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—— Abstract

We view languages of words over a product alphabet A x B as relations between words over A and

words over B. This leads to the notion of regular relations — relations given by a regular language.
We ask when it is possible to find regular uniformisations of regular relations. The answer depends
on the structure or shape of the underlying model: it is true e.g. for w-words, while false for words
over Z or for infinite trees.

In this paper we focus on countable orders. Our main result characterises, which countable
linear orders D have the property that every regular relation between words over D has a regular
uniformisation. As it turns out, the only obstacle for uniformisability is the one displayed in the
case of Z — non-trivial automorphisms of the given structure. Thus, we show that either all regular
relations over D have regular uniformisations, or there is a non-trivial automorphism of D and even
the simple relation of choice cannot be uniformised. Moreover, this dichotomy is effective.
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1 Introduction

There are many ways of interpreting the simple mathematical operation of projection
IIx: X xY — X. From the computer scientist’s perspective, we often use the intuition of
guessing that leads to the notion of non-determinism: the projection IIx (R) of a relation
R C X xY is the set of the elements x € X which admit at least one witness y € Y such
that (z,y) € R. In many cases this operation greatly increases the expressive power of the
considered machines (e.g. in the case of recursively enumerable sets), while in other cases

it does not (e.g. in the case of the class PSPACE). Also, the famous P Z NP problem asks
about the strength of projection.

One of the ways of dealing with the complexity of that operation is to provide a constructive
way of finding the witnesses y. This concept is formalised by the notion of a uniformisation:
F C R is a uniformisation of R if Ilx(F) = IIx(R) and for each x € I x(F) there is
a unique y € Y such that (x,y) € F — thus, F is the graph of a partial function. It is known
that in certain cases, if a relation admits a definable uniformisation then its projection is
also definable (e.g. when definable = Borel). This is one of the many reasons motivating the
question of uniformisation: which definable relations admit definable uniformisations?
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In this paper we work with the automata-theoretic notion of definability i.e. definability
in Monadic Second-Order logic (MSO) or equivalently: being a regular language. To speak
about relations between structures over two alphabets A and B; we encode them as languages
over the product alphabet A x B. In this context, the coarsest question of uniformisation
is well-understood: all regular relations admit regular uniformisations in the cases of finite
and infinite words as well as finite trees [10, 7, 9]; while the celebrated result of Gurevich
and Shelah [6, 1] shows that there are some regular relations over infinite trees that have no
regular uniformisation. From this perspective, the case of countable linear orders seems to
be simple, because already over bi-infinite words (words over Z) the relation “choose a single
position” has no regular uniformisation.

While some regular relations over specific structures (e.g. infinite trees) do not have
regular uniformisations, some others may have. Thus, when working with a specific relation
(possibly coming from some specification) or a specific shape of structures (e.g. countable
words of certain fixed domain), one would like to ask the question of uniformisation for this
particular case.

The aim of this paper is to approach this more fine-grained question of uniformisation in
one of the simplest non-trivial cases: given a representation of a countable linear order D,
decide if all regular relations between words of that domain admit regular uniformisations.
Thus, the answer for D = {0,...,9} or D = w should be YES, while the answer for D = Z
should be NO. Our hope is that understanding well the obstacles for uniformisability in this
case will later be useful in understanding the case of infinite trees — one can easily interpret
every countable linear order as a set of vertices in a tree.

Our main result states, that for representable domains D, the problem if all regular
relations over D have regular uniformisations is decidable. As it turns out, this question is
equivalent to the question whether there is a regular choice function over D, which in turn is
equivalent to the fact that D has no non-trivial automorphisms. This implies that the only
obstacle for uniformisability over countable domains is the one present in Z — automorphisms
of the structure.

This work is a part of a bigger project aiming at the questions of uniformisation. In partic-
ular, the recent paper [4] provides an effective characterisation, that given a regular relation
between bi-infinite words (i.e. words over Z), decides if that particular relation has a regular
uniformisation. In the present paper we answer a coarser question, asking about all relations
over a specific domain. These questions do not seem to be inter-reducible.

2 Background knowledge

An alphabet A is a finite non-empty set, and a domain D is a totally ordered set. In this
paper are of particular interest countable domains (in the sense finite or of the cardinality
of the set f§ of natural numbers). An element x € D is called a position of D. A subset
X C D is called conver if for every three positions z < y < z of D, if ,2z € X then also
y € X. Given two subsets X, Y C D, we write X < Y if for every pair z € X and y € Y we
have < y. Notice that X <Y implies that X N'Y = (). If two sets X, Y are known to be
disjoint, then we emphasise this fact by denoting their union as X LY. Given two positions
x,z € D, by [z, z] we denote the convex set {y € D |z <y < z}.

