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Abstract
Reversible computing is a paradigm where programs can execute backward as well as in the usual
forward direction. Reversible computing is attracting interest due to its applications in areas as
different as biochemical modelling, simulation, robotics and debugging, among others. In concurrent
systems the main notion of reversible computing is called causal-consistent reversibility, and it allows
one to undo an action if and only if its consequences, if any, have already been undone.

This paper presents a general and automatic technique to define a causal-consistent reversible
extension for given forward models. We support models defined using a reduction semantics in a
specific format and consider a causality relation based on resources consumed and produced. The
considered format is general enough to fit many formalisms studied in the literature on causal-
consistent reversibility, notably Higher-Order π-calculus and Core Erlang, an intermediate language
in the Erlang compilation. Reversible extensions of these models in the literature are ad hoc, while
we build them using the same general technique. This also allows us to show in a uniform way that
a number of relevant properties, causal-consistency in particular, hold in the reversible extensions
we build. Our technique also allows us to go beyond the reversible models in the literature: we cover
a larger fragment of Core Erlang, including remote error handling based on links, which has never
been considered in the reversibility literature.
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1 Introduction

Reversible computing considers systems that can compute backward, recovering past states,
as well as forward. The studies on reversible computing gained in popularity in the 60’s,
thanks to the observation that only irreversible actions need to produce heat [21]. Beyond
obtaining computing machinery with low heat dissipation, reversible computing found its
application in a wide range of fields, from biochemical modelling [6, 12, 19, 41] to simulation [8],
robotics [34], programming [35, 46, 29] and program debugging [5, 16, 36, 28]. The main
objective of the theoretical computer science community in this research area has been to
provide a foundational understanding of reversibility. Nowadays, in the literature, there is a
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33:2 A General Approach to Derive Uncontrolled Reversible Semantics

number of formalisms describing different approaches to reversibility with the purpose to
better understand its properties and characteristics, e.g. reversible computation in process
algebras [10, 42, 26], Petri Nets [40, 37], event structures [47], logic circuits [14], etc.

In a sequential system, backward computation is obtained by undoing forward actions
in reverse order of execution, starting from the last one. Undoing a forward action can
be seen as a backward action. In a concurrent setting, where many processes are running
at the same time, identifying the last action is not an easy task, and may sometimes be
impossible. Therefore, alternative approaches have been considered. Here we consider the
causal-consistent approach [10, 42, 27], which focuses on the causality relations between
actions to decide which actions can be undone. Consequently, while designing a reversible
model following the causal-consistent approach, one needs to take care of storing information
on the past of the system, to be able to recover past states, but also causality information,
to know which forward steps can be undone at a given moment. In order to show that
a reversible model follows the causal-consistent approach, a number of properties need to
be proved [10]. The most relevant are the Loop Lemma, showing that each action can be
undone, the Square Lemma, showing that the chosen notion of causality is compatible with
the semantics, and Causal Consistency, showing that the correct information is stored. More
recently [32], Causal Safety and Causal Liveness have also been proposed, stating that an
action can be undone if and only if its consequences, if any, are undone beforehand.

The aim of this paper is to explore how to mechanically obtain a causal-consistent
reversible extension of a given forward-only model. This is in sharp contrast with most of
the reversible models in the concurrency literature, which have been defined manually. An
advantage of building the reversible model in this way is that the properties mentioned before
are satisfied by construction. The only other work we are aware of providing an automatic
technique is [42], which considers process calculi defined in a specific SOS format [43].
Differently from [42], we focus on forward systems defined using a reduction semantics
(Section 2.1). While this is more limited since it does not consider open systems, our
approach can deal with systems that do not fit the model in [42]. This is the case for both
our case studies, namely higher-order π [44] and Core Erlang [7].

Given a forward-only system, we aim at building its uncontrolled [27] causal-consistent
reversible extension. Here with uncontrolled we mean that at any moment both forward
actions and backward actions are possible, and there is no policy on which action to prefer.
Uncontrolled semantics is the basis for a reversible model, on top of which control policies
selecting the actions to be done or undone can be added [11, 24, 2, 25].

Our approach works in two main steps. First, we attach a unique identifier, called key, to
every entity (process, messages, etc.) of the forward system, and then we enrich the model
with memories, where past information is stored (Section 2.2). After defining our method,
we show that the reversible models built using it satisfy the properties of causal-consistent
reversible models discussed above (Section 3). We prove them using a novel approach [32],
which consists in showing that the system satisfies a few basic axioms.

To show the generality of our method, we apply it to two case studies: higher-order
π-calculus [44] (used as a running example) and Core Erlang [7] (Section 4.2). After obtaining
the corresponding reversible models, we show that, while syntactically different, they have
the same behaviour as the ones in the literature [26, 30]. We also show how our approach can
be used to go further than what it is in the literature. As an example, we extend reversible
Core Erlang to also support Core Erlang constructs for remote error handling based on links
(Section 4.3). Such an extension has never been considered in the reversibility literature.

Due to space limitations, further details are in the Appendix while proofs are in [23].
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2 Our Approach

In this section we formally introduce our approach. We first define the constraints that the
forward-only model we take in input needs to satisfy, and then we describe how to derive the
syntax and semantics of the corresponding causal-consistent reversible model.

To give a better intuition about our approach, we will use as a running example its
instantiation on the asynchronous Higher-Order π-calculus [44].

2.1 Forward model
We assume a forward model equipped with a reduction semantics. The syntax of the forward
model is structured in two levels. The lower level is composed by entities, e.g., processes,
messages and resources, ranged over by P,Q. There are no restrictions on the syntax of the
lower level. The upper level needs to follow the structure below:

N ::= P | opn(N1, . . . , Nn) | 0

Essentially, a system is obtained by composing entities using composition operators opn,
where n is the operator arity. Among the composition operators we assume a binary parallel
composition operator, thus N1 | N2 represents the parallel composition of two systems.
Additionally, 0 represents the empty system. Notably, 0 is not an entity.

Below we recall the syntax of HOπ-calculus and show how it fits in our framework.

I Example 1. The classical syntax of HOπ-calculus [44] is as follows:

P,Q ::= a〈P 〉 | a(X) . P | (P | Q) | νa (P ) | X | 0

Process variables are represented with X and channel names with a, b, c. Process a〈P 〉
sends message P over channel a while a(X) . P denotes a process which receives a message
on channel a and replaces it for X inside P . There is no continuation after output since
the calculus is asynchronous. We denote parallel composition with P | Q and its neutral
element with 0. Restriction of name a inside P is written νa (P ). The binders are νa (P )
and a(X) . P , where the scope of name a and variable X is process P . We denote the set of
free names of process P with fn(P ).

In order to fit our framework we need to separate entities from systems. In this case, an
entity is any HOπ process whose topmost operator is neither a parallel composition nor a
restriction nor 0. The syntax of systems is thus as follows

N := P | (N1 | N2) | νa (N) | 0

where parallel composition and 0 are the operators required by our framework and restriction
is an infinite family of unary operators with one instance for each name a. y

Thanks to the syntax above, a generic system can be represented as a term T [P1, . . . , Pn],
where T [•1, . . . , •n] is a context with n numbered holes built from composition operators,
possibly including parallel composition, and 0. The term T [P1, . . . , Pn] is obtained by
replacing •i with Pi for each i ∈ {1, . . . , n}.

We complement our syntax with a structural congruence, specified by axioms of the form

T [P1, . . . , Pn] ≡ T ′[P ′1, . . . , P ′n]

and closed under contexts, reflexivity, symmetry and transitivity. As can be seen from the
rule format, structural congruence cannot change the number of entities in a term. Also,
it is understood that Pi and P ′i refer to the same entity, which can however evolve while
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(Scm-Act)
P1 | . . . | Pn � T [Q1, . . . , Qm]

(Eqv)
N ≡ N ′ N � N1 N1 ≡ N ′1

N ′ � N ′1

(Scm-Opn)
Ni � N ′i

opn(N0, . . . , Ni, . . . , Nn)� opn(N0, . . . , N
′
i , . . . , Nn)

(Par)
N � N ′

N | N1 � N ′ | N1

Figure 1 Forward rules structure; Scm- rules are schemas.

preserving its identity. This assumption will become clearer later on, when we introduce keys
(to track the identity) and the causality relation. We assume structural rules ensuring that
parallel composition is associative, commutative, and has 0 as neutral element.

We illustrate below that the structural congruence of HOπ satisfies the requirements.

I Example 2. Sample HOπ structural rules are as follows, the full structural congruence is
in Appendix A.

(Alpha) νaP ≡ νb P{b/a} if b /∈ fn(P ) (ParC) P | Q ≡ Q | P
(ResF) (νaP ) | Q ≡ νa (P | Q) if a /∈ fn(Q)

Rule (Alpha) is α-conversion. Rule (Alpha) is seen in our framework as an infinite family
of rules (and the same for rule (ResF) for scope extrusion), for each a, P and b satisfying
the side condition. Hence, no side condition is needed in the instance. Note that P on the
left-hand side and P{b/a} on the right-hand side are understood to be the same entity. Rule
(ParC) establishes commutativity of parallel composition as required. It exploits contexts of
the form •1 | •2 and •2 | •1. y

The reduction semantics of the forward model needs to have the format described in
Figure 1, which includes two rules ((Par) and (Eqv)), which need to belong to the semantics,
and two schemas ((Scm-Act) and (Scm-Opn)). The semantics can contain any number of
instances of the schemas (possibly an infinite number), obtained by replacing all placeholders
with terms of the corresponding category (e.g., P1 with an entity, T with a context, and
so on). One may notice that rule (Par) is an instance of schema (Scm-Opn): this means
that such an instance is required. Anyway, being an instance, we do not need to deal with it
explicitly in the following.

Rule schema (Scm-Act) allows one to specify interactions between entities. It is
understood that such an interaction consumes the entities P1, . . . , Pn and produces the
entities Q1, . . . , Qm. This intuition will be captured by keys and the causality relation. The
created entities are composed in a term T [Q1, . . . , Qm], where T is a context built from
composition operators. Rules in this schema, together with rule (Par), allowing a system
to execute inside a parallel composition, define the behaviour of parallel composition. The
behaviour of other operators is described by rule schema (Scm-Opn). Notably, this schema
allows a single entity to execute at each step. Rule (Eqv) allows one to exploit structural
congruence.

We see below how the rule for communication of HOπ fits the format given in Figure 1.
The full semantics of HOπ and the explanation of how it fits the format is in Appendix A.
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I Example 3. The communication rule (Act) of HOπ, where process Q is received and
bound to variable X, is defined as:

(Act)
a〈Q〉 | a(X) . P � P{Q/X}

Rule (Act) can be seen as an infinite family of rules fitting schema (Scm-Act). Notice that
the number of entities in the resulting process may vary, e.g., in:

a〈νb (b〈P 〉 | b(Y ) . Y | c〈Q〉)〉 | a(X) . X � νb (b〈P 〉 | b(Y ) . Y | c〈Q〉)

the resulting process has three entities b〈P 〉, b(Y ) . Y and c〈Q〉, composed using a context
T = νb (•1 | •2 | •3). y

I Example 4. The CCS reduction a.P + Q|!a.R �CCS P |!a.R|R, where the output a
synchronises with the replicated input !a and Q is discarded, can be seen as an instance of
schema (Scm-Act) as well. Indeed, the two parallel entities a.P +Q and !a.R interact to
produce the three entities P , !a.R and R on the right-hand side (assuming P and R to be
single entities). y

2.2 Definition of the Reversible System
In order to define the causal-consistent reversible extension of a given system, one first needs
to extend the forward semantics so to keep track of past states. This information will be
used by the backward semantics. In particular, we use unique keys to distinguish identical
entities which have different history, and memories to recall parts of the system which have
been changed by a computational step. More in detail, each entity of a system is labelled
with its unique key. Also, each step of the system produces a memory allowing one to undo
it. We refer to systems extended with keys and memories as configurations.

I Definition 5. The syntax of configurations R is defined by the following grammar:

R ::= k : P | opn(R1, . . . , Rn) | 0 | [R ;C] C ::= T [k1 : •1, . . . , km : •m]

where operators opn are the same as in the forward system and T is a context composed of
operators opn and 0. Also, •i are numbered holes, to be filled by the processes with keys ki.

Intuitively, a memory µ = [R ;C] is composed of the configuration R which gave rise to the
forward step and the context C of the configuration resulting from it.

I Example 6. The syntax of the reversible HOπ-calculus is defined as:

R ::= k : P | (R1 | R2) | νa (R) | 0 | [R ;C]

where entities P are as in the underlying calculus and a unique key k is attached to each
of them. Note that now parallel composition and restriction operators are applied to
configurations. Finally, memories are also part of the syntax. y

We now define the structural congruence and the forward and backward operational
semantics for the reversible system. As in the original model, we can represent a reversible
system as T [k1 : P1, . . . , kn : Pn], where T is a context built from operators opn and 0. The
main difference w.r.t. the original calculus is that now each entity is labelled with its key.
We have one structural rule for each structural rule of the original semantics, with the same
context T , but now entities are labelled with keys, and keys on both sides are the same.

T [k1 : P1, . . . , kn : Pn] ≡ T ′[k1 : P ′1, . . . , kn : P ′n]

We define below the function key(·) that computes the set of keys in a configuration R:

CONCUR 2020
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(F-Scm-Act)
P1 | . . . | Pn � T [Q1, . . . , Qm] j1, . . . , jm are fresh keys

k1 : P1 | . . . | kn : Pn � T [j1 : Q1, . . . , jm : Qm] | [k1 : P1 | . . . | kn : Pn ;T [j1 : •1, . . . , jm : •m]]

(F-Scm-Opn)
Ri � R′i (key(R′i) \ key(Ri)) ∩ (key(R0, . . . , Ri−1, Ri+1, . . . , Rn) = ∅

opn(R0, . . . , Ri, . . . , Rn)� opn(R0, . . . , R
′
i, . . . , Rn)

(F-Eqv)
R ≡ R′ R� R1 R1 ≡ R′1

R′ � R′1

Figure 2 Forward rules of the uncontrolled reversible semantics.

(B-Scm-Act)
µ = [k1 : P1 | . . . | kn : Pn ;T [j1 : •1, . . . , jm : •m]]
T [j1 : Q1, . . . , jm : Qm] | µ k1 : P1 | . . . | kn : Pn

(B-Scm-Opn)
R′i Ri

opn(R0, . . . , R
′
i, . . . , Rn) opn(R0, . . . , Ri, . . . , Rn)

(B-Eqv)
R ≡ R′ R R1 R1 ≡ R′1

R′ R′1

Figure 3 Backward rules of the uncontrolled reversible semantics.

I Definition 7. The set of keys of a configuration R, written as key(R), is defined as:

key(k : P ) = {k} key(opn(R1, . . . , Rn)) = key(R1) ∪ . . . ∪ key(Rn)
key(0) = ∅ key([R ;C]) = key(R) ∪ key(C)

The forward rules of the uncontrolled reversible semantics are in Figure 2. For schemas
(F-Scm-Act) and (F-Scm-Opn) we have one instance for each instance of the corresponding
schema in the original semantics. For schema (F-Scm-Act) the main difference w.r.t. the
original schema is that entities are labelled with keys and a memory stores information on
the performed step. More precisely, entities Q1, . . . Qm on the right-hand side have fresh
keys j1, . . . , jm. Also, the left configuration R = k1 : P1 | . . . | kn : Pn is saved in a
memory µ = [R;C] together with the context C = T [j1 : •1, . . . , jm : •m] of the resulting
configuration. In this way, the structure of the obtained system and the newly generated keys
are recorded. They will be needed to perform the corresponding backward step. As far as the
schema (F-Scm-Opn) is concerned, the only novelty is the side condition ensuring that keys
introduced during the step are fresh for the whole system. The structural congruence rule
(F-Eqv) is the same as in the original semantics (but structural congruence preserves keys).

The backward rules, depicted in Figure 3, are symmetric w.r.t. the forward ones. With
rule schema (B-Scm-Act) the forward action that produced term T [j1 : Q1, . . . , jm : Qm] is
undone. The past state of the system k1 : P1 | . . . | kn : Pn is restored from the memory
µ. The context C = T [j1 : •1, . . . , jm : •m] inside µ additionally ensures that all entities
produced by the forward action, together with the term composing them, are available in
the configuration and are consumed by the backward step.

I Definition 8 (Uncontrolled reversible semantics). The reduction relation � (resp. ),
defined as the smallest relation closed under the forward (resp. backward) rules, defines the
forward (resp. backward) reversible semantics. The semantics, denoted by −→, is the union of
the forward semantics � and the backward semantics (i.e. −→=� ∪ ).

I Example 9. Below, we give the communication rule of the forward and backward reversible
semantics for the HOπ-calculus. The other rules can be found in Appendix A.
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(F-Act)
a〈P 〉 | a(X) . P ′ � P ′{P/X} j1, . . . jm are fresh keys and P ′{P/X} = T [Q1, . . . , Qm]

k1 : a〈P 〉 | k2 : a(X) . P ′ � T [j1 : Q1, . . . , jm : Qm] |
[k1 : a〈P 〉 | k2 : a(X) . P ′ ;T [j1 : •1, . . . , jm : •m]]

(B-Act)
µ = [k1 : a〈P 〉 | k2 : a(X) . P ′ ;T [j1 : •1, . . . , jm : •m]]
T [j1 : Q1, . . . , jm : Qm] | µ k1 : a〈P 〉 | k2 : a(X) . P ′

Using rule schema (F-Act) a configuration can execute a forward step in which the memory
µ = [k1 : a〈P 〉 | k2 : a(X) . P ′ ;T [j1 : •1, . . . , jm : •m]], recording the prior state of the
configuration and the context with the new fresh keys, is generated. After the communication
we obtain the system P ′{P/X} which we can rewrite as a term T [Q1, . . . , Qm], where
Q1, . . . , Qm are entities. Using rule (B-Act) the configuration can undo the forward step
which produced the memory µ. The prior state of the system is restored from it. y

3 Properties

In this section, we show that the reversible semantics defined using the approach in the
previous section satisfies a number of properties expected from a causal-consistent reversible
semantics. In particular, the reversible semantics is a conservative extension of the forward
semantics, and it is causally consistent [10].

Since our syntax allows for a number of ill-formed terms, as commonly done, in the
following we restrict the attention to reachable configurations, defined below.

I Definition 10 (Initial and reachable configuration). A configuration R is initial if it does
not contain memories and all keys are distinct. A configuration R is reachable if it can be
derived from an initial configuration by applying the rules in Figures 2 and 3.

Correspondence between reversible and original semantics

In this section we prove that the forward reversible semantics is a conservative extension
of the original semantics. To this end, we first define the erasing function ϕ that given a
configuration R, by deleting histories and keys, generates a forward-only system N .

I Definition 11 (Erasing function). The function ϕ : R −→ N , where R and N denote
respectively the sets of configurations and of original systems, is inductively defined as follows:

ϕ(k : P ) = P ϕ([R ;C]) = 0 ϕ(0) = 0 ϕ(opn(R1, . . . , Rn)) = opn(ϕ(R1), . . . , ϕ(Rn))

Now, we can show that the forward semantics of a configuration R and the semantics of
its projection on the forward system ϕ(R) are strong bisimilar (Definition 28 in Appendix A).

I Theorem 12. For each configuration R, its forward semantics and the semantics of ϕ(R)
are strong bisimilar.

3.1 Concurrency and Causal Consistency
In order to prove that the defined reversible semantics is indeed causal-consistent we need to
define a causality relation on our systems. We define it directly on reversible systems, for
two reasons. First, keys and memories help in this respect. Second, in a reversible system
the concurrency relation induces a causality relation (see [30, Def. 11 and Lemma 6]).

CONCUR 2020
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We extend the reduction semantics to a notion of transitions, which carry in the label
information on the used resources, in form of the memory involved in the transition. Formally,
we define transitions t of a system R as t : R µ−→ R′, where µ is the memory created by the
transition, if it is forward, or consumed by it, if it is backward. There, R is the source while
R′ is the target of the transitions t. Two transitions are coinitial (resp. cofinal) if they have
the same source (resp. target), and composable if the target of the former is the source of
the latter. A derivation d from the source R to the target R′, written as d : R −→∗ R′, is a
sequence of composable transitions. A zero steps derivation is written ε.

The concurrency relation between transitions states that two coinitial transitions are
concurrent if they do not share entities. Formally:

I Definition 13 (Concurrent transitions). Two coinitial transitions t′ : R µ′−→ R′ and t′′ :
R

µ′′−−→ R′′ are concurrent, written t′ ^c t
′′, if key(µ′) ∩ key(µ′′) = ∅. Coinitial transitions

which are not concurrent are in conflict.

Notably, our notion of concurrency is extracted from the operational semantics (via its
extension with keys and memories), hence it can be obtained also for those models where no
notion of concurrency exists in the literature, like most mainstream programming languages.

Having fixed a notion of concurrency, we can proceed to show the Causal Consistency of
the reversible semantics. To prove it, we use the recent axiomatic approach given in [32],
which allows one to show a number of properties relevant for reversible calculi, such as
the Parabolic Lemma (PL) and Causal Consistency (CC), by just proving a few basic
axioms. The advantage is that proving the axioms is simpler than proving the results directly.
Moreover, [32] introduces two new properties: Causal Safety (CS) stating that an action
cannot be reversed until all actions caused by it have been reversed; and Causal Liveness
(CL) saying that actions do not necessarily need to be reversed in the exact inverse order of
the forward execution, but can be reversed in any order consistent with CS.

In the following we give the axioms and auxiliary definitions required by the framework
of [32] necessary to show Causal Consistency, Safety and Liveness.

First, we re-formulate our framework as a Labelled Transition System with Independence
(LTSI, see also [45]) (R,L,−→, ι), where R is a set of systems, L is the set of action labels,
−→ ⊂ R × L × R is a transition relation and ι is the independence relation, namely an
irreflexive symmetric binary relation on transitions. In our case, R is the set of configurations
and L the set of labels of our transitions. The latter include both forward and backward
transitions. Also, the notion of independence is defined on coinitial transitions and it coincides
with the notion of concurrency, namely ι =^c. A key property required by the framework
in [32] is that each action is reversible, as shown by the following result.

I Lemma 14 (Loop Lemma). For every reachable configuration R and forward transition
t : R

µ
� R′, there exists a backward transition t• : R′

µ
R and vice versa.

From now on we denote with t• the reverse of t. The basic properties required to show
causal consistency are as follows.

I Definition 15 (Basic axioms).
Square Property (SP): if t1 : R µ1−→ R′ and t2 : R µ2−→ R′′ are two coinitial independent

transitions, there exist two cofinal transitions t2/t1 : R′ µ2−→ R′′′ and t1/t2 : R′′ µ1−→ R′′′.
Backward transitions are independent (BTI): any two coinitial backward transitions t1 :

R
µ1

R1 and t2 : R
µ2

R2 where t1 6= t2 are independent.
Well-foundedness (WF): there is no infinite backward computation.
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SP states that independent transitions can be executed in any order. We follow the standard
notation and write t2/t1 for the residual of t2 after t1. Coinitial backward transitions are
always independent by BTI. WF ensures that each system has a finite past.

To state Causal Consistency, we first define Causal Equivalence [10], an equivalence
relation between derivations which stipulates that independent transitions can be swapped
while pairs of reverse transitions can be removed from the derivation. The definition is
well-posed if the LTSI satisfies the Square Property.

I Definition 16 (Causal equivalence). Causal equivalence, ∼, is the least equivalence relation
between derivations closed under composition satisfying

t1; t2/t1 ∼ t2; t1/t2 t; t• ∼ ε

We now define two properties needed for Causal Safety and Causal Liveness, namely
Coinitial propagation of independence (CPI) and Coinitial independence respects events
(CIRE).

I Definition 17 (Coinitial propagation of independence (CPI)). If whenever t1 : R µ1−→ R′,
t2 : R µ2−→ R′′, t′2 : R′ µ2−→ R′′′ and t′1 : R′′ µ1−→ R′′′ with t1 ^c t2, then we have t′2 ^c t

•
1.

We introduce the notion of event, needed to state (CIRE), and define independence
(concurrency in our case) on them.

