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Abstract
We consider a scheduling problem on unrelated machines with precedence constraints. There are m

unrelated machines and n jobs and every job has to be processed non-preemptively in some machine.
Moreover, jobs have precedence constraints; specifically, a precedence constraint j ≺ j′ requires that
job j′ can only be started whenever job j has been completed. The objective is to minimize the
total completion time.

The problem has been widely studied in more restricted machine environments such as identical
or related machines. However, for unrelated machines, much less is known. In the paper, we
study the problem where the precedence constraints form a forest of arborescences. We present
a O
(
(log n)2/(log log n)3)-approximation algorithm – that improves the best-known guarantee of

O
(
(log n)2/ log log n

)
due to Kumar et al. [12] a decade ago. The analysis relies on a dual-fitting

method in analyzing the Lagrangian function of non-convex programs.
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1 Introduction

In this paper, we consider a classic scheduling problem on unrelated machines with precedence
constraints. There are m unrelated machines and n jobs. Each job j has a processing time
pij if it is processed on machine i. A job must be executed non-preemptively in some machine
i (i.e., in an interval of length pij in machine i). Jobs have precedence constraints which are
represented by a partial order ≺. Specifically, a dependence constraint j ≺ j′ requires that
job j′ can only be started whenever job j has been completed. Hence, we need to assign jobs
to machines and process them in some order consistent with the precedence constraints. The
objective is to minimize the total completion time, i.e.,

∑
j Cj where Cj is the completion

time of job j. In the standard three field notion, the problem is denoted as R|prec|
∑
j Cj .

The weighted version of this problem is a similar one where additionally jobs have
weights and the objective is to minimize the total weighted completion time, denoted as
R|prec|

∑
j wjCj . Little is known for both problems R|prec|

∑
j Cj and R|prec|

∑
j wjCj in

the unrelated machine environments. However, the problem has been widely considered
in more restricted machine environments such as identical parallel machines or related
parallel machines. The problem P |prec|

∑
j wjCj corresponding to the setting of identical

machines (pij = pj ∀i) has been extensively studied. Many algorithms and techniques have
been designed for the latter over decades [13, 9, 4, 16, 6, 10, 5, 2, 19, 18]. The problem
P |prec|

∑
j wjCj has been revived with significant progresses recently. Li [15] provided a

(2 + 2 ln 2 + ε)-approximation by a subtle rounding based on a time-index LP. Later on, Garg
et al. [8] gave a (2 + ε)-approximation algorithm when the number of machines is a constant.
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Their result relies on a lift and project approach developed by Levey and Rothvoss [14] and
Garg [7]. This approximation ratio matches to the lower bound of 2 proved by Bansal and
Khot [2] assuming a variant of the Unique Game Conjecture.

In the more general setting of related machines (in which pij = pj/si where si is the speed
of machine i), the corresponding problem Q|prec|

∑
j wjCj does not admit any constant

approximation assuming a (stronger) variant of the Unique Game Conjecture [3]. On the
positive side, Chudak and Shmoys [6] showed an O(logm)-approximation algorithm. This
approximation ratio remained the best known upper bound until recently Li [15] gave an
improved O(logm/ log logm)-approximation algorithm.

Despite progress in more restricted machine environments, there is still a large gap in
the understanding of the problems R|prec|

∑
j Cj and R|prec|

∑
j wjCj . When the preced-

ence constraints are a collection of node-disjoint chains, the problems become the job shop
scheduling problems [17, 11] – again a classic problem with a long history. A particular
interesting case of the problem R|prec|

∑
j wjCj is the setting where the precedence con-

straints form a forest (i.e., the underlying undirected graph of the constraints is a forest),
denoted as R|forest|

∑
j wjCj . This problem is motivated by several applications such as

evaluating large expression-trees and tree-shaped parallel processes. Kumar et al. [12] gave
an O

(
log3 n/(log logn)2)-approximation algorithm for R|forest|

∑
j wjCj . When the forests

are out-trees or in-trees, the approximation ratio can be improved to O
(
log2 n/ log logn

)
.