A word w over some alphabet A (or, more generally, over a set) is a function from
a domain, denoted Dom(w), to A. For a position x € D, the value w(x) € A is called the
label of z. The set of words over A with a domain D is denoted A” and the set of all words
over A for all countable domains is denoted A°. A language over A is any subset of A° or
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any subset of AP for a fixed domain D. Given a word w € AP and a non-empty convex
subset X C D, by w|y € AX we denote the restriction of w to the domain X. Moreover, we
will sometimes work with the singleton alphabet {.} and identify any word w € {.}° with its
domain D = Dom(w).

To deal with alphabets which are the products of two sets, we use the following special
notation: if a € A and b € B, then (‘;) is the product letter in A x B; and if w, o are

w

words over the same domain D and over A and B respectively, then (0) denotes the word

in (A x B)P such that for all s € D, (¥)(s) = (7;}((:)))

Let Dy and D5 be two domains, an isomorphism from Dy to Ds (or between D; and
D») is a bijective function ¢ which preserves the order, meaning that for all x < y € Dy,
v(z) < t(y). If wy and wy are two words over A, then an isomorphism from w; to ws (or
between w; and wsg) is an isomorphism ¢ from Dom(w;) to Dom(wsy) which additionally
preserves the labels: for all z € Dom(wy), wi(x) = we(t(x)). Two words or domains are said
isomorphic to each other if there exists an isomorphism between them. Isomorphic words
and domains will be sometimes identified in this paper. An automorphism of a word w (resp.
of a domain D) is an isomorphism from w (resp. D) to itself. An automorphism is called
non-trivial if it is not the identity function.

A word whose domain is finite is called a finite word. The set of all finite non-empty
words over A is denoted AT and A* = AT U {e} contains additionally the empty word e.
A word whose domain is isomorphic to the set w = {0,1,2...} of natural numbers is called
an w-word. Another important domain in the paper is the set w* = {...,—3,—-2,—1}.

Up to isomorphism, there exists a unique word w over A whose domain is countable and
without borders (i.e. without maximal nor minimal elements), and which is densely labelled
in the following sense: for all x < z € Dom(w) and a € A, there exists y € Dom(w) such
that z < y < z and w(y) = a. We call this word the perfect shuffle of A, and denote it A".
We often identify Dom(A") with Q, Q being, up to isomorphism, the only countable and
dense domain without borders.

If (w;)ier is an indexed family of words, I itself being a domain, then by ., w; we
denote the concatenation of the w;’s, defined as being the word w of domain | |, {(i,2) |
x; € Dom(w;)}, defined by w({i,x;)) = w;(x;) for each i € I and x; € Dom(w;). The
domain | |, {(i, ) | ©; € Dom(w;)} is totally ordered by (i,z;) < (j,y;) if i <j,ori=j
and x; < y; in Dom(w;).

We have special notations for some particular cases: wq - w; if I = {0,1}, and w* (resp.
w¥") if I = w (resp. w*) and all the w;’s are isomorphic to w. We write w”? for w® - w.
Similarly, we write w™ in the case I = {0,...,n—1} and all the w;’s are isomorphic to w.
Finally, if wo, ..., w,—1 are words over A then {w; | i € n}" denotes the word > _ .o wuy(
where u = {0,...,n — 1}"7, obtained as the perfect shuffle of the words w;.

q)»

A word w € A° is called finitary (some literature also uses the term regular) if it can be
constructed from single letters using a finite number of applications of the operations -, (.)*,

()¢, and (.)", see Section 4. It is easy to see that only countably many words are finitary.

As we identify words over the single-letter alphabet {.} with their domains, it also makes
sense to say that a domain is finitary. Notice that a non-finitary word may however have a
finitary domain: it is for example the case of the non-finitary word
is w. An example of a non-finitary domain is the countable ordinal w*, where here we treat
the operation (.) in the ordinal-theoretic sense.

a'b, whose domain
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o-semigroups

Similarly as semigroups provide an algebraic framework to recognise regular languages of finite
words [8], o-semigroups [2] allow to recognise languages of countable words. A o-semigroup
is a pair (S, 7) where S is a non-empty set and 7 is a function from S° to S, which satisfies
the following property of generalised associativity: for every family of words (w;);er C S°,
indexed by a countable domain I, we have

™ (Z w(wi)> =7 (Z wz> , (1)
icl il

where the left-hand side sum ranges over single letter words m(w;); and the right-hand side
sum is just the concatenation of all the words w;. We often identify a o-semigroup (S, )
with its set S.

To make a representation of a o-semigroup finite, one uses a concept of a o-algebra — a
quintuple (S, -, (.)7, ()7, (.)"), where (S, -) is a semigroup, (.)” and (.)”" are unary operations
over S, and (.)"*: P_ff_n(S) — S is called a shuffle operation, that assigns elements of S to all
finite non-empty subsets of S. We additionally require the above operations to satisfy certain
axioms, see [2, Definition 2]. Again, we often identity the o-algebra with the set S itself.