I Definition 18 (Events). Let (R,L,−→,^c) be a LTSI satisfying SP,BTI,WF and CPI.
Let ≈ be the smallest equivalence relation satisfying: if t1 : R µ1−→ R′, t2 : R µ2−→ R′′,
t′2 : R′ µ2−→ R′′′ and t′1 : R′′ µ1−→ R′′′ and t1 ^c t2, then t1 ≈ t′1.
The equivalence classes of forward transitions R

µ
� R′, written [R,µ,R′], are the events.

The equivalence classes of reverse transitions R
µ
R′, [R,µ•, R′], are the reverse events. A

labelling function l from −→ / ≈ to L is defined by settings l([R,µ,R′]) = l([R,µ•, R′]) = µ.
Events e1, e2 are (coinitially) independent, written e1ci e2, iff there are coinitial transitions
t1 and t2 such that [t1] = e1, [t2] = e2 and t1 ^c t2.

I Definition 19 (Coinitial independence respects events (CIRE)). If [t1] ci [t2] and t1 and t2
are coinitial, then t1 ^c t2.

I Proposition 20. Axioms SP, BTI, WF, CPI and CIRE hold for each instance of our
framework.

Given that our reversible semantics satisfies all the axioms, thanks to [32], all instances of
our framework satisfy the Parabolic Lemma, Causal Consistency, Causal Safety and Causal
Liveness, defined below.

I Definition 21 (Parabolic Lemma (PL)). Given a derivation d : R −→∗ R′, there exists a
configuration R′′ such that d′ : R ∗

R′′ �
∗
R′ and d ∼ d′. Also, d′ is not longer than d.

I Definition 22 (Causal Consistency (CC)). Given two coinitial derivations d1 and d2, d1 ∼ d2
if and only if d1 and d2 are cofinal.

Below, we state Causal Safety and Causal Liveness. We present them in a slightly
rephrased and more intuitive form w.r.t. [32], whose presentation is however more formal.

I Definition 23 (Causal Safety (CS) and Causal Liveness (CL)).
Let L = (R,L,−→,^c) be a LTSI satisfying SP,BTI,WF and CPI. Take a derivation R µ−→
R′

ρ−→∗R′′. Transition R µ−→ R′ can be undone in R′′, that is there is a transition R1
µ−→ R′′

with (R,µ,R′) ≈ (R1, µ,R
′′), if (CL) and only if (CS) R µ−→ R′ is concurrent to all transitions

R′
ρ−→∗R′′ which are not undone in R′ ρ−→∗R′′.
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4 Case Studies

In this section we apply our approach to two relevant case studies from the literature, the
Higher-Order π-calculus [44] and Core Erlang [7]. Causal-consistent reversible semantics
for both of them are available in the literature [26, 29]. We show that the ones derived
using our approach, albeit syntactically different, are equivalent to the ones in the literature.
In the case of Core Erlang we go beyond the literature, which covers only the functional
and concurrent fragment of Core Erlang, showing how to deal also with constructs for error
handling based on links.

4.1 Reversible Semantics for Higher-Order π-calculus

In the previous sections, we already shown how to apply our approach to the Higher-Order
π-calculus. We show here that the semantics derived using our approach is equivalent to
the one of ρπ, the reversible HOπ in the literature [26]. Additionally, it is easy to see that
the notion of concurrency induced by our approach (Definition 13) on HOπ matches the
definition of concurrent transitions of [26, Definition 9].

Our reversible HOπ and the one in the literature are indeed quite close, but for a few
differences. Our approach stores a context for the resulting term, in ρπ only a key is kept.
Actually, the context is always composed by parallel operators and restriction operators. The
former are always collected during ρπ backward steps, the latter are instead removed by ρπ
structural congruence when no more needed. Also, in ρπ restrictions for keys are explicit, in
our approach they are implicit. In addition, the single key kept in ρπ is split into multiple
complex tags, in direct correspondence with our keys, by ρπ structural congruence, hence in
ρπ one key is enough.

For instance, starting from the system R = k1 : a〈P1 | P2〉 | k2 : a(X) . X, in our
reversible HOπ semantics, by applying rule (F-Act), we have:

k1 : a〈P1 | P2〉 | k2 : a(X) . X � j1 : P1 | j2 : P2 | [R ; j1 : •1 | j2 : •2]

In ρπ, by applying rule (R.Fw) followed by structural congruence [26], we have:

R� νk .k(P1 | P2) | [R ; k] ≡ νk, j̃ .(〈j1, j̃〉 · k : P1 | 〈j2, j̃〉 · k : P2) | [R ; k]

Structural congruence splits key k referring to the whole continuation into complex tags
〈ji, j̃〉 · k, where j̃ = {j1, j2} and i ∈ {1, 2}. By using structural congruence, complex tags
for single entities can be always generated, as in our example above.

Despite the differences, our reversible HOπ semantics and ρπ semantics [26] are equivalent.
To show this, we exploit the encoding function L·M : R −→M which translates a reversible
HOπ configuration into a ρπ configuration. Function L·M needs to extract the set of keys of
all entities obtained by the split from the memory of our HOπ system and to construct the
complex tags of ρπ configuration. The encoding function together with other technical details
can be found in Appendix A. Using the encoding function above we can show a bijective
correspondence between transitions in our approach and ρπ transitions.

I Theorem 24. Let R be a reachable configuration of reversible HOπ with LRM = M . There is
a transition R −→ R′ in reversible HOπ iff there is a ρπ transition M −→M ′ with LR′M ≡M ′.
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4.2 Reversible Semantics for Erlang
In this section we apply our approach to Core Erlang [7], an intermediate step in the
compilation of the concurrent and functional language Erlang. We also show the equivalence
between the obtained reversible semantics and the one in [30]. As a forward model, we use
the logging semantics of Core Erlang [30, Figure 14] (used also in [31]) with some minor
changes: we use floating messages, as in [33], instead of a global mailbox Γ and we omit the
labels of the relation ↪→. Indeed, labels are used in [30] to log the steps of the computation
so to be able to replay it from logs [31, 30]. In our work, we are not interested in replaying
from logs, therefore we do not need this information.

The semantics of Core Erlang is defined in a modular way as in [30], with relation −→
modelling the evaluation of expressions and relation ↪→ representing reductions of systems.
Due to space constraints, we only present the application of our approach to selected rules of
the evaluation of systems −→, referring to the Appendix A for the others. Since evaluation of
expressions is not central for us, we refer to [30] for their description.

A Core Erlang system E is defined as a pool of processes and floating messages:

E := 〈p, θ, e〉 | (p, p′, v) | (E1 | E2)

where
〈p, θ, e〉 represents a process evaluating expression e in environment θ and uniquely
identified by a pid (process identifier) p;
(p, p′, v) stands for a floating message carrying value v sent by the process with pid p to
the one with pid p′. A floating message is a message in the system after it is sent and
before it is received.

We show below rules (Send) and (Rec) of Core Erlang semantics, the full semantics is
in Figure 7 of Appendix A.

(Send)
θ, e

send(p′,v)−−−−−−→ θ′, e′

〈p, θ, e〉 ↪→ 〈p, θ′, e′〉 | (p, p′, v)
(Rec)

θ, e
rec(κ,cln)−−−−−−→ θ′, e′ and matchrec(θ, cln, v) = (θi, ei)

(p′, p, v) | 〈p, θ, e〉 ↪→ 〈p, θ′θi, e′{κ 7→ ei}〉

Roughly speaking, rule (Send) states that if the evaluation of the expression e in the premise
requires as a side effect to send value v to process p′, the process evolves accordingly and a
corresponding message is added to the system. Dually, rule (Rec) receives a message if the
expression e requires a message matching some clauses cln and the message at hand indeed
matches one of the clauses (second premise).

Now, we can apply our approach to the Core Erlang semantics and derive a reversible
semantics for it. A reversible Core Erlang configuration, denoted with R, is defined as usual
by adding keys and memories to an Erlang systems, as formalised by the following grammar:

R ::= k : 〈p, θ, e〉 | k : (p, p′, v) | (R1 | R2) | [R;C]

In the following, we give the forward rules (F-Send) and (F-Rec) of the reversible
semantics for Erlang. The complete set of forward rules is given in Figure 8 of Appendix A.

(F-Send)
θ, e

send(p′,v)−−−−−−→ θ′, e′ k1, k2 are fresh keys
k : 〈p, θ, e〉� k1 : 〈p, θ′, e′〉 | k2 : (p, p′, v) | [k : 〈p, θ, e〉 ; k1 : •1 | k2 : •2]

(F-Rec)
θ, e

rec(κ,cln)−−−−−−→ θ′, e′ and matchrec(θ, cln, v) = (θi, ei) k1 is a fresh key
k2 : (p′, p, v) | k : 〈p, θ, e〉� k1 : 〈p, θ′θi, e′{κ 7→ ei}〉 | [k2 : (p′, p, v) | k : 〈p, θ, e〉 ; k1 : •1]
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Actually, both rules are to be interpreted as schemas, so that premises related to the
semantics of expressions and to match are used to select the allowed instances and do not
occur in actual instances. E.g., an allowed instance for (F-Send) is:

k1, k2 are fresh keys
k : 〈p, θ, p′!5〉� k1 : 〈p, θ, 5〉 | k2 : (p, p′, 5) | [k : 〈p, θ, p′!5〉 ; k1 : •1 | k2 : •2]

where ! is Erlang operator for sending.
Below, we give the backward rules (B-Send) and (B-Rec) of the reversible semantics for

Erlang. The complete set of backward rules is given in Figure 9 of Appendix A. When the
action is undone, the prior state of the process is restored from the memory µ.

(B-Send) k1 : 〈p, θ′, e′〉 | k2 : (p, p′, v) | [k : 〈p, θ, e〉 ; k1 : •1 | k2 : •2] k : 〈p, θ, e〉

(B-Rec) k1 : 〈p, θ′, e′〉 | [k2 : (p′, p, v) | k : 〈p, θ, e〉 ; k1 : •1] k2 : (p′, p, v) | k : 〈p, θ, e〉

The reversible semantics obtained by applying our approach to Core Erlang is not exactly
the same as the one of [30]. There are two important differences. First, we are not using
execution logs, that we removed from the semantics we gave in input to our approach, since
we do not need them.

Another difference is in how the past information of the system is stored. In [30], a
history element h is kept as part of the process 〈p, h, θ, e〉. It contains information to recover
all past states of the process. In our reversible semantics, each step generates a memory
with the information needed to reverse it, and the memories are connected using keys. Also,
memories are not inside processes but floating in the configuration.

In the following, we prove that, despite the differences above, the two semantics capture
the same behaviours. To this end, we first show that the two semantics are based on the
same notion of causality (by showing that conflicting transitions are the same) and then that
they are strong back and forth barbed equivalent [26]. Here we just discuss the idea, we refer
to Appendix A for the technical details.

The notion of conflict for reversible Core Erlang in [30, Definition 12] (which is an instance
of the happened-before relation [20] as discussed in [30]) is defined in general terms, referring
to which actions (e.g., send, . . . ) are performed and by which processes. Hence, it is also
applicable to our reversible Core Erlang. We show below that it coincides with the definition
we gave, based on keys and memories.

I Theorem 25 (Causal correspondence). Two coinitial transitions t1 and t2 of our reversible
Core Erlang semantics are in conflict according to [30, Definition 12] iff they are in conflict
according to Definition 13.

We show below that the reversible semantics of Erlang in [30] and ours are strong back
and forth barbed equivalent [26]. We let E to stand for a Core Erlang system, L for a
reversible Erlang system as in [30] and R for one of our reversible Erlang configurations.

Following [33], we write E ↓ p if the system E contains a floating message targeting a
process with pid p (i.e., if (p′, p, v) | E′ ≡ E for some p′, v and E′). We use the same notation
for systems L and configurations R, writing L ↓ p and R ↓ p.

We now adapt the definition of back and forth barbed bisimulation [26] to reversible
Erlang. In words, two reversible semantics are back and forth barbed bisimilar if they have
the same barbs and they can match each other execution steps. Formally:
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I Definition 26. Relation R is a strong back and forth barbed simulation if (L,R) ∈ R
implies:

L ↓ p implies R ↓ p
L ⇀ L′ implies R� R′ with (L′, R′) ∈ R
L ↽ L′ implies R R′ with (L′, R′) ∈ R

Relation R is a strong back and forth barbed bisimulation if R and R−1 are strong back and
forth barbed simulations. Strong back and forth barbed bisimilarity is the largest strong back
and forth barbed bisimulation.

Now we can state the equivalence result between the two semantics.

I Theorem 27. The reversible semantics of Erlang in [30] and our reversible semantics of
Erlang are strong back and forth barbed bisimilar.

4.3 Reversible Link Semantics for Erlang
Here, we apply our approach to the remote error handling mechanism of Core Erlang, based
on links. No reversible semantics for it exists in the literature as far as we know. Defining
it correctly does not present specific technical challenges, but it requires care, hence its
definition is an interesting result on its own.

We start by giving some general idea about links and their role in Erlang (see [15] for more
details). A link can be seen as a bidirectional path between two processes along which error
signals travel. This can be used, e.g., to signal normal or abnormal termination. A process
terminates normally when its code is completely executed, or it can terminate abnormally
with a “reason”, meaning that some faulty behaviour occurred during the execution. In both
the cases, the process signals its termination to linked processes. This gives to the receiver
the role of a controller in charge of handling the termination. There are two possibilities,
depending on the nature of the receiver process: it can terminate too, or, if it is a system
process, it can trap the termination signal and “resolve” the faulty behaviour. For instance,
it could ignore it and continue with its execution, or start a copy of the terminated process,
etc. Thanks to this feature, Erlang is particularly suited to build fault-tolerant systems [1].

In Erlang, links between two processes can be created by calling either function link(),
linking any two processes (provided they are not terminated yet) or function spawn_link(),
which spawns a new process and links it with the parent process atomically. In this work, we
concentrate on function spawn_link(). Function link() can be dealt with similarly.

We start from the Core Erlang semantics discussed in the previous section and extend it
to support the functions spawn_link() and process_flag(). The latter allows one to set
the state of a process to system process, i.e. a process which will trap the error signal, or non-
system process. More precisely, we add to Core Erlang syntax (see [30, Section 2.1, Figure 1])
expressions spawn_link(expr, [expr1, . . . , expr1]) and process_flag(expr1, expr2). In our
case, function process_flag() is always called as process_flag(trap_exit, f lag), where
the process becomes a system process if flag = true, a non-system process otherwise.

We show now a sample Erlang program to clarify the error handling mechanism described
above. It calculates the sum of a given list of elements and returns invalid if the list contains
some non-numeric element.

The execution starts by calling function total(), which first sets the process flag to true.
In this way, the process will be able to trap termination signals from any process linked with
it. The execution proceeds by calling function spawn_link(), which atomically spawns and
links a new process, executing function sumProcess(), in charge of calculating the sum via
auxiliary function sum(). Because of the link, when the linked process terminates, its parent
process will receive an exit notification message.
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Finally, function receiveValue() is invoked. It checks whether the computation finished
without misbehaviours: if this is the case message {′EXIT′, P id, normal} is received and the
function will read the result of the computation. If an error occurred during the computation
message {′EXIT ′, P id, {badarith, Stack}} is received and the function returns atom invalid.

total(List) −→
process_flag(trap_exit, true),
SumPid = spawn_link(?MODULE, sumProcess, [self(), List]),
receiveValue(SumPid).

sumProcess(Pid, List) −→ Pid ! sum(List).
sum([ ]) −→ 0;
sum([H|T ]) −→ H + sum(T ).
receiveValue(Pid) −→

receive
{′EXIT ′, P id, normal} −→

receive V alue −→ V alue end;
{′EXIT ′, P id, {badarith, Stack}} −→ invalid

end.

To integrate the functions spawn_link() and process_flag(), we add to processes two
pieces of information, the set of links l and the flag f . The link set l is updated when a link
is created, adding the pid of the other process, or destroyed, removing it. The flag f is a
Boolean, tracking whether a process is a system process or not. Also, we say that the process
〈p, θ, e, l, f〉 is terminated if e = v for some value v (normal termination) or e = r for some
reason r (faulty termination).

