. The third of the algorithms mentioned above
solves CSAT by inspecting some kind of normal form of a given circuit but it seems that the
usefulness of such kind of algorithm is limited to so called 2-step supernilpotent algebras
[16], [17].

In this paper we consider supernilpotent algebras from CM which are natural general-
izations of nilpotent groups (among all groups only those nilpotent ones induce tractable
problems, assuming P # NP). Every such a supernilpotent algebra A decomposes into a
direct product of supernilpotent algebras of prime power order. That is why we can reduce
the problem of solving equations over A to a fixed number (at most log|A|) of similar
problems over supernilpotent algebras, but this time of prime power order. This Turing
reduction can be performed in linear time and thus we will only be looking for an algorithm
for solving equations over supernilpotent algebras of prime power order.

We slightly modify the algorithm that was applied in the group setting. In this algorithm
we check potential solutions in which at most d variables are assigned to some non-zero value.
It was introduced by Goldmann and Russell in [8] for nilpotent groups and its correctness
was reproved by Horvath in [12]. In both cases, it was shown that the considered algorithm
works in polynomial time but the degree of the polynomial came from an application of
Ramsey Theory and was really huge. Later, it was independently shown in [23] and [19] that
essentially the same algorithm works for supernilpotent algebras from a congruence modular
variety in polynomial time with the same huge degree of the polynomial. These results
were improved by Aichinger in [1]. In his paper the degree of the polynomial describing the
complexity of CSAT(A) was bounded by d = |A['°8z[4l+1og2m+1  where m is the maximal
arity of basic operations of A. Using similar tools as Aichinger and some new ideas we show
the following.

» Theorem 1.1. Let A be a supernilpotent algebra of prime power order " from a congruence
modular variety. Then there exists a black-box algorithm solving CSAT(A) in time O(nek),
where d = |A['°8a ™+ 0 is the number of input gates in the given circuit, k is the size of the
circuit, and m is the maximal arity of basic operations of A.
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The proof of this theorem can be found in Section 5. Note, that after applying Theorem
1.1 to nilpotent groups of prime power order ¢" we obtain that d = |G/|*°8s 21
that in [5] A. Foldvdri, using some group specific tools, gave a different algorithm for the
POLSAT(A) problem of time complexity O(n?), where d = £|G|? - log |G| (here n denotes
the input size). So in most cases our algorithm improves this result too (especially when the

. We note here

prime ¢ is big) and it applies to a much more general class of algebras.

It turns out that switching from a deterministic computational model to a probabilistic
one we obtain a great improvement. It is shown in the second main result of this paper,
which states the following.

» Theorem 1.2. Let A be a supernilpotent algebra of prime power order from a congruence
modular variety. Then, there exists a linear time Monte Carlo algorithm solving CSAT(A).

The surprising corollary we get when we apply Theorem 1.2 to finite groups and use
results from [8] and [14].

» Corollary 1.3. Let G be a finite group. Then, CSAT(G)
can be solved by a linear time Monte Carlo algorithm if G is nilpotent,
1s NP-complete otherwise.

To obtain the algorithms mentioned above we study the structure of nilpotent algebras
of prime power order. Thanks to deep universal algebraic tools developed in [7] and [26] our
study does not contain hard to read technical proofs. The readers not interested in algebraic
details can skip Section 3. The readers interested in more systematic and detailed study in
this spirit but in more general settings can see [18].

The main conclusion of Section 3 is that solving equations over nilpotent algebras of
prime power order ¢" can be reduced to solving one special equation of bounded degree
between polynomials in the finite field Fy. Thus, in the next sections we do not need the
universal algebraic tools and we work with finite fields only.

Our randomized algorithm solving equations over F, of low degree is very simple. It

turned out that all we need to do is randomly draw solutions with a uniform distribution.

In such a way, we obtain a c-correct true-biased algorithm for some constant ¢ depending
on the algebra. It works thanks to the nice behavior of polynomial over F, of not too high
degree. This behavior is described in the following Lemma.