Each o-semigroup induces a o-algebra by defining s - t = m(st), s™ = w(s¥), s7 = mw(s*"),
and P* = w(P7), where s is treated as a single-letter word and st is a two-letter word. One of
the main results of [2], Theorem 11, states that every finite o-algebra is induced by a unique
o-semigroup — in other words, there is a unique way to define a product operation 7: S° — §
in a way satisfying (1) that is additionally consistent with the above equations.

Notice that the operation s, ((w;)icr) = > icr wi itself satisfies (1), and therefore (A°, 7x)
is a o-semigroup, which is called the free o-semigroup on A. It induces the free o-algebra
<Ao7 R (‘)w7 (')Uﬁ, ()77>

A homomorphism is a function between two algebraic structures that preserves all
their operations. We say that a language L of countable words over A is recognised by
a o-semigroup (S, 7) if there exists a homomorphism A from (A° 7s) to (S, ) such that
L =h"'(H) for some H C S (or equivalently such that L = h=1(h(L))).

A language L C A° is regular if it is recognised by some finite o-semigroup. For a fixed
domain D, a language L C AP is called regular over the domain D if L = AP N L’ for some
regular language L' C A°.

The following fact is an important consequence of the correspondence between o-semig-
roups and o-algebras. It implies that finitary words are distinctive for regular languages.

» Proposition 1 ([2, Theorem 13]). If L # () is regular then L contains a finitary word.

Monadic Second Order Logic

One of the classical ways of characterising general regular languages is expressed in terms of
logical definability. In this exposition we follow the ideas and notation from [5, Section 12].
Monadic Second-Order logic (MSO) is an extension of First-Order logic [3] by additional
monadic quantifiers 3X. ¢(X) and VX. ¥(X) that range over subsets of the domain. In this
work we are interested in words, treated as logical structures. Thus, given a word w € A°
with some domain D = Dom(w), we treat it as a relational structure with universe D, binary
relation < representing the order on D, and unary predicates a € A, such that a(x) if and
only if w(z) = a. This way it makes sense to ask if a given MSO sentence ¢ holds or is
satisfied over a word w. The language of a formula ¢ over an alphabet A, denoted L(p) C A°,
is the set of all words satisfying ¢.
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One can easily encode a formula ¢(Xo, ..., X, _1) over an alphabet A with free variables
Xo,...,Xn—1 as a sentence ¢ over the alphabet A x {0,1}", whose symbols should be seen
as characteristic functions of the parameters Xo,..., X, 1 (we can treat each first-order
variable as a second-order variable evaluated in a singleton set).

» Remark 2. If w; and ws are two isomorphic words and ¢ is an MSO-sentence, then
wy € L(yp) if and only if we € L(y).

» Theorem 3 ([2, Theorems 28 and 31]). A language L C A° is regular if and only if there
exists an MSO-sentence ¢ such that L(p) = L. Moreover, there exist effective translations
between: a finite o-algebra recognising L and an MSO-sentence whose language is L.

Uniformisation and choice

Given two sets X and Y, a relation R C X x Y is functional if for every z in the projection
IIx (R) of R onto X, there exists a unique y € Y such that (z,y) € R. We say that F C X xY
is a uniformisation of RC X x Y if F C R; lIx(F) = IIx(R); and F is functional. Thus,
a uniformisation is a way of choosing a single witness y € Y for each x € IIx(R) in such
a way that (z,y) € R.

Fix two alphabets A and B. We say that a relation R C A° x B° is synchronised if
for each (w,0) € R we have Dom(w) = Dom(c). Each synchronised relation R can be
identified with a language Lr = {(%) | (w,0) € R} C (A x B)° over the product alphabet
A x B. A synchronised relation is regular if so is the language Lr. Analogously, a relation
R C AP x BP is regular over a domain D if Lg is a regular language over D.

The crucial question of this paper asks, which regular relations R C A° x B° admit
uniformisations ' C R which are also regular. In other words, we seek for a regular (or
MSO-definable) way to pick, for each word w € T14-(R), a single word ¢ € BP™®) such
that (w,0) € R.

One of the simplest instances of the uniformisation question is the one when R is the
membership relation: both alphabets A and B are {0,1}, and the relation R requires
that the letter (%) appears exactly once, while the letter ((1’) does not appear at all. In
other words, R corresponds to the language Lr = L(@member) C ({0, 1}2)O of the formula
“member (X, y) =y € X. To find a regular uniformisation of R boils down to define a regular
choice function: a regular relation that selects a single element y from every non-empty set
X C Dom(w) of positions of a given word w.

Classical results [10, 7, 9] show that regular relations always admit regular uniformisations
in the following two cases.

» Theorem 4. Ewvery reqular relation between finite words R C At x BT, or w-words
R C A¥ x BY effectively admits a regular uniformisation.

However, over the domain Z there does not even exist any regular choice function. Indeed,
the domain admits automorphisms y — y+n for each n € Z, and therefore all the positions

look the same and we cannot define in a regular way a unique position for the full domain Z.

The above observations motivate the following question: given a domain D, decide if
all regular relations over the domain D admit regular uniformisations over D. If it is the
case then we say that D has the regular uniformisation property, or, more simply, the
uniformisation property.
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3 Main result

The main result of this work provides an effective characterisation for the question when
a given finitary domain D has the uniformisation property.

» Theorem 5. Let D be a finitary domain. The following conditions are equivalent:

i) D admits a regular choice function;

ii) D has the uniformisation property;

iii) D does not admit a non-trivial automorphism;

iv) D does not have any convex subset isomorphic to I*, i.e. 7 consecutive copies of I,

generally denoted I x Z in the literature, for any non-empty domain 1.

Moreover, Ttems i) and ii) are effective: given a representation of D one can either compute
a choice function and a procedure for constructing reqular uniformisations; or return NO
meaning that the above conditions fail for D.

The above statement is expressed in terms of a given finitary domain D and relations over
it. However, the presented techniques apply equally well to a given finitary word w € A° and
regular relations R C BP x C'P definable over w — such a relation is given by a regular language
Lg over the domain D and the alphabet A x B x C, by R = {(u, o) € BPom(®) x gPom(w) |
(z) € Lgr}. In that case, the regular relations over the word w = a*” - b do admit regular
uniformisations, because w does not have any non-trivial automorphism. On the other
hand, the word w = (ab)? from Figure 1 below admits many non-trivial automorphisms and
therefore violates the above conditions. For the sake of notational simplicity, most of the
proof is given in terms of domains D, i.e. words over {.}.

We would like to emphasise that the above result does not hold for non-finitary finitary
domains. A counterexample is the domain D = w* (again (.)¥ here is treated in the
ordinal-theoretic sense): it is an ordinal and therefore satisfies Items 4, #i¢, and iv, but it does
not have the regular uniformisation property, as it was proved by Lifsches and Shelah in [7].

Certain implications of the above theorem are straightforward. A regular choice function is
a special case of a uniformisation question, so Item ii) implies Item i). Also, Items iii) and iv)
are easily equivalent, because if t: D — D is an automorphism such that ¢(zg) # xg then
the set {t¥(20) | k € Z} is order-isomorphic to Z. Moreover, any non-trivial automorphism
can be used to disprove the existence of a regular choice function, so Item i) implies iii).
Therefore, the only missing part of the proof is the implication i) = i) and the effectiveness
of these constructions.

The following remark follows from the fact that for every finite set A, the word A" is
isomorphic to (A”)Z. In the particular case of A being the singleton alphabet {.}, it boils
down to the fact that Q is isomorphic to Q x Z, i.e. Z copies of Q.

*

» Remark 6. If the construction of D in the o-algebra ({.}°,-, ()¢, (\)* ,(.)") involves any
application of the operation (.)” then necessarily D does not satisfy Item iv).

Therefore, for the rest of the construction we can assume that D is scattered, i.e. it is
constructed from the symbol . using only the operations -, (.)¢, and (.)* in {-}°.

The proof of the implication #ii) = %) is based on a concept of tree decompositions
of D. Such a tree decomposition is an MSO-definable object that represents a possible
way how to obtain D as an evaluation of a fixed term in <{.}°7 o ()Y, (.)“’*>. Proposition 8
shows that there is a bijection between tree decompositions of D and automorphisms of D.
Therefore, under the assumption of Item iii), there is a unique tree decomposition of D
that corresponds to the identity automorphism of D. Based on that decomposition, one can
effectively construct regular uniformisation of any given regular relation over the domain D.
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Additionally, due to MSO definability of tree decompositions (see Proposition 10 below),
there exists a fixed MSO sentence unique that expresses that a given domain D admits
exactly one tree decomposition. Therefore, Item iii) holds if and only if D satisfies ¥unique;
which can be effectively checked.

4 Trees and terms

This section introduces the concepts of ranked trees that represent the way how a finitary
scattered word w € A° is obtained from single letters via the operations -, (.), and (.)*".
These concepts are later used to define tree decompositions.

A ranked set is a finite set of ranked symbols, where each ranked symbol ¢ has its arity
ar(¢) C Z — a (possibly empty) convex set of integers. If ar(¢) = () then we call £ nullary; if
ar(¢) = {0} then ¢ is unary; and if ar(¢) = {0, 1} then ¢ is binary.

A ranked tree over a fixed ranked set is defined inductively: if £ is a ranked symbol
and (t;);er for I = ar({) is a family of ranked trees indexed by the arity of ¢ then there
exists a ranked tree that is denoted £[(t;);cr]. We use the following notations for the tree
[(ti)icar(e)]: £]] when £ is nullary; £[to] when £ is unary; and £[to,?;] when £ is binary.

Each ranked tree t = /[(t;)ics] can be seen as a structure consisting of the set of
nodes nodes(t) (formally elements of Z* — finite sequences of integers), defined inductively:
nodes(t) = {e} UJ;c;{iv | v € nodes(t;)}. The node v = € is called the root of ¢; the nodes
i for i € I are called children of v; and v is the father of each of its children iv. A leaf is
a node that has no children — it must be labelled by a nullary symbol. By leafs(¢) we denote
the set of all leafs of ¢.

Each node v of t indicates a subtree of ¢: € indicates ¢ and a node of the form iv indicates
the subtree of ¢; indicated by v. The transitive reflexive closure of the father-child relation is
the prefix order < on nodes(t) C Z*. Additionally, the set of nodes of ¢ is ordered by the
lexicographic order <joy in Z*.

We will work with two ranked sets for each fixed alphabet A. The first, corresponds to
the operations of a o-algebra: AU {(.), (xw), (xw*)}, where each symbol a € A is nullary, (.)

is binary, and (xw), (xw*) are unary. A ranked tree over this ranked set is called a term.
Notice that the arities of this ranked set are finite and therefore each term is a finite object.

Our second ranked set represents actual decompositions of a given countable word over
an alphabet A. Its symbols are AU {(+), (Zw), (Su+)}, where again each symbol a € A is
nullary, (+) is binary, ar((s,)) = w, and ar((£,+)) = w* — the arity of the last two symbols is

infinite. A ranked tree over this ranked set is called a condensation tree (see [2, Definition 7]).

The operations of a o-algebra provide a natural way of obtaining a condensation
tree (denoted tree(r)) from a term 7, that is defined inductively: tree(a[]) is a[] (for
a € A); tree((-)[r0,71]) is (+)[tree(ro), tree(r1)]; tree((xw)[ro]) is (Su)[(tree(ro))icw]; and
tree((xw*)[7o]) is (Sw+)[(tree(To))icw+]-

For an example of the above construction, see Figure 1. Notice that each node v of tree(r)
is obtained from a particular node of 7: the a[] node is obtained from the respective a[] node
in 7, similarly (+) is obtained from (.), () from (xw), and (S ) from (xw*).

Given a condensation tree ¢, by word(t) we denote the word whose domain is leafs(t)
ordered by <jex and labelled as follows: consider a position v € leafs(t) of word(t), v has to
indicate a subtree of ¢ of the form a[] with a € A, then v is labelled by a in word(t).

The above definitions are constructed in such a way, that for each term 7, the word w
obtained by evaluating 7 in the free o-algebra is isomorphic with the word word(tree(7)),
which we simply write word(7). This allows us to formally define finitary words as those of
the form word(7) for a term 7.
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7N
v (.) (.) % (+l)
/N /N eRan sad

a b a b

(

w = word(t)

Figure 1 A term 7 = () [(m) [Olall, bl1], (<) [(al], b[]”, the tree ¢ = tree(r), and the word

w = word(t). Additionally, for v being the left (-) node of 7, the condensation C, of w from the
canonical tree decomposition Zg is marked by dashed intervals, its pieces are sub-words ab produced
by the (xw*) sub-term.

» Remark 7. Given: a finitary word w = word(7) (represented as a term 7); a finite o-algebra
S (represented explicitly by tables of its operations) and a homomorphism h: A° — S
(represented by the values h(s) € S for a € A); one can effectively compute the value
h(w) € S. In particular, for every regular language L C A° (given either by a homomorphism
to a finite o-algebra or by an MSO sentence and using [2, Theorem 27]), the membership
problem word(7) € L with input 7 is decidable.

Tree decompositions

Fix a term 7 and consider a word w € A°. In this section we define a concept of a tree
decomposition with shape 7 of w. Intuitively, such a tree decomposition (if it exists) provides
a way of aligning w with leafs(tree(7)), i.e. encodes an isomorphism between w and word (7).

This construction follows some ideas from [2, Section 5], using the concept of condensations.
A condensation' C on a word w is an equivalence relation on a non-empty subset of Dom(w)
(which is denoted Dom(C)) such that every equivalence class of C' is a convex set, i.e. if
x <y <z, xand z belong to Dom(C), and (z, z) € C then y also belongs to Dom(C) and
(z,9), (y,z) € C. An equivalence class K of C is called a piece of C.

A tree decomposition with shape 7 is a family Z = (Cy)yenodes(r) Of condensations on w
indexed by the nodes of 7, that additionally satisfies the following conditions. First, if v is
a node of 7 that is not a leaf and (v;);es are the children of v (in fact I equals {0} or {0,1})
then

Dom(C,) = | | Dom(C.,); (2)
iel

the union taken above must be disjoint; and for each i € I each piece of C,, must be contained

in a single piece of C,. Moreover, the following inductive conditions must hold.

1. If v € nodes(7) is the root of 7 then Dom(C,) = Dom(w) and C, has a single piece
consisting of the whole domain Dom(w), i.e. Cy = Dom(w)? is the full relation.

2. If v € nodes(7) is a binary node labelled by (.) with two children vy <jex v1 then for every
piece K of C,, we have that:

L For technical reasons we consider condensations with arbitrary domains — possibly different than the
whole domain of a given word.
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for each i € {0, 1}, there is a single piece K; of C,, that is contained in K,
and Ky < K7 with Kg U K, = K.
3. If v € nodes(7) is a unary node labelled by (xw) with a single child vy then for every
piece K of C), we have that:
the set of pieces of C,, that are contained in K is of the form {K,, | n € N}, with
Ko< K1 <Ky <...and |—|nENKn =K.
4. If v € nodes(7) is a unary node labelled by (xw*) with a single child vy then for every
piece K of C, we have that:
the set of pieces of C,,, that are contained in K is of the form {K_,, | n € N\ {0}},
with
o< K 3< K 9 < K_qand I—lnGN\{O} K_, =K.
5. If v € nodes(7) is a leaf of 7 labelled by a € A then every piece of C, must be
a singleton {z} such that w(z) = a.

Our aim now is the following proposition.

» Proposition 8. Fiz a term 7 and a word w € A°. There exists a bijection = — 1(E)
between tree decompositions Z with shape T of w and isomorphisms t(Z): w — word(T).

Before moving to its proof, we argue that tree decompositions with shape 7 of a word w
can be represented in MSO over w.
Representing tree decompositions in MSO

We begin by providing a representation in MSO over a word w of condensations C. First, if
X C D is any set, then it induces a symmetric relation = ~x y on positions x,y € D, such
that for z < y we have x ~x y if [z,y] C D and either [z,3] C X or [z,y] N X = 0. Tt is

easy to check that for each set X, the above relation is a condensation, see [2, Lemma 34].

Now, a condensation C' can be represented as a pair of sets (D, X) such that D = Dom/(C);
X C D; and z,y € D are in the same piece of C' if and only if x ~x y.

» Lemma 9 ([2, Lemma 34]). Every condensation C admits a representation (D,X) as
above. Fach pair (D, X) with X C D # ) represents some condensation.

Notice that two pairs (D, X) and (D', X') represent the same condensation if and only if

D = D’ and for every pair z,y € D we have x ~x y < = ~x/ ¥, (3)

which provides an MSO definition of equality of condensations based on their representations.

» Proposition 10. Take a term 7. There exists an MSO formula 1rp (- ((Dv7 Xv)venodes(ﬂ)
that holds over a word w and sets (D”’Xv)venodcs(r) if and only if for every v € nodes(T)
the pair (D,, X,) represents a condensation C,, and these condensations (Cu)venodes(r) form
a tree decomposition with shape T of w.

The construction of this formula mostly follows literally the requirements above. Item 3
(and symmetrically Ttem 4) is expressed by guessing a set Y containing one element from
each piece K, and requiring that Y is of order type w.

A condensation C' of a word w is formally a subset of Dom(w)®. This means that if
v: Dom(w) — Dom(w') is an isomorphism between two words, then t(C) = {(u(z), t(y)) |
(z,y) € C} is a condensation of w’. Moreover, if (D, X) represents C' then (¢(D), (X))
represents ¢(C'). Therefore, Remark 2 and Proposition 10 imply the following corollary.

69:9

MFCS 2020



69:10

Regular Choice Functions and Uniformisations For countable Domains

» Corollary 11. If .: Dom(w) — Dom(w') is an isomorphism and = = (Cy)yenodes(r) 5
a tree decomposition with shape T of w then (L(C”))venodes(ﬂ is a tree decomposition with

shape T of w'.

From tree decompositions to isomorphisms

We will now show how to define an isomorphism ¢(Z) based on a tree decomposition =.

» Lemma 12. Let Z = (C,)yenodes(r) be a tree decomposition with shape T of a word w.
Consider a node v € nodes(t) of 7 that indicates a sub-term 7'. Let K be a piece of C,.
Then there exists an isomorphism 1(E), g between w|g and word(r’).

This lemma is proved by induction. For v being a leaf of tree(7) each piece of C, is
a singleton, so the isomorphism is obvious. For other v one constructs ¢(=Z), x by merging
the isomorphisms ¢(Z),/ ks for v’ being the children of v in tree(r). By ¢(E) we denote the

—_

. . . — def
above isomorphism for the root € of 7, i.e. L(Z) = L(Z)e, Dom (w)-

» Lemma 13. If 2 = (C,)yenodes(r) and E = (C)yenodes(r) are two distinct tree decompos-
itions of a word w, both with shape T, then the isomorphisms +(Z) and «(Z') are distinct.

This proof is a simple analysis of the definition of ¢(Z).

From isomorphisms to tree decompositions

Now we provide the opposite transformation: from an isomorphism to a tree decomposition.

» Lemma 14. There exists a canonical tree decomposition =y with shape T of the word
word(7). Moreover, t(Z9) = id pom(w)-

This tree decomposition is defined as follows. Take v € nodes(7) and recall that each
node of tree(r) is obtained from a unique node of 7, in the sense of the definition on page 7.
For a pair of leaves z, y of tree(r) we let (z,y) € C, if v’ <X z and v =< y for some
u’ € nodes(tree(7)) that is obtained from v. It is easy to check that there is at most one such
u' as above and C, defined that way is in fact an equivalence relation and ¢(Zo) = id pop(w)-

» Lemma 15. Fiz a term 7 and let 1o be an isomorphism between a word w € A° and
word(7). Then there exists a tree decomposition E with shape T of w such that () = 1.

Proof. Let Z9 = (Cy)yenodes(r) be the canonical tree decomposition of word(r). Define
== (Lal(cv))vEnodes(T)' By Corollary 11 we know that E is a tree decomposition of w. We
claim that ¢(Z) = 1. By the construction in Lemma 12, we know that +(Z) = g 0 t(Z) and
the latter equals id pom (word(r))- Thus, ¢(Z) = ¢o. <

This concludes the proof of Proposition 8: the function = +— ¢(Z) is an injection by
Lemma 13 and it is a surjection by Lemma 15.

» Proposition 16. Item iii) of Theorem 5 is decidable for a finitary domain D given by
a term T over the singleton alphabet {.}.

Proof. Assume that a term 7 is given. Compute the MSO formula rp(+)(Cy)venodes(r)
from Proposition 10. Let ¢ express that there exists a unique tuple (Cv)venodes(ﬂ satisfying
1/JTD(T)(Cv)venodes(r) — we represent condensations C,, using pairs (D,, X,) as in Lemma 9
and use (3) to test them for equality. Apply Remark 7 to test if D = word(7) satisfies .
Proposition 8 implies that it is the case if and only if Item iii) of Theorem 5 holds. |

» Corollary 17. If a domain D is finitary then the language of all words w such that Dom(w)
is isomorphic to D is regular.
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5 Uniformisations based on tree decompositions

In this section we show how to use a fixed tree decomposition = of a given finitary domain D

to uniformise every regular relation over D. By Proposition 8, Item iii) of Theorem 5 implies

the existence of a unique such tree decomposition =, which implies Item ii) of Theorem 5.
Fix a finitary domain D = word(r) for a term 7 over the alphabet {.}. Let =

(Cu)venodes(r) be a fixed tree decomposition of D, represented in MSO by (D, X4 )venodes(r)-

Consider a regular synchronised relation R C A° x B° that is identified with a regular
language Lr C (A x B)°. Our aim is to construct, using Z, a regular uniformisation of R
over D.

Let h: (A x B)° — S recognising the language Lr with Lr = h™!(H). Apply the
construction from [2, Lemma 29] to compute the powerset o-algebra P(S) with the powerset
homomorphism P(h): A° — P(S), defined on the letters a € A by P(h ={n((%))|be
B}. The construction of P(S) is designed in such a way that for every word w € A° we have

w)={h((¥)) |oc e BP™ ) and wu € M4e(R) <= P(h)(u) N H # 0. (4)

Notice that if 0,0’ € BP are two words such that for every position v € D we have

h((zj((;’)) ) = h((:}((”)) )) then (w,0) € R < (w,0’) € R. Thus, to uniformise R it is enough

to choose, given a word w € A°, for each position v € D a type s, € S in such a way that
sy € P(h)(w(v)) and w((sv)vep) € H. This is summarised in the following lemma.

» Lemma 18. If for every s € S there exists a regular uniformisation over D of the following
relation denoted R,

{(w,0) € P(5)° x 5° | 7(c) = s A Dom(w) = Dom(c) A Vv € Dom(w). o(v) € w(v)}
then R also admits a reqular uniformisation over D.

When the o-algebra S is minimal in a certain sense and one restricts in P(S) to the range

of P(h) then the reciprocal of the above lemma is also true but we do not use this fact here.

From now on we work with the relations R;’s. First notice that these relations are regular

themselves: the requirement that 7(o) = s falls into the definition of a regular language,

while the condition that Yv € Dom(w). o(v) € w(v) is essentially an MSO sentence.
The existence of the fixed tree condensation = of the domain D provides an automorphism

between D and leafs(tree(r)). Therefore, up to =, we can treat w as a word over leafs(tree(7)).
Also, by (4) it is enough to construct a regular uniformisation of Ry for each s € S separately.

We will now sketch an inductive construction of a uniformisation of R, over D based on
the structure of tree(7) using the concept of evaluation trees. Later we will argue, that this
construction can be performed in MSO over w based purely on =.

» Definition 19 ([2, Definition 7]). Let h: A° — S be a homomorphism into a o-monoid, T
be a term over the alphabet {.}, and D = word(7). Consider a word w € AP. An evaluation

tree of w is a labelling \ of the nodes of the condensation tree tree(r) by elements of S,

defined inductively by:
A(v) = h(w(v)), where v is a leaf of tree(r) (indicating a subtree of the form .[]),
A(H)[tos t1]) = 7(Ato)A(t1)) = Alto) - A(t1),
Al ed) = )
AM(zw)[(t)iew]) = 7(- - Alt=3) 1))-
Equivalently, one can say that A(v ) is gwen by h(w(v)) in the leaves of tree(r) and if v is
not a leaf and has children (v;);cr then A(v) = m(A(v;)icr).
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Notice that although D is finitary, w € AP might not be finitary — this explains why we
need to use the operation 7 instead of (.) and (.)*". The above definition guarantees the
following invariant for a node v of tree(7) and X = {u € leafs(tree(r)) | v < u}

Aw) = h(wly). (5)

In particular, A\(e) = h(w) and each word has a unique evaluation tree.

Uniformisation

Consider any element s € S and apply Theorem 4 to obtain regular uniformisations of Ry over
the domains {0, 1}, w, and w*. Denote these uniformisations F» s, F,, s, and F,» 5. We will
use these uniformisations to choose types in the nodes of tree(7), producing a uniformisation
Fy, of Ry, over D.

Recall that D = leafs(tree(r)) and let w € P(S)P and o € SP. Let A be the unique eval-
uation tree of (%) in the o-semigroup P(S) x S with respect to the identity homomorphism.

Let (w,0) € Fs, if the following conditions hold. First, for every v € D we must have
o(v) € w(v). Second, for v = € (i.e. the root of tree(r)) we must have A\(v) = (T, s) with
s = sg. Finally, consider any node v € nodes(tree(r)) that is not a leaf, let A(v) = (T, s), and
assume that (v;);e; are the children of v in tree(r). Let (/) = (A(v:)),, be the word over
P(S) x S obtained by taking the A-values of the children of v. Then we must have that if v
is labelled by (+) (resp. (xw) or (xw*)), then (w’,0’) belongs to Fy s (resp. Fi, s or Fi» ).

» Lemma 20. For every sg € S the relation Fy, is a uniformisation over D of Ry, .

A proof of this lemma is based on induction over tree(r) and repetitive usage of the fact
that the relations F5 4, Fy, s, and F,« s are uniformised.

» Lemma 21. For each s € S the relation Fy is reqular with parameter Z: there exists
an MSO-formula . ((Dy, Xy)venodes(r)) over the alphabet P(S) xS which holds over a given
word (”;‘,’) with parameters (Dy, Xy)yenodes(r) of and only if (Dy, Xy)penodes(r) represents
a tree decomposition Z with shape T of w and (w,c) € Fs where the relation Fy is defined as
above based on =.

The construction is based on the fact that the tree decomposition Z provides a way to
MSO-encode the structure of tree(r) over the given word w. This makes the definition of Fj
definable in MSO over (w, o).

This concludes the proof of the implication ii) = ii) of Theorem 5: if there is a unique
automorphism of w then there is a unique tree decomposition =y of w that can be fixed in
MSO using the formula ¢rp(,) from Proposition 10.

6 Conclusions

The main result of this work shows that in the case of countable domains, the only obstacle
for regular uniformisations are non-trivial automorphisms. This provides a very clean picture:
given a domain D, either all regular relations over D have regular uniformisations, or already
the simple relation of choice over D has no regular uniformisation because the domain D
admits shifts (non-trivial automorphisms).

The techniques involved in the proof of this result are based mainly on the tools developed
in [2] to study the algebraic structure of regular languages of countable words. However, one
needs to carefully merge tools coming from logic and algebra to actually construct regular
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uniformisations under the assumption of lack of shifts. This is achieved by showing that in

the considered setup, one can encode evaluation trees from [2] within MSO. That approach

differs from the one taken in [2] when moving from algebra to logic, because there the shape

of the domain of the word is unknown.

A possible next step on our way of understanding uniformisability is to generalise the

present result with that of [4]: given a particular relation R over countable words, decide if

R admits a regular uniformisation. To achieve that, one should understand how to merge
the techniques of [4] that analyse the case of words over Z; with the above results clarifying
the situation under the assumption of “no interval of the form I x Z”.
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