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Abstract
We study countably infinite MDPs with parity objectives. Unlike in finite MDPs, optimal strategies
need not exist, and may require infinite memory if they do. We provide a complete picture of
the exact strategy complexity of ε-optimal strategies (and optimal strategies, where they exist)
for all subclasses of parity objectives in the Mostowski hierarchy. Either MD-strategies, Markov
strategies, or 1-bit Markov strategies are necessary and sufficient, depending on the number of colors,
the branching degree of the MDP, and whether one considers ε-optimal or optimal strategies. In
particular, 1-bit Markov strategies are necessary and sufficient for ε-optimal (resp. optimal) strategies
for general parity objectives.
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1 Introduction

Background. Markov decision processes (MDPs) are a standard model for dynamic systems
that exhibit both stochastic and controlled behavior [17]. MDPs play a prominent role in
numerous domains, including artificial intelligence and machine learning [20, 19], control
theory [4, 1], operations research and finance [5, 18], and formal verification [7, 2].

An MDP is a directed graph where states are either random or controlled. Its observed
behavior is described by runs, which are infinite paths that are, in part, determined by the
choices of a controller. If the current state is random then the next state is chosen according
to a fixed probability distribution. Otherwise, if the current state is controlled, the controller
can choose a distribution over all possible successor states. By fixing a strategy for the
controller (and initial state), one obtains a probability space of runs of the MDP. The goal
of the controller is to optimize the expected value of some objective function on the runs.

The type of strategy necessary to achieve an optimal (resp. ε-optimal) value for a given
objective is called its strategy complexity. There are different types of strategies, depending
on whether one can take the whole history of the run into account (history-dependent; (H)),
or whether one is limited to a finite amount of memory (finite memory; (F)) or whether
decisions are based only on the current state (memoryless; (M)). Moreover, the strategy
type depends on whether the controller can randomize (R) or is limited to deterministic
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Figure 1 These diagrams show the strategy complexity of ε-optimal strategies and optimal
strategies (where they exist) for parity objectives. Depending on the position in the Mostowski
hierarchy, either MD-strategies (green), deterministic Markov-strategies (blue) or deterministic 1-bit
Markov strategies (red) are necessary and sufficient (and randomization does not help [12]). If the
MDPs are finitely branching then the Markov strategies can be replaced by MD-strategies (i.e., the
blue parts turn green), but the deterministic 1-bit Markov part (red) remains unchanged.

choices (D). The simplest type, MD, refers to memoryless deterministic strategies. Markov
strategies are strategies that base their decisions only on the current state and the number
of steps in the history of the run. Thus they do use infinite memory, but only in a very
restricted form by maintaining an unbounded step-counter. Slightly more general are 1-bit
Markov strategies that use 1 bit of extra memory in addition to a step-counter.

Parity objectives. We study countably infinite MDPs with parity objectives. Parity con-
ditions are widely used in temporal logic and formal verification, e.g., they can express
ω-regular languages and modal µ-calculus [9]. Every state has a color, out of a finite set
of colors encoded as natural numbers. A run is winning iff the highest color that is seen
infinitely often is even. The controller wants to maximize the probability of winning runs.
The Mostowski hierarchy [15] is a classification of parity conditions based on restricting the
set of allowed colors. For instance, {1, 2, 3}-Parity objectives only use colors 1, 2, and 3.
This includes Büchi ({1, 2}-Parity) and co-Büchi objectives ({0, 1}-Parity), both of which
further subsume reachability and safety objectives.

Related work. In finite MDPs, there always exist optimal MD-strategies for parity objectives.
In fact, this holds even for finite turn-based 2-player stochastic parity games [6, 23]. Similarly,
there always exist optimal MD-strategies in countably infinite non-stochastic turn-based
2-player parity games [22].

The picture is more complex for countably infinite MDPs. Optimal strategies need
not exist (not even for reachability objectives [17, 16]), and ε-optimal strategies for Büchi
objectives [10] and optimal strategies for parity objectives [14] require infinite memory.

The paper [14] gave a complete classification whether MD-strategies suffice or whether
infinite memory is required for ε-optimal (resp. optimal) strategies for all subclasses of parity
objectives in the Mostowski-hierarchy.
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However, the mere fact that infinite memory is required for (a subclass of) parity does not
establish the precise strategy complexity. E.g., are Markov strategies (or Markov strategies
with finite extra memory) sufficient?

In [12] we showed that deterministic 1-bit Markov strategies are both necessary and suffi-
cient for ε-optimal strategies for Büchi objectives. I.e., deterministic 1-bit Markov strategies
are sufficient, but neither randomized Markov strategies nor randomized finite-memory
strategies are sufficient. This solved a 40-year old problem in gambling theory from [10, 11].
The same paper [12] showed that even for finitely branching MDPs with {1, 2, 3}-Parity
objectives, optimal strategies (where they exist) need to be at least deterministic 1-bit Markov
in general, i.e., neither randomized Markov nor randomized finite-memory strategies are
sufficient.

While the lower bounds for ε-optimal strategies for Büchi objectives (resp. for optimal
strategies for {1, 2, 3}-Parity objectives) carry over to general parity objectives, the upper
bounds on the strategy complexity of ε-optimal (resp. optimal) parity remained open.