» Lemma 1.4. Let f be an n-ary polynomial of degree d over the finite field ¥,. Then, for
every y € F, such that [f~1(y)| > 0 we have |f~1(y)| > g9~ 110829,

The lemma is in fact a generalization of the one proven in [11] for the field F5. However, the
method presented there cannot be applied to prove the similar fact in every finite field. Note
that if the degree of the polynomial was smaller than the size of the field, then we would
just need to apply the famous Schwartz—Zippel lemma to get that the density of solutions
among all possible assignments to variables is huge. In our case the degree of the polynomial
is bounded by a constant depending on A and almost always it exceeds the field size we are
working with. There are also a number of other results, that can be applied here, introduced
for polynomial identity checking of s-sparse polynomials, but they do not lead to linear time
algorithms.

The article is organized as follows. The second section contains some definitions and
background materials. In Section 3 we present the structure of supernilpotent algebras and
show that CsAT for such algebras can be reduced to solving equations between polynomials

of a bounded degree over a finite field. The proof of Lemma 1.4 is contained in Section 4.
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In Sections 5 and 6 we show deterministic and randomized algorithms solving CSAT for
supernilpotent algebras and prove Theorem 1.1 and Theorem 1.2. Finally, Section 7 contains
remarks regarding the results contained in this paper and conclusions.

2 Background material

In this paper we use the standard notation of universal algebra (see e.g. [4]). An algebra is a
structure consisting of a set called universe and a set of finitary operations on it. Groups
and fields are obviously examples of algebras. All algebras considered in this paper are finite
i.e. with finite universe and finite set of operations. We usually denote algebras using bold
capital letters and their universes by the same but non-bold letters. The language or type of
algebra is the set F of function symbols together with non-negative integers assigned to each
member of F. We say that an algebra A = (A, F) is of type F if the set F of its operations
is indexed by elements of F and for every n-ary function symbol the corresponding operation
fA € F is also n-ary. We use overlined small letters e.g. @, @ to denote tuples of variables or
elements of an algebra and the same letters without overline but with subscript to denote
elements of tuples e.g. x;, a;. Let A = (4, F) be an algebra.

By terms over an algebra A we mean all proper expressions in language of A built up from
variables and function symbols. Polynomials are expressions in which we additionally admit
constants from the algebra’s universe. With terms and polynomials we can associate term
and polynomial operations in the obvious way. We say that a polynomial p(z1,..., 21, 2)
of an algebra A is a commutator polynomial of rank k iff p(ay,...,ax—1,b) = b whenever
be{ay,...,ax—1} C Aand p(ay,...,ar_1,b) # b for some ay,...,ar_1,b € A.

In this paper we consider supernilpotent algebras from congruence modular varieties. The
notion of supernilpotency is strongly connected with the modular commutator theory (see
[7] for details) and so called higher commutators introduced by A. Bulatov [3] and further
developed by E. Aichinger and N. Mudrinski [2]. Since, the definition of supernilpotent
algebras is quite technical and requires introducing a bunch of auxiliary notions we decided to
omit it. Instead of the definition we will use the following characterization of supernilpotent
algebras from a congruence modular varieties which can be easily inferred from the deep
work of R. Freese and R. McKenzie [7] and K. Kearnes [22], and has been observed in [2].

» Theorem 2.1. For a finite algebra A from a congruence modular variety the following

conditions are equivalent:

1. A is supernilpotent,

2. A is nilpotent, decomposes into a direct product of algebras of prime power order and the
term clone of A is generated by finitely many operations,

3. A is nilpotent and there exists k such that all commutator polynomials have rank at
most k.

In the next sections we will see that Theorem 2.1 shows two key properties of supernilpotent
algebras: the possibility of decomposition into direct product of algebras of prime power
order and bounded essential arity of commutator polynomials. The second property can be
formulated in a less formal way that for every supernilpotent algebra there exists k such that
no polynomial function behaves similarly to k£ 4+ 1-ary conjunction.

We define circuits in a common way as a directed acyclic graphs. Note that every gate
is in fact an operation on some domain. Hence, the set of gates with the same domain can
be treated as an algebra. In the similar way we can look at a finite algebra as a collection
of gates. Thus, every circuit over an algebra A can be represented as a term of A (or
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polynomial of A if values on some input gates are fixed). Note that in many cases circuits
enable much shorter description of functions than polynomials. The reason is that the
value computed in some subcircuit can be used as an input for many gates. In the case of
terms/polynomials to use many times the value of some subterm/subpolynomial we have to
make many copies of it. It implies that for many algebras (e.g. solvable but non-nilpotent
groups) POLSAT is easier than CsAT. On the other hand, in our case there are no differences
in the complexity between POLSAT and CSAT. The reason is that we consider algorithms
which do not analyze the form of the input but use the hitting set which depends only on
the number of input gates/variables. Note that computing the value of either circuit or
polynomial for any evaluation of input gates/variables can be done in linear time. Thus, in
this paper we do not focus on the form of the input but on its algebraic properties.

