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Abstract
We introduce partially observable concurrent Kleene algebra (POCKA), an algebraic framework to
reason about concurrent programs with variables as well as control structures, such as conditionals
and loops, that depend on those variables. We illustrate the use of POCKA through concrete
examples. We prove that POCKA is a sound and complete axiomatisation of a model of partial
observations, and show the semantics passes an important check for sequential consistency.
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1 Introduction

Kleene Algebra (KA) was originally proposed as the algebra of regular languages [21, 4, 16, 13],
but its well-developed meta-theory facilitates applications in the analysis and verification
of sequential programs. Many extensions of KA were studied in the last decades, notably
Kleene Algebra with Tests (KAT) [14], which enables reasoning about control structures
such as if-statements and while-loops. Orthogonally, Concurrent Kleene Algebra (CKA) was
proposed as an extension of KA to analyse concurrent program behaviour [9].

It is a natural question whether concurrent Kleene algebra can be extended with tests
as in KAT. This question was studied by Jipsen [10] and later by Kappé et al. [11, 12],
who proposed Concurrent Kleene Algebra with Observations (CKAO). Observations are
tests in a concurrent setting, and they are governed by different axioms than tests, hence
justifying their name change. It was illustrated that extending CKA with tests in a naive
way results in an algebraic framework that is unusable in program verification. In a nutshell,
the interactions of parallel threads are lost if we identify the conjunction of observations
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with their sequential composition, as is done in KAT. Instead, an algebra where conjunction
and sequential composition are kept distinct is essential to capture concurrent interaction
between conditionals in different threads – this distinguishes tests from observations.

In this paper we demonstrate how this class of techniques can be used for a more fine-
grained analysis of concurrent programs. We focus our development around the issue of
sequential consistency, i.e., whether programs behave as if memory accesses taking place were
interleaved and executed sequentially [17]. A standard way of testing this property is the
so-called store buffering litmus test [1]. Consider the following program with two threads:

T0: x← 1; T1: y ← 1;
r0 ← y; r1 ← x;

A sequentially consistent implementation should satisfy the following property: if initially
both registers r0 and r1 are set to 0, after running the program one of them should have
value 1. Therefore, we can detect failures of sequential consistency by observing behaviour
that deviates from this specification. This test can be encoded algebraically [15] as:(

(r0 = 0 ∧ r1 = 0); (T0 ‖ T1);¬(r0 = 1 ∨ r1 = 1)
)
≡ 0. (†)

That is, the program that asserts that r0 and r1 are both 0, executes T0 and T1 in parallel,
and then asserts that neither r0 nor r1 is 1, is equivalent to the program 0, which has no valid
behaviour. To reason in this fashion, our algebraic framework should include observations of
the shape v = n as well as assignments v ← n and v ← v′, where v, v′ and n range over some
fixed sets of variables and values. To that end, we propose Partially Observable Concurrent
Kleene Algebra (POCKA), an algebraic theory built on top of CKA that allows for an analysis
of concurrent programs manipulating memory, such as the simple program above. POCKA
has a natural interpretation in terms of pomset languages over assignments and memory
states, encoded as partial functions, similarly to separation logic [20], which describe the
behaviour of concurrent programs that can access variables and values (Section 3). We prove
soundness and completeness with respect to this interpretation (Section 4).

POCKA deviates from KAT and CKAO by using partial observations in its semantics.
These are crucial in a concurrent setting, where a single thread may have only a partial view
of the memory. Whilst memory as a whole depends on the combined action of all threads,
these partial views may be analysed on a thread-by-thread basis. This shift from total to
partial observations thus allows for a richer compositional semantic model. Formally, this
means that we move from a Boolean algebra of observations, as in CKAO or KAT, to a
pseudocomplemented distributive lattice (PCDL) [3], as proposed by Jipsen and Moshier [10].

To ensure compositionality, semantics of concurrent programs should capture not only
isolated program behaviour, but also all possible behaviours of the program when run in
parallel with another program. For example, take the program P = (x = 1); (x = 2), which
asserts that x has value 1 and then value 2, and the program Q = (x← 2), which assigns the
value 2 to x. In an interpretation that captures isolated program behaviour, the semantics of
P would be empty, as x cannot change between the tests. In contrast, the program P ‖ Q
(i.e., P and Q in parallel) does have behaviour, because the assignment may be interleaved
between the two observations. Hence, the isolated semantics of P is not sufficient.

Thus, the semantics of a POCKA term accommodates possible interference by an outside
context. As a result, the test (†) fails at this stage, meaning this semantics is not sequentially
consistent. This raises the question of how to study the isolated program behaviour. To this
end, we identify a subset of the semantics that captures isolated program behaviour, and
show that this fragment coincides with guarded pomsets [10] (Section 5). This turns out to
fix the defect in sequential consistency we observe earlier, as we show in Section 6.
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2 Preliminaries

Throughout this section we fix a finite alphabet Σ. We recall pomsets [7, 8], a generalisation of
words that model concurrent traces. First, a labelled poset over Σ is a tuple u = 〈Su,≤u, λu〉,
where Su is a finite set (the carrier of u), ≤u is a partial order on Su (the order of u), and
λu : Su → Σ is a function (the labelling of u). Pomsets are labelled posets up to isomorphism:

I Definition 2.1 (Poset isomorphism, pomset). Let u,v be labelled posets over Σ. We say
u is isomorphic to v, denoted u ∼= v, if there exists a bijection h : Su → Sv that preserves
labels, and preserves and reflects ordering. More precisely, we require that λv ◦ h = λu, and
s ≤u s

′ if and only if h(s) ≤v h(s′). A pomset over Σ is an isomorphism class of labelled
posets over Σ, i.e., the class [v] = {u | u ∼= v} for some labelled poset v.

When two pomsets are in scope, we tacitly assume that they are represented by labelled
posets with disjoint carriers. We write Pom(Σ) for the set of pomsets over Σ, and 1 for the
empty pomset. When a ∈ Σ, we write a for the pomset represented by the labelled poset
whose sole element is labelled by a. Pomsets can be composed in sequence and in parallel:

I Definition 2.2 (Pomset composition). Let U = [u] and V = [v] be pomsets over Σ.
We write U ‖ V for the parallel composition of U and V , which is the pomset over Σ

represented by the labelled poset u ‖ v, where Su‖v = Su ∪ Sv, ≤u‖v = ≤u ∪ ≤v and for
x ∈ Su we have λu‖v(x) = λu(x) and for x ∈ Sv we let λu‖v(x) = λv(x).

We write U ·V for the sequential composition of U and V , that is, the pomset represented
by the labelled poset u · v, where Su·v = Su‖v, ≤u·v = ≤u ∪≤v ∪ (Su × Sv) and λu·v = λu‖v.

The pomsets that we use can be built using sequential and parallel composition.

I Definition 2.3 (Series-parallel pomsets). The set of series-parallel pomsets (sp-pomsets)
over Σ, denoted SP(Σ), is the smallest subset of Pom(Σ) such that 1 ∈ SP(Σ) and a ∈ SP(Σ)
for every a ∈ Σ, and is furthermore closed under parallel and sequential composition.

One way of comparing pomsets is to see whether they have the same events and labels,
except that one is “more sequential” in the sense that more events are ordered. This is
captured by the notion of subsumption [7], defined as follows.

I Definition 2.4 (Subsumption). Let U = [u] and V = [v]. We say U is subsumed by V ,
written U v V , if there exists a label- and order-preserving bijection h : Sv → Su. That is, h
is a bijection such that λu ◦ h = λv and if s ≤v s

′, then h(s) ≤u h(s′).

In the rest of this paper we only consider the relation v restricted to series-parallel pomsets.
We will also need the notion of pomset contexts [12].

I Definition 2.5. Let ∗ be a symbol not in Σ. The set of pomset contexts, denoted PC(Σ),
is the smallest subset of SP(Σ ∪ {∗}) satisfying

∗ ∈ PC(Σ)
X ∈ SP(Σ ∪ {∗}) C ∈ PC(Σ)
X · C ∈ PC(Σ) C ·X ∈ PC(Σ)

X ∈ SP(Σ ∪ {∗}) C ∈ PC(Σ)
X ‖ C ∈ PC(Σ)

Alternatively, PC(Σ) consists of the sp-pomsets over Σ∪{∗} with exactly one occurrence of ∗.

One can think of ∗ as a gap where another pomset can be inserted: given C ∈ PC and
U ∈ Pom, we can insert U into the gap in C to obtain C[U ]. More precisely, we define

∗[U ] = U (C ·X)[U ] = C[U ] ·X (X · C)[U ] = X · C[U ] (X ‖ C)[U ] = X ‖ C[U ]

This insertion is well-defined, and can in fact be extended to pomsets in general [12]. We
extend the notation to a set of pomsets L ⊆ Pom by C[L] = {C[U ] | U ∈ L}.

CONCUR 2020
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Bi-Kleene Algebra (BKA): syntax and semantics. Bi-Kleene Algebra [18] adds a binary
operator, denoted ‖, to KA, which satisfies a few basic axioms but does not interact with the
other KA operators. BKA-terms over Σ, denoted EΣ (the subscript is omitted if it is clear
from the context), also called series-rational expressions [19], are generated by the grammar

e, f ::= 0 | 1 | a ∈ Σ | e+ f | e · f | e ‖ f | e∗

The semantics of a BKA-term is a pomset language, i.e., an element of 2SP. Formally, the
BKA-semantics is a function J−K : E → 2SP defined inductively, as follows:

J0K = ∅ J1K = {1} Je+ fK = JeK ∪ JfK Je · fK = JeK · JfK

Je∗K = JeK∗ JaK = {a} Je ‖ fK = JeK ‖ JfK

In this definition we use the pointwise lifting of sequential and parallel composition from
pomsets to pomset languages, e.g., L ·K = {U · V | U ∈ L, V ∈ K}. The Kleene star of a
pomset language L is defined as L∗ =

⋃
n∈N L

n, where L0 = {1} and Ln+1 = Ln · L.
We write ≡BKA or simply ≡ for the smallest congruence on E generated by the Kleene

algebra axiom together with the additional bi-Kleene algebra axioms, which govern the
parallel operator ‖; it is associative, commutative, has a unit and distributes over + (Table 1).
Soundness and completeness of ≡BKA w.r.t. the pomset language semantics was proved in [18]:

I Theorem 2.6 (Soundness and Completeness BKA). Let e, f ∈ E. Then e ≡ f ⇔ JeK = JfK.

Given alphabets Σ and Γ, a function h : Σ→ EΓ extends inductively to a map ĥ : EΣ → EΓ
(e.g., ĥ(e+ f) = ĥ(e) + ĥ(f)) which we refer to as the homomorphism generated by h.

Concurrent Kleene Algebra with Hypotheses (CKAH). Concurrent Kleene algebra with
Hypotheses [12] (see also [5] for the case of KA), allows for a set of additional axioms, called
hypotheses, to be added to the axioms of BKA. Based on these hypotheses, one can then
derive a sound model. This facilitates a modular completeness proof of POCKA based on
the completeness of BKA, as POCKA extends BKA with additional axioms.

I Definition 2.7. A hypothesis is an inequation e ≤ f where e, f ∈ E. When H is a set of
hypotheses, we write ≡H for the smallest congruence on E generated by the hypotheses in
H as well as the axioms and implications that build the equational theory of BKA. More
concretely, whenever e ≤ f ∈ H, also e 5H f .

I Definition 2.8. Let L ⊆ Pom. We define the H-closure of L, written L↓H , as the smallest
language containing L such that for all e ≤ f ∈ H and C ∈ PC, if C[JfK] ⊆ L↓H , then
C[JeK] ⊆ L↓H . We stress here the use of the BKA-semantics for defining the H-closure of
any language. Formally, L↓H may be described as the smallest language satisfying:

L ⊆ L↓H
e ≤ f ∈ H C ∈ PC C[JfK] ⊆ L↓H

C[JeK] ⊆ L↓H

The H-closure adds those pomsets that are needed to ensure soundness of the axioms
generated by H. This yields a sound model for BKA with the set of hypotheses H [12]:

I Lemma 2.9 (Soundness). If e ≡H f , then JeK↓H = JfK↓H .

An axiom often added to BKA is the exchange law, and together with BKA it axiomatises
Concurrent Kleene Algebra (CKA). It can be added in the form of a set of hypotheses [12]:
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I Definition 2.10. We write exch for the set {(e ‖ f)·(g ‖ h) ≤ (e·g) ‖ (f ·h) | e, f, g, h ∈ E}.

These hypotheses encode the interleavings of a program: when e · g runs in parallel with f ·h,
one possible behaviour is that e first runs in parallel with f , followed by g in parallel with h.

The exch-closure coincides with the downwards closure w.r.t. the subsumption order [12].

I Lemma 2.11. Let L ⊆ SP and U ∈ SP. U ∈ L↓exch ⇔ there exists a V ∈ L s.t. U v V .

I Definition 2.12. A map c : E → E is a syntactic closure for H when for all e ∈ E it holds
that e ≡H c(e) and JeK↓H = Jc(e)K.

Syntactic closures are used in modular constructions of completeness proofs: their existence
implies a completeness result for H, by reducing it to completeness of BKA, i.e. Theorem 2.6.

3 Partially Observable Concurrent Kleene Algebra

In this section we define partially observable concurrent Kleene algebra (POCKA). The syntax
of POCKA is given by BKA terms over an alphabet tailor-made to reason about programs
that can access variables and values. Specifically, this alphabet holds assignments of the
form (v ← n) and (v ← v′), and observations of the form (v = n). We say (v ← n) assigns
the value n to variable v, (v ← v′) copies the value of variable v′ to v, and (v = n) asserts
that v must have value n. Formally, we define the alphabets

Act = {(v ← n), (v ← v′) | v, v′ ∈ Var, n ∈ Val} Obs = {(v = n) | v ∈ Var, n ∈ Val}

where Var and Val are finite sets of variables and values, respectively (see Remark 3.12
for a discussion on the finiteness assumption). An example POCKA term would be (x =
1) · (x← 2) · (x = 2), which asserts that x must start with value 1, assigns the value 2 to x,
and then asserts that x holds the value 2.

We will later give semantics to POCKA terms using program states, which are partial
functions from Var to Val: State = {α | α : Var ⇀ Val}. The domain of a state α is
denoted dom(α). State carries a partial order ≤, where α ≤ β iff dom(β) ⊆ dom(α) and for all
x ∈ dom(β) we have α(x) = β(x), which we will use to generate the algebra of observations.

3.1 Observation algebra: axiomatisation and semantics
To obtain POCKA, we define the observation algebra (OA) that will be added to CKA as the
algebraic structure of observations. This is similar to how a Boolean algebra enriches Kleene
algebra into Kleene algebra with tests. In contrast with KAT, the observation algebra of
POCKA is a pseudocomplemented distributive lattice, which is a generalisation of Boolean
algebra in which the law of excluded middle does not necessarily hold.

I Definition 3.1 (Pseudocomplemented Distributive Lattice). A pseudocomplemented dis-
tributive lattice (PCDL) is a tuple (A,∧,∨, · ,>,⊥) such that (A,∧,∨,>,⊥) is a bounded
distributive lattice and · : A→ A is such that for p, q ∈ A we have p ∧ q = ⊥ iff p ≤ q.

For a poset (X,≤) and a set S ⊆ X, define the downwards-closure of S by S≤ ::=
{x | ∃y ∈ S s.t. x ≤ y} and P≤(X) ::= {Y ⊆ X | Y = Y≤}. It is well-known that P≤(X)
carries the structure of a bounded distributive lattice, with intersection as meet, union as join,
X as top and ∅ as bottom. Further, if (X,≤) is finite, the lattice is itself finite and thus carries
a (necessarily unique) pseudocomplement defined by Y ::=

⋃
{Z ∈ P≤(X) | Y ∩Z = ∅}. This

simply reifies that the pseudocomplement of an element is the largest element incompatible
with it, which is guaranteed to exist in any complete lattice with bottom.

CONCUR 2020



20:6 Partially Observable Concurrent Kleene Algebra

Table 1 Axioms of POCKA, built over an alphabet of actions Act and observations Obs. The
left column contains the axioms of Concurrent Kleene Algebra. The right column axiomatises the
partial observations: they form a pseudocomplemented distributive lattice, subject to constraints on
the interface axioms that connect the lattice operators to the Kleene algebra ones. The last group of
axioms applies to the observation alphabet Obs. We write e 5 f as a shorthand for e + f ≡ f .

Kleene Algebra Axioms
e + (f + g) ≡ (f + g) + h

e + f ≡ f + e

e + 0 ≡ e

e + e ≡ e

e · (f · g) ≡ (e · f) · g
e · 1 ≡ e ≡ 1 · e
e · 0 ≡ 0 ≡ 0 · e

e · (f + g) ≡ e · f + e · h
(e + f) · g ≡ e · g + f · g

e∗ ≡ 1 + ee∗

e + f · g 5 f ⇒ e · g∗ 5 f

e∗ ≡ 1 + e∗e

e + f · g 5 g ⇒ f∗ · e 5 g

Additional Bi-Kleene Algebra Axioms
e ‖ 1 ≡ e

e ‖ (f ‖ g) ≡ (e ‖ f) ‖ g

e ‖ 0 ≡ 0
e ‖ (f + g) ≡ e ‖ f + e ‖ g

e ‖ f ≡ f ‖ e

Exchange law
(e ‖ f) · (g ‖ h) 5 (e · g) ‖ (f · h)

Bounded Distributive Lattice Axioms
p ∨ ⊥ ≡ p ≡ p ∧ >
p ∨ q ≡ q ∨ p

p ∧ q ≡ q ∧ p

p ∧ (q ∧ r) ≡ (p ∧ q) ∧ r

p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r

p ∨ (p ∧ q) ≡ p ≡ p ∧ (p ∨ q)
p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

Pseudocomplement
p 5 q ⇔ p ∧ q ≡ ⊥

Observation Axioms
v = n ∧ v = m ≡ ⊥ (n 6= m)

v = n 5
∨

n 6=m

v = m

∧
i

vi = ni 5
∨

i

vi = ni (∀i 6= j.vi 6= vj)

Interface Axioms
p ∧ q 5 p · q
p ∨ q ≡ p + q

0 ≡ ⊥
> · p 5 p p · > 5 p (p ∈ O)
> · a 5 a a · > 5 a (a ∈ Act)

I Definition 3.2 (Observation Algebra). The Observation Algebra is the PCDL OA ::=
(P≤(State),∩,∪, · ,State, ∅) generated by (State,≤).

Taking Obs as our set of propositions, we generate a term language O over the signature
of PCDLs as follows:

p, q ::= ⊥ | > | o ∈ Obs | p ∨ q | p ∧ q | p.

This language is interpreted in OA by the homomorphic extension of the assignment

Jv = nK ::= {{v 7→ n}}≤ = {α ∈ State | α(v) = n}.

Intuitively, the behaviour of an observation p consists of all partial functions that agree
with p. This is captured algebraically below, in Lemma 3.7. For instance, Jv = nK is the set
containing all partial functions assigning n to v, and this is downwards closed because any
partial function with a larger domain that also assigns n to v is included in this set.

If threads have only partial information about the machine state, an observation should
be satisfied only if there is positive evidence for it. Hence, v = n should be satisfied only
when v has a value that is different from n. To see why a Boolean algebra does not capture
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the intended meaning of v = n, consider using a BA over sets of partial functions, with
negation as set-complement. This entails that Jv = nK will include all partial functions where
v either gets a different value than n or no value at all. In the latter case, were we to obtain
more information about the machine state we may discover that the actual value of v is in
fact n, and it was therefore incorrect to assert v = n. Our pseudocomplement provides a
notion of negation that correctly excludes states for which this error could manifest, and this
motivates our use of a PCDL rather than a Boolean algebra. This can be calculated directly:

I Example 3.3. Consider the semantics of v = n:

Jv = nK =
⋃
{Z ∈ P≤(State) | Jv = nK ∩ Z = ∅}

= {α | α ∈ Z and {β | β(v) = n} ∩ Z = ∅}
= {α | α(v) = m and m 6= n}

In the last step we use that Z is downwards closed: if α(v) were undefined, then the partial
function α′ which is the same as α except that α′(v) = n would also occur in Z, making the
intersection with Jv = nK non-empty. Thus α ∈ Jv = nK only if α(v) is defined, and evaluates
to a value distinct from n. This witnesses the failure of the law of excluded middle.

I Definition 3.4 (Axiomatisation). ≡OA, or simply ≡, is the smallest congruence on O
generated by the distributive lattice, pseudocomplement and observation axioms in Table 1.

This axiomatisation supplements a standard axiomatisation of PCDLs with domain-
specific axioms to capture the propositional theory of observations. For instance, the axiom
(v = n ∧ v = m ≡ ⊥) states that a variable cannot have two different values at the same
time. The axiom (v = n 5

∨
n 6=m v = m) tells us that the pseudocomplement of a variable

having a value n is the assertion that the variable holds some distinct value m (the axiom is
an inequality, but the other way around also holds). The last domain-specific axiom enforces
specific instances of a De Morgan law that does not hold generally hold in arbitrary PCDLs.

Soundness of this axiomatisation follows straightforwardly from the fact that OA is a
PCDL, together with basic consequences of the definition of the poset (State,≤).

I Lemma 3.5 (Soundness OA). For all p, q ∈ O, if p ≡ q then JpK = JqK.

Let πα ::=
∧
α(v)=n v = n. Note that if α is the empty function, then πα =

∧
∅ = >.

I Lemma 3.6. For all α, β ∈ State: α ∈ JπβK iff α ≤ β iff πα 5 πβ.

In the following sections, we will silently assume that State ⊆ O. This is possible because
π− provides us with a sound way of injecting State inside O. In order to prove completeness
for J−K w.r.t. ≡, we need an intermediary result, which allows us to syntactically rewrite
any OA-expression in terms of elements of State.

I Lemma 3.7. For all p ∈ O, we have p ≡
∨
{α ∈ State | πα 5 p}.

With this result, we can then prove completeness of J−K w.r.t. ≡ on terms from O. In
short, from JpK = JqK, πα 5 p iff πα 5 q can be established, from which p ≡ q follows.

I Theorem 3.8 (Completeness OA). For all p, q ∈ O, we have p ≡ q if and only if JpK = JqK.

CONCUR 2020
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3.2 POCKA: axiomatisation and semantics
I Definition 3.9. The POCKA-terms, denoted T , are formed by the following grammar:

e, f ::= 0 | 1 | a ∈ Act | p ∈ O | e+ f | e · f | e ‖ f | e∗ .

Note that T = EAct∪O.
The language model for POCKA consists of pomset languages over Act ∪ State. When

using pomsets to reason about behaviours of programs, we would like actions and states to
alternate, because the states allow one to take stock of the configuration of the machine in
between actions. However, imposing such an alternation in the semantics can be problematic
with the exchange law [11]. Imagine the program (α · β) ‖ a, where α, β ∈ State and a ∈ Act.
We can derive the following:

α · a · β ≡ (α ‖ 1) · (1 ‖ a) · (β ‖ 1) (Unit axiom)
5 (α ‖ 1) · ((1 · β) ‖ (a · 1)) (Exchange Law)
≡ (α ‖ 1) · (β ‖ a) (Unit Axiom)
5 (α · β) ‖ (1 · a) ≡ (α · β) ‖ a (Exchange Law, Unit Axiom)

However, if the semantics Lβ−M contain only pomsets with alternating assignments and states,
Lβα · βM would have to consist of one state, and hence be empty if α 6= β. This would make
Lβ(α · β) ‖ aM empty as well. As Lβα · a · βM should not be empty, the exchange law is unsound.
Thus, the POCKA-semantics is not restricted to pomsets with alternating states and actions.

I Definition 3.10 (Semantics). Let Lβ−M : T → 2SP, where 2SP are pomset languages over
Act ∪ State. For p ∈ O, (v ← n), (v ← v′) ∈ Act and e, f ∈ T we have:

Lβv ← nM = State∗ · {v ← n} · State∗ Lβe+ fM = LβeM ∪ LβfM Lβe∗M = LβeM∗

Lβv ← v′M = State∗ · {v ← v′} · State∗ Lβe · fM = LβeM · LβfM Lβ0M = ∅
LβpM = State∗ · JpKOA · State∗ Lβe ‖ fM = LβeM ‖ LβfM Lβ1M = {1}

We define the POCKA-semantics of e ∈ T as LβeM↓ = LβeM↓exch∪contr, where we use the closure
definition from Definition 2.8, and contr = {α ≤ α·α | α ∈ State}, referred to as contraction.

We briefly explain closure under exch and contr. These closures are not part of the
axiomatisation, but exist to ensure soundness of some of the axioms. The set of hypotheses
exch closes the POCKA-semantics under subsumption and ensures soundness for the exchange
law familiar from CKA. The set contr encodes that one way of observing α twice is to make
both observations on the same state. This provides soundness for the axiom p ∧ q 5 p · q,
which was introduced in [11]. This axiom captures that if p and q hold simultaneously in
some state, it is possible to observe p and q in sequence (the converse should not hold as
some action could happen in between the two obervations in a parallel thread).
I Remark 3.11. The assignment (v ← v′) cannot be simulated. In a sequential setting, we
could express (v ← v′) as

∑
n∈Val((v′ = n) · (v ← n)). However, in a parallel setting this

does not work, since some action can change the value of v′ in between the observation that
(v′ = n) and the assignment (v ← n), meaning that v does not get assigned the value of v′.

I Remark 3.12. In this paper we assume the set of variables Var and the set of values Val
are both finite, in keeping with other verification frameworks, e.g. in model-checking.
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The restriction on Var could be lifted, since the finite set of variables that appear
syntactically in a term completely determine its semantics. However, this is not the case for
the set of values: for instance, the term v = 0 evaluates to ∅ if the set of values is Val = {0},
but contains the partial function [v 7→ n] if Val contains some value n 6= 0.

It is possible that a more sophisticated reduction could still work: indeed it seems unlikely
that our finite terms would be able to manipulate non-trivially infinitely many values. For
now though, this question is left open for future investigations.

The POCKA-semantics of a program e contains the possible behaviours of e in any
possible context, where the context refers to any expression that could be put in parallel
with e. For instance, Lβ(v ← n)M↓ contains pomsets that consist of a string of possible states
of the machine, where the state of the machine can have been influenced by other parallel
threads, followed at some point by the assignment (v ← n), followed by another string of
states. In Section 5, we will show how to reason about programs in isolation, i.e., under the
hypothesis that there is no outside context to prompt state-modifying actions.

I Example 3.13. Let t = (r0 = 0 ∧ r1 = 0) · (T0 ‖ T1) · (r0 = 1 ∨ r1 = 1) as in (†) be our
litmus test. A pomset in LβtM may look as follows, where we depict a pomset graphically with
nodes labelled by actions or observations and their ordering with arrows.

γ1 α
γ2

γ5

(x← 1)

(y ← 1)

γ3

γ6

(r0 ← y)

(r1 ← x)

γ4

γ7
δ γ8

Here, γi ∈ State, α(r0) = 0 = α(r1) and δ(r0) = 0 = δ(r1). However, as stated in the
introduction, if POCKA is sequentially consistent, this litmus test should pass, which means
that the semantics of t should instead be empty. The reason it is not empty is that our
semantics gives the behaviour of a program in any possible context, and indeed, if we put the
litmus test in parallel with a program such as (r0 ← 0) · (r1 ← 0), the final assertion becomes
satisfiable. In Sections 5 and 6, we look at how to execute the litmus test in isolation.

We also have axioms to algebraically describe equivalence between POCKA-terms, in-
cluding some domain-specific axioms tailored to the alphabet. We define ≡ as the smallest
congruence on T generated by the axioms in Table 1.

I Theorem 3.14 (Soundness POCKA). For all e, f ∈ T , if e ≡ f then LβeM↓ = LβfM↓.

4 Completeness

In this section we prove completeness of the POCKA-semantics w.r.t. the axioms provided in
Section 3.2. First, we show that POCKA terms can be normalised to a simpler form, where
the only observations that appear are states. Next, we show that the resulting POCKA-terms
can be used to describe the POCKA-semantics using BKA-semantics and closure. We then
use the techniques from [12] to obtain a completeness result with respect to this semantics.
Finally, we put all of the above together to obtain a completeness result for POCKA proper.

In order to normalise POCKA terms, we replace every observation by the summation of
states to which it corresponds. This is done using the homomorphism r̂ generated by

r(a) =
{∑

α5OAa
α a ∈ O

a a ∈ Act

As a straightforward consequence of Lemma 3.7 and the interface axioms, we then obtain:

CONCUR 2020
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I Lemma 4.1. For all e ∈ T , it holds that e ≡ r̂(e).

Proof. This can be proven by induction on the structure of e. If e = a ∈ Act, then r̂(a) =
a ≡ a immediately. Otherwise, if p ∈ O, then we derive r̂(p) =

∑
α5OAp

α ≡
∨
α5OAp

α ≡ p,
where we apply Lemma 3.7 in the last step. The inductive step follows trivially. J

The effect of r̂ is to bridge the gap between the semantics of BKA and that of observation
algebra: indeed for an observation p ∈ O, we have Jr̂(p)K = JpKOA. However, this does not
bring us fully to the unclosed POCKA-semantics Lβ−M, as the latter inserts state-nodes in
between actions and observations. For instance, Lβv ← nM includes pomsets like α · (v ← n) ·β,
while Jv ← nK = {v ← n}. We cover for this by means of the following set of hypotheses:

top = {α · c ≤ c, c · α ≤ c | α ∈ State, c ∈ Act ∪ State}

The hypotheses in top allow us to connect the unclosed POCKA semantics to the
BKA-semantics, by filling in surrounding or preceding state-labelled nodes as necessary.

I Lemma 4.2. For all e ∈ T , we have LβeM = Jr̂(e)K↓top.

Sketch. Proceed by induction on the construction of e; the case where e ∈ Act ∪ O is
fairly straightforward. The inductive case follows from the fact that closure w.r.t. top is
compatible with pomset language composition, i.e., that (L ∪K) ↓top = L↓top ∪K↓top as well
as (L ·K) ↓top = L↓top ·K↓top, and similarly for the other operators defining J−K. J

The next step is to provide syntactic closures for the sets of hypotheses involved. First,
we note that there exists a syntactic closure for exch∪ contr, as shown in [12, Theorem 5.6].

I Lemma 4.3. There exists a syntactic closure k for exch ∪ contr.

For the set top we still need to provide a syntactic closure. To this end, we simply take
every action or observation in a term and surround it by a sequence of states of arbitrary
length, which can be done using the homomorphism generated by

s(a) =
( ∑
α∈State

α
)∗
· a ·

( ∑
α∈State

α
)∗

It is fairly straightforward to show that this gives rise to a syntactic closure.

I Lemma 4.4. The homomorphism generated by s is a syntactic closure for top.

Sketch. The proof proceeds by induction on the construction of a term e. In the base, we
can show for a ∈ Act ∪ O that s(a) ≡top a and JaK↓top = Js(a)K. The inductive step follows
by an argument similar to that in Lemma 4.2. J

The final step needed for the completeness proof of POCKA is a relation between the
axioms that generate ≡ and the hypotheses found in top and contr.

I Lemma 4.5. For all e, f ∈ T , if e ≤ f ∈ top ∪ contr, then e 5 f .

We now have all the ingredients in place for the desired completeness proof.

I Theorem 4.6. For all e, f ∈ T , we have e ≡ f if and only if LβeM↓ = LβfM↓.
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Proof. The direction from left to right was already established in Theorem 3.14. For the
other direction, suppose that e, f ∈ T such that LβeM↓ = LβfM↓. We can then derive that

LβeM↓ = LβeM↓exch∪contr (def. Lβ−M↓)
=
(
Jr̂(e)K↓top) ↓exch∪contr (Lemma 4.2)

= Jŝ ◦ r̂(e)K↓exch∪contr (Lemma 4.4)
= Jk ◦ ŝ ◦ r̂(e)K (Lemma 4.3)

Similarly, LβfM↓ = Jk ◦ ŝ ◦ r̂(e)K. Since LβeM↓ = LβfM↓, also Jk ◦ ŝ ◦ r̂(e)K = Jk ◦ ŝ ◦ r̂(f)K; by
Theorem 2.6, it then follows that k ◦ ŝ ◦ r̂(e) ≡BKA k ◦ ŝ ◦ r̂(e). We then derive that

e ≡ r̂(e) (Lemma 4.1)
≡top

BKA ŝ ◦ r̂(e) (Lemma 4.4)
≡exch∪contr

BKA k ◦ ŝ ◦ r̂(e) (Lemma 4.3)
≡BKA k ◦ ŝ ◦ r̂(f) (Observation above)
≡exch∪contr

BKA ŝ ◦ r̂(f) (Lemma 4.3)
≡top

BKA r̂(f) (Lemma 4.4)
≡ f (Lemma 4.1)

By Lemma 4.5, ≡top
BKA and ≡exch∪contr

BKA are contained in ≡; we conclude that e ≡ f . J

5 Guarded Pomsets

We now identify a fragment of the semantics that we use in the analysis of the litmus test
from (†), namely the guarded pomsets. This term comes from Jipsen and Moshier [10], and
was meant to define guarded pomsets in analogy to guarded strings in KAT.

We need two pieces of notation. First, we define the result of a state after updating it for
one value. Let a ∈ Act and α ∈ State. We say that α[a] exists if a = v ← n for some n ∈ Val
or a = v ← v′ and v′ ∈ dom(α). If α[a] exists, we define it for all w ∈ Var as follows:

α[v ← n](w) =
{
n if w = v

α(w) otherwise
α[v ← v′](w) =

{
α(v′) if w = v

α(w) otherwise

Second, we define a binary operator ⊕ on State to combine states. For α, β ∈ State:

α⊕ β =
{
α ∪ β if α(v) = β(v) for all v ∈ dom(α) ∩ dom(β)
undefined otherwise

I Definition 5.1. The set of guarded pomsets, denoted G, is the smallest set satisfying:

α ∈ State
α ∈ G

α ∈ State a ∈ Act α[a] exists
α · a · α[a] ∈ G

U · α, α · V ∈ G α ∈ State
U · α · V ∈ G

α · U · β γ · V · δ ∈ G α⊕ γ defined β ⊕ δ defined α, β, γ, δ ∈ State
α⊕ γ · (U ‖ V ) · β ⊕ δ ∈ G

This definition is close to [10]. The definition in op. cit. is not catered to a specific
alphabet, and the operator ⊕ to combine states does not allow for the two states to have
any shared variable in their domains. We deliberately deviate from this, allowing threads to
share variables as long as they do so in a consistent manner.
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I Example 5.2. Consider the guarded pomsets (x = 1) · (x← 2) · (x = 2) and (x = 1 ∧ y =
3) · (x← 2) · (x = 2∧ y = 3) · (y ← x) · (x = 2∧ y = 2). The final rule for the construction of
G guarantees that the following pomset is again guarded:

(x = 1 ∧ y = 3)
(x← 2) (x = 2 ∧ y = 3) (y ← x)

(x = 2 ∧ y = 2)
(x← 2)

Note how (x = 2)⊕ (x = 2 ∧ y = 3) is defined, because both states agree on the value of x.

In the execution of parallel threads in pomsets, no interaction between the threads takes
place: the threads execute “truly” concurrently. To account for interactions, we consider the
interleavings that result from closure w.r.t. the exchange law (c.f. Lemma 2.11).

I Example 5.3. Consider the a slightly adjusted version of the litmus test t discussed earlier:

t′ = (r0 = 0 ∧ r1 = 0); (T0 ‖ T1); (r0 = 1 ∨ r1 = 1)

The unclosed semantics of t′ includes (but is not limited to) the pomset below on the left,
for all α, β, γ ∈ State, where α(r0) = α(r1) = 0, and γ(r0) = 1 or γ(r1) = 1. As a result of
the exchange law, the closed semantics includes the pomset below on the right.

α (x← 1)

(y ← 1)

β (r0 ← y)

(r1 ← x)

γ α (x← 1)

(y ← 1)

β (r0 ← y)

(r1 ← x)

γ

In the special case where α = {r0 7→ 0, r1 7→ 0}, β = {r0 7→ 0, r1 7→ 0, x 7→ 1, y 7→ 1},
γ = {r0 7→ 1, r1 7→ 1, x 7→ 1, y 7→ 1}, the latter is a guarded pomset.

Guardedness in pomsets can be characterised by the conjunction of seven properties,
which we will discuss now. On the one hand, these properties have an intuitive explanation as
characteristics of behaviours of (possibly concurrent) programs running in isolation. Hence,
if a pomset represents some execution of an isolated program, it is guarded. On the other
hand, the characterisation in terms of these properties provides a proof method to show that
a pomset is not guarded, by demonstrating the failure of one such property.

We start by observing that guarded pomsets alternate states and actions. Formally, we
can capture this in three properties. Let U = [u] ∈ SP(Act∪ State). We say that s′ ∈ Su is a
predecessor of s if it is the latest node ordered strictly before s – i.e., s s′ <u s and for all
s′′ ∈ Su such that s′′ <u s it holds that s′′ ≤u s

′. The notion of successor is defined dually.
A node is a state-node if it is labelled by an element of State, and an action-node otherwise.
(A1) U admits a unique minimum and maximum, ∗min, ∗max ∈ Su, labelled by states.
(A2) Every two related state-nodes are separated by an action-node.
(A3) Action-nodes have unique state-nodes as neighbours (their predecessor and successor).

The next property formalises the idea that two related observations cannot contradict
each other, such as in the program (x = 1) · (x = 2). To this end, we need the notion of a
path. A path for a variable v from a state-node u to another state-node s is a chain such
that the changes in the value of v between u and s are explained by the actions between
them and recorded in all the states between u and s.

I Definition 5.4 (Path). Let U = [u] ∈ Pom(Act∪State) and u1, u2 ∈ Su such that u1 ≤u u2
and λu(u1), λu(u1) ∈ State. We say a path pv from u1 to u2 for variable v ∈ Var is a
sequence of nodes q1, a1, . . . , an, qn+1 ∈ Su that satisfy the following conditions:
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(P1) For all 1 ≤ i ≤ n, we have λu(ai) ∈ Act and u1 ≤u ai ≤u u2 for all i. Additionally we
require that ai ≤u ai+1 for 1 ≤ i < n.

(P2) For all 1 ≤ i ≤ n+ 1 it holds that λu(qi) ∈ State, and for all 1 ≤ i ≤ n, the predecessor
of ai is qi, and the successor of ai is qi+1. Additionally we have that λu(q1) = λu(u1),
v ∈ dom(λu(u1)) and λu(qn+1) = λu(u2). Lastly, for 1 ≤ i ≤ n we have:

λu(qi+1)(v) =


n λu(ai) = v ← n for some n ∈ Val
λu(qi)(v′) λu(ai) = v ← v′ for some v′ ∈ Var, v′ ∈ dom(λu(qi))
λu(qi)(v) otherwise

I Example 5.5. The following is a path for x:

(x = 1) · (y ← 3) · (x = 1) · (x← 2) · (x = 2 ∧ y = 3) · (x← y) · (x = 3)

Note that this is not a path for y, because it is not assigned a value by the final atom.

We can now formulate another criterion for a pomset executing in isolation: for every
variable in the domain of a state-node, there is a path explaining the changes in value of
that variable between the state-node and the maximum node of the pomset.
(A4) For all state-nodes u ∈ Su and v ∈ dom(λu(u)), there is a path for v from u to ∗max.

I Example 5.6. The first pomset below satisfies (A4), and the second pomset does not, as
there is no path from beginning to end for x: the value of x in the second observation is not
in accordance to the previous assignment.

(x = 2 ∧ y = 2)
(x← 4)

(y ← 3)
(x = 4 ∧ y = 3)

(x = 2 ∧ y = 4) (x← 4) (x = 5 ∧ y = 4) (y ← 2) (x = 4 ∧ y = 2)

If a pomset represents an isolated program, an action has an effect on its successor. If
that action is of the form v ← n, then the sucessor should assign n to v; likewise, if the
action is of the form v ← v′, then the successor should assign the value of v′ to v, but the
predecessor should also be aware of a value for v′.
(A5) If u ∈ Su such that λu(u) = v ← n for some v ∈ Var and n ∈ Val, we require that

the successor of u is s s.t. λu(s)(v) = n.
(A6) Let u ∈ Su s.t. λu(u) = v ← v′ for some v, v′ ∈ Var and let p and s be the predecessor,

resp. successor, of u. Then v′ ∈ dom(λu(p)) and λu(s)(v) = λu(s)(v′) = λu(p)(v′).

I Example 5.7. The pomset below on the left violates (A5), because the successor of (x← 1)
does not assign 2 to x. On the other hand, the pomset on the right satisfies (A6), because
the predecessor of (x← y) has a value for y, and that value is assigned to x in the successor.

(x = 0) (x← 1) (x = 2) (x = 1 ∧ y = 2) (x← y) (x = 2 ∧ y = 2)

Finally, isolated programs cannot observe variables that have not been assigned a value
anywhere in the program. On the pomset-level, this translates to:
(A7) Let u ∈ Su be a state-node. Then for all v ∈ dom(λu(u)), there exists a path for v

from s ∈ Su to u such that either v ∈ dom(λu(s)) and s = ∗min or s is the successor of
an assignment-node with label v ← k with k ∈ Var ∪Val.

I Example 5.8. The pomset on the left does not satisfy (A7), but the one on the right does.

(x = 1) (x← 2) (x = 2 ∧ y = 2) (x = 1) (y ← 2) (x = 1 ∧ y = 2)
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Guarded pomsets satisfy (A1)–(A7). In fact, there exists an equivalence:

I Theorem 5.9. For U ∈ SP, U is guarded if and only if U satisfies (A1)–(A7).

Sketch. The forward implication is proved by induction on the construction of G. For
the other direction, we perform induction on the size of U (which is possible because U is
series-parallel and therefore finite). The induction hypothesis then states that whenever V is
strictly smaller than U , and V satisfies the seven properties, then V is guarded. Since U
satisfies (A1), we know that either it consists of one node labelled by a state, in which case
U is immediately guarded, or U = α · V · β for α, β ∈ State and V ∈ SP. This gives us four
cases to consider: V = 1, V = a for some a ∈ Act ∪ State, V = V0 · V1 or V = V0 ‖ V1. The
first case can be disregarded as U would then violate (A2). In the second case, (A4)–(A7)
can be used to show that β = α[a]. In the latter two cases we show that U is built out of
two strictly smaller pomsets that satisfy (A1)–(A7), making them guarded by the induction
hypothesis. When these two pomsets are combined to form U , this is done according to the
rules of guarded pomsets, making U guarded as well. The details can be found in the full
version of this paper [22]. J

6 Litmus Test

The POCKA-semantics of a program captures all possible behaviours of the program, including
all behaviours that could arise when it is put in parallel with other programs. In this section
we look at the behaviour of the litmus test when it is executed in isolation. In the previous
section we saw that if a pomset represents an execution of a program in isolation, it is
guarded, and hence it is sufficient to look at the guarded pomsets. We demonstrate that there
are in fact no guarded pomsets in the semantics of the litmus test, which shows that it passes.
This suggests the guarded fragment of the POCKA-semantics is sequentially consistent: the
programs behave as if memory accesses performed concurrently are interleaved and executed
sequentially and writes to memory are broadcasted to all threads instantaneously.

Recall the litmus test t we considered before, with Var = {x, y, r0, r1} and Val = {0, 1}:

t := (r0 = 0 ∧ r1 = 0) · ((x← 1 · r0 ← y) ‖ (y ← 1 · r1 ← x)) · (r0 = 1 ∨ r1 = 1)

Our strategy for showing that the semantics of t does not contain guarded pomsets, is to
first show that all pomsets in the semantics of t have certain property. We then claim that if
a pomset has this property, then it is not guarded, using (A1)–(A7) from Section 5.

I Definition 6.1 (Litmus Pomsets). Let x, y, r0, r1, w ∈ Var be distinct and 0, 1 ∈ Val. A
pomset U = [u] has property P , denoted P (U), if there exists u1, u2, v1, v2, w ∈ Su s.t.
1. the following conditions hold:

λu(u1) = (x← 1) λu(u2) = (y ← 1) λu(v1) = (r0 ← y) λu(v2) = (r1 ← x)

λu(w)(r0) = 0 = λu(w)(r1) u1 ≤u v1 ≤u w u2 ≤u v2 ≤u w

Graphically, we can represent these conditions as the following diagram:
u1 : x← 1

u2 : y ← 1

v1 : r0 ← x

v2 : r1 ← y
w :
[
r0 7→0
r1 7→0

]
2. For other assignment-nodes in U , we have the following conditions. Let k ∈ Val ∪Var.

∀z.λu(z) = (x← k)⇒ z ≤u u1 ∀z.λu(z) = (y ← k)⇒ z ≤u u2

∀z.λu(z) = (r0 ← k)⇒ z ≤u v1 ∀z.λu(z) = (r1 ← k)⇒ z ≤u v2
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The property P describes the actions and observations found in the litmus test, and their
relative ordering. For instance, ∀z.λu(z) = (x← n)⇒ z ≤u u1 states that all action-nodes
that change the value of x, occur before node u1 Hence, the maximal node that alters the
value of x, changes x to 1. The other requirements are explained similarly.

I Lemma 6.2. Let U = [u] ∈ SP. If P (U) then U is not guarded.

We show that P is an invariant under closure w.r.t. exch and contr. To this end, it is
useful to study the effect of the contraction order on the level of pomsets; we introduce the
following partial order relation on pomsets, analogous to the subsumption order.

I Definition 6.3 (Contraction Order). Let U = [u] and V = [v] be pomsets over Act ∪ State.
We write U � V holds iff there exists a surjection h : Sv → Su satisfying: (i) λu ◦ h = λv;
(ii) v ≤v v

′ implies h(v) ≤u h(v′); (iii) if h(v) ≤u h(v′), then λv(v), λv(v′) ∈ State implies
v ≤v v

′ or v′ ≤v v, and λv(v) or λv(v′) 6∈ State implies v ≤v v
′.

We then prove the analogue of Lemma 2.11, relating � to closure w.r.t. contr as follows.

I Lemma 6.4. Let L ⊆ SP and U ∈ SP. Now U ∈ L↓contr iff U � V for some V ∈ L.

With this characterisation in hand, we can prove that P is invariant under closure.

I Lemma 6.5. Let e ∈ T . If ∀U ∈ LβeM we have P (U), then ∀V ∈ LβeM↓ it holds that P (V ).

Sketch. By [12, Lemma 5.4] we know that LβeM↓ =
(
LβeM↓exch) ↓contr. It then follows, by

Lemma 2.11 and Lemma 6.4, that if V ∈ LβeM↓, then there must exist W,X ∈ SP with X ∈ LβeM
and V �W v X. We then show that P is preserved by both of these orders. J

I Corollary 6.6. The semantics of the litmus test contains no guarded pomsets: LβtM↓∩G = ∅.

Proof. All pomsets in LβtM have property P if we pick for u1 the node with label (x← 1), for
v1 the node with label (r0 ← y), and same for u2 and v2 (see Example 3.13). Lastly, we pick
for w the node with label δ. By Lemma 6.5 we can conclude that all pomsets in LβtM↓ have
property P , and by Lemma 6.2 we infer that t has no guarded pomsets in its semantics. J

We showed that we can correctly analyse the litmus test in our algebraic framework. In
the next example we show that addition of one extra axiom, which is a commonly made
assumption in programming languages, makes the litmus test fail on the guarded semantics.

I Example 6.7. We add the following axiom, which states that assignments to different
variables can be swapped as long as the assigned values are none of the involved variables:

v ← k·v′ ← k′ ≡ v′ ← k′ ·v ← k for v, v′ ∈ Var, k, k′ ∈ Var∪Val, k′ 6= v 6= v′, k 6= v 6= v′

We show that with this assumption, which is commonly made in programming languages, we
get guarded pomsets in the semantics of the litmus program. We can derive:

((r0 ← y) · (r1 ← x)) ≡ ((r0 ← y) ‖ 1) · (1 ‖ (r1 ← x)) (Unit axiom)
5 ((r0 ← y) · 1) ‖ (1 · (r1 ← x)) (Exchange Law)
≡ (r0 ← y) ‖ (r1 ← x) (Unit axiom)

Similarly, we can derive that (x← 1) · (y ← 1) 5 (x← 1) ‖ (y ← 1). Hence, we have

((r0 ← y) · (r1 ← x)) · ((x← 1) · (y ← 1)) 5 ((r0 ← y) ‖ (r1 ← x)) · ((x← 1) ‖ (y ← 1))
5 ((r0 ← y) · (x← 1)) ‖ ((r1 ← x) · (y ← 1)) (Exchange law)
≡ ((x← 1) · (r0 ← y)) ‖ ((y ← 1) · (r1 ← x)) (New axiom)
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Let e = ((r0 ← y) · (r1 ← x)) · ((x← 1) · (y ← 1)). We can conclude that

(r0 = 0 ∧ r1 = 0) · e · (r0 = 1 ∨ r1 = 1) 5 t

From soundness, we infer that Lβ(r0 = 0 ∧ r1 = 0) · e · (r0 = 1 ∨ r1 = 1)M↓ ⊆ LβtM↓. In the left
set we find at least one guarded pomset. Let α = (r0 = 0 ∧ r1 = 0 ∧ x = 0 ∧ y = 0),
β = (r0 = 0 ∧ r1 = 0 ∧ x = 1 ∧ y = 0) and γ = (r0 = 0 ∧ r1 = 0 ∧ x = 1 ∧ y = 1).
α (r0 ← y) α (r1 ← x) α (x← 1) β (y ← 1) γ

It is easy to show that this pomset is guarded by observing that α · (r0 ← y) · α,
α · (r1 ← x) · α, α · (x← 1) · β and β · (y ← 1) · γ are all guarded. Hence, by adding this one
extra axiom, we find guarded pomsets in the semantics of the litmus test, meaning that this
axiom breaks sequential consistency.

7 Discussion

We presented POCKA, a sound and complete algebraic framework that can be used to
analyse concurrent programs that manipulate variables. We identified the guarded fragment
of the semantics, and showed this fragment captures the behaviour of programs executing in
isolation. We demonstrated reasoning in POCKA by analysing a litmus test, also suggesting
that the guarded fragment of the POCKA-semantics is sequentially consistent.

This work is built on Kleene algebra and extensions thereof. It is closest to Concurrent
Kleene algebra with Observations [11, 12], which was proposed to integrate concurrency with
a form of tests (i.e., observations). We deviate from CKAO by using partial observations
and accordingly changing the algebraic structure of observations (a PCDL instead of a
Boolean algebra), and by incorporating explicit assignments and tests to manipulate variables.
Programs such as the litmus test that we analyse in POCKA are outside the scope of CKAO.

The idea of using a PCDL and partial functions in the semantics comes from Jipsen and
Moshier [10]. In the current paper we establish completeness w.r.t. the partial function model,
which is missing in loc. cit. A further contrast is that POCKA includes as basic syntax
atomic programs and assertions pertaining to variable assignment, as occur in the litmus
test. The definition of guarded pomset that we used is close to the one proposed in [10].
We provided an extensive analysis of guarded pomsets and showed how they can be used to
study concrete program behaviour: our new characterisation in terms of concrete properties
of pomsets (Theorem 5.9) is essential for the analysis of the litmus test in Section 6.

We suggest three avenues for future research. Firstly, the concrete observations and
assignments that we have used are reminiscent of NetKAT [2, 6], an algebraic framework
based on Kleene algebra with tests that allows for reasoning about networks. POCKA is thus
suggestive of a concurrent version of NetKAT, in which algebraic reasoning about concurrent
networks could be studied. While NetKAT arises as a particular instance of KAT, POCKA
is not an instance of its closest relative in the Kleene algebra family, CKAO, due to the
aforementioned move from an arbitrary Boolean algebra of observations to a concrete PCDL.
It would therefore be of interest to formulate the necessary metatheory for the analogous
framework of CKA with partial observations (where partial observations are given by an
arbitrary PCDL), and situate POCKA within it.

This naturally leads to a third line of research. We have used the CKAH framework to
obtain a completeness proof, and it turned out that the proof technique was perfectly amenable
to a replacement of the Boolean algebra structure of observations with our observation
algebra. This raises the question: which conditions are necessary on the algebraic structure
of observations to be able to prove completeness in a similar manner? In particular, what
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conditions are needed for a result similar to Lemma 4.1 to hold? Our conjecture is that
the observation algebra needs to be such that all elements can be written as a finite sum of
join-irreducible elements of the algebra (cf. Lemma 3.7).
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A Proofs about observation algebra

I Lemma 3.5 (Soundness OA). For all p, q ∈ O, if p ≡ q then JpK = JqK.

Proof. The fact that OA is a PCDL and the assignment J−K is well-defined establishes the
soundness of the PCDL axioms. We thus only have the domain-specific axioms left to verify.

If n 6= m, it is immediate that

Jv = n ∧ v = mK = Jv = nK∩ Jv = mK = {α | α(v) = n}∩{α | α(v) = m} = ∅ = J⊥K

Next we show Jv = nK ⊆
r∨

m6=n v = m
z
. Assume

α ∈ Jv = nK =
⋃
{B ∈ P≤(State) | B ∩ Jv = nK = ∅}.

We have some downwards-closed B ⊆ State such that α ∈ B and B ∩ Jv = nK = ∅.
Suppose towards a contradiction that α(v) is undefined, or that α(v) = n. We can then
choose α′ ∈ State to be n on v, and identical to α elsewhere; in that case, α′ ≤ α, which
means that α′ ∈ B. But then, since α′ ∈ Jv = nK by construction, we have a contradiction
with the fact that B ∩ Jv = nK = ∅. Thus, there exists an m ∈ Val such that α(v) = m

and m 6= n. It then follows that α ∈
r∨

m 6=n v = m
z
.

Next we prove that
r∧

i vi = ni

z
⊆ J
∨
i vi = niK, if the vi are distinct. Let α ∈ B such

that B ∩ J
∧
i vi = niK = ∅. We claim that for some i, α(vi) = m 6= ni. Suppose otherwise:

then for each vi either α(vi) = ni or α(vi) is undefined. Define:

α′(v) ::=
{
ni if v = vi and α(vi) undefined;
α(v) otherwise.

This is well-defined by the assumption that the vi are all distinct. By construction,
α′ ≤ α and α′ ∈

⋂
i{β | β(vi) = ni} = J

∧
i vi = niK. As B is downwards-closed, we get

α′ ∈ B, contradicting B ∩ J
∧
i vi = niK = ∅. Hence for some i, α(vi) = m 6= ni. Hence

α ∈ Jvi = niK ⊆ J
∨
i vi = niK as required.

For the inductive step, we verify that the closure rules for congruence preserve soundness.
This is all immediate from the definition of J−K. For instance, if e = e0 ∨ e1, f = f0 ∨ f1,
e0 ≡ f0 and e1 ≡ f1, then JeK = Je0K ∪ Je1K = Jf0K ∪ Jf1K = JfK, where we have used that
Je0K = Jf0K and Je1K = Jf1K by the induction hypothesis. J

I Lemma 3.6. For all α, β ∈ State: α ∈ JπβK iff α ≤ β iff πα 5 πβ.

Proof. Assume α ∈ JπβK. Then for all v ∈ dom(β), α(v) is defined and α(v) = β(v), hence
α ≤ β. Assume α ≤ β. Then πα 5 πβ is established from πα ∧ πβ ≡ πα: by the assumption,
every conjunct in

∧
β(v)=n v = n appears as a conjunct in

∧
α(v)=n v = n, so by idempotence

πα ∧ πβ ≡
(∧

α(v)=n v = n
)
∧
(∧

β(v)=n v = n
)
≡
∧
α(v)=n v = n ≡ πα. Finally, assume

πα 5 πβ . By soundness JπαK ⊆ JπβK, and it is trivial to establish α ∈ JπαK. J

I Lemma 3.7. For all p ∈ O, we have p ≡
∨
{α ∈ State | πα 5 p}.

Proof. Noting that
∨
{α ∈ State | α 5 p} 5 p by definition, we focus on the other

inequality, proceeding by induction on p. For the base cases, ⊥ 5
∨
{α ∈ State | α 5 ⊥}

by definition; > 5
∨
{α ∈ State | α 5 >} as > ≡ π∅ ∈ {α ∈ State | α 5 >}; and

v = n 5
∨
{α ∈ State | α 5 v = n} as v = n ≡ π{v 7→n} ∈ {α ∈ State | α 5 v = n}.

In the induction step we have three cases.
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If p = p0 ∧ p1, by the inductive hypothesis and distributivity we obtain

p0 ∧ p1 5
∨
{α ∧ β | α 5 p0, β 5 p1}.

We claim that {α ∧ β | α 5 p0, β 5 p1} ⊆ {α | α 5 p0 ∧ p1} ∪ {⊥}. Call α, β ∈ State
compatible if, for any v ∈ dom(α)∩dom(β), α(v) = β(v). Take α 5 p0 and β 5 p1. There
are two cases. In the first, α and β are compatible. Then define γ by

γ(v) ::=


α(v) if α(v) defined;
β(v) if β(v) defined;
undefined otherwise.

This is well-defined by compatability. Then γ ≤ α as well as γ ≤ β, and hence by
Lemma 3.6 we find γ 5 α ∧ β 5 p0 ∧ p1. In the other case, α and β are not compatible:
hence for some distinct n and m, v = n and v = m are among the conjuncts of α∧ β. By
the axiom v = n ∧ v = m ≡ ⊥, it then follows that α ∧ β ≡ ⊥. We obtain∨

{α ∧ β | α 5 p0, β 5 p1} 5
∨

({α | α 5 p0 ∧ p1} ∪ {⊥}) ≡
∨
{α | α 5 p0 ∧ p1}.

If p = p0 ∨ p1, we derive

p0 ∨ p1 5
∨
{α ∈ State | α 5 p0} ∨

∨
{β ∈ State | β 5 p1} (IH)

5
∨
{α ∈ State | α 5 p1 ∨ p2} (α 5 p0 5 p0 ∨ p1, similar for β)

If p = p0, we derive

p0 ≡
∨
{α | α 5 p0} (IH)

≡
∧
{α | α 5 p0} (De Morgan)

≡
∧
{
∧

α(v)=n

v = n | α 5 p0} (Definition of πα = α)

5
∧
{
∨

α(v)=n

v = n | α 5 p0} (De Morgan-like domain-specific axiom)

5
∧
{
∨

α(v)=n
m6=n

v = m | α 5 p0} (Pseudocomplement domain-specific axiom)

Note that the De Morgan law applied in the second step is indeed satisfied by PCDLs [3].
Now, define K ::= {α ∈ State | α 5 p0}, Jα ::= {(v,m) | α(v) = n 6= m}, J ::=

⋃
α∈K Jα

and F ::= {f : K → J | ∀α ∈ K, f(α) ∈ Jα}. Further, let

pα,(v,m) ::=
{
v = m if α(v) = n 6= m;
⊥ otherwise

Then∧
{
∨

α(v)=n
m 6=n

v = m | α 5 p0} ≡
∧
α∈K

∨
(v,m)∈Jα

pα,(v,m) ≡
∨
f∈F

∧
α∈K

pα,f(α)

CONCUR 2020
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by distributivity. For each f ∈ F , if the pα,f(α) are compatible,
∧
α∈K pα,f(α) ≡ βf , for a

βf with the property that for every α 5 p0, βf ∧ α = ⊥ (as by definition, for each such
α, βf has some v = m as a conjunct, where α has a conjunct v = n for n 6= m). If they
are incompatible,

∧
α∈K pα,f(α) ≡ ⊥. Hence∨

f∈F

∧
α∈K

pα,f(α) 5
∨
{β | for all α, α 5 p0 implies α ∧ β ≡ ⊥}.

For any β satisfying the property that for all α, α 5 p0 implies α ∧ β ≡ ⊥, we have
β ∧ p0 ≡ β ∧

∨
{α | α 5 p0} ≡

∨
{α ∧ β | α 5 p0} ≡ ⊥, so β 5 p0 and∨

{β | for all α 5 p0 implies α ∧ β ≡ ⊥} 5
∨
{β | β 5 p0},

completing the proof. J

I Theorem 3.8 (Completeness OA). For all p, q ∈ O, we have p ≡ q if and only if JpK = JqK.

Proof. The left-to-right direction follows from Lemma 3.5. For the right-to-left direction,
suppose that JpK = JqK. By Lemma 3.7, we obtain that

JpK =
r∨
{α ∈ State | α 5 p}

z
=

r∨
{β ∈ State | β 5 q}

z
= JqK.

We prove α 5 p if and only if α 5 q. Take α 5 p. Then α ∈ JαK ⊆ JpK =
⋃
β5q JβK

by Lemmas 3.5 and 3.6. Hence for some β 5 q, α ∈ JβK, and by Lemma 3.6 once more,
α 5 β 5 q. The other direction is symmetric. It follows that

p ≡
∨
{α ∈ State | α 5 p} ≡

∨
{α ∈ State | α 5 q} ≡ q,

as required. J

B Proofs towards completeness

The following three results are all needed in the proofs that follow, and come from [12]. First
of all, we can prove the following useful properties about the interaction between closure and
other operators on pomset languages:

I Lemma B.1. Let L,K ⊆ Pom and C ∈ PC. The following hold.
1. L ⊆ K↓H iff L↓H ⊆ K↓H .
2. If L ⊆ K, then L↓H ⊆ K↓H .
3. (L ∪K) ↓H =

(
L↓H ∪K↓H

)
↓H

4. (L ·K) ↓H =
(
L↓H ·K↓H

)
↓H

5. (L ‖ K) ↓H =
(
L↓H ‖ K↓H

)
↓H

6. (L∗) ↓H = (
(
L↓H

)∗)↓H
7. If L↓H ⊆ K↓H , then C[L]↓H ⊆ C[K]↓H .
8. If L ⊆ SP, then L↓H ⊆ SP.

Second, we can note the following result about the interaction between exch and contr:

I Lemma B.2. For any L ∈ 2SP, we have L↓contr∪exch = (L↓exch)↓contr.

We can then prove soundness of the POCKA semantics w.r.t. the axioms.

I Theorem 3.14 (Soundness POCKA). For all e, f ∈ T , if e ≡ f then LβeM↓ = LβfM↓.

Proof. By construction it is immediate that Lβ−M↓ is closed under closure with respect to
exch ∪ contr. We then proceed by induction on ≡. For all the pairs from ≡BKA, it follows
from Theorem 2.6 that LβeM = LβfM. Then immediately their POCKA-semantics also coincide.
For all the pairs from ≡OA, we make use of Theorem 3.8. Note that Lβ−M↓ almost coincides



J. Wagemaker, P. Brunet, S. Docherty, T. Kappé, J. Rot, and A. Silva 20:21

with J−KOA on O, so the proof is very straightforward. For instance, take p ∨ (p ∧ q) ≡OA p.
Then Lβp ∨ (p ∧ q)M = State∗ · Jp ∨ (p ∧ q)KOA · State∗. From Theorem 3.8, we know that
Jp ∨ (p ∧ q)KOA = JpKOA, and thus we obtain Lβp ∨ (p ∧ q)M = State∗ · JpKOA · State∗ = LβpM. Then
from this we can conclude that Lβp ∨ (p ∧ q)M↓ = Lβp ∨ (p ∧ q)M↓exch∪contr = LβpM↓exch∪contr = LβpM↓.
We can prove soundness of the other observation algebra axioms analogously.

The next axiom is the exchange law. We show that Lβ(e ‖ f) · (g ‖ h)M↓ ⊆ Lβ(e · g) ‖ (f · h)M↓.
By Lemma B.1(1), it suffices to prove that Lβ(e ‖ f) · (g ‖ h)M ⊆ Lβ(e · g) ‖ (f · h)M↓. Take an
element in Lβ(e ‖ f) · (g ‖ h)M. This is thus a pomset of the form (X ‖ Y ) ·(V ‖W ) for X ∈ LβeM,
Y ∈ LβfM, V ∈ LβgM and W ∈ LβhM. Thus we immediately obtain that (X · V ) ‖ (Y ·W ) ∈
Lβ(e · g) ‖ (f · h)M. From Lemma B.2, we know that Lβ−M↓ = (Lβ−M↓exch)↓contr. We know that
(X ‖ Y )·(V ‖W ) v (X ·V ) ‖ (Y ·W ) and that (X ·V ) ‖ (Y ·W ) ∈ (Lβ(e · g) ‖ (f · h)M↓exch)↓contr.
Then we can apply Lemmas 2.11 and B.2 to obtain that (X ‖ Y )·(V ‖W ) ∈ Lβ(e · g) ‖ (f · h)M↓.

Left to verify are the interface axioms. To check p ∧ q 5 p · q it again suffices to prove
that Lβp ∧ qM ⊆ Lβp · qM↓ by Lemma B.1(1). We take an element in Lβp ∧ qM. This a pomset
of the form U · α · V such that U, V ∈ State∗ and α ∈ JpKOA ∩ JqKOA. We can establish that
U · α · α · V ∈ Lβp · qM. Now take the pomset context C = U · ∗ · V . We have that C[Jα · αK] =
{U · α · α · V } ⊆ Lβp · qM ⊆ Lβp · qM↓. Then by closure we find C[JαK] = {U · α · V } ⊆ Lβp · qM↓.

Since Lβ⊥M = ∅ = Lβ0M, it follows that Lβ⊥M↓ = ∅ = Lβ0M↓. Similarly, since Lβp+ qM = LβpM∪LβqM =
Lβp ∨ qM, we also have that Lβp+ qM↓ = Lβp ∨ qM↓

Now we have four axioms left. The first one we verify is>·p 5 p for p ∈ O. We immediately
obtain that Lβ> · pM = State · State∗ · JpKOA · State∗ ⊆ State∗ · JpKOA · State∗ = LβpM ⊆ LβpM↓. The
axioms > · p 5 p, a · > 5 a, and > · a 5 a for a ∈ Act are all verified in a similar manner.

In the inductive step we need to check whether the closure rules for congruence have
been preserved. We distinguish four cases.

If e = e0 + e1 and f = f0 + f1 with e0 ≡ f0 and e1 ≡ f1, then by induction we know that
Lβe0M↓ = Lβf0M↓ and Lβe1M↓ = Lβf1M↓. By Lemma B.1(3), we can then derive that

LβeM↓ = (Lβe0M ∪ Lβe1M)↓exch∪contr

= (Lβe0M↓exch∪contr ∪ Lβe1M↓exch∪contr)↓exch∪contr

= (Lβf0M↓exch∪contr ∪ Lβf1M↓exch∪contr)↓exch∪contr

= (Lβf0M ∪ Lβf1M)↓exch∪contr

= LβfM↓exch∪contr

The cases for ·, ‖ and ∗ are argued similarly. J

I Lemma 4.5. For all e, f ∈ T , if e ≤ f ∈ top ∪ contr, then e 5 f .

Proof. If e ≤ f ∈ contr, then e = α and f = α · α for some α ∈ State. We can then
derive that α ≡ α ∧ α 5 α · α, using the PCDL and the Interface axioms. Hence e 5 f . If
e ≤ f ∈ top, then we distinguish two cases.
1. Let e = α · c and g = c for c ∈ Act and α ∈ State. Then we derive

α · c 5 > · c 5 c (PCDL and Interface axioms)

The case where e = c · α is similar.
2. Let e = α · β and g = β for α, β ∈ State. Then we derive

α · β 5 > · β 5 β (PCDL and Interface axioms)

The case where e = β · α is similar. Hence, we can conclude that e 5 f . J

CONCUR 2020
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C Proofs about the litmus test

I Lemma 6.2. Let U = [u] ∈ SP. If P (U) then U is not guarded.

Proof. We prove by contradiction; assume that P (U) and that U is guarded. Via Theorem 5.9
we conclude that U satisfies (A1)–(A7). From P (U) we infer that there exists u1, u2, w ∈ Su
such that λu(u1) = (x← 1), u1 ≤ w and λu(w)(r0) = 0 = λu(w)(r1). From (A2) and (A5),
we infer that u1 has a unique successor node s1 ∈ Su such that s1 is state-labelled, and
λu(s1)(x) = 1. From (A4) there exists a path for x from s1 to w. Hence, if λu(w)(x) 6= 1,
there must be at least one assignment between s1 and w altering the value of x, as the path
must explain how the value of x changed from 1 to 0. Hence, there exists a node u3 ∈ Su
such that s1 ≤u u3 ≤u w and λu(u3) = (x← n) for n ∈ Var∪Val. However, from property
P , we know that all such assignments occur before u1, and thereby strictly before s1. From
this we can conclude that λu(w)(x) = 1. Similarly, we obtain λu(w)(y) = 1.

From (A2) and (A6), we know that v1 has a unique successor node t1, such that
λu(t1)(r0) = λu(t1)(y). Then from (A4), there must be a path for r0 from t1 to w. With
similar reasoning as for x above, we obtain λu(t1)(r0) = λu(w)(r0) = 0. Similarly, we obtain
a successor node t2 of v2 such that λu(t2)(r1) = λu(t2)(x) = 0.

As we have that λu(t1)(y) = 0 and λu(w)(y) = 1 and t1 ≤u w, we can conclude from (A4)
that there must be a path from t1 to w for y such that this path contains at least one
assignment that alters the value for y. Thus, there exists a node u3 such that t1 ≤u u3 ≤w w

and u3 has a label that changes the value of y. Similarly, we obtain a node u4 such that
t2 ≤u u4 ≤w w and u4 changes the value of x. From property P , we obtain u3 ≤u u2 and
u4 ≤u u1. Then, making use of the fact that t1 and t2 are the successors of v1 and v2
respectively, we can derive: v2 ≤u t2 ≤u u4 ≤u u1 ≤u v1 ≤u t1 ≤u u3 ≤u u2 ≤u v2 Then, by
antisymmetry, all these nodes are equivalent. As they cannot be, we have a contradiction.
Hence, U is not a guarded pomset. Hence, U is not a guarded pomset. J

I Lemma 6.5. Let e ∈ T . If ∀U ∈ LβeM we have P (U), then ∀V ∈ LβeM↓ it holds that P (V ).

Proof. First, note that LβeM↓ = LβeM↓exch∪contr =
(
LβeM↓exch) ↓contr by Lemma B.2. Thus, if

V ∈ LβeM↓, we apply Lemma 6.4, to infer that there exists a pomset W ∈ LβeM↓exch such that
V � W . Next we can apply Lemma 2.11, to obtain a pomset U ∈ LβeM such that W v U .
We know that U has property P . We first show that W also has property P , and then that
the same holds for V . From the definition of v we get that there exists a bijective pomset
morphism h from W to U . Thus we have U = [u] and W = [w] and a bijective function
h : Su → Sw such that λw ◦ h = λu and if u ≤u u′ then h(u) ≤w h(u′). Now we need to
verify the two properties of Definition 6.1.
1. As λw(h(u1)) = λu(u1), we get λw(h(u1)) = (x← 1). The same for the other existential

statements of Item 1. For the ordering: from u1 ≤u v1 ≤u w we immediately obtain that
h(u1) ≤w h(v1) ≤w h(w) and similarly for h(u2) ≤w h(v2) ≤w h(w).

2. Take a z such that λw(z) = (x ← n) for n ∈ Val ∪ Var. As h is surjective, we know
there exists a node s ∈ Su such that h(s) = z and λw(h(s)) = λu(s). As P (U), we get
that s ≤u u1. Hence, h(s) ≤w h(u1) and thus z ≤w h(u1). An analogue argument can
be given for the other conditions in property (2).

This demonstrates that W has property P . We know that V � W , and we will show this
implies that V also has property P . From the definition of � we know that there exists a
pomset morphism h from V toW . The argument to verify the two properties of Definition 6.1
is exactly the same as above. Hence we can conclude that V has property P . J
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