A basic upper bound and related conjecture. A basic upper bound on the complexity of
ε-optimal strategies for parity can be obtained by using a combination of the results of [12]
on Büchi objectives (1-bit Markov) and Lévy’s zero-one law as follows. (However, note that
the following argument does not work directly for optimal strategies.)

Informally speaking, Lévy’s zero-one law implies that, for a tail objective (like parity)
and any strategy, the level of attainment from the current state almost surely converges
to either zero or one. I.e., the runs that always stay in states where the strategy attains
something in (0, 1) is a null-set. A consequence for parity is that almost all winning runs
must eventually, with ever higher probability, commit to winning by some particular color.
Thus, with minimal losses (e.g., ε/2), after a sufficiently long finite prefix (depending on ε),
one can switch to a strategy that aims to visit some particular color x infinitely often. The
latter objective is like a Büchi objective where the states of color x are accepting and states
of color > x are considered losing sinks. By [12], an ε/2-optimal strategy for such a Büchi
objective can be chosen 1-bit Markov. However, one would also need to remember which
color x one is supposed to win by and stick to that color. The latter is critical, since strategies
that switch focus between winning colors infinitely often (e.g., if they follow some local
criteria based on the value of the current state wrt. various colors) can end up losing. Overall,
the memory needed for such an ε-optimal strategy for parity is: dlog2(c)e bits for c even
colors to remember which color x one is supposed to win by and Markov plus 1 bit for the
Büchi strategy (see above), where the Markov step-counter also determines whether one
still plays in the prefix. Thus Markov plus (1 + dlog2(c)e) bits are sufficient. This argument
would suggest that more memory is required for more colors. However, our result shows that
this is not the case.

Our contributions. We show tight upper bounds on the strategy complexity of ε-optimal
(resp. optimal) strategies for parity objectives: They can be chosen as deterministic 1-bit
Markov, regardless of the number of colors. I.e., we provide matching upper bounds to the
lower bounds from [12].

In Section 3 we prove Theorem 1. An iterative plastering construction (i.e., fixing player
choices on larger and larger subspaces) builds an ε-optimal 1-bit Markov strategy where
the probability of never switching between winning even colors is ≥ 1− ε. Its correctness
relies heavily on Lévy’s zero-one law. The number of iterations is finite and proportional to
the number of even colors. It eliminates the need to remember the winning color x and the
dlog2(c)e part of the memory.
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I Theorem 1. Consider an MDPM, a parity objective and a finite set S0 of initial states.
For every ε > 0 there exists a deterministic 1-bit Markov strategy that is ε-optimal from

every state s ∈ S0.

In Section 4 we prove Theorem 2. If an optimal strategy exists, then an optimal 1-bit
Markov strategy can be constructed by the so-called sea urchin construction. It is a very
complex plastering construction with infinitely many iterations that uses the results of
Theorem 1 and Lévy’s zero-one law as building blocks. Its name comes from the shape of the
subspace in which player choices get fixed: a growing finite body (around a start set S0) with
a finite, but increasing, number of spikes, where each spike is of infinite size; cf. Figure 4.
E.g., if the initial states are almost surely winning then, at the stage with i spikes, this
strategy attains parity with some probability ≥ 1− 2−i already inside this subspace, and
in the limit of i → ∞ it attains parity almost surely. A further step even yields a single
deterministic 1-bit Markov strategy that is optimal from every state that has an optimal
strategy.

I Theorem 2. Consider an MDP M with a parity objective and let Sopt be the subset of
states that have an optimal strategy.

There exists a deterministic 1-bit Markov strategy that is optimal from every s ∈ Sopt.

In Theorem 1 and Theorem 2 the initial content of the 1-bit memory is irrelevant (cf.
Lemma 9, Lemma 18 and Remark 8).

Moreover, we show in Section 5 and Section 6 that in certain subcases deterministic
Markov strategies are necessary and sufficient (i.e., these require a Markov step-counter,
but not the extra bit): optimal strategies for co-Büchi and {0, 1, 2}-Parity, and ε-optimal
strategies for safety and co-Büchi. In the special case of finitely branching MDPs, these
Markov strategies (but not the 1-bit Markov strategies) can be replaced by MD-strategies.

Together with the previously established lower bounds, this yields a complete picture of
the exact strategy complexity of parity objectives at all levels of the Mostowski hierarchy, for
countable MDPs. Figure 1 gives a complete overview.

2 Preliminaries

A probability distribution over a countable set S is a function f : S → [0, 1] with
∑
s∈S f(s) = 1.

We write D(S) for the set of all probability distributions over S.
We studyMarkov decision processes (MDPs) over countably infinite state spaces. Formally,

an MDPM = (S, S2, S#,−→, P ) consists of a countable set S of states, which is partitioned
into a set S2 of controlled states and a set S# of random states, a transition relation −→ ⊆
S × S, and a probability function P : S# → D(S). We write s−→s′ if (s, s′) ∈ −→, and
refer to s′ as a successor of s. We assume that every state has at least one successor. The
probability function P assigns to each random state s ∈ S# a probability distribution P (s)
over its set of successors. A sink is a subset T ⊆ S closed under the −→ relation. An MDP
is acyclic if the underlying graph (S,−→) is acyclic. It is finitely branching if every state
has finitely many successors and infinitely branching otherwise. An MDP without controlled
states (S2 = ∅) is a Markov chain.