It has remained the best-known result for a decade until now in both unweighted job and
weighted job settings.

1.1 Our contribution and approach
We study the special setting of R|prec|

∑
j Cj where the precedence constraints form a forest

of arborescences/out-trees. (An arborescence/out-tree is a directed acyclic graph where the
in-degree of every vertex is at most 1.) We denote the problem by R|arborescences|

∑
j Cj .

The main result of the paper is the following.

I Theorem. There exists an O
(
(logn)2/(log logn)3)-approximation algorithm for the prob-

lem R|arborescences|
∑
j Cj where n is the number of jobs.

Approach. In our approach, instead of directly dealing with the problem
R|arborescences|

∑
j Cj , we consider first a related problem in the speed-scaling model.

In the latter, machines can execute jobs with different speeds and that consumes energy. The
objective of the new problem is to minimize the total completion time plus energy (under
the same precedence constraints). Intuitively, this problem can be considered as a smooth
and relaxed version of the original problem where the energy plays the role of a regularizer.
More specifically, in the original problem, at any time every machine either executes some
job or do not execute any job; these cases correspond to the speed of 1 or 0, respectively. In
the related problem, one is allowed to choose an arbitrary (non-negative) speed. Moreover,
the role of the energy function is to prevent the speed from being chosen too high or too low
– both situations would lead to a large approximation ratio when converting a solution of the
related speed-scaling problem to that of the original one. (Low speed results in a large total
completion time whereas high speed yields a large factor in order to convert that speed to 0-1
speed.) Finally, given a solution for the problem of minimizing the total completion time plus
energy, we show that one can transform that solution to a feasible schedule of the problem
R|arborescences|

∑
j Cj with some reasonable loss factor depending on the energy function.

In the paper, we choose the energy function of the form zα where α = Θ(logn/ log logn) in
order to minime the loss.
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Following the strategy described above, we focus on the design of an algorithm for the
problem of minimizing the total completion time plus energy and analyze its performance by
using tools in mathematical programming. In previous works on scheduling under precedence
constraints, the most successful techniques are LP-based roundings [15, 12] or lift-and-
project methods [7, 8]. In this paper, we take a different approach that relies non-convex
mixed-integer formulations and weak duality presented in [20]. With this approach, we
can construct a formulation that is convenient for the design and analysis of our algorithm
since the formulation does not need to be either linear or convex. Moreover, one can work
directly with integral variables without relaxing them, so avoiding serious integrality gap
issue. Specifically, we consider a non-convex formulation for the problem of minimizing
the total completion time plus energy and analyze the corresponding Lagrangian function,
using the dual-fitting method, in order to bound the dual. The approach allows us to prove
an approximation guarantee. That algorithm subsequently is used to derive the improved
O
(
(logn)2/(log logn)3)-approximation algorithm for the problem R|arborescences|

∑
j Cj .

2 Preliminaries

Given a set of n jobs, the precedence contraints ≺ can be represented succinctly by a directed
dependence graph. In this graph, there are n vertices, each represents a job, and there
is an arc (j, j′) if j ≺ j′. Note that if in the graph there is a directed path j1, j2, . . . , jk
and an arc (j1, jk) then one can simply remove the arc (j1, jk) in the graph while always
maintaining the job dependences. In the paper, we consider dependence graph as a collection
of arborescences. An arborescence is a directed acyclic graph where the in-degree of every
vertex is at most 1. The problem, as defined earlier, is to schedule jobs on unrelated machines
in order to minimize the total completion time under the arborescence constraints, i.e.,
R|arborescences|

∑
j Cj .

Total Completion Time plus Energy. In order to design algorithm for the problem
R|arborescences|

∑
j Cj , we study the following related problem in the speed-scaling model.

In the problem, there are m unrelated machines and n jobs. An algorithm can choose speeds
si(t) for every machine i at every time t in order to execute jobs. That incurs the total
energy of

∫∞
0 si(t)αdt where α ≥ 2 is a fixed parameter. Each job j has a volume pij if it

is executed on machine i. A job can be processed preemptively in a machine but without
migration, i.e., every job must be assigned to some single machine. A job j assigned to some
machine i is completed at time Cj if the total volume executed by machine i on this job up to
time Cj is equal to pij . Moreover, jobs have precedence constraints ≺ which are represented
by a collections of arborescences. A job j cannot be executed before the completion of
every job j′ where j′ ≺ j. In this problem, an algorithm needs to assign jobs to machines,
decide the running speeds and execute jobs in some order consistent with the precedence
constraints. The objective is to minimize the total completion time plus energy, which is∑
j Cj +

∑
i

∫∞
0 si(t)αdt. In the paper, we first design an algorithm for this problem and

subsequently derive an algorithm for the problem R|arborescences|
∑
j Cj .

Weak Duality. A property of mathematical programming, which holds for non-convex
optimization and is crucial in our analysis, is the weak duality, stated as follows. For
completeness, we incorporate also its (short) proof.

MFCS 2020
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I Lemma 1 (Weak duality). Consider a possibly non-convex optimization problem p∗ :=
minx f0(x) : fi(x) ≤ 0, i = 1, . . . ,m where fi : Rn → R for 0 ≤ i ≤ m. Let X
be the feasible set of x. Let L : Rn × Rm → R be the Lagrangian function L(x, λ) =
f0(x) +

∑m
i=1 λifi(x). Define d∗ = maxλ≥0 minx∈X L(x, λ) where λ ≥ 0 means λ ∈ Rm+ .

Then p∗ ≥ d∗.

Proof. We observe that, for every feasible x ∈ X , and every λ ≥ 0, f0(x) is bounded below
by L(x, λ):

∀x ∈ X , ∀λ ≥ 0 : f0(x) ≥ L(x, λ)

Define a function g : Rm → R such that

g(λ) := min
z
L(z, λ) = min

z
f0(z) +

m∑
i=1

λifi(z)

As g is defined as a point-wise minimum, it is a concave function.
We have, for any x and λ, L(x, λ) ≥ g(λ). Combining with the previous inequality, we

get

∀x ∈ X : f0(x) ≥ g(λ)

Taking the minimum over x, we obtain ∀λ ≥ 0 : p∗ ≥ g(λ). Therefore,

p∗ ≥ max
λ≥0

g(λ) = d∗. J

Notations. Given a collection of arborescences G, for every job j, define prev(j) to be the
job j′ if there exists an arc (j′, j) in the graph G; and prev(j) = ∅ if the in-degree of j is
0. Note that as in G the in-degree of every vertex is at most one, prev(j) is well-defined.
Intuitively, prev(j) is the last job on which j depends. Let Cj be the completion time of
job j. Moreover, define the available time Aj of job j as Cprev(j) if prev(j) 6= ∅; and Aj = 0
otherwise. Informally, Aj is the earliest time where j can be executed. The pending-time of
job j is defined as Cj −Aj , that represents the duration from the moment j is available to
be executed until its completion. Note that this definition is different (but has some flavour)
to the notion of flow-time in scheduling. Additional, a job j is pending if it is available but
has not been completed.

3 Approximation Algorithm for Completion Time plus Energy
Minimization

In this section, we consider the problem of minimizing the total completion time plus energy
defined in the previous section. Let G be a collection of arborescences representing job
dependencies. For every job j, define the weight of job j as wj =

∑
j′:j�j′ 1. In other words,

wj is the number of jobs which depends on job j (including j itself); equivalently, wj is the
number of nodes in the sub-arborescences rooted at j.

We first make the following observation.∑
j

wj
(
Cj −Aj

)
=
∑
j

( ∑
j′:j�j′

1
)(
Cj −Aj

)
=
∑
j

∑
j′�j

(Cj′ −Aj′) =
∑
j

Cj .

The last equality holds due to the structure of arborescences: the set {j′ : j′ � j} forms
a path (j1, j2, . . . , jk) where jk = j and j1 is the root of the arborescence containing j; so
Aj` = Cj`−1 for 2 ≤ ` ≤ k and Aj1 = 0. Hence, the total job completion time is equal to
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the total weighted pending-time of jobs with respect to the weight wj ’s defined above. So
in order to consider the total completion time, we will rather consider the total weighted
pending-time.

Before presenting the algorithm, we define some notions. At a time t, the remaining
volume of a job j assigned to machine i is denoted as qij(t). The density of job j in machine
i is δij = wj/pij . The residual density of a pending job j assigned to machine i at time t is
δij(t) = wj/qij(t). (As j is pending, qij(t) > 0.)

Our algorithm, named Algorithm 1, consists of scheduling and assignment policies
described as follows.

1. Scheduling policy. At any time t, every machine i sets its speed si(t) = βWi(t)1/α

where Wi(t) is the total weight of jobs assigned to machine i which are still pending at
time t; and β > 0 is a constant to be chosen later. Moreover, at every time, every machine
i processes the highest residual density job among the pending ones assigned to i.

2. Assignment policy. Whenever any job j is available, i.e., all jobs j′ ≺ j have been
completed, immediately assign job j to some machine. Note that different assignments of
j (to different machines) give rise to different marginal increases of the total weighted
pending-time (with respect to the scheduling policy). Here, among all machines, assign
(immediately) job j to the one that minimizes the marginal increase of the total weighted
pending-time.

Formulation. Let sij(t) be the variable that represents the speed of job j on machine i at
time t. Variables Aj and Cj denote the available time and the completion time of job j,
respectively. Let xij be the variable indicating whether job j is assigned to machine i. The
problem could be relaxed as the following formulation. We emphasize that in the formulation,
we do not relax the integrality of variables xij ’s.

minimize
∑
i

∫ ∞
0

(∑
j

sij(t)
)α

dt+
∑
i,j

(∫ Cj

Aj

sij(t)dt
)
δijxij(Cj −Aj)

+ α

β(α− 1)
∑
i,j

(∫ Cj

Aj

sij(t)dt
)
xijw

α−1
α

j

subject to
∑
i

xij = 1 ∀j

xij

∫ Cj

Aj

sij(t)dt = pijxij ∀j

Aj = Cprev(j) ∀j : prev(j) 6= ∅
Aj = 0 ∀j : prev(j) = ∅
xij ∈ {0, 1} ∀i, j

sij(t) ≥ 0 ∀i, j, t
Cj ≥ 0 ∀j

The first constraint ensures that every job is assigned to some machine. The second
constraint guarantees that if a job j is assigned to some machine i then it will be fully
processed during the interval [Aj , Cj ] in machine i. In the objective, the first term represents
the energy cost. The second term stands for the weighted pending-time of jobs, i.e.,(∫ Cj

Aj

sij(t)dt
)
δijxij(Cj −Aj) = pijxijδij(Cj −Aj) = xijwj(Cj −Aj)

MFCS 2020
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by the second constraint. The last term in the objective, inspired by [1], is added in order to
reduce the integrality gap. In this term, β is a parameter (depending on α) to be chosen
later. Note that, in order to minimize the objective function under the above constraints,
every algorithm will set sij(t) = 0 ∀i, j, ∀t /∈ [Aj , Cj ].

The following lemma shows that the objective value of any feasible schedule is within a
constant factor of the cost of the schedule, which is the sum of the completion times and the
energy consumed. The proof follows the scheme of a similar lemma in [1]. For completeness,
we give the proof in the appendix.

I Lemma 2. Consider a feasible schedule S for an instance I of the problem. Let xij and
sij(t) be the corresponding solution to the mathematical program. Then the objective value of
such solution for the mathematical program is at most (1 + α

β(α−1) ) the cost of S.

Proof. Let Cj be the completion time of job j in schedule S. In the objective of the
formulation, the first term clearly captures the consumed energy. Due to the constraints, the
second term is

∑
j wj

(
Cj −Aj

)
– the total weighted pending-time (which equals the total

completion time).
In the remaining, we show that the last term in the objective is bounded by α

β(α−1)
the cost of S. The arguments follow the ones in [1]. In schedule S, assume that job j is
executed during [Aj , Cj ] in machine i. Then the average speed s̃ij of j during [Aj , Cj ] is
pij/(Cj −Aj). Thus, Cj −Aj ≥ pij/s̃ij . The total energy consumed to complete job j is at
least (Cj −Aj)s̃αi ≥ pij s̃α−1

i . Therefore,

wj(Cj −Aj) + pij s̃
α−1
i ≥ wjpij/s̃i + pij s̃

α−1
i

≥ pijw
α−1
α

j

(
(α− 1) 1

α + (α− 1)−
α−1
α

)
≥ pijw

α−1
α

j =
∑
i′

(∫ Cj

Aj

si′j(t)dt
)
xi′jw

α−1
α

j .

The second inequality is due to the first order condition. In the last term, note that xi′j = 1
if i′ = i and xi′j = 0 if i′ 6= i. As the energy function is convex, the total energy consumed
of a schedule is larger than the sum of energy consumed on each individual job. Summing
the above inequality for all jobs j, we deduce that the third term in the objective function is
bounded by factor α

β(α−1) the cost of S. J

Dual program and variable setting. The dual of that program is max minx,s,C L where L is
the Lagrangian function associated to the above mathematical program and the maximum is
taken over dual variables. Let λij be the dual variable corresponding to the second constraint.
Set all dual variables except λij ’s equal to 0, the Lagrangian function becomes

∑
i

∫ ∞
0

(∑
j

sij(t)
)α

dt+
∑
j

∫ Cj

Aj

δij(Cj −Aj)xijsij(t)dt

+ α

β(α− 1)
∑
i,j

(∫ Cj

Aj

sij(t)dt
)
xijw

α−1
α

j +
∑
i,j

λijxij

(
pij −

∫ Cj

Aj

sij(t)dt
)



N. K. Thắng 84:7

Hence, the dual program is

min
x,s,C

{∑
i,j

λijpijxij

−
∑
i,j

∫ Cj

Aj

xijsij(t)
(
λij − si(t)α−1 − α

β(α− 1)w
α−1
α

j − δij(Cj −Aj)
)
dt

}
≥ min

x

∑
i,j

λijpijxij

−max
x,s,C

∑
i,j

∫ Cj

Aj

xijsij(t)
(
λij − si(t)α−1 − α

β(α− 1)w
α−1
α

j − δij(Cj −Aj)
)
dt

Choose λij such that λijpij equals the increase of the total weighted pending-time of jobs
(different to j) assigned to machine i plus the weighted pending-time of job j if the latter
is assigned to i. In other words, λijpij equals the marginal increase in the total weighted
pending time if job j is assigned to machine i. Recall that by the assignment policy of the
algorithm, job j is assigned to machine i that minimizes λijpij .

Analysis
The strategy of the analysis is to show that, with the chosen dual variables, the dual has
value at least some factor (smaller than 1) times the cost of the algorithm schedule. Then,
by weak duality, we derive an approximation ratio for the algorithm.

We first show that the algorithm admits some monotone property. Consider two sets of
jobs I and I ′ assigned to machine i such that they are identical except that there is only a
job j ∈ I \ I ′ (i.e., I = I ′ ∪ {j}). Moreover, assume that all jobs in I ′ have available times
earlier than that of j. For every job k, define the fractional weight of k in machine i at
time t as wkqik(t)/pik. Let Vi(t) be the total fractional weight of pending jobs assigned to
machine i. The following lemma, which has been proved in [1], shows a property of Vi(t).

I Lemma 3 ([1]). Let I be a set of jobs and I ′ = I \ {j} where j ∈ I is the job with
maximum available time (among ones in I). Fix an arbitrary machine i. Let V Ii (t) and
V I
′

i (t) be the total fractional weights of pending jobs at time t in machine i if the sets of jobs
assigned to machine i are I and I ′, respectively. Then, V I′i (t) ≤ V Ii (t) for every time t.

Informally, Lemma 3 shows that for every machine i, Vi(t) is monotone w.r.t the set of
jobs assigned to machine i. In fact, Lemma 3 is proved by Anand et al. [1] in the online
setting. The proof remains exactly the same by replacing the available times Aj ’s in our
setting by the release times rj ’s of jobs in the online setting.

We are now proving a crucial lemma relating the dual variables and the fractional pending
weights.

I Lemma 4. It holds that λij−δj(t−Aj)− α
β(α−1)w

α−1
α

j ≤ α
β(α−1)Vi(t)

α−1
α for every machine

i and every time t ≥ Aj.

Proof. By Lemma 3, it is sufficient to prove the inequality for a fixed machine i assuming
that no new job will be assigned to i after Aj . For simplicity of the notations, as machine i is
fixed, in the remaining of the proof, we drop the index of the machines in all the parameters
(e.g., δj(t) stands for δij(t), etc). Moreover, denote again qk = qk(Aj) and δk = δk(Aj) for
every pending job k. At Aj , rename jobs in non-increasing order of their residual densities,
i.e., q1/w1 ≤ . . . ≤ qn/wn (note that qk/wk is the inverse of job k’s residual density). Denote

MFCS 2020
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Wk = wk + . . .+wn for 1 ≤ k ≤ n. The marginal increase in the total weighted pending-time
due to the assignment of job j is

wj

(
q1

βW
1/α
1

+ . . .+ qj

βW
1/α
j

)
+Wj+1

qj

βW
1/α
j

where the first term is the weighted pending-time of job j and the second one is the increase
of the weighted pending-time of other jobs (note that only jobs with density smaller than
that of j has their completion times increased). Let C∗j be the completion time of job j if it
is assigned to machine i. We consider different cases of time t.

Case 1: t ≤ C∗
j . Let k be the pending job at t with the smallest index. In other words, the

machine has processed all jobs 1, . . . , k − 1 and a part of job k in interval [Aj , t]. By the
definition of λj , we have that

λj − δj(t−Aj) = δj

(
qk(t)
βW

1/α
k

+ qk+1

βW
1/α
k+1

+ . . .+ qj

βW
1/α
j

)
+ Wj+1

βW
1/α
j

= δj

(
wk(t)

δkβW
1/α
k

+ wk+1

δk+1βW
1/α
k+1

+ . . .+ wj

δjβW
1/α
j

)
+ Wj+1

βW
1/α
j

≤ 1
β

(
wk(t)
W

1/α
k

+ wk+1

W
1/α
k+1

+ . . .+ wj

W
1/α
j

+ wj+1

W
1/α
j+1

+ . . .+ wn

W
1/α
n

)

≤ 1
β

∫ V (t)+wj

wn

dz

z1/α ≤
α

β(α− 1)(V (t) + wj)
α−1
α

≤ α

β(α− 1)

(
V (t)

α−1
α + w

α−1
α

j

)
.

The second equality is due to the definition of the residual density. The first inequality
holds since δj ≤ δk′ for every job k′ ≤ j and Wj ≥ Wj+1 ≥ . . . ≥ Wn. The second
inequality holds since function z−1/α is decreasing. The last inequality holds because
0 < (α− 1)/α < 1.

Case 2: t > C∗
j . Let k be the pending job at t with the smallest index. We have

λj − δj(t−Aj) = Wj+1

βW
1/α
j

− δj(t− C∗j ) = 1
βW

1/α
j

(
wj+1 + . . .+ wn

)
−δj(t− C∗j )

≤ δj+1
qj+1

βW
1/α
j+1

+ . . .+ δn
qn

βW
1/α
n

− δj(t− C∗j )

≤ δk
qk(t)
βW

1/α
k

+ δk+1
qk+1

βW
1/α
k+1

+ . . .+ δn
qn

βW
1/α
n

= δk
wk(t)

δkβW
1/α
k

+ δk+1
wk+1

δk+1βW
1/α
k+1

+ . . .+ δn
wn

δnβW
1/α
n

≤ 1
β

∫ V (t)

wn

dz

z1/α ≤
α

β(α− 1)V (t)
α−1
α

where the first inequality holds since Wj ≥ Wj+1 ≥ . . . ≥ Wn; the second inequality is
due to δj ≥ δk′ for every job k′ > j.

Combining both cases, the lemma follows. J

I Theorem 5. Algorithm 1 is 8(1 + α
lnα )-approximation for β = 1

α−1 (α− 1 + ln(α− 1))α−1
α .
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Proof. Let P∗ be the total weighted pending-time due to the algorithm (that also equals
the total completion time). By the choice of dual variables, we have

min
x,s,C

L = min
x

∑
i,j

λijpijxij

−max
x,s,C

∑
i,j

∫ Cj

Aj

xijsij(t)
(
λij − si(t)α−1 − 1

β
w
α−1
α

ij − δj(Cj −Aj)
)
dt

≥ P∗ −max
x,s,C

∑
i,j

∫ Cj

Aj

xijsij(t)
(
λij − si(t)α−1 − 1

β
w
α−1
α

ij − δj(t−Aj)
)
dt

≥ P∗ −max
x,s,C

∑
i,j

∫ Cj

Aj

xijsij(t)
(

α

β(α− 1)Vi(t)
α−1
α − si(t)α−1

)
dt

= P∗ −max
x,s,C

∑
i

∫ ∞
0

(∑
j

xijsj(t)
)(

α

β(α− 1)Vi(t)
α−1
α − si(t)α−1

)
dt

≥ P∗ −max
x,s,C

∑
i

∫ ∞
0

si(t)
(

α

β(α− 1)Vi(t)
α−1
α − si(t)α−1

)
dt

where the first inequality follows by the assignment policy (assign job j to machine i that
minimizes λijpij) and t ≤ Cj ; the second inequality is due to Lemma 4. By the first order
condition, function z( α

β(α−1)V
α−1
α − zα−1) is maximized at z0 = V 1/α

((α−1)β)1/(α−1) . We have

min
x,s,C

L ≥ P∗ − α− 1
((α− 1)β)

α
α−1

∑
i

∫ ∞
0

Vi(t)dt

≥ P∗ − α− 1
((α− 1)β)

α
α−1

∑
i

∫ ∞
0

Wi(t)dt =
(

1− α− 1
((α− 1)β)

α
α−1

)
P∗

where the second inequality holds since Vi(t) ≤Wi(t) for every i and t.
Besides, the total weighted pending-time plus energy is

P∗ +
∫ ∞

0
sα(t)dt = P∗ +

∑
i

∫ ∞
0

βαWi(t)dt = (1 + βα)P∗.

Therefore the primal objective is bounded by
(
(1 + βα) + α

β(α−1) (1 + βα)
)
P∗ (Lemma 2).

Thus, the approximation ratio is at most

(1 + βα) + α
β(α−1) (1 + βα)

1− α−1
((α−1)β)

α
α−1

(1)

Choose β = 1
α−1 (α− 1 + ln(α− 1))α−1

α . Observe that(
1 + ln(α− 1)

α− 1

)α−1
< eln(α−1) = α− 1

⇒ (α− 1 + ln(α− 1))α−1 < (α− 1)α ⇒ β < 1

Moreover, β > (α− 1)−1/α. With the chosen β, the denominator of (1) becomes ln(α−1)
α−1+ln(α−1)

and the nominator is bounded by 8 (since α−1/α < β < 1 and α ≥ 2). Hence, the
approximation ratio is at most 8(1 + α/ lnα). J
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4 Approximation Algorithm for R|arborescences|∑j Cj

We are now considering the problem R|arborescences|
∑
j Cj . Fix the parameter α such

that αα = n, so α = Θ
( logn

log logn
)
. Notice that given an instance of R|arborescences|

∑
j Cj ,

there is a corresponding instance of the problem of minimizing the total completion time
plus energy in which the energy function of every machine is

∫∞
0 si(t)αdt. Our algorithm

Algorithm 2 for the R|arborescences|
∑
j Cj problem is the following.

1. Given an instance of R|arborescences|
∑
j Cj , consider the corresponding instance of the

problem of minimizing the total completion time plus energy (defined in Section 2) with
parameter α such that αα = n. Solve the latter by Algorithm 1 and obtain a schedule S1
(with machine speeds).

2. Transform the schedule S1 to a schedule S2 such that at any time t where si(t) > α for
some machine i, reduce the speed si(t) to α. Note that this transformation might delay
job completion times.

3. Given the schedule S2, transform to a unit-speed schedule S3 as follows. In the schedule
S3, preserve the job-to-machine assignments as in schedule S2. In every machine, execute
jobs non-preemptively (by unit-speed) in the non-decreasing order of their completion
times in schedule S2. Return the non-preemptive schedule S3.

We first show some properties of schedules S2 and S3.

I Lemma 6. 1. The cost (i.e., total completion time plus energy) of the schedule S2 is at
most that of schedule S1.

2. The total completion time of S3 is at most α times that of S2.

Proof. 1. Assume that the speed of some machine i at some time t is si(t) > α. The
increasing rate of energy cost in machine i at time t is

d(si(t))α

dt
= αsα−1

i (t) > αα = n.

However, the increasing rate of the total completion time is at most n. Therefore, one can
reduce the speed si(t) to get a smaller cost. Hence, by operations of Step 2 in Algorithm
2, the total completion time plus energy of the schedule S2 is at most that of schedule S1.

2. If the speed of a machine is reduced by a factor α then the completion time of each job
will be increased by at most a factor α. Therefore, the total completion time is increased
by at most a factor α. J

I Theorem 7. Algorithm 2 is O
( log2 n

(log logn)3

)
-approximation for the problem

R|arborescences|
∑
j Cj.

Proof. Let C(S) and E(S) be the total completion time and the energy of the schedule S,
respectively. Let S∗ be an optimal schedule for the problem of minimizing the total completion
time plus energy. Let OPT be an optimal schedule for the problem R|arborescences|

∑
j Cj .

Note that OPT is a feasible solution to the problem of minimizing the total completion time
plus energy where at any time the machine speeds are unit (whenever there is still a pending
job). We have

C(S3) ≤ α · C(S2) ≤ α · (C(S2) + E(S2)) ≤ α · (C(S1) + E(S1))

≤ 8α
(

1 + α

logα

)
(C(S∗) + E(S∗)) ≤ 8α

(
1 + α

logα

)
(C(OPT ) + E(OPT ))

≤ 16α
(

1 + α

logα

)
· C(OPT )
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The first and third inequalities follow from Lemma 6. The fourth inequality is due to
Theorem 5. The last inequality holds since in OPT , at every time every machine runs with
speed either 1 or 0, so the total energy incurred in a machine is bounded by the maximum
completion time of a job in that machine. The theorem follows since α = Θ

( logn
log logn

)
. J

Remark. The weighted version R|arborescences|
∑
j wjCj can be solved by a similar al-

gorithm and the approximation ratio will be O
(
ρ · log2 n

(log logn)3

)
where ρ = maxj,j′:wj′>0

wj
wj′

.

5 Conclusion

In this paper, we present a new approach for the problem R|arborescences|
∑
j Cj using

non-convex formulations and a dual-fitting method. In high level, the consideration of a
smooth variant of the problem helps to bypass a hard constraint of the problem (that every
job has to be processed by unit speed). Moreover, the formulation of a non-convex program
with mixed integer variables (assignment variables) and continuous variables (speed variables)
allows us to get rid of the integrality gap issue while still benefit from several continuous
aspects. Finally, the analysis holds by the simple yet powerful weak duality which holds even
for non-convex programs. The approach enables an improvement, albeit rather small, over a
long standing approximation. We hope that the approach would provide additional tools
and a different point of view towards the design of algorithms with improved performance
guarantees for the general problems R|prec|

∑
j Cj and R|prec|

∑
j wjCj .
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