3  The structure of supernilpotent algebras

In this section we will see that every supernilpotent algebra of prime power order ¢" from
CM is in fact a wreath product of algebras polynomially equivalent to simple modules of
order ¢%. In fact, we will see even more. We will prove that every polynomial operation of
such an algebra can be described by a bunch of polynomials over F, of bounded degree. More
detailed investigations of structure of supernilpotent and not only supernilpotent algebras
can be found in [18].

First, we present the mentioned decomposition of supernilpotent algebras into a wreath
product of algebras that are polynomially equivalent to simple abelian groups. We will use
Freese and McKenzie'’s ideas from [7] developed in more general settings in VanderWertf’s
PhD thesis [26]. In particular, consider algebras Q = (Q, FQ) and B = (B, F'B) of the same
type F, such that Q is abelian with the associated group (@, 4+, —). Morover let T be a set
of operations such that for every n-ary operation f € F there is ty : B® — Q. According
to [7] we can define the algebra A = Q ®T B of type F with universe Q x B and operations
defined as follows

fA((qlvbl)v ey (Qn,bn)) - (fQ((h; .. )q’I’L) +tf(b17 ... abn)afB(blv .. 7bn)) )

where f is an n-ary operation from F. Note that since Q is an abelian algebra from a
congruence modular variety and hence affine f@ can be expressed in the form fQ(qy,...,q,) =
> Aigi + ¢, where \;’s are endomorphisms of (Q,+).

Let A be a supernilpotent algebra of prime power order ¢ and 6 be one of its atoms
i.e. congruences covering 0a. Then, using results from [7] it can be shown that A can be
decomposed into a wreath product of A/ and some algebra Q polynomially equivalent to a

simple module. More precisely A is isomorphic to the algebra Q ®T A /6 for some T and Q.

Note that if |Q| = ¢* then A/6 has order ¢"~®. Repeating this procedure recursively for
A /6 we obtain that A is isomorphic to some algebra which is the wreath product of algebras
polynomially equivalent to simple modules of order p®...., p®s. From this point we assume
that A itself is such an algebra. Denote e; the projection on the i-th coordinate of A (for
t=1...s). Now, unwinding the recursive procedure we get that every basic operation f of
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A fulfills the following properties:

es(f(ar, .. mn)) =D Nes(xi) +t5,
=1

ej(f(xi,...,zp)) = Z)\gej(xi) + t;(ej+1(x1), coes(Z1), s eir1(@n), - es(@n)),

i=1

for some )\z’s being endomorphisms of j-th module (of order p®) and some t;’s. Note that
constant summands in the above expressions are hidden in t}’s and ¢% is just a constant.
Now, we will translate every polynomial g over A to a system of polynomials over the
field F,, that will simulate the behaviour of g, From the above observations about wreath
products we see that every element a € A can be written as a tuple a = (eja....,esa).
Furthermore, each e;a can be identified with a tuple by, ..., b, , where each b; € Z, . Indeed,
each simple module of size ¢® has a group reduct of prime exponent. This group must be
then isomorphic to the group Zg. So, each element a € A can be identified in such a way with

a tuple (m1(a),...,mn(a)) (with m(a) € Z;) and without loss of generality we will just write
a = (ay,...,an) (as we can replace the algebra A with an isomorphic algebra accordingly)
or a = (ay,as....,aq,), when a € e;A.

So now it is clear, that for ¢ = 1...h each m;g(z1,...,2,) is in fact a function from
(Zy)™ — Z, and hence it can be represented by multivariate polynomial over variables
M1T1y e - TRTLy -y MLy, -« - ThTy. S0 for each ¢ = 1...h we have some polynomial p;
satistying m;g(x1,...,2,) = pi(m121,... ThT1, ..., T1Zn,... ThTy). From basic algebra we

know that p; has a unique representation up to equations x? = x (for all variables). We will
always mean by polynomial representing ;g this of the smallest total degree up to those
equations. We will also write deg ;g for the total degree of the polynomial representing m;g.
Now, we want to prove, that such polynomials have small degrees.