Strategies and Probability Measures. A run ρ is an infinite sequence s0s1 · · · of states
such that si−→si+1 for all i ∈ N; write ρ(i) def= si for the i-th state along ρ. A partial run is
a finite prefix of a run. We say that (partial) run ρ visits s if s = ρ(i) for some i, and that ρ
starts in s if s = ρ(0).
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A strategy is a function σ : S∗S2 → D(S) that assigns to partial runs ρs ∈ S∗S2 a
distribution over the successors of s. A (partial) run s0s1 · · · is induced by strategy σ if for
all i either si ∈ S2 and σ(s0s1 · · · si)(si+1) > 0, or si ∈ S# and P (si)(si+1) > 0.

A strategy σ and an initial state s0 ∈ S induce a standard probability measure on sets
of infinite plays. We write PM,s0,σ(R) for the probability of a measurable set R ⊆ s0S

ω

of runs starting from s0. As usual, it is first defined on the cylinders s0s1 . . . snS
ω, where

s1, . . . , sn ∈ S: if s0s1 . . . sn is not a partial run induced by σ then PM,s0,σ(s0s1 . . . snS
ω) def= 0.

Otherwise, PM,s0,σ(s0s1 . . . snS
ω) def=

∏n−1
i=0 σ̄(s0s1 . . . si)(si+1), where σ̄ is the map that

extends σ by σ̄(ws) = P (s) for all ws ∈ S∗S#. By Carathéodory’s theorem [3], this extends
uniquely to a probability measure PM,s0,σ on measurable subsets of s0S

ω. We will write
EM,s0,σ for the expectation w.r.t. PM,s0,σ. We may drop the subscripts from notations, if it
is understood.

Objectives. The objective of the player is determined by a predicate on infinite plays. We
assume familiarity with the syntax and semantics of the temporal logic LTL [8]. Formulas are
interpreted on the structure (S,−→). We use JϕKs ⊆ sSω to denote the set of runs starting
from s that satisfy the LTL formula ϕ, which is a measurable set [21]. We also write JϕK
for
⋃
s∈SJϕKs. Where it does not cause confusion we will identify ϕ and JϕK and just write

PM,s,σ(ϕ) instead of PM,s,σ(JϕKs).
Given a set T ⊆ S of states, the reachability objective Reach(T ) is the set of runs that

visit T at least once; and the safety objective Safety(T ) is the set of runs that never visit T .
Let C ⊆ N be a finite set of colors. A color function Col : S → C assigns to each state s

its color Col(s). The parity objective, written as Parity(Col), is the set of infinite runs
such that the largest color that occurs infinitely often along the run is even. To define this
formally, let even(C) = {i ∈ C | i ≡ 0 mod 2}. For � ∈ {<,≤,=,≥, >}, n ∈ N, and Q ⊆ S,
let [Q]Col�n def= {s ∈ Q | Col(s) � n} be the set of states in Q with color �n. Then

Parity(Col) def=
∨

i∈even(C)

(
GF[S]Col=i ∧ FG[S]Col≤i

)
.

The Mostowski hierarchy [15] classifies parity objectives by restricting the range of Col
to a set of colors C ⊆ N. We write C-Parity for such restricted parity objectives. In
particular, the classical Büchi and co-Büchi objectives correspond to {1, 2}-Parity and
{0, 1}-Parity, respectively. These two classes are incomparable but both subsume the
reachability and safety objectives. Assuming that T is a sink, Reach(T ) = Parity(Col) for
the coloring with Col(s) = 1 ⇐⇒ s /∈ T and Safety(T ) = Parity(Col) for the coloring with
Col(s) = 1 ⇐⇒ s ∈ T . Similarly, {0, 1, 2}-Parity and {1, 2, 3}-Parity are incomparable,
but they both subsume (modulo renaming of colors) Büchi and co-Büchi objectives.

An objective ϕ is called a tail objective (resp. suffix-closed) iff for every run ρ′ρ with some
finite prefix ρ′ we have ρ′ρ ∈ ϕ⇔ ρ ∈ ϕ (resp. ρ′ρ ∈ ϕ⇒ ρ ∈ ϕ). In particular, Parity(Col)
is tail for every coloring Col. Moreover, if ϕ is suffix-closed then Fϕ is tail.

Strategy Classes. Strategies σ : S∗S2 → D(S) are in general randomized (R) in the sense
that they take values in D(S). A strategy σ is deterministic (D) if σ(ρ) is a Dirac distribution
for all partial runs ρ ∈ S∗S2.

We formalize the amount of memory needed to implement strategies. Let M be a countable
set of memory modes. An update function is a function u : M× S → D(M× S) that meets
the following two conditions, for all modes m ∈ M:

for all controlled states s ∈ S2, the distribution u((m, s)) is over M× {s′ | s−→s′}.
for all random states s ∈ S#, we have that

∑
m′∈M u((m, s))(m′, s′) = P (s)(s′).

CONCUR 2020
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An update function u together with an initial memory m0 induce a strategy u[m0] :
S∗S2 → D(S) as follows. Consider the Markov chain with states set M × S, transition
relation (M× S)2 and probability function u. Any partial run ρ = s0 · · · si inM gives rise
to a set H(ρ) = {(m0, s0) · · · (mi, si) | m0, . . . ,mi ∈ M} of partial runs in this Markov chain.
Each ρs ∈ s0S

∗S2 induces a probability distribution µρs ∈ D(M), the probability of being in
state (m, s) conditioned on having taken some partial run from H(ρs). We define u[m0] such
that u[m0](ρs)(s′) def=

∑
m,m′∈M µρs(m)u((m, s))(m′, s′) for all ρs ∈ S∗S2 and s′ ∈ S.

We say that a strategy σ can be implemented with memory M (and initial memory m0)
if there exists an update function u such that σ = u[m0]. In this case we may also write
σ[m0] to explicitly specify the initial memory mode m0. Based on this, we can define several
classes of strategies:

A strategy σ is memoryless (M) (also called positional) if it can be implemented with a
memory of size 1. We may view M-strategies as functions σ : S2 → D(S).
A strategy σ is finite memory (F) if there exists a finite memory M implementing σ.
More specifically, a strategy is k-bit if it can be implemented with a memory of size 2k.
Such a strategy is then determined by a function u : {0, 1}k × S → D({0, 1}k × S).
A strategy σ is Markov if it can be implemented with the natural numbers M = N as the
memory, initial memory mode m0 = 0 and a function u such that the distribution u(m, s)
is over {m + 1} × S for all m ∈ M and s ∈ S. Intuitively, such a strategy depends only on
the current state and the number of steps taken so far.
A strategy σ is k-bit Markov if it can be implemented with memory M = N × {0, 1}k,
m0 ∈ {0} × {0, 1}k and a function u such that the distribution u((n, b, s)) is over
{n+ 1} × {0, 1}k × S for all (n, b) ∈ M and s ∈ S.

Deterministic 1-bit strategies are central in this paper; by this we mean strategies that
are both deterministic and 1-bit.

Optimal and ε-optimal Strategies. Given an objective ϕ, the value of state s in an
MDP M, denoted by valM(s), is the supremum probability of achieving ϕ. Formally,
we have valM(s) def= supσ∈Σ PM,s,σ(ϕ) where Σ is the set of all strategies. For ε ≥ 0
and state s ∈ S, we say that a strategy is ε-optimal from s iff PM,s,σ(ϕ) ≥ valM(s) − ε.
A 0-optimal strategy is called optimal. An optimal strategy is almost-surely winning if
valM(s) = 1.

Considering an MD strategy as a function σ : S2 → S and ε ≥ 0, σ is uniformly ε-optimal
(resp. uniformly optimal) if it is ε-optimal (resp. optimal) from every s ∈ S.

Fixing and Safe Sets. Let σ be an MD strategy. Given a set S′ ⊆ S of states, write
M[σ, S′] for the MDP obtained fromM by fixing the strategy σ for all states in S′, that is,
M[σ, S′] def= (S, S2 \ S′, S# ∪ S′,−→, P ′) where P ′(s) def= σ(s) for all s ∈ S′.

For an objective ϕ and a threshold β ∈ [0, 1], denote by SafeM,σ,ϕ(β) the set of all states s
starting from which σ attains at least probability β; and denote by SafeM,ϕ(β) the set of
states whose value for ϕ is at least β. Formally,

SafeM,σ,ϕ(β) def= {s ∈ S | PM,s,σ(ϕ) ≥ β}, SafeM,ϕ(β) def= {s ∈ S | valM,ϕ(s) ≥ β}. (1)

3 ε-Optimal Strategies for Parity

In this section we prove Theorem 1, stating that ε-optimal strategies for parity objectives
can be chosen 1-bit Markov. Given an MDP we convert it by three successive reductions to
a structurally simpler MDP where strategies require less sophistication to achieve parity.
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First reduction (Finitely Branching). This reduction converts an infinitely branching
MDPM to a finitely branching oneM′, with a clear bijection between the strategies inM
andM′. The construction, first presented in our previous work [12], replaces each controlled
state s, that has infinitely many successors (si)i∈N, with a “ladder” of controlled states
(qi)i∈N, where each qi has only two successors: qi+1 and si. Roughly speaking, the controller
choice of successor sn at s inM, is simulated by a series of choices qi+1 at qi, 0 ≤ i < n,
followed by a choice of successor sn in state qn inM′, and vice versa.

To prevent scenarios when the controller inM′ stays on a ladder and never commits to
a decision, we assign color 1 to all states (qi)i≥1 on the ladder (q0 inherits the color of s).
Hence, a hesitant run on the ladder is losing for parity. So w.l.o.g. we can assume that the
givenM is finitely branching.

I Lemma 3.
1. Suppose that for every finitely branching acyclic MDP with a finite set S0 of initial states,

and a parity objective, there exist ε-optimal deterministic 1-bit strategies from S0.
Then even for every infinitely branching acyclic MDP with a finite set S0 of initial states
and a parity objective, there exist ε-optimal deterministic 1-bit strategies from S0.

2. Suppose that for every finitely branching acyclic MDP with a parity objective, there exists
a deterministic 1-bit strategy that is optimal from all states that have an optimal strategy.
Then even for every infinitely branching acyclic MDP with a parity objective, there exists
a deterministic 1-bit strategy that is optimal from all states that have an optimal strategy.

Second reduction (Acyclicity). A deterministic 1-bit Markov strategy can be seen as a
function σ : N × {0, 1} × S → {0, 1} × S, where σ has access to an internal bit b ∈ {0, 1},
which can be updated freely, and a step counter k ∈ N, which increments by one in each step.
Having b and k, σ produces a decision based on the current state of the MDP.

Following [12], we encode the step-counter from strategies into MDPs s.t. the current
state of the system uniquely determines the length of the path taken so far. This translation
allows us to focus on acyclic MDPs.

I Lemma 4. Consider MDPs with a parity objective and k ∈ N.
1. Suppose that for every acyclic MDPM′ and every finite set of initial states S′0 and ε > 0,

there exists a deterministic k-bit strategy that is ε-optimal from all states s ∈ S′0.
Then for every MDPM and every finite set of initial states S0 and ε > 0, there exists a
deterministic k-bit Markov strategy that is ε-optimal from all states s ∈ S0.

2. Suppose that for every acyclic MDP M′ and ε > 0, there exists a deterministic k-bit
strategy that is ε-optimal from all states. Then for every MDPM and ε > 0, there exists
a deterministic k-bit Markov strategy that is ε-optimal from all states.

3. Suppose that for every acyclic MDPM′, where S′opt is the subset of states that have an
optimal strategy, there exists a deterministic k-bit strategy that is optimal from all states
s ∈ S′opt. Then for every MDPM, where Sopt is the subset of states that have an optimal
strategy, there exists a deterministic k-bit Markov strategy that is optimal from all states
s ∈ Sopt.
By Lemma 4, the sufficiency of deterministic 1-bit strategies in acyclic MDPs implies

the sufficiency of deterministic 1-bit Markov strategies in general MDPs. Thus to prove
Theorem 1, it suffices to prove the following:

I Theorem 5. Consider an acyclic MDPM, a parity objective and a finite set S0 of states.
For every ε > 0 there exists a deterministic 1-bit strategy that is ε-optimal from every s ∈ S0.

CONCUR 2020
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Third reduction (Layered MDP). This reduction is in the same spirit of the previous one,
in which the bit b ∈ {0, 1} is transferred from strategies to MDPs. Given an MDPM, the
corresponding layered MDP L(M) has two copies of each state s ∈ S and each transition t ∈
−→1 ofM, one augmented with bit 0 and another with bit 1: (s, i) and (t, j) with i, j ∈ {0, 1}.
The states (s, i) are random if s ∈ S# and controlled if s ∈ S2 . All the (t, j) are controlled.
If there is a transition t = (a, b) from state a to b inM, there will be two transitions from
(a, i) to (t, i), and four transitions from (t, i) to (b, j) in L(M); see Figure 2.

A 1-bit deterministic strategy inM at a state a picks a single successor b and may flip
the bit from i to j; this is simulated in L(M) with an MD strategy σ within two consecutive
steps: σ first chooses the transition t = (a, b) by σ(a, i) = (t, i) and then updates the bit
by σ(t, i) = (b, j) thereby moving from layer i to layer j. The controlled states (t, i) are
essential for a correct simulation, since otherwise the controller cannot freely flip the bit
(switch between layers) after it observes the successor chosen randomly at a random state.

I Definition 6 (Layered MDP). Given an MDP M = (S, S2, S#,−→1, P1) with coloring
Col1 : S → C, we define the corresponding layered MDP L(M) = (L,L2, L#,−→2, P2) with
coloring Col2 : L→ C as follows.

L
def= (S ∪ −→1)× {0, 1} where the set of controlled states is L2

def= (S2 ∪ −→1)× {0, 1}.
For all t ∈ −→1 such that t = (s, s′) and for all i, j ∈ {0, 1}, we have:
1. (s, i)−→2(t, i) and (t, i)−→2(s′, j),
2. P (s, i)((t, i)) def= P (s)(s′) iff s ∈ S#, and
3. Col2((s, i)) def= Col1(s) and Col2((t, i)) def= Col1(s′).

The layered MDP of an acyclic MDP is acyclic. For q ∈ S ∪ −→1, we refer to the copies
of q in layer 0 and layer 1 as siblings: (q, 0) and (q, 1). A set B ⊆ L is closed if for each
state (q, i) ∈ B its sibling is also in B. Denote by Cl(B) the minimal closed superset of B.

I Lemma 7. Consider an acyclic MDPM = (S, S2, S#,−→, P ) with a parity objective ϕ =
Parity(Col) and let L(M) be the corresponding layered MDP.

For every deterministic 1-bit strategy u[m0] inM there is a corresponding MD strategy τ
in L(M), and vice-versa, such that for every s0 ∈ S, PL(M),(s0,m0),τ (ϕ) = PM,s0,u[m0](ϕ).

I Remark 8. We note that, in a layered system L(M), any two siblings have the same
value w.r.t. a parity objective ϕ. Moreover, any state s in M has an optimal strategy iff
(s, 0) ∈ L(M) has an optimal strategy iff its sibling (s, 1) has an optimal strategy.

Suppose τ is an MD strategy in L(M) that is optimal for all states that have an optimal
strategy. Let u be the update function of a corresponding 1-bit strategy inM, derived as
described in Lemma 7. Then for every state s inM that has an optimal strategy we have
PM,s,u[0](ϕ) = PL(M),(s,0),τ (ϕ) = PL(M),(s,1),τ (ϕ) = PM,s,u[1](ϕ). That is, both u[0] and
u[1] are optimal from s, so the initial memory mode is irrelevant. J

To prove Theorem 5, given an acyclic MDP, a set of initial states S0 and ε > 0, we
consider the layered MDP L(M) and set L0 = S0 × {0} of initial states. In the following
lemma, we prove that there exists a single MD strategy that is ε-optimal starting from every
state `0 ∈ L0 in L(M). This and Lemma 7 will directly lead to Theorem 5.

I Lemma 9. Consider an acyclic MDPM and parity objective ϕ = Parity(Col). Let L(M)
be the layered MDP of M and Col. For all finite sets L0 of states in L(M) and all ε > 0
there exists a single MD strategy that is ε-optimal for ϕ from every state `0 ∈ L0.

In the rest of this section, we prove Lemma 9. We fix a layered MDP L(M) (or simply L)
obtained from a given acyclic and finitely branching MDPM and a coloring Col : S → C,
where the set of states is L and the finite set of initial states is L0 ⊆ L. Let ϕ be the resulting
parity objective in L.
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Figure 2 An MDPM (in grey) and the corresponding layered MDP L(M) with states of layer 0
and 1 in red and blue, respectively. Here, t = (a, b), t′ = (b, c) and t′′ = (b, d) are transitions ofM.

Recall that even(C) = 2N ∩ C denotes the set of even colors. We denote by emax the
largest even color in even(C) and assume w.l.o.g., that even(C) contains all even numbers
from 2 to emax inclusive. We have:

ϕ
def=

∨
e∈even(C)

(
GF[L]Col=e ∧ FG[L]Col≤e

)
=

∨
e∈even(C)

(
FGF[L]Col=e ∧ FG[L]Col≤e

)
since GF[L]Col=e is a tail objective

=
∨

e∈even(C)

F
(
GF[L]Col=e ∧ G[L]Col≤e

)
since FGA ∧ FGB = F(GA ∧ GB)

=
∨

e∈even(C)

Fϕe ,

where ϕe
def=
(
GF[L]Col=e ∧ G[L]Col≤e

)
. Indeed, ϕe is the set of runs that win through color e

(i.e., by visiting color e infinitely often and never visiting larger colors). Since the Fϕe are
disjoint, for all states ` and strategies σ, we have:

PL,`,σ(ϕ) =
∑

e∈even(C)

PL,`,σ(Fϕe). (2)

Fix ε > 0 and define γ def= ε
emax+2 . To construct an MD strategy σ̂ that is ε-optimal

starting from every state in L0 we have an iterative procedure. In each iteration, we define
σ̂ at states in some carefully chosen region; and continuing in this fashion, we gradually
fix all choices of σ̂. In an iteration, in order to fix “good” choices in the “right” region we
need to carefully observe the behavior of finitely many γ

2 -optimal strategies σ`0 , one for each
`0 ∈ L0, which must respect the choices already fixed in previous iterations. We thus view
these strategies σ`0 to be γ

2 -optimal not in L but in another layered MDP that is derived
from L after fixing the choices of partially defined σ̂.

In more detail, the proof consists of exactly emax
2 + 1 iterations: one iteration for each

even color e and a final “reach” iteration. Starting from color 2 and L0
def= L, in the

iteration e ∈ {2, · · · , emax}, we obtain a layered MDP Le from Le−2 by fixing a single choice
for each controlled state in a set fixe. Roughly speaking, a run that falls in the set fixe is
likely going to win through ϕe (win through color e). We identify a certain subspace of fixe,
referred to as coree, such that the following crucial fact holds: Once coree is visited the run
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39:10 Strategy Complexity of Parity Objectives in Countable MDPs

remains in fixe with probability at least 1− γ. At the final iteration, we fix the choices of
all remaining states to maximize the probability of falling into the union of coree sets. As
mentioned, the majority of such runs that visit coree, for some color e, will stay in fixe forever
and thus win parity through color e. After all the iterations, all choices of all controlled
states are fixed, and this prescribes the MD strategy σ̂ from L0 in L.

In order to define the sets fixe we heavily use Lévy’s zero-one law and follow an inductive
transformation on objectives. Lévy’s zero-one states that, for a given set of (infinite) runs of
a Markov chain, if we gradually observe a random run of the chain, we will become more and
more certain whether the random run belongs to that set. This law has a strong implications
for tail objectives. It asserts that on almost all runs s0s1s2 · · · the limit of the value of si
w.r.t. a tail objective tends to either 0 or 1.

In each iteration e ∈ {2, · · · , emax}, we transform an objective ψe−2 to a next objective ψe
where ψ0

def= ϕ is the parity objective and the result of the last transformation is ψemax =∨
e∈even(C) Fcoree. We will also move from the MDP Le−2 to Le after the fixings so as to

maintain the following invariant: For all `0 ∈ L0, the value of `0 for ψe in Le is almost as
high as its value for ϕ in L, that is

valLe,ψe
(`0) ≥ valL,ϕ(`0)− e · γ. (3)

Recall that ϕ =
∨
e∈even(C) Fϕe. Let Fix0

def= ∅ and write Fixe
def=
⋃
e′≤e Cl(fixe′) for e ∈

{2, 4, · · · , emax}. We define:

ψ0
def=

∨
e′>0

Fϕe′ ∧ G¬Fix0 = ϕ ψe
def=

∨
e′≤e

Fcoree′ ∨
∨
e′>e

(Fϕe′ ∧ G¬Fixe). (4)

At each transformation, we examine the disjunct χe
def= Fϕe ∧ G¬Fixe−2 in ψe−2. The set

of runs satisfying this objective χe not only win through color e but also avoid the previously
fixed regions. Roughly speaking, the aim is to transform χe to Fcoree, to move from ψe−2
to ψe. We apply Lévy’s zero-one law to deduce that the runs satisfying the χe are likely to
enter a region that has a high value for a slightly simpler objective, namely

θe
def= ϕe ∧ G¬Fixe−2. (5)

To do so, we observe in Le−2 the behavior of several arbitrary γ
2 -optimal strategies σ`0

for ψe−2, one for each `0 ∈ L0. Then, for each σ`0 , we apply Lévy’s zero-one law separately;
this provides that there exists a finite set Re of states that have a high value for θe, and
is reached by one of the σ`0 with probability as high as the probability of satisfying the
disjunct χe. Now we use our previous results [12] on the strategy complexity of Büchi
objectives and prove the existence of an MD strategy τe that is almost optimal for θe (error
less than γ), starting from every state in Re. We define sets fixe and coree to be the set of
states from which τe attains a high probability for θe in Le−2; see Figure 3. Define β def= 1− γ
and α def= 1− γ2, and

fixe
def= SafeLe−2 ,τe,θe (β) coree

def= SafeLe−2 ,τe,θe (α). (6)

We fix the strategy τe in the fixe-region to derive the MDP Le from Le−2. Formally,

Le
def= Le−2[τe,fixe]. (7)
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Figure 3 The construction for Lemma 9. In the first iteration, for color 2, we fix the MD strategy
τ2 in the fix2-region. In the second iteration, for color 4, we fix τ4 in fix4, and so on for all even
colors. Everywhere else we fix an γ-optimal reachability strategy towards

⋃emax
e=2 coree (in green).

Iteration e ∈ {2, · · · , emax}. For all states `0 ∈ L0, let σ`0 be a general (not necessarily
MD) γ2 -optimal strategy w.r.t. ψe−2 in the layered MDP Le−2. Consider the Markov chain C`0

induced by Le−2, the fixed initial state `0 and strategy σ`0 .
By definition (Equation 5), θe is suffix-closed and Fθe is tail. The strategy σ`0 attains Fθe

with probability at least as large as it achieves disjunct χe in ψe−2. We apply Lévy’s zero-one
law to deduce that the winning runs of Fθe likely reach a finite set Re of states that have
a high value for θe. In other words, most runs that eventually win through color e, while
eventually avoiding Fixe−2, will reach Re within a bounded number of steps.

I Lemma 10. Let s0 ∈ S and E be a suffix-closed objective. For all ε, ε′ > 0, there exist n
and a finite set F ⊆ SafeE(1− ε) such that Ps0

(FE ∧ F≤n F ) ≥ Ps0
(FE)− ε′.

By Lemma 10, there exist n`0 and a finite set R`0 ⊆ SafeLe−2 ,θe (α) such that

PLe−2,`0,σ`0
(Fθe ∧ F≤n`0 R`0) ≥ PLe−2,`0,σ`0

(Fθe)−
γ

2 . (8)

Define ne
def= max`0∈L0(n`0) and R def=

⋃
`0∈L0

R`0 . Write Re
def= {(s, 0) | ∃b · (s, b) ∈ R} for

the projection of Re on the layer 0.
I Remark 11. Suppose E ′ ⊆ E and ε > 0 are such that P(E ′) ≥ P(E)− ε. Then, for any R,
we have P(E ′ ∩R) ≥ P(E ∩ R)− ε.

Proof. We have:

P(E ′∩R) = P(E ′)−P(E ′\R) ≥ P(E)−ε−P(E ′\R) ≥ P(E)−ε−P(E\R) = P(E∩R)−ε .

J

We apply Remark 11 to Equation (8) to get

PLe−2,`0,σ`0
(Fθe ∧ G¬Fixe−2 ∧ FCl(Re)) ≥ PLe−2,`0,σ`0

(Fθe ∧ G¬Fixe−2)− γ

2 .

Since FG¬Fixe−2 ∧ G¬Fixe−2 = G¬Fixe−2 and χe = Fϕe ∧ G¬Fixe−2,

PLe−2,`0,σ`0
(χe ∧ FCl(Re)) ≥ PLe−2,`0,σ`0

(χe)−
γ

2 . (9)

We think of GF[S]Col=e as a Büchi condition on a slightly modified MDP. This allows us
to apply the following theorem from [12] about the strategy complexity of Büchi objectives.
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39:12 Strategy Complexity of Parity Objectives in Countable MDPs

I Theorem 12 (Theorem 5 in [12]). For every acyclic countable MDPM, a Büchi objective ϕ,
finite set I of initial states and ε > 0, there exists a deterministic 1-bit strategy that is ε-
optimal from every s ∈ I.

Using Theorem 12, we prove the following.

B Claim 13. In MDP Le−2, there is an MD strategy τe, that is (α − β)-optimal for θe
from Re.

Notice that τe is used to define regions coree ⊆ fixe; see Equation (6) and Figure 3. Since
valLe−2,θe

(`) = valLe−2,θe
(`′) holds for all siblings ` and `′, all states in Re have value ≥ α

w.r.t. θe. We have chosen τe to be (α − β)-optimal, which implies PLe−2,`,τe
(θe) ≥ β for

all ` ∈ Re. This shows that Re ⊆ fixe. Strategy τe is also used to obtain Le from Le−2: for
all controlled states ` ∈ fixe, the successor is fixed to be τe(`) in Le, see Equation (7).

Invariant (3). Given a state `0 ∈ L0, this invariant states that, for all colors e, valLe,ψe(`0)≥
valL,ϕ(`0) − e · γ holds. Recall that ψ0 = ϕ and L0 = L. To prove the invariant, by an
induction on even colors e, it suffices to prove the following:

valLe,ψe
(`0) ≥ valLe−2,ψe−2(`0)− 2γ.

We construct a strategy π for ψe in Le such that PLe,`0,π
(ψe) ≥ valLe−2,ψe−2(`0) − 2γ.

Intuitively speaking, π enforces that most runs that win through colors e′, with e′ ≤ e,
eventually reach the coree′-region and most remaining winning runs always avoid the Fixe-
region.

The strategy π is defined by combining σ`0 and τe; recall that the strategy σ`0 is γ2 -optimal
w.r.t. ψe−2 starting from `0 in Le−2. We define π such that it starts by following σ`0 . If it
ever enters Cl(fixe) then we ensure that it enters fixe as well (in at most one more step).
Then π continues by playing as τe does forever.

The following claim concludes the proof of Invariant (3).

B Claim 14. PLe,`0,π
(ψe) ≥ valLe−2,ψe−2(`0)− 2γ.

We summarize the main steps in the proof of Claim 14 here. We first prove the claim
that if π ever enters Cl(fixe) then it is possible to define it in such a way that it actually
enters fixe.

Comparing ψe with ψe−2, one notices that two significant terms in the symmetric difference
of these two objectives are χe and Fcoree. Roughly speaking, we use Equation (9) to move
from χe to FCl(fixe). Then we move from FCl(fixe) to Fcoree by proving that PLe,`0,π

(Fcoree)
is almost as high as PLe−2,`0,π

(FCl(fixe)), modulo small errors. To derive the latter, we rely
on two facts: another application of Lévy’s zero-one law that guarantees PLe,`0,π

(θe ∧Fcoree)
is equal to PLe,`0,π

(θe); and the fact that, as soon as π visits the first state ` ∈ fixe, it
switches to τe forever, and thus attains θe with probability at least β.

Reach iteration. After all emax
2 -iterations for even colors and the fixing, by Invariant (3),

for all `0 ∈ L0, we have:

valLemax ,ψemax
(`0) ≥ valL,ϕ(`0)− emaxγ. (10)

Recall that ψemax =
∨
e∈even(C) Fcoree. At this last iteration, we fix the choice of all

remaining states in Lemax such that the probability of ψemax is maximized. Recall that there
are uniformly ε-optimal MD strategies for reachability objectives [16]. Hence, there is a
single MD strategy τreach in Lemax that is uniformly γ-optimal w.r.t. ψemax ; in particular,
τreach is γ-optimal from every state `0 ∈ L0.
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Figure 4 Initial segment of the sea urchin construction. Li is the result of fixing τi inside BETAi

and then ρi inside the ki-bubble (the set of states reachable from the initial state(s) in ≤ ki steps).
Drawn here for i = 1, 2, 3, 4.

Let L′ def= Lemax [τreach, L]. Let σ̂ be the MD strategy in L that plays from L0 as prescribed
by all the fixings in L′. Since all choices in all the fixe-region are resolved according to τe,
e ∈ {2, · · · , emax}, we can apply Lévy’s zero-one law another time.

I Lemma 15. Let 0 < β1 < β2 ≤ 1 and E a tail objective. For s ∈ SafeE(β2), the following
holds: Ps(G SafeE(β1)) ≥ β2−β1

1−β1
.

By Lemma 15, for all states ` ