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Abstract
For decades, two-player (antagonistic) games on graphs have been a framework of choice for many
important problems in theoretical computer science. A notorious one is controller synthesis, which
can be rephrased through the game-theoretic metaphor as the quest for a winning strategy of the
system in a game against its antagonistic environment. Depending on the specification, optimal
strategies might be simple or quite complex, for example having to use (possibly infinite) memory.
Hence, research strives to understand which settings allow for simple strategies.

In 2005, Gimbert and Zielonka [26] provided a complete characterization of preference relations
(a formal framework to model specifications and game objectives) that admit memoryless optimal
strategies for both players. In the last fifteen years however, practical applications have driven the
community toward games with complex or multiple objectives, where memory – finite or infinite – is
almost always required. Despite much effort, the exact frontiers of the class of preference relations
that admit finite-memory optimal strategies still elude us.

In this work, we establish a complete characterization of preference relations that admit optimal
strategies using arena-independent finite memory, generalizing the work of Gimbert and Zielonka to
the finite-memory case. We also prove an equivalent to their celebrated corollary of great practical
interest: if both players have optimal (arena-independent-)finite-memory strategies in all one-player
games, then it is also the case in all two-player games. Finally, we pinpoint the boundaries of our
results with regard to the literature: our work completely covers the case of arena-independent
memory (e.g., multiple parity objectives, lower- and upper-bounded energy objectives), and paves
the way to the arena-dependent case (e.g., multiple lower-bounded energy objectives).
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1 Introduction

Controller synthesis through the game-theoretic metaphor. Two-player games on (finite)
graphs are studied extensively, in particular for their application to controller synthesis for
reactive systems (see, e.g., [28, 35, 7, 2]). The seminal model is antagonistic (i.e., zero-sum if
one chooses a quantitative view): player 1 (P1) is seen as the system to control, player 2 (P2)
as its antagonistic environment, and the game models their interaction. Each vertex of the
game graph (called arena) models a state of the system and belongs to one of the players.
Players take turns moving a pebble from state to state according to the edges, each player
choosing the destination whenever the pebble is on one of his states. These choices are made
according to the strategy of the player, which, in general, might use memory (bounded or
not) of the past moves to prescribe the next action.

The resulting infinite sequence of states, called play, represents the execution of the
system. The objective of P1 is to enforce a given specification, often encoded as a winning
condition (i.e., a set of winning plays) or as a payoff function to maximize (i.e., a quantitative
performance to optimize). This paradigm focuses on the worst-case performance of the
system, hence P2’s goal is to prevent P1 from achieving his objective.

The goal of synthesis is thus to decide if P1 has a winning strategy, i.e., one ensuring
a given winning condition or guaranteeing a given payoff threshold, against all possible
strategies of P2, and to build such a strategy efficiently if it exists.

Winning strategies are formal blueprints for controllers to implement in applications.
Therefore, their complexity is of tremendous importance: the simpler the strategy, the easier
and cheaper it will be to build the controller and maintain it. This explains why a lot of
research effort is constantly put in identifying the exact complexity (in terms of memory and/or
randomness) of strategies needed to play optimally (i.e., to the best of the player’s ability)
for each specific class of games and objectives (e.g., [26, 17, 14, 40, 22, 10, 1, 4, 39, 5, 11]).
Alongside the practical interest lies the theoretical puzzle: understanding the underlying
mechanisms and implicit properties of games that lead to “simple” strategies being sufficient.
Given the numerous connections between games and various branches of mathematics and
computer science, this fundamental question has interest in its own right.

Preference relations. There are two prominent ways to formalize a game objective in the
literature. The first one, dubbed quantitative and inspired by games in economics, is to use
payoff functions mapping plays to numerical values, and to see P1 as a maximizer player.
This is for example the case of mean-payoff games [19]. The second one, called qualitative, is
to define a set of winning plays – called winning condition – induced by some property, as in,
e.g., parity games [20, 41]. The two formalisms are strongly linked: the classical decision
problem for quantitative games is to fix a payoff threshold and ask if P1 has a strategy to
guarantee it, transforming the problem into a qualitative one (where the winning plays are
all those with a payoff at least equal to the threshold). To define payoff functions or winning
conditions, one often uses weights, priorities, colors, etc, on states or edges of the arena.

In this work, we walk in the footsteps of Gimbert and Zielonka [26]: we associate a color
to each edge of our arenas, and we adopt the abstract formalism of preference relations over
infinite sequences of colors (induced by plays). This general formalism permits to encode
virtually all classical game objectives, both qualitative and quantitative, and lets us reason
in a well-founded framework under minimal assumptions.
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Memoryless optimal strategies. Remarkably, several canonical classes of games that have
been around for decades and proved their usefulness over and over – e.g., mean-payoff [19],
parity [20, 41], or energy games [12] – share a desirable property: they all admit memoryless
optimal strategies for both players. That is, for every strategy σi of Pi, there is a strategy
σML
i which is at least as good (i.e., wins whenever σi wins or ensures at least the same payoff)

and that uses no memory at all. Such a memoryless strategy always picks the same edge
when in the same state, regardless of what happened before in the game.

Memoryless strategies are the simplest kind of strategies one can use. Therefore, it
is quite interesting that they suffice for objectives as rich as the ones we just discussed.
Following this observation, a lot of effort has been put in understanding which games
admit memoryless optimal strategies, and in identifying the exact frontiers of memoryless
determinacy. Let us mention, non-exhaustively, works by Gimbert and Zielonka [25, 26]
(culminating in a complete characterization), Aminof and Rubin [1] (through the prism of
first-cycle games), and Kopczyński [31] (half-positional determinacy). All these advances
were built by identifying the common underlying mechanisms in ad hoc proofs for specific
classes of games, and generalizing them to wide classes (e.g., the first-cycle games of [1] are
inspired by the seminal paper of Ehrenfeucht and Mycielski on mean-payoff games [19]).

Gimbert and Zielonka’s approach. Arguably, the most important result in this direction is
the complete characterization of preference relations admitting memoryless optimal strategies,
established in [26], fifteen years ago. By complete characterization, we mean sufficient and
necessary conditions on the preference relations.

It can be stated as follows: a preference relation admits memoryless optimal strategies
for both players on all arenas if and only if the relation (used by P1) and its inverse (used
by P2) are monotone and selective. These concepts will be defined formally in Section 3,
but let us give an intuition here. Roughly, a preference relation is monotone if it is stable
under prefix addition: given two sequences of colors such that one is strictly preferred to the
other, it is impossible to reverse this order of preference by adding the same prefix to both
sequences. Selectivity is similarly defined with regard to cycle mixing: if a preference relation
is selective, then, starting from two sequences of colors, it is impossible to create a third one
by mixing the first two in such a way that the third one is strictly preferred to the first two.
These elegant notions coincide with the natural intuition that memoryless strategies suffice if
there is no interest in behaving differently in a state depending on what happened before.

In addition to this complete characterization, Gimbert and Zielonka proved another great
result, of high interest in practice [26, Corollary 7]: as a by-product of their approach, they
obtain that if memoryless strategies suffice in all one-player games of P1 and all one-player
games of P2, they also suffice in all two-player games. Such a lifting corollary provides a
neat and easy way to prove that a preference relation admits memoryless optimal strategies
without proving monotony and selectivity at all: proving it in the two one-player subcases,
which is generally much easier as it boils down to graph reasoning, and then lifting the result
to the general two-player case through the corollary.

The rise of memory. The need to model complex specifications has shifted research toward
games where multiple (quantitative and qualitative) objectives co-exist and interact, requiring
the analysis of interplay and trade-offs between several objectives. Hence, a lot of effort
is put in studying games where objectives are actually conjunctions of objectives, or even
richer Boolean combinations. See for example [16] for combinations of parity, [13, 17, 30] for
combinations of energy and parity, [40] for combinations of mean-payoff, [5, 4] for combinations
of energy and average-energy, [11] for combinations of energy and mean-payoff, [14] for
combinations of total-payoff, or [14, 10, 8] for combinations of window objectives.
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Figure 1 P1 (circle) needs infinite memory to win.

When considering such rich objectives, memoryless strategies usually do not suffice, and
one has to use an amount of memory that can quickly become an obstacle to implementation
(e.g., exponential memory) or that can prevent it completely (infinite memory). Establishing
precise memory bounds for such general combinations of objectives is tricky and sometimes
counterintuitive. For example, while energy games and mean-payoff games are inter-reducible
in the single-objective setting, exponential-memory strategies are both sufficient and necessary
for conjunctions of energy objectives [17, 30] while infinite-memory strategies are required
for conjunctions of mean-payoff ones [40].

A natural question arises: which preference relations do admit finite-memory optimal
strategies? Surprisingly, whether an equivalent to Gimbert and Zielonka’s characterization
could be obtained for finite memory or not has remained an open question up to now. It is
worth noticing that such an equivalent could be of tremendous help in practice, especially if
a lifting corollary also holds: see for example [5, 4, 11], where proving that finite-memory
strategies suffice in one-player games was fairly easy, in contrast to the high complexity of
the two-player case – a lifting corollary could grant the two-player case for free!

Having said that, one has to hope that the following corollary can be established: “if
finite-memory strategies suffice in all one-player games of P1 and all one-player games of P2,
they also suffice in all two-player games.” Unfortunately, this hope is but a delusion.

Lifting corollary: a counterexample. Consider games where the colors are integers, and
the objective of P1 is to create a play such that (a) the running sum of weights grows up to
infinity (e.g., consider its lim inf to define it properly), or (b) this running sum of weights
takes value zero infinitely often. As this defines a qualitative objective, the corresponding
preference relation induces only two equivalence classes: winning and losing plays. The
inverse relation, used by P2, is trivial to obtain. It is fairly easy to prove that P1 always
has finite-memory optimal strategies in his one-player games (i.e., games where P2 has no
choice), and so does P2 in his one-player games.

Now, consider the very simple two-player game depicted in Figure 1. Player P1 (circle)
has an infinite-memory strategy to win: keeping track of the running sum of weights (which
is unbounded, hence the need for infinite memory) and looping in s1 up to the point where
this sum hits zero, then going to s2. This strategy ensures victory because either P2 always
goes back to s1, in which case (b) is satisfied; or P2 eventually loops forever on s2, in which
case (a) is satisfied. It remains to argue that P1 has no finite-memory winning strategy in
this game. This can be done using a standard argument: whatever the amount of memory
used by P1, P2 may loop in s2 long enough as to exceed the bound up to which P1 can track
the sum accurately; thus dooming P1 to fail to reset the sum to zero in s1 infinitely often.

This modest example proves that Gimbert and Zielonka’s approach cannot work in full
generality in the finite-memory case, and for good reasons. Informally, in this case, the
corollary breaks down because of (the absence of some sort of) monotony. In the case of
memoryless strategies, as in [26], P1 is already doomed in one-player games in the absence of
monotony: two prefixes to distinguish – in order to play optimally – can be hardcoded as
different paths leading to the same state in a game arena, as if they were chosen by P2 in a
two-player game. In the case of finite-memory strategies, however, the situation is different.



P. Bouyer, S. Le Roux, Y. Oualhadj, M. Randour, and P. Vandenhove 24:5

In one-player games, the number of such paths that can be hardcoded in an arena is always
bounded, hence finite memory might suffice to react, i.e., to keep track of which prefix is the
current one and how to behave accordingly. However, in two-player games, P2 might create
an infinite number of prefixes to distinguish (using a cycle), thus requiring P1 to use infinite
memory to be able to do so. This is exactly what happens in the example above: in any
one-player game, the largest sum that P1 has to track is bounded, whereas P2 can make this
sum as large as he wants in two-player games.

Our approach. We generalize Gimbert and Zielonka’s results – characterization and lifting
corollary – to the case of arena-independent finite memory. That is, we encompass all
situations where the memory needed by the two players is solely dependent on the preference
relation (e.g., colors, dimensions of weight vectors), and not on the game arena (i.e., number
of edges/states). Let us take some examples.

All memoryless-determined relations – studied in [26] – use arena-independent memory:
the memory required, none, is the same for all arenas.
Combinations of parity objectives use arena-independent memory [16]: the memory only
depends on the number of objectives and the number of priorities – both parameters of
the preference relation, not on the size of the arena.
Lower- and upper-bounded energy objectives also use arena-independent memory (see,
e.g., [3, 5, 4]): the memory only depends on the bounds and the weights – parameters of
the preference relation, not on the size of the arena.
On the contrary, combinations of lower-bounded energy objectives (with no upper bound)
require arena-dependent memory [17, 30]: it depends on the size of the arena in addition
to the weights used in it. Such a setting falls outside the scope of our results.

This informal concept of arena-independent memory is transparent in our work: in all our
results, we use memory skeletons – essentially Mealy machines without a next-action function
(Section 2) – that suffice for all arenas, and that are at the basis of the strategies we build.
A quick look at our main concepts (Section 3) and results (Section 4) suffices to grasp the
formalism behind this intuition.

This restriction to arena-independent memory is natural given the counterexample to a
general approach presented above. It is also important to note that it is not as restrictive as
it may seem, as hinted by the examples above: we are not restricted to constant memory
but to memory only depending on the parameters of the preference relation (or equivalently,
objective), and not of the arena. This framework thus already encompasses many objectives
from the literature – e.g., [19, 20, 41, 12, 5, 21, 16, 10, 14, 3, 5, 4], as well as possible
extensions. More details in Appendix A.

The arena-independent case, which we solve here, is an exact equivalent to Gimbert and
Zielonka’s results in the finite-memory case: the memoryless case is de facto arena-independent.
Therefore, this paper strictly generalizes [26] by allowing to study any arena-independent
memory skeleton instead of the unique trivial one corresponding to memoryless strategies.

Outline of our contributions. Informally, our characterization can be stated as follows:
given a preference relation and a memory skeleton M, both players have optimal finite-
memory strategies based on skeletonM in all games if and only if the relation and its inverse
areM-monotone andM-selective.

These last two concepts are keys to our approach. Intuitively, they correspond to Gimbert
and Zielonka’s monotony and selectivity, modulo a memory skeleton. Recall that monotony
and selectivity are related to stability of the preference relation with regard to prefix addition
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and cycle mixing, respectively. Our more general concepts ofM-monotony andM-selectivity
serve the same purpose, but they only compare sequences of colors that are deemed equivalent
by the memory skeleton. For the sake of illustration, take selectivity: it implies that one has
no interest in mixing different cycles of the game arena. For its generalization, the memory
skeleton is taken into account: M-selectivity implies that one has no interest in mixing cycles
of the game arena that are read as cycles on the same memory state in the skeleton M.

Let us give a quick breakdown of our paper. Due to space constraints, we only provide
an intuitive overview of our results and technical approach in this conference version: formal
details and proofs, along with additional results, can be found in the full article [6].

In Section 2, we introduce some basic notions, including the memory skeletons, and we
establish several technical results. We also discuss optimal strategies and Nash equilibria.
In Section 3, we introduceM-monotony andM-selectivity, cornerstones of our work. We
also present two essential tools: prefix-covers and cyclic-covers of arenas. Section 4 states
formally our characterization (Theorem 9), as well as the corresponding lifting corollary
(Corollary 10), from one-player to two-player games. We show an example of application
in Section 5. Finally, we give an overview of the technical highlights of our approach in
Section 6 – its details are broken down in several intermediate results in our full paper [6].

In a nutshell, the proof of the characterization (Theorem 9) is split in two. We first
establish that (the sufficiency of) finite memory based on M implies M-monotony and
M-selectivity of the preference relation. The crux is to build game arenas based on automata
recognizing the languages involved in the two concepts, and to use the existence of finite-
memory optimal strategies in these arenas to prove thatM-monotony andM-selectivity hold.
To prove the converse implication, we proceed in two steps, first establishing the existence of
memoryless optimal strategies in “covered” arenas, and then building on it to obtain the
existence of finite-memory optimal strategies in general arenas. The main technical tools we
use are Nash equilibria and the aforementioned notions of prefix-covers and cyclic-covers.

Alongside the technical details, we analyze our characterization in Appendix A: we
highlight some limitations and interesting features, compare our techniques with Gimbert
and Zielonka’s, discuss our place in the research landscape, and sketch directions for future
work. Let us just stress already that our result – relating a memory skeletonM and preference
relations for which this skeleton suffices – cannot be obtained by simply considering product
arenas and invoking Gimbert and Zielonka’s result on memoryless determinacy [26]. While,
of course, memoryless strategies on product arenas correspond to memoryfull strategies on
original arenas (as we will formally establish in Lemma 1), invoking [26] requires to be able
to quantify on all arenas, not only product arenas. Filling this gap is exactly the goal of this
paper, and it is made possible through the new concepts we sketched above.

2 Preliminaries

We only give here the notions and results necessary to understand this overview. Necessary
notions and results – some of them interesting in their own right – to understand the technical
details of the approach are found in the full paper [6].

Automata and languages of colors. Let C be an arbitrary set of colors. We assume knowl-
edge of non-deterministic finite-state automata (NFA), which recognize regular languages.
For any finite subset B ⊆ C, we denote by Reg(B) the set of all regular languages over B.
Let R(C) =

⋃
B⊆C, |B|<∞ Reg(B), that is, all the regular languages built over C.
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Let K ⊆ C∗ be a language of finite words. We write Prefs(K) for the set of all prefixes of
words in K. We define the set of infinite words [K] = {w = c1 . . . ∈ Cω | ∀n ≥ 1, c1 . . . cn ∈
Prefs(K)}, which contains all infinite words for which every finite prefix is a prefix of a word
in K. Intuitively, if K is regular, [K] is the language of infinite words that correspond to
infinite paths that can always branch and reach a final state, on an automaton for K. Given
a finite word w ∈ C∗ and a language K ⊆ C∗, we write wK for their concatenation, i.e., the
language wK = {w′ = ww′′ | w′′ ∈ K} ⊆ C∗.

Arenas. We consider two players: player 1 (P1) and player 2 (P2). An arena is a tuple
A = (S1, S2, E) such that S = S1 ]S2 (disjoint union) is a finite set of states partitioned into
states of P1 (S1) and P2 (S2), and E ⊆ S ×C ×S is a finite set of edges. Let col : E → C be
the projection of edges to colors and ĉol its natural extension to sequences of edges. For an
edge e ∈ E, we use in(e) and out(e) to denote its starting state and arrival state respectively,
i.e., e = (in(e), col(e), out(e)). We assume all arenas to be non-blocking, i.e., for all s ∈ S,
there exists e ∈ E such that in(e) = s. For i ∈ {1, 2}, we call an arena A = (S1, S2, E) a Pi’s
one-player arena if for all s ∈ S3−i, |{e ∈ E | in(e) = s}| = 1 – that is, P3−i has no choice.

Let Hists(A, s) denote the histories in A from s ∈ S, i.e., finite sequences of edges
ρ = e1 . . . en ∈ E+ such that in(e1) = s and for all i, 1 ≤ i < n, out(ei) = in(ei+1). Let
Plays(A, s) denote the plays in A from s ∈ S, i.e., infinite sequences π = e1e2 . . . ∈ Eω such
that in(e1) = s and for all i ≥ 1, out(ei) = in(ei+1). We write Hists(A, S′) and Plays(A, S′)
for unions over S′ ⊆ S, and write Hists(A) and Plays(A) for the unions over all states of A.

Let ρ = e1 . . . en ∈ Hists(A) (resp. π = e1e2 . . . ∈ Plays(A)): we extend the operator in
to histories (resp. plays) by identifying in(ρ) (resp. in(π)) to in(e1). We proceed similarly
for out and histories: out(ρ) = out(en). For the sake of convenience, we consider that any
set Hists(A, s) contains the empty history λs such that in(λs) = out(λs) = s. We write
Histsi(A, s) and Histsi(A) for the subsets of histories ρ such that out(ρ) ∈ Si, i ∈ {1, 2}, i.e.,
histories whose last state belongs to Pi. For any set H ⊆ Hists(A), we write ĉol(H) for its
projection to colors, i.e., ĉol(H) = {ĉol(ρ) | ρ ∈ H}. We do the same for sets of plays.

Memory skeletons. A memory skeleton is a tupleM = (M,minit, αupd) where M is a finite
set of states, minit ∈M is a fixed initial state and αupd : M × C →M is an update function.
We write α̂upd for the natural extension of αupd to sequences in C∗. Memory skeletons are
deterministic and might have an infinite number of transitions, in contrast to NFA. We define
the trivial memory skeleton asMtriv = (M = {minit},minit, αupd : {minit} × C → {minit}): it
permits to formalize memoryless strategies [26] in our framework.

LetM = (M,minit, αupd) be a skeleton. For m,m′ ∈M , we define the language Lm,m′ =
{w ∈ C∗ | α̂upd(m,w) = m′} that contains all words that can be read from m to m′ inM.

LetM1 = (M1,m1
init, α

1
upd) andM2 = (M2,m2

init, α
2
upd). Their product M1 ⊗M2 is the

memory skeletonM = (M,minit, αupd) where M = M1 ×M2, minit = (m1
init,m

2
init), and, for

all m1 ∈ M1, m2 ∈ M2, c ∈ C, αupd((m1,m2), c) = (α1
upd(m1, c), α2

upd(m2, c)). That is, the
memories are updated in parallel when a color is read.

Product arenas. Let A = (S1, S2, E) be an arena andM = (M,minit, αupd) be a skeleton.
Their product A nM is the arena (S′1, S′2, E′) where S′1 = S1 ×M , S′2 = S2 ×M , and
E′ ⊆ S′ × C × S′, with S′ = S′1 ] S′2, is such that ((s1,m1), c, (s2,m2)) ∈ E′ if and only if
(s1, c, s2) ∈ E and αupd(m1, c) = m2. That is, the memory is updated according to the colors
of the edges in E. ThoughM might contain an infinite number of transitions, A nM is
always finite, as E is finite. Since we assume A is non-blocking, it is also the case of AnM.
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Strategies. A strategy σi for Pi, i ∈ {1, 2}, on arena A = (S1, S2, E), is a function
σi : Histsi(A)→ E such that for all ρ ∈ Histsi(A), in(σi(ρ)) = out(ρ). Let Σi(A) be the set
of all strategies of Pi on A. A finite-memory strategy σi can be encoded as a Mealy machine,
i.e., a skeleton M = (M,minit, αupd) with transitions over a finite subset of colors B ⊆ C,
enriched with a next-action function αnxt : M × Si → E such that for all m ∈ M , s ∈ Si,
in(αnxt(m, s)) = s. Given a Mealy machine Γσi = (M, αnxt), strategy σi is defined as follows:
∀ s ∈ Si, σi(λs) = αnxt(minit, s),
∀ ρ · e ∈ Histsi(A), e ∈ E, σi(ρ · e) = αnxt

(
α̂upd

(
minit, ĉol (ρ · e)

)
, out(e)

)
.

Let ΣFM
i (A) be the finite-memory strategies of Pi on A. We say that a strategy σi ∈ ΣFM

i (A)
is based on memory skeleton M if it can be encoded as a Mealy machine Γσi = (M, αnxt), as
above. We implicitly assume that strategies of ΣFM

i (A) are built by restricting the transitions
of their skeletonM to the actual subset of colors appearing in A. A strategy σi is memoryless
if it is a function σi : Si → E, or equivalently, if it is based onMtriv.

We write Plays(A, s, σi) for the plays consistent with a strategy σi of Pi from a state s, i.e.,
plays π = e1e2 . . . ∈ Plays(A, s) such that for all ρ = e1 . . . en, out(ρ) ∈ Si =⇒ σi(ρ) = en+1.
We write Plays(A, s, σ1, σ2) for the singleton set containing the unique play consistent with a
couple of strategies for the two players. We use similar notations for histories.

Preference relations. Let v be a total preorder on Cω, called preference relation. We
consider antagonistic games, where the objective of P1 is to create the best possible play
with regard to v whereas the objective of P2 is the opposite. That is, P2 uses the inverse
relation v−1. This corresponds to zero-sum games when using a quantitative framework.

Given w,w′ ∈ Cω, we write w @ w′ if we have ¬(w′ v w) since the preorder is total. We
extend v to subsets: for W,W ′ ⊆ Cω, W vW ′ ⇐⇒ ∀w ∈W, ∃w′ ∈W ′, w v w′. We also
write W @W ′ ⇐⇒ ∃w′ ∈W ′, ∀w ∈W, w @ w′. Note that W @W ′ ⇐⇒ ¬(W ′ vW ).

To compare a word w ∈ Cω with a language K ⊆ Cω, we simply identify it to {w}.

Games. A (deterministic turn-based two-player) game is a tuple G = (A,v) where A is
an arena and v is a preference relation. All classical objectives from the literature (both
qualitative and quantitative) can be expressed in the general framework of preference relations
(see Example 3 in [6]). For i ∈ {1, 2}, a Pi’s one-player game is a game G = (A,v) such that
A is a Pi’s one-player arena.

Optimal strategies. Let G = (A,v) be a game on arena A = (S1, S2, E). Given a Pi-
strategy σi ∈ Σi(A) and a state s ∈ S, we define

UColv(A, s, σi) = {w ∈ Cω | ∃σ3−i ∈ Σ3−i(A), ĉol(Plays(A, s, σ1, σ2)) v w},

DColv(A, s, σi) = {w ∈ Cω | ∃σ3−i ∈ Σ3−i(A), w v ĉol(Plays(A, s, σ1, σ2))}.

Note that DColv(A, s, σi) = UColv−1(A, s, σi). Intuitively, UColv and DColv represent the
upward and downward closures of sequences of colors (consistent with a strategy) with respect
to the preference relation.

Taking the standpoint of P1, we say that σ1 ∈ Σ1(A) is at least as good as σ′1 ∈ Σ1(A)
from s ∈ S if UColv(A, s, σ1) ⊆ UColv(A, s, σ′1). Intuitively, σ1 is at least as good as σ′1 if
the “worst-case” plays consistent with σ1 are at least as good as the ones consistent with σ′1.
The UCol operator is useful to define this notion properly even in the case where there is no
“worst-case” play (i.e., if the infimum used in the classical quantitative setting is not reached).
Similar notions have been used before, e.g., in [36]. Symmetrically, for P2, we say that
σ2 ∈ Σ2(A) is at least as good as σ′2 ∈ Σ2(A) from s ∈ S if DColv(A, s, σ2) ⊆ DColv(A, s, σ′2).
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Now, we say that σi ∈ Σi(A) of Pi is optimal from s ∈ S, aka s-optimal, if it is at least
as good as every other σ′i ∈ Σi(A) from s. We extend this notation to subsets of states in
the natural way, and we say that a strategy σi is uniformly-optimal if it is S-optimal.

Our goal is to characterize the preference relations that admit uniformly-optimal finite-
memory (UFM) strategies based on a given skeleton M in all arenas. We also discuss the
simpler case of uniformly-optimal memoryless (UML) strategies, which corresponds to the
subcase studied by Gimbert and Zielonka [26], using the trivial skeletonMtriv.

In that respect, the following link is important to observe.

I Lemma 1. Let G = (A,v) be a game on arena A = (S1, S2, E). LetM = (M,minit, αupd)
be a memory skeleton and let σi ∈ ΣFM

i (A) be a finite-memory strategy encoded by the Mealy
machine Γσi

= (M, αnxt). Then, σi is a UFM strategy in G if and only if αnxt corresponds to
an (S × {minit})-optimal memoryless strategy in G′ = (AnM,v).

Nash equilibria. We use Nash equilibria [34] as tools to establish the existence of optimal
strategies in some of our proofs. Let G = (A,v) be a game on arenaA = (S1, S2, E). Formally,
a Nash equilibrium (NE) from a state s ∈ S is a couple of strategies (σ1, σ2) ∈ Σ1(A)×Σ2(A)
such that, for all σ′1 ∈ Σ1(A), σ′2 ∈ Σ2(A),

ĉol(Plays(A, s, σ′1, σ2)) v ĉol(Plays(A, s, σ1, σ2)) v ĉol(Plays(A, s, σ1, σ
′
2)). (1)

Similarly to optimal strategies, we call an NE uniform if it is an NE from all states s ∈ S.
The connection between optimal strategies and Nash equilibria in our specific context of

antagonistic games is interesting to discuss, especially with respect to Gimbert and Zielonka’s
original work [26]. We defer this discussion to [6] due to space constraints, and only provide
here a brief account of the results one has to know to understand this overview. First, NE
are de facto pairs of optimal strategies. Second, it is possible to mix different NE.

I Lemma 2. Let G = (A,v) be a game on arena A = (S1, S2, E), and let s ∈ S be a state.
Let (σa1 , σa2 ) and (σb1, σb2) ∈ Σ1(A)× Σ2(A) be two Nash equilibria from s. Then, (σa1 , σb2) is
also a Nash equilibrium from s.

I Remark 3. Lemma 2 crucially relies on the assumption (transparent in our definition of
Nash equilibrium) that we consider antagonistic games, that is, P2 uses the inverse preference
relation v−1.

3 Concepts

Generalizing monotony and selectivity. As seen in Section 1, Gimbert and Zielonka’s
characterization [26] relies on monotony and selectivity of the preference relation. The main
difference between their technical approach and ours is the following. In the memoryless
setting, all the reasoning can be abstracted away from the underlying arena and done on
sequences of colors. In the finite-memory one, however, one has to pay attention to how
sequences of colors are composed and compared, to maintain consistency with regard to
the memory and the game arena. This need to intertwine abstract reasoning on arbitrary
sequences of colors with concrete tracking of memory updates is the key obstacle to overcome.

Much of our effort was thus spent on trying to define concepts that would preserve the
elegance of monotony and selectivity while allowing us to lift the theory to the finite-memory
case. As often the case, the good concepts turned out to be the most natural ones, capturing
the intuitive idea that one needs monotony and selectivity modulo a memory skeleton.
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I Definition 4 (M-monotony). LetM = (M,minit, αupd) be a memory skeleton. A preference
relation v isM-monotone if for all m ∈M , for all K1,K2 ∈ R(C),

(∃w ∈ Lminit,m, [wK1] @ [wK2]) =⇒ (∀w′ ∈ Lminit,m, [w′K1] v [w′K2]) . (2)

Recall that a skeletonM has a fixed initial state minit. Intuitively,M-monotony extends
Gimbert and Zielonka’s monotony by comparing prefixes belonging to the same language
Lminit,m, that is, prefixes that are deemed equivalent by skeletonM. This property roughly
captures that v is stable with regard to prefix addition, for memory-equivalent prefixes.

The original monotony notion is equivalent to ourM-monotony withM being the trivial
skeletonMtriv: that is, the memoryless case is naturally a subcase of our framework.

I Definition 5 (M-selectivity). LetM = (M,minit, αupd) be a memory skeleton. A preference
relation v isM-selective if for all w ∈ C∗, m = α̂upd(minit, w), for all K1,K2 ∈ R(C) such
that K1,K2 ⊆ Lm,m, for all K3 ∈ R(C),

[w(K1 ∪K2)∗K3] v [wK∗1 ] ∪ [wK∗2 ] ∪ [wK3]. (3)

Similarly, M-selectivity extends Gimbert and Zielonka’s selectivity by asking one to
compare sequences of colors belonging to the same language Lm,m, that is, sequences read as
cycles on the memory skeleton. Note also that the memory state m should be consistent
with the prefix w read from the initial memory state minit. This property roughly captures
that v is stable with regard to cycle mixing, for memory-equivalent cycles.

Again, the original selectivity notion is exactly equivalent toMtriv-selectivity.
In a nutshell, M-monotony deals with prefixes up to the first cycle (on memory) and

M-selectivity deals with the cycles thereafter; we will see that memory skeletons can be built
in a compositional way based on these two orthogonal yet complementary tasks.

Our notions respect the natural intuition that access to additional memory should always
be helpful: if a skeletonM is sufficient to classify sequences of colors in a way that guarantees
M-monotony andM-selectivity, then it should also be the case for “more powerful” skeletons.

I Lemma 6. Let M and M′ be two memory skeletons. If v is M-monotone (resp. M-
selective) then, it is also (M⊗M′)-monotone (resp. (M⊗M′)-selective).

Prefix-covers and cyclic-covers. While the concepts of M-monotony and M-selectivity
are the primordial ones for stating the characterization, we still need two additional notions
to prove it. Let us sketch the issue. To prove that monotone and selective preference relations
yield UML strategies, Gimbert and Zielonka deploy an inductive argument on the number
of choices in an arena. Intuitively, we want to use a similar approach for UFM strategies,
but because of the unavoidable coupling between the memory skeleton and the arena (e.g.,
Lemma 1), the induction argument breaks, as adding one choice in the arena results in adding
many in the product arena (as many as there are memory states), where the reasoning needs
to take place. New insight and techniques are thus needed to patch this scheme.

To solve this issue, we decouple the two aspects. We first establish that, on arenas that
inherently share the same good properties as product arenas (i.e., they already “classify”
prefixes and cycles as the memory would), we can deploy the induction argument and obtain
UML strategies. Then, we obtain UFM strategies on general arenas as a corollary. The crux
is identifying such “good” arenas: this is done through the following notions.

I Definition 7 (Prefix-covers and cyclic-covers). Let M = (M,minit, αupd) be a memory
skeleton and A = (S1, S2, E) be an arena. Let Scov ⊆ S.
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We say thatM is a prefix-cover of Scov in A if for all s ∈ S, there exists ms ∈M such
that, for all ρ ∈ Hists(A) such that in(ρ) ∈ Scov, out(ρ) = s and such that for all ρ′ proper
prefix of ρ, out(ρ′) 6= s, we have α̂upd(minit, ĉol(ρ)) = ms.

We say thatM is a cyclic-cover of Scov in A if for all ρ ∈ Hists(A) such that in(ρ) ∈ Scov,
if s = out(ρ) and m = α̂upd(minit, ĉol(ρ)), for all ρ′ ∈ Hists(A) such that in(ρ′) = out(ρ′) = s,
α̂upd(m, ĉol(ρ′)) = m.

Intuitively,M is a prefix-cover for a set of states Scov if the histories starting in Scov and
visiting a given state s ∈ S for the first time are read up to the same memory state in the
memory skeleton. Similarly,M is a cyclic-cover of A if the cycles of A are read as cycles in
the memory skeleton, once the memory has been initialized properly.

As hinted above, the canonical example of a prefix- and cyclic-covered arena is a product
arena (but many more may be in this case; it is beneficial to be general with these concepts).

I Lemma 8. Let M = (M,minit, αupd) be a memory skeleton and A = (S1, S2, E) be an
arena. ThenM is a prefix- and cyclic-cover for Scov = S × {minit} in AnM.

4 Characterization

Equivalence. We now have the necessary ingredients to state our equivalence result.

I Theorem 9 (Equivalence). Let v be a preference relation and letM be a memory skeleton.
Then, both players have UFM strategies based on memory skeletonM in all games G = (A,v)
if and only if v and v−1 areM-monotone andM-selective.

We state this theorem broadly and with a focus on UFM strategies. The actual results
we have for each direction of the equivalence – see [6, Section 4 and Section 5] – are a
bit stronger, of wider applicability and/or more interesting, but this statement carries the
take-home message of our work. It is also meant to mirror the seminal result of Gimbert
and Zielonka [26, Theorem 2]: their result can be retrieved from Theorem 9 by taking the
trivial memory skeletonMtriv. As such, our work brings a strict generalization of Gimbert
and Zielonka’s results [26] to the finite-memory case.

Lifting corollary. As discussed in Section 1, the work of Gimbert and Zielonka contains
not one, but two great results. Alongside the aforementioned equivalence result, Gimbert
and Zielonka provide a corollary of high practical interest [26, Corollary 7]: they essentially
obtain as a by-product of their approach that if memoryless strategies suffice in all one-player
games of P1 and all one-player games of P2, they also suffice in all two-player games.

This provides an elegant way to prove that a preference relation (equivalently, an objective)
admits memoryless optimal strategies without proving monotony and selectivity at all: proving
it in the two one-player subcases, which is generally much easier as it boils down to graph
reasoning, and then lifting the result to the general two-player case through the corollary.
See examples of one-player vs. two-player complexity in [5, 4, 11].

Again, we are able to lift this corollary to the arena-independent finite-memory case.

I Corollary 10. Let v be a preference relation and M1,M2 be two memory skeletons.
Assume that
1. for all one-player arenas A = (S1, S2 = ∅, E), P1 has a UFM strategy σ1 ∈ ΣFM

1 (A) based
on memory skeletonM1 in G = (A,v);

2. for all one-player arenas A = (S1 = ∅, S2, E), P2 has a UFM strategy σ2 ∈ ΣFM
2 (A) based

on memory skeletonM2 in G = (A,v).
Then, for all two-player arenas A = (S1, S2, E), both P1 and P2 have UFM strategies
σi ∈ ΣFM

i (A) based on memory skeletonM =M1 ⊗M2 in G = (A,v).
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We highlight the two (possibly different) skeletons of the two players to maintain a
compositional approach, but if the same skeletonM works in both one-player versions, it
also suffices in the two-player version.

5 Example of application

We present an illustrative application, thereby proving the existence of UFM strategies for
a specific preference relation: the conjunction of two reachability objectives, a subcase of
generalized reachability games, studied extensively in [21]. Let C be an arbitrary set of colors,
and T1, T2 ⊆ C be two target sets of colors that have to be visited. Formally, let W ⊆ Cω be
the set of words w = c1c2 . . . such that ∃ i, j ∈ N, ci ∈ T1 ∧ cj ∈ T2. This winning condition
induces a two-level (i.e., win/lose) preference relation v.

In this example, we will use Theorem 9 directly in order to provide one thorough
illustration of the definitions ofM-monotony andM-selectivity. However, in practice, using
Corollary 10 is preferable, as it yields a much shorter proof: by exhibiting the right skeletons
for P1 and P2, we simply have to show that these skeletons are sufficient to play optimally
on both players’ one-player arenas, which amounts to graph reasoning.

mp
init

mp
2

T1

C \ T1

C

mc
init

mc
2mc

3

T2 \ T1T1

T1

C \ (T1 ∪ T2)

C C \ T1

s1

s2

s3

t1

t2

s1, m1

s2, m1

s3, m1

s1, m2

s2, m2

s3, m3

t2

t1

t2

t1

Figure 2 First and second: memory skeletons Mp and Mc for two-target reachability games;
third: arena A; fourth: product arena AnM (only states reachable from S × {minit} are depicted).
We assume that T1 = {t1}, T2 = {t2}. The (S × {minit})-optimal memoryless strategy is in bold.

We start by showing that this preference relation is notMtriv-monotone (that is, is not
monotone for [26]). Assume c1 ∈ T1 \ T2, c2 ∈ T2 \ T1, and c3 /∈ T1 ∪ T2. Take K1 = c∗1,
K2 = c∗2. For w = c1, w′ = c2, we have [wK1] @ [wK2], but [w′K2] @ [w′K1]. This means
that the preference relation is not stable with regard to prefix addition (at least, without
distinguishing different classes of prefixes). Similarly, it is notMtriv-selective (take w as the
empty word, K1 = c∗1, K2 = c∗2, K3 = c∗3: to win, K1 and K2 need to be mixed).

In Figure 2, we exhibit skeletonsMp = (Mp,mp
init, α

p
upd) andMc = (M c,mc

init, α
c
upd) such

that v isMp-monotone andMc-selective. Note that such skeletons are obviously not unique.
Let us prove that v isMp-monotone. Letm ∈Mp, K1,K2 ∈ R(C); we want to show that

Equation (2) is satisfied. We assume that there exists w ∈ Lmp
init,m

such that [wK1] @ [wK2]:
this means that all words of [wK1] are losing, and that there exists a winning word in [wK2].
Let w′ ∈ Lmp

init,m
; we show that we necessarily have that [w′K1] v [w′K2]. Note that if

[K1] is empty, this always holds; we now assume that [K1] is non-empty. We study the two
possible values of m separately.
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If m = mp
init, then w and w′ do not reach T1. If w does not reach T2 either, as there

is a winning word in [wK2], then there must be a winning word in [K2]. This word
is still winning after prepending w′ to it, so there is a winning word in [w′K2], and
[w′K1] v [w′K2]. If w reaches T2, then [K1] cannot have a word reaching T1. As w′ does
not reach T1 either, all words of [w′K1] are losing, so [w′K1] v [w′K2].
If m = mp

2, then w and w′ reach T1. Clearly, w cannot reach T2 (as [wK1] would be
winning). This implies that [K2] must contain a word reaching T2; as w′ reaches T1, the
concatenation of w′ with the word of [K2] reaching T2 means that there is a winning
word in [w′K2], so [w′K1] v [w′K2].

Let us now prove that v isMc-selective. Let w ∈ C∗, m = α̂c
upd(mc

init, w), K1,K2 ∈ R(C)
such that K1,K2 ⊆ Lm,m, and K3 ∈ R(C). We show that Equation (3) is satisfied, i.e., that
[w(K1 ∪K2)∗K3] v [wK∗1 ] ∪ [wK∗2 ] ∪ [wK3]. If all words of [w(K1 ∪K2)∗K3] are losing, this
equation trivially holds; we thus assume that this set contains a winning word. We therefore
have to show that there is a winning word in [wK∗1 ], [wK∗2 ], or [wK3]. We study the three
possible values of m separately.

If m = mc
init, then w does not reach T1 nor T2, and the same holds for all words of K1

and K2, as K1,K2 ⊆ Lmc
init,m

c
init
. Therefore, if a word of [w(K1 ∪K2)∗K3] is winning, this

must be because a word of [wK3] is winning.
If m = mc

2, then w reaches T2 but not T1, and K1,K2 do not reach T1. Thus, a word of
[K3] must reach T1; in particular, a word of [wK3] must reach both T1 and T2.
If m = mc

3, we distinguish two cases. If w reaches T2 and T1, then [wK∗1 ]∪ [wK∗2 ]∪ [wK3]
trivially contains only winning words. If w reaches T1 but not T2, then there must be a
word reaching T2 in [(K1 ∪K2)∗K3]. Hence, at least one set among [K∗1 ], [K∗2 ], and [K3]
must contain a word reaching T2, so [wK∗1 ], [wK∗2 ], or [wK3] contains a winning word.

Similar arguments can be laid out to show that the preference relation v−1 of P2 is
Mp-monotone andMtriv-selective (whereMtriv is the trivial memory skeleton defined earlier).
LetM = Mp ⊗Mc ⊗Mtriv be the product of all the considered skeletons. AlthoughM
formally has six states, its only reachable part is isometric to skeletonMc, with m1 ↔ mc

init
as initial state, m2 ↔ mc

2, and m3 ↔ mc
3: we thus do not depict it to save space.

By Lemma 6, we have that both v and v−1 areM-monotone andM-selective. Using
Theorem 9, we obtain that both players have UFM strategies based on skeleton M in all
games G = (A,v). Note that memory skeletonM is minimal (no memory skeleton with two
states or less suffices for P1 to play optimally in all arenas [21]).

We provide an example of a one-player arena A = (S1, S2 = ∅, E) in Figure 2, and
show that there is a UFM strategy for the preference relation v based on skeleton M.
To do so, we invoke Lemma 1: we show equivalently that the product A nM admits an
(S ×{minit})-optimal memoryless strategy for v. Notice that no memoryless strategy suffices
to play optimally in G = (A,v), as when starting in s2, P1 should first visit s1 before going
to s3. Also, the (S × {minit})-optimal memoryless strategy for the product arena is only
optimal if the initial state is in S × {minit}; it is for instance not optimal from state (s2,m2).

6 Technical sketch

Due to space constraints, we only sketch our proof schemes here: full proofs are in [6].

From finite memory based on M to M-monotony and M-selectivity. For the left-to-
right implication of Theorem 9, it suffices to consider the weaker assumption involving only
one-player: we establish that if UFM strategies based onM exist in all one-player games of
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P1 (resp. P2), then his preference relation v (resp. v−1) isM-monotone andM-selective. To
maintain a compositional approach, we considerM-monotony andM-selectivity separately.
Details are in [6, Section 4].

Let us sketch the proof for M-monotony and P1. We need to establish Equation (2).
We instantiate the four languages involved in it: {w}, {w′}, K1 and K2. We take NFA
recognizing them and build an NFA N that joins them in such a way that, when N is
considered as a one-player game arena, its plays correspond exactly to the languages of
infinite words considered in Equation (2). This arena is composed of two chains emulating
the two prefixes w and w′ and leading to a state t where P1 has to pick a side corresponding
to the two languages [K1] and [K2]. Now, proving the M-monotony of v boils down to
invoking an optimal strategy σ in the corresponding game, the crux being that σ always
picks the same edge in t (i.e., the same side between subarenas corresponding to [K1] and
[K2]) as both prefixes w and w′ are deemed equivalent by the memory skeletonM.

The proof forM-selectivity is similar. The main difference is that the “joining” state t
can be visited repeatedly in this case – possibly infinitely often. This is because Equation (3)
is about cycles and their languages. Our proof takes that into account.

From M-monotony and M-selectivity to finite memory based on M. The right-to-left
implication of Theorem 9 is more complex to establish. In this case, we want the result for
two-player games, provided both preference relations areM-monotone andM-selective. The
general scheme we use is an induction on the number of choices in arenas. The main issue
is dealing with the memory: one additional choice in an arena results in many ones in the
corresponding product arena. To circumvent this obstacle, we proceed in two steps. Details
are in [6, Section 5].

We first establish the existence of UML strategies in (prefix- and cyclic-)covered arenas.
Let us focus on the induction step we use to prove this result, as an example of the techniques
involved. For an arena A = (S1, S2, E), we write nA = |E| − |S| for its number of choices.
To simplify, let us say we have a skeletonM such that v isM-monotone andM-selective,
and that we assume that memoryless – for the two players – NE exist from all covered states
in arenas with less than n choices. Then we establish that we can also build an NE in arenas
with n choices, in which P1 uses a memoryless strategy – but maybe not P2! To prove this,
we proceed as follows.

Let A be an arena with nA = n choices. We identify a state t in which P1 has at least two
outgoing edges. By splitting the edges in t in two sets, we obtain two corresponding subarenas
Aa and Ab such that nAa

, nAb
< n, along with the corresponding subgames. The induction

hypothesis gives us two memoryless NE (from covered states) in these subgames: (σa1 , σa2 )
and (σb1, σb2). The arguments can then be unfolded as follows. First, usingM-monotony and
M being a prefix-cover, we identify one subarena (say Aa) which is clearly at least as good
as the other for P1. Second, we build a strategy profile (σ#

1 , σ
#
2 ), that we claim to be an NE

in G = (A,v), in the following way: P1 uses strategy σa1 (the one from the best subarena)
and P2 reacts to P1’s actions by playing the corresponding best-response strategy. I.e., if
P1 plays in Aa, P2 plays according to σa2 , and otherwise he plays according to σb2. Third, it
remains to prove the two inequalities of Equation (1). The rightmost one is easy, as well as
the leftmost one in the subcase where the unique play π ∈ Plays(A, s, σ#

1 , σ
#
2 ) does not visit

state t: they can both be proved thanks to the induction hypothesis and easy construction
arguments. The crux of the proof is thus in the last step: proving that the leftmost inequality
holds when the play visits t. This can be achieved thanks toM-selectivity andM being a
cyclic-cover, properties of the union operator in languages of prefixes, inherent properties of
the preference relation, Aa being the best subarena thanksM-monotony, and the induction
hypothesis, in that order.
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The actual induction step and its proof are more subtle – for example, we use different
skeletons for monotony and selectivity and obtain the result in a compositional way; but
the main intuition is carried here. The same result can be established symmetrically for P2,
but again the resulting NE is only memoryless for P2. Yet, assuming both v and v−1 are
M-monotone andM-selective, we have two half-memoryless NE that we can mix to obtain a
truly memoryless NE via Lemma 2; thus proving the existence of UML strategies in covered
arenas. Observe this interesting by-product of our approach: we can actually detect arenas
where memory is not needed at all thanks to our concepts of prefix- and cyclic-covers.

The final result – the existence of UFM strategies based onM in all arenas – can then be
obtained as a corollary, based on the link between memoryless strategies in product arenas
and memoryfull ones in original arenas (Lemma 1). Another nice by-product of our approach,
witnessed in Corollary 10, is that the product of individual memories from one-player games
is sufficient to play optimally in two-player games, for both players. This is in stark contrast
to the counter-example discussed in Section 1 and it illustrates that our characterization
matches well-behaved preference relations.

Equivalence and lifting corollary. The equivalence (Theorem 9) is easily obtained by putting
together its two directions. Note that we also establish a similar equivalence in the one-player
case as a by-product.

I Theorem 11 (One-player equivalence). Let v be a preference relation and let M be a
memory skeleton. Then, P1 has UFM strategies based on memory skeleton M in all his
one-player games G = (A,v) if and only if v isM-monotone andM-selective.

Although this looks like a weak version of Theorem 9 at first sight, this is actually a
distinct result as both sides of the equivalence are weaker: on the left side, it only handles
the memory requirements for P1’s one-player games; on the right side, it does not assume
anything about the inverse preference relation v−1.

The lifting corollary, Corollary 10, is also a consequence of our approach. As we have
seen, the existence of UFM strategies based on a skeletonM in one-player games suffices to
yieldM-monotony andM-selectivity of the corresponding preference relation. Hence if both
players have UFM strategies in their one-player games, both relations satisfy these properties
and we can take the other direction of Theorem 9 to ensure that UFM strategies also exist in
two-player games. As explained above, this approach can actually be used compositionally.

All proofs, as well as the one-player equivalence, are presented in details in [6].
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A Discussion

We close our paper with a discussion of the assets and limits of our approach, its applicability
with regard to the current research landscape, and the directions we aim to follow in future
work.

Technical overview. Naturally, our technical approach is inspired by the one of Gimbert
and Zielonka for the memoryless case [26], which can actually be rediscovered through our
results using a trivial memory skeleton. Two of the most important challenges we had to
overcome were:
1. establishing natural concepts of monotony and selectivity modulo memory that are exactly

as powerful as required to maintain a complete characterization (i.e., sufficient and
necessary conditions) in the finite-memory case;

2. circumventing the seemingly unavoidable coupling between the memory skeleton and the
arena in the inductive argument needed to prove the implication fromM-monotony and
M-selectivity to finite-memory optimal strategies – which we were able to do using our
notions of prefix-covers and cyclic-covers.
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All along our paper, we highlighted the similarities and discrepancies between our work and
Gimbert and Zielonka’s [26]. As observed through [6, Remark 16], our results are established
using fine-grained assumptions and conclusions, in an effort to push the approach to its
limits. They also preserve compositionality, splitting the reasoning for M-monotony and
M-selectivity, and for the two players.

AlongsideM-monotony andM-selectivity, we define two other key concepts to solve the
technical issues related to the induction on product arenas: prefix-covers and cyclic-covers.
These notions are crucial tools to prove the right-to-left implication of Theorem 9.

Some advantages. The aforementioned concepts of prefix-covers and cyclic-covers also have
benefits from a practical point of view: given a preference relation v and the corresponding
memory skeletonM, they let us identify game arenas where memoryless strategies suffice
whereas finite memory (based onM) might be necessary in general. Such arenas are the
ones covered byM. Hence in practice, this approach permits to obtain UML strategies for
many arenas where a coarser approach would only provide UFM ones.

Our approach yields two methods to establish that a preference relation (or equivalently
a payoff function or a winning condition) admits UFM strategies. The first one, exhibiting
appropriate memory skeletons and proving M-monotony and M-selectivity, is based on
Theorem 9 and can be used compositionally through [6, Corollary 25]. The second one follows
the lifting corollary, Corollary 10: one only has to study the one-player subcases then invoke
this result to lift the existence of UFM strategies to the two-player case, without checking
forM-monotony andM-selectivity at all. Hence this second method is often painless in
practice.

Two interesting facts can be seen through Corollary 10. First, there is no blow-up in the
memory required when going from one-player games to two-player games: the overall memory
simply combines the memory skeletons of the two players. Second, assuming that one has an
algorithm to solve1 one-player games – say for P1 – for a winning condition satisfying our
hypotheses, this lifting corollary also induces a naive algorithm for the two-player case for
free: thanks to the bounds on memory, one may enumerate the strategies of the adversary,
P2 – or guess one if one aims for a non-deterministic algorithm – and solve the corresponding
P1’s game(s) where the strategy of P2 is fixed. Note that while such a simple algorithm
might not be optimal, it does correspond to the approach giving the best complexity class
known for the renowned family of games in NP ∩ coNP, such as, e.g., parity or mean-payoff
games (e.g., [29]). These last two cases could already be dealt with thanks to Gimbert and
Zielonka’s result since they involve memoryless strategies, but now a similar road can be
taken for any objective that admits arena-independent finite-memory optimal strategies, such
as, e.g., generalized parity games.

Applicability. Let us give a quick tour of some classical (combinations of) objectives –
expressed through winning conditions, payoffs or preference relations – and assess whether
our approach permits to establish the existence of UFM strategies in the corresponding
games.

Note that when considering multiple (quantitative) objectives, optimal strategies usually
do not exist, and one has to settle for Pareto-optimal ones (e.g., [18]). However, in many
cases, the (decision) problem under study is as follows: given a threshold (vector), define
the winning condition as all the plays achieving at least this threshold, and check for a

1 I.e., decide who has a winning strategy from a given state.
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winning strategy. Hence multi-objective quantitative games are often de facto reduced
to qualitative win-lose games for this so-called threshold problem. Observe that, given a
multi-objective setting, if UFM strategies exist for all threshold problems, then finite-memory
strategies suffice to realize the Pareto front (as each point of this front can be considered
as a threshold). Therefore, our approach also enables reasoning about the existence of
finite-memory Pareto-optimal strategies in multi-objective games.

We start our overview with some game settings that fall under the scope of our approach.
Obviously, all memoryless-determined objectives are among them, since we generalize Gimbert
and Zielonka’s work [26]: this includes, e.g., mean-payoff [19], parity [20, 41], energy [12]
or average-energy games [5]. As established in Section 1, our results encompass all cases
where arena-independent memory suffices. Hence they permit to rediscover the existence of
UFM strategies for games such as, e.g., generalized reachability [21], generalized parity [16],
window parity games [10], some variants of window mean-payoff games [14], or lower- and
upper-bounded (multi-dimension) energy games [3, 5, 4]. Our approach can also be useful to
extend these known results to more general combinations, either via appropriate memory
skeletons or through the lifting corollary (see an application in Section 5).

There are many games that do not fit our approach for good reasons, as they do not admit
UFM strategies in general: e.g., multi-dimension mean-payoff [40], mean-payoff parity [15],
or energy mean-payoff games [11]. More interesting are games for which finite-memory
strategies exist, but the memory is arena-dependent. These notably include games with
multi-dimension lower-bounded energy objectives and no upper bound [17, 30], or other
variants of window mean-payoff games [14]. In such games, the players usually have to keep
track of information such as, e.g., the sum of weights along an acyclic path, which is bounded
for any given arena, but by a value that grows when the arena grows. Hence the need for
memory that grows with the arena parameters. Our results cannot be applied directly to
such cases in order to obtain the existence of finite-memory strategies for all games. An
adaptation of our approach could potentially be used for subclasses of arenas where the
parameters are bounded (in order to regain a skeleton working on all arenas of the class).

Critical analysis. Let us take a step back and assess the place of our work in its larger line
of research. The natural endgame is characterizing all preference relations admitting finite-
memory optimal strategies, including those using arena-dependent memory, and pinpointing
the frontiers of application of the lifting corollary – that is, under which conditions is
finite-memory determinacy preserved when going from one-player to two-player games?

The road is long from Gimbert and Zielonka’s characterization in the memoryless case [26]
to such a general result, and this work is but a first step. We have already established that
Gimbert and Zielonka’s approach cannot be fully transposed for finite memory. Our focus on
arena-independent memory is a way to study the frontiers of this approach while providing an
extension of practical interest. While it may seem limited at first, note that our framework
already encompasses arguably rich classes of games such as, e.g., generalized parity games
and fully-bounded energy games. As argued in Section 1, recall that our result is in no way
a simple application of [26] to product arenas.

From a practical point of view, our equivalence result has limitations as it inherently
uses the memory skeleton M. At this point, our approach neither helps in finding an
appropriate skeleton, nor in determining the minimal one; two highly interesting questions
from a practical standpoint. Nonetheless, to advance toward answering these questions and
to be able to find good skeletons automatically, one first has to understand their theoretical
characteristics, which we do here as a necessary stepping stone. Focusing on applications, let
us note that the equivalence result is often not the most suited tool: this is instead where
the lifting corollary shines. As noted before, reasoning on one-player games (i.e., graphs) is
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generally much easier than in two-player games (e.g., [5, 4, 11]). Hence, a reasonably easy
way to tackle practical cases is to find skeletons sufficient for P1 and P2 in their respective
one-player games and to use our constructive result to build a skeleton that suffices for both
in two-player games.

Comparison with related work. We already discussed the most important related papers [25,
26, 31, 1, 33, 39] in Section 1. Let us highlight here some works where similar approaches
have been considered to establish “meta-theorems” applying to general classes of games, or
works that inspire interesting directions of research. First and foremost is the determinacy
theorem by Martin that guarantees determinacy (without considering the complexity of
strategies) for Borel winning conditions [33].

Aminof and Rubin provide a simpler (but incomplete) approach to memoryless determinacy
through the prism of first-cycle games in [1]: a similar take on finite-memory determinacy
could be appealing – it could provide sufficient conditions easier to test thanM-monotony
andM-selectivity.

Let us discuss the work of Kopczyński. First, in [31], he establishes sufficient (and
relaxed) conditions to ensure the existence of UML strategies for one player, in two-player
games: it would be interesting to study the corresponding problem in the finite-memory case.
Indeed, in many games where infinite memory is needed, it is only the case for one of the
players (e.g., [40, 15, 11]) and conditions à la Kopczyński could thus prove useful. Note that
this is different from Theorem 11, which gives a sufficient and necessary condition but for
one-player games only. Second, we recently discovered unpublished content in Kopczyński’s
PhD thesis [32]. Kopczyński distinguishes chromatic memory (which corresponds to our
definition of memory skeleton), and the more powerful chaotic memory, where transitions
can depend on the actual edges of the arenas, rather than simply on their colors. Chaotic
memory is thus intrinsically arena-dependent. Our notion of an arena being both prefix- and
cyclic-covered by a memory skeleton M is equivalent to a notion in [32, Definition 8.12],
which defines that an arena adheres to chromatic memoryM if it is possible to assign a state
ofM to every state of the arena such that moving along the edges updates these memory
states in a consistent way. Our definitions of prefix- and cyclic-cover can be seen as two
distinct sides of this idea of adherence, which when added up, are actually equivalent to it.

Following the same motivation as our work – the need to characterize (combinations of)
objectives admitting finite-memory optimal strategies, Le Roux et al. [39] take another road:
whereas our work permits to lift results from one-player games to two-player games, they
provide a lifting from the single-objective case to the multi-objective one. Their techniques, as
well as the scope of their results, are somewhat orthogonal to ours. Whether both approaches
can be intertwined to obtain results on more general settings remains an open question.

Our work focuses on deterministic turn-based two-player games. Sufficient conditions
have been published for stochastic models but to the best of our knowledge, no complete
characterization, even for the simplest case of Markov decision processes (e.g., [23]). Two
unpublished articles contain interesting results on stochastic games [27, 24], including an
extension of Gimbert and Zielonka’s original work, by the same authors [27]. Whether part
of our approach can be useful to tackle the finite-memory case in this context, or in richer
contexts mixing games and stochastic models (e.g., [9]) is a question for future research.
Some sufficient criteria, orthogonal to our approach, were studied for concurrent games
in [37].
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Limits and future work. To close this paper, we recall three limits of our approach, and
the corresponding open problems.

First, as explained throughout the paper, our results cover all cases where arena-
independent memory suffices, and are limited to these cases. We have argued that the
approach cannot be fully lifted to the general case, for good reasons, as the lifting corollary
breaks in some situations (Section 1). Still, we have hope to generalize our approach to
some extent to the arena-dependent case, through some function associating memory skele-
tons to arenas, as discussed in Section 1. Obtaining a lifting corollary – under well-chosen
conditions – in the arena-dependent case would be of tremendous help in practice: see for
example [5, 4, 11]. Hence this is clearly the next step in our quest.

Second, our result is a characterization instantiated by a memory skeleton M. While
the lifting corollary is helpful in applications, it would be fantastic to be able to find an
appropriate skeleton automatically, and to be able to determine if a given skeleton is minimal
(with regard to a preference relation). This paper is a first step toward these long-term
objectives.

Lastly, as explained in Remark 3 and [6, Remark 24], most of our arguments carry over
to the case of general Nash equilibria. That is, when considering not necessarily antagonistic
games where the two players use different, not necessarily inverse, preference relations.
Whether our approach can be adapted in this case, at the price of an unavoidable blow-up
of memory, is an open question worth considering. In particular, we want to study the
links between our results (including the lifting from one-player to two-player games) and
recent results lifting finite-memory determinacy in two-player games to the existence of
finite-memory Nash equilibria in multi-player games [38].
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