» Lemma 3.1. Let A be a supernilpotent algebra of prime power order ™ from a congruence
modular variety and g be an n-ary polynomial of A. Let d; be the maximal total degree of
mig foron+ ... o1 <j< o+ ... +ai—1 + oy Then

S
> ai-di < (mg)M Tt ay
i=1

where m is the maximal arity of basic operatios in the signature of A.

Proof. We will inductively decrease j = s...1 and consider coordinates of e; A (there are
o of them) to obtain the degree of m;g for oy + ... + i1 < j < a1 + ...+ i1 + .
Observe, that from the form of any basic operation of A that we derived from wreath product
representation we can get (by simple induction) that for any n-ary polynomial g its j-th
coordinate e;g can be written as a sum of elements of one of the forms:

Aejx;, where z; is a variable and A is some endomorphism of a module corresponding to

EjA,

t;(ej+1g(1), cesg® o eig® o e,g®), where t?c comes from the [-ary basic oper-

ation f of the algebra A and g(¥) are other polynomials of A,

constant.
For j = s we do not have the second type of the above summands. To start with take
j =s. Then, e A is then the underlying set of a module of size ¢*¢, so it has a coordinates.



P. Kawatek and J. Krzaczkowski

We want to bound the degree of the polynomial representing esf projected to each such
coordinate. Notice that Aesx; is essentially a unary function, that depends only on projections
of x; to oz coordinates. Moreover, on each coordinate it must be a linear function, because A
is an endomorphism of an abelian group of exponent . It means that on each coordinate it
can be represented by an polynomial of degree at most 1. So we get that d; < 1 (because the
degree of sum of polynomials is at most the maximal degree of the summands and adding
constants does not affect our upper bound).

In case j < s the degrees of polynomials for Aejz; are again bounded by 1 and we
are left with summands of the form t;(ejﬂg(l), coesg® o eig® L eg®), where
| is the arity of the basic operation f. For u > j each e,g(") can be represented by
o, many polynomials of degree at most d,,. Every projection of tjc itself can be repres-
ented as a polynomial, each of whose variable appears with degree at most ¢ — 1, so
t;(ejﬂg(l), oo esgM ,ej_Hg(l), ... ,esg(l)) projected to any of its ; coordinates can be
represented by a polynomial of degree at most - (g —1)-> 7_ j+1 @idi. As m is the maximal
arity of basic operations of A we get:

S

dj <m-(q—1)- Z Oéidi.
i=j+1

Since this holds for any j < s we have that:
Zaidi = a1d1 +Z O[idi < alm(q—l)Zaldl—f—Zazdl = ((q—l)mal—i—l)(z O[ldz)
i=1 i=2 =2 i=2 =2

As (¢ — 1)ma;g +1 < (gm)** we get

Zaidi < (gm)* - (Z a;d;)
i=1 i=2

and applying the same reasoning recursively to > ©_ y a;d; for j =2,3,...,s we will end up
S
D aidi < (qm)* (gm)*? - .- (qm)* T ads = (qm)™ T
i=1
which is what we wanted to prove. |

Lemma 3.1 shows in fact how to reduce solving one equation over a supernilpotent algebra
A of prime power order ¢" to a system of h equations over the field F,. Now, we would like
to reduce solving one equation over A to solving one equation of the from p(Z) = 1, where p
is a bounded degree polynomial over the field F;. Moreover, the lemma shows that there is
an easy to compute one to one mapping between the solutions of the new equation and the
original one.

» Lemma 3.2. Let A be a supernilpotent algebra of prime power order ¢" from a congruence
modular variety and m be the mazximal arity of basic operations of A. Then, for n-ary
polynomials p and g over A, there exists an nh-ary polynomial £ over F, of degree at most
|A['°8a ™ such that f(F'™) C {0,1} and fora € A"

plai,...,an) =g(a1,...,a,)
iff

f(miar, ..., Tha1,. .., T1Qn, ..., Tpay) = L.

55:7
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Proof. Let

p(z1,...,Tn) = 8(T1,...,Zn) (1)

be an equation over A. Note that every polynomial of A projected by every m; can be
represented by a polynomial over the field Fy. So, naturally we can write our equations
equivalently as system of h polynomial equations:

pi(mxy, ..., mha,) =0

MT1X1, ..., TRTy) =0
p2( 171 h n) (2)
pr(mzy, ..., The,) =0

It is easy to see that the function defined as follows

h

f@) =[]0 -pi@) 3)

i=1

fulfills the conditions of the Lemma. It remains to determine the degree of f. As «; of those
polynomials have the degree bounded by d; for j = 1...s, we get that degree of f is bounded
by (¢ —1)(3°7_; @id;). So by Lemma 3.1 as ¢® T = | A] this is bounded by

(q _ 1) . (mq)a1+...+as,1 o < (mq)a1+...,+as _ (qlogq m+1>a1+...,+as _ |A|logq m+1 <

4 Behavior of polynomials over finite fields

This section contains the proof of Lemma 1.4. The main idea of the proof is to show that
a given polynomial over a finite field can be transformed into some special polynomial of
known degree. The way we do this transformation allows us to establish a lower bound of
the given polynomial’s degree depending among other, on the inverse image of the chosen
element of the field. Hence, by elementary calculations we obtain that the statement of the
lemma holds.

Let f be a n-ary polynomial over the field F, for some prime g. We will prove that for
every y € f(F}') we have that [f~'(y)| > qn—deef-aloe2a  Gince for a constant polynomial
this is obviously true, we assume that f is not constant. Fix y € £(F'). We will construct a
sequence of at most n polynomials of decreasing arity, such that:

fo="1,

the arity of f; is n — 1,

M > |f3} (y)| > 0, where ¢ € {2,¢},

the polynomial f;1; is obtained by substituting some variable in f; by a constant or a

linear combination of other variables,

if f; is the last polynomial in the sequence, then either |fl_1(y)\ =1 or f; is a polynomial

in one variable.

We start with the definition of the sequence {fi}izo. Let fy = f. If the arity of f; is
higher than 1 and |f;!(y)| > 1, then we define f;;; in one of two ways depending on the
size of [£71(y)| > 1. If 1 < |7 (y)| < ¢, then there exists @,b € £, (y), such that @ # b.
Since @ and b are not equal we can choose j such that a; # b;. Without loss of generality
assume that j = n —i. Now we obtain f;; from f; by substituting the variable x,,_; by
some constant ¢ € Z,. We choose the value ¢ to minimize |fi_+11(y)|, but to keep |fijrll(y)| > 0.
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Note that there are at least two possible values for ¢ preserving |fi111 (y)| > 0, namely a,_;

-1
and b,_;. So 1< |fijrll(y)| < L;y)l Moreover, it is easy to see that degf; > deg ;.

Case |f; ! (y)| > ¢9 is a bit more complicated since we want to reduce the size of £, (y)
faster than in the previous case. As |, (y)| > ¢ we can find ¢ elements of f; ' (y), say v',
v?..., v?, which treated as a vectors over the field F, are linearly independent. Hence, there
exists (0,...,0) # (B1,.-.,Pn—i) € Fq"_i7 such that for every a € F;, there exists k such that

n—i

k _
E Bj - vj = a.
=1

Since, v7’s are taken from fi_l(y) it follows that for every a € Fj the system of equations

YiciBixi=a

has a solution. Denote the set of solutions of such a system of equations as S,. Let u be
such that 8, # 0. Assume without loss of generality, that u = n —¢. We choose b € F;; which
minimizes the size of S, and produce f;; 1 by substituting in f; the variable z,,_; with

n—i—1

Bulilb— D Bj-a))-
j=1

Note that Y ,cp, [Sal = [£7 ()] and hence |Sy] < B Thus, |7 (y)] < B,
Besides, degf; > degf; 1. It is easy to see that the sequence of polynomials constructed in
the presented way fulfills the required conditions.

Now, we will prove that degf > n —[. There are two cases: f; is a polynomial in one
variable and [f7'(y)| = 1. If f; is an univariate polynomial then n — [ = 1 and since f is not
a constant polynomial deg f > n — I. The case when |f; ' (y)| = 1 is a bit more complicated.