Formally, a Core Erlang system supporting links is defined as a pool of floating messages,
live and terminated processes, with the following grammar:

E := 〈p, θ, e, l, f〉 | (p, p′, v) | (E1 | E2)

By applying our approach we obtain the syntax for reversible Core Erlang supporting
links below. As usual, keys and memories are added to the system.

R := k : 〈p, θ, e, l, f〉 | k : (p, p′, v) | R1 | R2 | [R;C]

The new rules of the reversible semantics of Erlang supporting links are in Figure 4, but
for rule (F-Nrm) which is very similar to rule (F-Err) and is given in Appendix A. We do
not show the original semantics, which can however be easily deduced by removing keys and
memories from the one in Figure 4. The reversible semantics includes also all the rules in
Figure 8, with the only addition of the set of links l and flag f in each process, which are
not affected by those rules, but for the fact that when a process is spawned its link set is
initialised to empty and its flag to false.

Rule (F-SpLink) above is similar to rule (F-Spawn) in Figure 8, with the addition that
the link between the two processes is created, by inserting the pid of the other process in the
link set. Rules (F-Err) and (F-Nrm) are similar: they both model the signalling of the
termination of a process p to all the processes it is linked with. In both of them links are
broken, by removing pids from link sets. The effect of termination depends on whether it is
a normal termination, as in rule (F-Nrm), or an error termination, as in rule (F-Err). Also,
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(F-SpLink)
θ, e

spawn_link(κ,f/n,[vn])−−−−−−−−−−−−−−−→ θ′, e′ p′ is a fresh pid k1, k2 are fresh keys
k : 〈p, θ, e, l, f〉� k1 : 〈p, θ′, e′{κ 7→ p′}, l ∪ {p′}, f〉 | k2 : 〈p′, id, apply f/n (vn), {p}, false〉 |

[k : 〈p, θ, e, l, f〉 ; k1 : •1 | k2 : •2]

(F-Flag)
θ, e

process_flag(κ,trap_exit,f ′)−−−−−−−−−−−−−−−−−−−→ θ′, e′ k1 is a fresh key
k : 〈p, θ, e, l, f〉� k1 : 〈p, θ′, e′{κ 7→ f}, l, f ′〉 | [k : 〈p, θ, e, l, f〉 ; k1 : •1]

(F-Err)
l = {p1, . . . , pm} 1 ≤ i ≤ n⇒ fi = true ∧ n+ 1 ≤ i ≤ m⇒ fi = false h, hi, ji are fresh keys

k : 〈p, θ, r, l, f〉 |
∏

1≤i≤m

ki : 〈pi, θi, ei, li, fi〉� h : 〈p, θ, r, ∅, f〉 |∏
1≤i≤n

hi : 〈pi, θi, ei, li \ {p}, fi〉 |
∏

1≤i≤n

ji : (p, pi, {′EXIT′, p, r}) |
∏

n+1≤i≤m

hi : 〈pi, θi, r, li \ {p}, fi〉 |

[k : 〈p, θ, r, l, f〉 |
∏

1≤i≤m

ki : 〈pi, θi, ei, li, fi〉 ;h : •h |
∏

1≤i≤m

hi : •hi |
∏

1≤i≤n

ji : •ji ]

Figure 4 Forward rules of the reversible link semantics for Erlang.

a termination signal affects system processes and non-system processes differently, and this
is why in the two rules we split the processes in two groups according to the value of the flag.
It can be set to the desired value using rule (F-Flag).

In rule (F-Err), the process terminates for some reason r. In this case messages
{′EXIT′, p, r} where p is the pid of the terminated process are sent to all system processes
while non-system processes are forced to terminate. We can see the latter, e.g., in non-system
process 〈pm, θm, r, lm \ {p}, fm〉 where expressions em is replaced by reason r, denoting
abnormal termination. A memory is generated as usual, recording the past state of the
system and the configuration of the resulting processes.

In rule (F-Nrm), the process terminates normally. The only differences w.r.t. rule
(F-Err) is that non-system processes are unaffected and the messages are of the form
{′EXIT′, p, normal}.

Backward rules are as usual.
We need to couple the rules in Figure 4, describing the semantics of Erlang configurations,

with rules describing the evaluation of expressions, as the ones in [30, Figure 11]. Two main
changes are needed. First, evaluation of operators may produce either a value or an error:

(Call3)
eval(op, v1, . . . , vn) = x with x = v ∨ x = r

θ, call op(v1, . . . , vn) τ−→ θ, x

Then, one also needs to add rules to evaluate the functions spawn_link() and process_flag().
They are quite standard and can be found in Appendix A.

We are working to integrate the error mechanisms above into Erlang reversible debugger
CauDEr [28]. CauDEr follows the reversible semantics of Core Erlang in [30], however our
results can be rephrased in that setting, as hinted at by Theorems 25 and 27.

5 Conclusion, Related and Future Work

We presented a fully automatic method to extend a given forward model to a reversible one.
Notably, our approach only needs a syntax and a reduction semantics of the forward model
fitting our constraints. A causal semantics is produced as a by-product of our approach (see
Definition 13). We exploited our method to obtain reversible extensions of Higher-Order
π and Core Erlang. We showed that the obtained reversible semantics are equivalent to
the ones in the literature [26, 30]. As an illustration that our approach can go beyond the
literature, we tackled Core Erlang constructs for remote error handling based on links.
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Sequential systems would correspond in our framework to single entities which evolve
using instances of schemas having a single entity both on the left- and on the right-hand
side. While our approach would create a reversible semantics for them, undoing actions in
reverse order of execution, many of our results would become trivial.

In the concurrency literature, one can find many approaches defining a single reversible
formalism or studying its properties, all using techniques tailored to the chosen model (e.g.,
[10, 9, 26, 39, 17, 38, 3, 18, 29, 37]). Indeed, our work can be seen as a generalisation of
[26, 29], which we also used as case studies. A few works present general approaches able to
cope with a number of formalisms. Our work fits in this class, hence we compare it below
with the other approaches of this kind we are aware of. Also, since we deal with concurrent
models, we focus on approaches targeting them as well.

Beyond ours, the only work that we are aware of providing a general and fully automatic
method to derive a reversible semantics is [42], which considers calculi defined in a specific
SOS format. Their approach allows to deal with open systems since their semantics is SOS,
while our approach based on a reduction semantics considers only close systems. On the
other hand, the higher degree of abstraction provided by reduction semantics simplifies the
approach and makes it applicable to a wider range of formalisms. Indeed, the approach
in [42] cannot cope with our two case studies, Higher-Order π-calculus and Core Erlang,
since they do not fit their SOS format.

Also [4], which presents a modular framework to define reversible extensions of models
such as CCS and concurrent X-machines, can deal with open systems. Its main limitation is
that it is not fully automatic. Indeed, it requires to manually refine the labels of a given
LTS to ensure properties such as determinism and codeterminism. This is far from trivial.

Two abstract approaches to reversibility are [13] and [32]. The former focuses on the
interplay between reversible and irreversible actions, hence its results become trivial if, like
in our case, there are no irreversible actions. We exploited the latter to prove properties of
reversible models built using our approach. It concentrates on deriving properties from a set
of axioms but gives no indication about how to render an irreversible system reversible.

Uncontrolled reversible semantics as obtained by our approach are the foundation of
a reversible model on which one can build on, by adding control mechanisms [25] such as
irreversible actions [11], rollback operators [17] or energy potentials [2]. An interesting line
for future work is to integrate such approaches in our framework. For rollback, we could
follow the ideas in [22], which leave however open the issue of how to manage rollback targets.

Another direction for future work is to adapt our approach so to handle further forward
models. For instance, we currently cannot cope with the semantics of muKlaim defined in [17],
since its concurrency model includes read dependencies. In particular, our approach is based
on consumed and produced resources, while in [17] resources can also be read without being
consumed. More in general, our approach can cope well with message-based concurrency
modelled by some form of happened-before relation [20] (e.g., beyond our case studies, CCS,
π-calculus and place-transition Petri nets) but not with read-write concurrency (e.g., beyond
muKlaim, imperative languages). In order to extend our method to cope with read-write
concurrency, we need to identify resources which are read but not consumed.

A last direction for future work concerns reducing the memory overhead of our approach.
While it is difficult to find optimisations sound for every instance, many optimisations can
work on specific classes of instances. E.g., in models where the context T in the instances of
schema (Scm-Act) is always composed by parallel operators only, as in Core Erlang, there
is no need to store T , but it is enough to store the set of fresh keys.
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A Further Technical Material

Higher-Order π-calculus and reversible HOπ-calculus

This section recalls the semantics of the HOπ-calculus [44], discusses how it fits our framework
and details the reversible semantics derived for it using our approach.

The standard rules of the structural congruence for the HOπ-calculus are:

(ParC) P | Q ≡ Q | P (ParA) P | (Q | S) ≡ (P | Q) | S (Nil) P | 0 ≡ P

(Alpha) νaP ≡ νb P{b/a} if b /∈ fn(P ) (ResF) (νaP ) | Q ≡ νa (P | Q) if a /∈ fn(Q)

Rules (ParC) and (ParA) ensure that parallel composition is commutative and associative,
while rule (Nil) defines 0 as neutral element as required by our framework. Rule (Alpha) is
α-conversion while rule (ResF) deals with scope extrusion.

The semantics of HOπ is given by the reduction relation � below:

(Act)
a〈Q〉 | a(X) . P � P{Q/X}

(Par)
P � P ′

P | Q� P ′ | Q

(Res)
P � P ′

νaP � νaP ′
(Eqv)

P ≡ P ′ P � Q Q ≡ Q′

P ′ � Q′

Rule (Act) is the communication rule where process Q is received and bound to variable
X. Process P can execute inside a parallel or a restriction operator thanks to rules (Par)
and (Res), respectively. Rules (Par) and (Eqv) are as required by our framework. Rules
(Act) and (Res) can be seen as infinite families of rules fitting schemas (Scm-Act) and
(Scm-Opn), respectively.

In Figure 5, we give forward and backward rules of the reversible semantics for the
HOπ-calculus derived using our approach.

(F-Act) a〈P 〉 | a(X) . P ′ � P
′{P/X} j1, . . . jm are fresh keys and P

′{P/X} = T [Q1, . . . , Qm]
k1 : a〈P 〉 | k2 : a(X) . P ′ � T [j1 : Q1, . . . , jm : Qm] |

[k1 : a〈P 〉 | k2 : a(X) . P ′ ;T [j1 : •1, . . . , jm : •m]]

(F-Par) R � R
′ (key(R′) \ key(R)) ∩ key(R1) = ∅

R | R1 � R
′ | R1

(F-Res) R � R
′

νa (R) � νa (R′)

(F-Eqv) R ≡ R
′

R � R1 R1 ≡ R′1
R
′ � R

′
1

(B-Act) µ = [k1 : a〈P 〉 | k2 : a(X) . P ′ ;T [j1 : •1, . . . , jm : •m]]
T [j1 : Q1, . . . , jm : Qm] | µ k1 : a〈P 〉 | k2 : a(X) . P ′

(B-Par) R
′

R

R
′ | R1 R | R1

(B-Res) R
′

R

νa (R′) νa (R)
(B-Eqv) R ≡ R

′
R R1 R1 ≡ R′1
R
′

R
′
1

Figure 5 Forward and backward rules of the reversible semantics for the Higher-Order π-calculus.

Properties

This section contains further technical material related to Section 3. We start by defining
strong bisimilarity between the forward semantics of a reversible configuration R and the
semantics of its projection on the original model ϕ(R).
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I Definition 28. A relation R between reversible configurations R and forward-only systems
N is a strong bisimulation whenever for each (R,N) ∈ R:

if R� R′, then N � N ′ with (R′, N ′) ∈ R;
if N � N ′, then R� R′ with (R′, N ′) ∈ R.

Strong bisimilarity is the largest strong bisimulation.

Notably, only forward actions of the reversible systems need to be matched.

Concurrency and Causal Consistency. To fit the framework of [32], we re-formulate our
framework as a labelled transition system enriched with an independence relation (LTSI) [45,
Definition 3.7].

I Definition 29. A labelled transition system (LTS) is a structure (R,L,−→), where R is a
set of systems, L is the set of action labels and −→⊂ R×L×R is a transition relation.

I Definition 30. A labelled transition system with independence (LTSI) is a structure
(R,L,−→, ι), where (R,L,−→) is an LTS and ι is the independence relation (an irreflexive
symmetric binary relation on transitions).

In our case, R is the set of configurations and L the set of labels of our transitions. The
latter include both forward and backward transitions. Also, the notion of independence
is defined on coinitial transitions and it coincides with the notion of concurrency, namely
ι =^c.

Given that our reversible semantics satisfies all the required axioms (Proposition 20),
thanks to [32], all instances of our framework satisfy the Parabolic Lemma, Causal Consistency,
Causal Safety and Causal Liveness.

I Proposition 31. For every instance of our framework, the LTSI (R,L,−→,^c) satisfies
the Parabolic Lemma, Causal Consistency, Causal Safety and Causal Liveness.

Correspondence between our reversible HOπ and ρπ

This section contains technical material necessary to define the correspondence between our
reversible HOπ and ρπ (Section 4.1).

In the following, we recall the definition of thread normal form from [26, Lemma 1] using
which, by exploiting structural congruence, unique keys are generated for each primitive
thread process in a configuration (primitive thread processes are entities in our terminology).

I Definition 32 (Thread normal form). For any closed configuration M in ρπ, we have

M ≡ νũ
∏
i∈I

(κi : ρi)
∏
j∈J

[µj ; kj ] with ρi = ai〈Pi〉 or ρi = ai(Xi) . Pi

We now present an encoding from our reversible HOπ to ρπ. The encoding works in two
steps: a first step explores memories in our configurations to find related sets of keys, the
second step uses the gathered information to actually perform the translation. The first step
is done by function col(R), which computes (possibly annotated) sets of keys, one for each
memory [R′ ;C] in R. If C contains more than one key, the extracted set of keys is annotated
with a fresh key k, what is denoted with key(C)k. The formal definition of function col(R)
is in Figure 6. Note that the result of function col(R) is a set of possibly annotated sets of
keys. We denote with h̃k and h̃ sets key(C)k and key(C), respectively. We also assume to
have a fresh key generator, giving us fresh keys k as needed.

CONCUR 2020



33:22 A General Approach to Derive Uncontrolled Reversible Semantics

col(νa (R)) = col(R)
col(R1 | R2) = col(R1) ∪ col(R2)
col([R ;C]) = {key(C)k} where k is fresh if |key(C)| > 1
col([R ;C]) = {key(C)} if |key(C)| = 1

col(k : P ) = ∅
col(0) = ∅

Figure 6 Function col().

The second step performs the translation of a given configuration R and uses as a
parameter a set of sets of keys S as above, which is initialised as S = col(R). Let us
denote withM the set of all ρπ [26] configurations in normal form and with R the set of
all configurations obtained by applying our approach to the HOπ-calculus. The encoding
function L·M : R −→M, is defined as:

LRM = νK LRMcol(R) where K = (
⋃

h̃k∈col(R)

h̃ ∪ {k}) ∪
⋃

{h}∈col(R)

{h}

LνaRMS = νa LRMS
LR1 | R2MS = LR1MS | LR2MS
L[R ;C]MS = [LRMS ; LCMS ]
Lh : P MS = 〈h, h̃〉 · k : P if h ∈ h̃ for some h̃k ∈ S
Lh : P MS = h : P if h /∈ h̃ for all h̃k ∈ S

LCMS = k if key(C)k ∈ S
LCMS = h if key(C) = {h}

Let us comment on it. The first rule computes the parameter col(R) containing information
on keys, to be used in the rest of the translation, and creates restrictions for all the keys
occurring in it. The other rules just propagate the set S, till one of the last 4 rules applies.
The first two deal with keys labelling processes: it the key belongs to a non-singleton set,
then it is replaced by a complex tag, otherwise it is left unchanged. The two last rules
remove the context C in the memory, which is not needed in ρπ, replacing it with a key. If C
contains only one key, this is the key used. If it contains more than one key instead the fresh
key k generated for the set of keys is used. The keys in the set will become complex tags,
carrying k so to make the connection between the memory and all the processes created by
the corresponding transition.

Let us show a simple example to clarify how the translation works.

I Example 33. Let us consider the system produced by the sample transition in Section 4.1:

R′ = j1 : P1 | j2 : P2 | [R ; j1 : •1 | j2 : •2]
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(Seq) θ, e
τ−→ θ

′
, e
′

〈p, θ, e〉 ↪→ 〈p, θ′, e′〉
(Rec) θ, e

rec(κ,cln)
−−−−−−−→ θ

′
, e
′ and matchrec(θ, cln, v) = (θi, ei)

(p′, p, v) | 〈p, θ, e〉 ↪→ 〈p, θ′θi, e′{κ 7→ ei}〉

(Send) θ, e
send(p′,v)
−−−−−−→ θ

′
, e
′

〈p, θ, e〉 ↪→ 〈p, θ′, e′〉 | (p, p′, v)
(Self) θ, e

self(κ)
−−−−−→ θ

′
, e
′

〈p, θ, e〉 ↪→ 〈p, θ′, e′{κ 7→ p}〉

(Spawn) θ, e
spawn(κ,f/n,[vn])
−−−−−−−−−−−−→ θ

′
, e
′

p
′ is a fresh pid

〈p, θ, e〉 ↪→ 〈p, θ′, e′{κ 7→ p
′}〉 | 〈p′, id, apply f/n (vn)〉

(Par) E ↪→ E
′ pid(E′) ∩ pid(E1) = ∅
E | E1 ↪→ E

′ | E1

Figure 7 System rules of standard Core Erlang.

We have col(R′) = {{j1, j2}k} where k is a fresh key. We now have:

LR′M =νj1, j2, k LR′Mcol(R′) =
=νj1, j2, k Lj1 : P1Mcol(R′) | Lj2 : P2Mcol(R′) | L[R ; j1 : •1 | j2 : •2]Mcol(R′)

=νj1, j2, k 〈j1, {j1, j2}〉 · k : P1 | 〈j2, {j1, j2}〉 · k : P2 |
[LRMcol(R′) ; Lj1 : •1 | j2 : •2Mcol(R′)]

=νj1, j2, k 〈j1, {j1, j2}〉 · k : P1 | 〈j2, {j1, j2}〉 · k : P2 | [R ; k]

where R is unchanged since it only contains keys not occurring in col(R′).

Classic and reversible semantics for Core Erlang

This section recalls a reduction semantics for Core Erlang [30] and presents forward and back-
ward rules of the reversible semantics for Core Erlang obtained using approach (Section 4.2).

In Figure 7 we give the reduction semantics for Core Erlang. Rule (Spawn) adds a new
process with a fresh pid p′, initialised with an empty environment id, into the system. The
function pid(·) used in rule (Par) extracts the set of pids of processes in a given system. It
is used to ensure that the pid of the newly spawned process is fresh. We refer to [30] for a
detailed description of the rules.

The forward rules of the reversible semantics are given in Figure 8. Rule (F-Par) allows
configurations to execute as part of a larger configuration with the additional condition that
keys generated by the execution are not part of the parallel configuration.

Backward rules of the reversible semantics are given in Figure 9. Notably, to capture
exactly the instances produced by our approach some side conditions would be needed. E.g.,
in rule B-Par one would need condition pid(R′) ∩ pid(R′′) = ∅. However, such conditions
are always satisfied in reachable configurations.

Reversible link semantics for Erlang

In this section we give the additional rules of the reversible link semantics for Erlang
(Section 4.3), namely system rule (F-Nrm) as well as rules describing the evaluation of
functions spawn_link() and process_flag(). In rule (Flag), f is a Boolean value.

CONCUR 2020
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(F-Seq) θ, e
τ−→ θ

′
, e
′

k1 is a fresh key
k : 〈p, θ, e〉� k1 : 〈p, θ′, e′〉 | [k : 〈p, θ, e〉 ; k1 : •1]

(F-Send) θ, e
send(p′,v)
−−−−−−→ θ

′
, e
′

k1, k2 are fresh keys
k : 〈p, θ, e〉� k1 : 〈p, θ′, e′〉 | k2 : (p, p′, v) | [k : 〈p, θ, e〉 ; k1 : •1 | k2 : •2]

(F-Rec) θ, e
rec(κ,cln)
−−−−−−−→ θ

′
, e
′ and matchrec(θ, cln, v) = (θi, ei) k1 is a fresh key

k2 : (p′, p, v) | k : 〈p, θ, e〉� k1 : 〈p, θ′θi, e′{κ 7→ ei}〉 | [k2 : (p′, p, v) | k : 〈p, θ, e〉 ; k1 : •1]

(F-Spawn) θ, e
spawn(κ,f/n,[vn])
−−−−−−−−−−−−→ θ

′
, e
′

p
′ is a fresh pid and k1, k2 are fresh keys

k : 〈p, θ, e〉� k1 : 〈p, θ′, e′{κ 7→ p
′}〉 | k2 : 〈p′, id, apply f/n (vn)〉 | [k : 〈p, θ, e〉 ; k1 : •1 | k2 : •2]

(F-Self) θ, e
self(κ)
−−−−−→ θ

′
, e
′

k1 is a fresh key
k : 〈p, θ, e〉� k1 : 〈p, θ′, e′{κ 7→ p}〉 | [k : 〈p, θ, e〉 ; k1 : •1]

(F-Par) R � R
′ pid(R′) ∩ pid(R′′) = ∅ and (key(R′) \ key(R)) ∩ key(R′′) = ∅

R | R′′ � R
′ | R′′

Figure 8 Forward rules of the reversible semantics for Erlang.

(B-Seq) k1 : 〈p, θ′, e′〉 | [k : 〈p, θ, e〉 ; k1 : •1] k : 〈p, θ, e〉

(B-Send) k1 : 〈p, θ′, e′〉 | k2 : (p, p′, v) | [k : 〈p, θ, e〉 ; k1 : •1 | k2 : •2] k : 〈p, θ, e〉

(B-Rec) k1 : 〈p, θ′, e′〉 | [k2 : (p′, p, v) | k : 〈p, θ, e〉 ; k1 : •1] k2 : (p′, p, v) | k : 〈p, θ, e〉

(B-Spawn) k1 : 〈p, θ′, e′〉 | k2 : 〈p′, id, e′′〉 | [k : 〈p, θ, e〉 ; k1 : •1 | k2 : •2] k : 〈p, θ, e〉

(B-Self) k1 : 〈p, θ′, e′〉 | [k : 〈p, θ, e〉 ; k1 : •1] k : 〈p, θ, e〉
(B-Par) R

′
R

R
′ | R′′ R | R′′

Figure 9 Backward rules of the reversible semantics for Erlang.

(F-Nrm) l = {p1, . . . , pm} 1 ≤ i ≤ n⇒ fi = true ∧ n + 1 ≤ i ≤ m⇒ fi = false h, hi, ji are fresh keys

k : 〈p, θ, v, l, f〉 |
∏

1≤i≤m

ki : 〈pi, θi, ei, li, fi〉� h : 〈p, θ, v, ∅, f〉 |∏
1≤i≤n

hi : 〈pi, θi, ei, li \ {p}, fi〉 |
∏

1≤i≤n

ji : (p, pi, {′EXIT′, p, normal}) |
∏

n+1≤i≤m

hi : 〈pi, θi, ei, li \ {p}, fi〉 |

[k : 〈p, θ, v, l, f〉 |
∏

1≤i≤m

ki : 〈pi, θi, ei, li, fi〉 ;h : •h |
∏

1≤i≤m

hi : •hi |
∏

1≤i≤n

ji : •ji ]

(Spawn_Link1) θ, ei
l−→ θ
′
, e
′
i i ∈ {1, . . . , n}

θ, spawn_link(a/n, [v1,i−1, ei, ei+1,n]) l−→ θ
′
, spawn_link(a/n, [v1,i−1, e

′
i, ei+1,n])

(Spawn_Link2) θ, spawn_link(a/n, [vn])
spawn_link(κ,a/n,[vn]
−−−−−−−−−−−−−−−→ θ, κ

(Flag) θ, process_flag(trap_exit, f)
process_flag(κ,trap_exit,f)
−−−−−−−−−−−−−−−−−−−→ θ, κ
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