Notice, that there is exactly one tuple @ = (a1, ...,an—;) € Fj~! such that fi(a) = y. Let
f'(x1, .. xn ) =1— (F(zy +ar, ..., xn g +any) —y)T "t

One can easily check that f'(Z) = 1 iff x = (0, ...,0) and otherwise it is equal zero. Obviously
degf’ < (¢ — 1) degf;. On the other hand, we can express f’ in the following way:

n—l1

'(z1,. ) = [J( =227,

=1

The above polynomial has degree (¢ — 1) - (n — ). This is the lowest possible degree as every
polynomial over the field F, has a unique representation as a sum of monomials modulo
identities in the form x! = x;. Hence, (¢ — 1)degf; > degf’ > (¢ — 1)(n — 1) and, as a
consequence, degf > degf; > n — .

Now, we are ready to do the final calculations. Denote K = |f~!(y)|. Let [; be the
number of f;’s obtained by substituting one of the variables in f;_; by a constant, and
lo =1 —1; i.e the number of f;’s we get substituting one of the variables of f;_; by a linear
combination of other variables. It is easy to see that l; < log, ¢? = qlogy ¢ and I3 < log, K.
Summarizing,

degf}n—l:n—ll—lg>n—qlog2q—1oqu.
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Hence,

deg f n—qlo —log, K
qlest > gn—alogz a-log, K

and finally
—1 _ — log, K n—degf—qlog, q
(Yl =K=q > q ;

which finishes the proof of the lemma.

5 Deterministic algorithm

In this Section we prove Theorem 1.1. Let A be a fixed supernilpotent algebra of prime
power order ¢" and

p(T) = g(T) (4)

be a given equation over A. By Lemma 3.2 there exists a polynomial f over F, of degree
d < |A|'°8a™*1 and arity hn, where m is bound on arity of a basic operation of A, such that
£(F™) € {0,1} and the equation

fxf,...,2ah, .2l ) =1 (5)
has a solution iff equation (4) has a solution. We have even more, @ € A" is a solution of
equation (4) iff f(m(a1),...,mn(a1),...,m1(ay),...,m(a,)) = 1. Thus, it is enough to give
an algorithm solving equation f(z) = 1.

Our algorithm treats circuits as a black-box and checks the set S,, 5, C F;h of potential
solutions of polynomial size in n with the property that if equation (5) has a solution it has
a solution contained in S,,;,. The algorithm returns “yes” if it finds the solution in a hitting
set, and “no” otherwise. In the next paragraph we will show that such the set S,,;, exists for
every n and it can be computed in polynomial time. If f is a constant function, then the
algorithm obviously returns the proper answer for every non-empty set of potential solutions
as a hitting set. Hence, we can assume that f is not a constant function.

As every polynomial over F, also the polynomial f can be presented as a sum of pairwise
different monomials multiplied by nonzero constants from the field. Let ¢ be a monomial
taken from this presentation which contains the biggest number of different variables. From
the fact that the degree of f is bounded by d we have that ¢ depends on at most d variables.
Now consider the polynomial f’ formed by substituting variables not contained in ¢ by 0 € Fj,.
Note that f’ is not syntactically equal to any constant and hence it is not a constant function
as every polynomial function over a finite filed has a unique representation (modulo equations
2 = x for variables). Therefore, there exists a solution to the equation f'(Z) = 1. Such a
solution corresponds to a solution of equation (5) in which at most d variables are not equal
0. Hence, we obtain that equation (5) has a solution if it has a solution in which at most
d variables are not equal 0. There are O((¢"n)?) = O(n?) valuations of variables in which
at most d variables are different than 0. Thus, to check if equation (5) has a solution it is
enough to check O(n?) potential solutions and it can be done in time O(nk), where k is the
size of the circuit on the input.

It is worth noting, that the algorithm presented here does not compute the polynomial f
from Lemma 3.2. We can translate the hitting set for (5) to a hitting set for the original
equation over A. That is why we are not concerned with the time complexity of computing f.
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6 Randomized algorithm

In this section we will prove Theorem 1.2 which says that there exists a linear time Monte
Carlo algorithm solving CSAT for supernilpotent algebras. More precisely, we will prove that
if there exists a solution to the equation over a fixed supernilpotent algebra of prime power
order, then by checking random assignment of variables with uniform distribution we will
find the solution with probability at least ¢ for some ¢ > 0.

Let

P(r1, -5 &n) = (21, -, Tn)

be a given equation over supernilpotent algebra A of prime power order ¢". By Lemma 3.2
we get a function f which is an hn-ary polynomial over Fy, such that @ € A is a solution to
the above equation iff f(maq,...,mpa1,. .., M1y, ..., Tha,) = 1. Moreover, the degree of £
is bounded by a constant d which depends only on A.

Assume |[f71(1)| > 0. Now, by Lemma 1.4 as f is nh-ary we obtain that [f=1(1)| >

—1
qrh—desf—alogy ¢ > gnh—d—qlogza  Qhgerve that ‘f|A‘(,})‘7 the fraction of assignments of vari-

nh—d—glog
ables for which f is equal 1, is at least ¢ = qu# = ¢g—971°829 This bound does not
depend on f or n. Hence, the linear time randomized algorithm which picks the assignments
of variables with uniform distribution and checks if picked assignments are a solution to the

equation is a c-correct true-biased Monte Carlo algorithm solving CsSAT(A).

7 Conclusions

The main idea of the presented deterministic black-box algorithm correctness proof is
translating polynomials of a nilpotent algebra A of prime power order to polynomials over
F, of small degree d < |A['°8a™*1. This allowed us to create the hitting sets for CSAT(A)
by translating hitting sets for bounded degree polynomial equations over F,. It is worth
to emphasize that this reasoning works for any hitting set. This means that any black-box
algorithm for polynomials over F, of degree at most d translates to an algorithm solving
equations over supernilpotent algebras of prime power order. As each variable from A (in the
reduction from CSAT(A) to polynomial equations) is factored to at most log(|A|) variables,
the reduction does not affect the time complexity too much. For instance, if we have some
black-box algorithm for polynomial equations with hitting set of size O(n°), the same upper
bound holds for CsaT(A).

On the other hand it is easy to prove the dual theorem. For any polynomial equation
over F, of degree at most d = JAfsa there is a nilpotent algebra A of size ¢" and maximal
arity of basic operation m such that any black-box algorithm for the algebra A translates to
black box algorithm for solving equations over F, of degree at most d. To see it, we will
consider the following example.

» Example 7.1. For h,m € N, let A[h,m] = (An,+,p1,-..,Prn—1) be an algebra, such that:
(Ap,+) = ZZ;
Wipi(fﬂl, e ,xm) = H§:1 Ti+1T5
wipi(x1,. .., Tm) =0 for j #1

Note that by results of [7] the algebra A from Example 7.1 is supernilpotent and belongs

to a congruence modular variety. It is easy to see that every equation between polynomials
h—1 _ ml°salAl _ |A]loga™
=m 1 -

over F of degree bounded by d =m

can be easily translated into
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an equation over A. Moreover, the projections on the first coordinate of elements of any
hitting set for CSAT(A) is a hitting set for solving equations of polynomials over F, of degree
bounded by d.

In the light of above paragraphs, to obtain an efficient black-box algorithm solving CSAT
over supernilpotent algebras it is enough to produce a black-box algorithm for solving bounded
degree equations for polynomials over fields and translate it to the black-box algorithm
for supernilpotent algebras since any other black-box algorithm for supernilpotent algebras
cannot be much more efficient (in terms of the size of the algebra and the maximal arity of an
operation). So it seems that the right approach to find asymptotically optimal deterministic
algorithms for supernilpotent algebras is to find optimal algorithms for polynomials of
bounded degree.

There is a big disproportion between the computational complexity of deterministic and
probabilistic algorithms presented in this paper. Hence, it would not be surprising if there
was an effective derandomization of our Monte Carlo algorithm which would result in a new
fast deterministic algorithm solving CSAT. The results of this paper also imply, that there is
one probabilistic algorithm for all supernilpotent algebras that is probabilistic FPT in terms
of the algebras’ signature. It is a nontrivial result, because if we were allowed to present a
signature of a supernilpotent algebra on the input, such a problem would be NP-complete
(to prove it, we can use the construction of the algebra shown in Example 7.1 to encode
g-coloring).
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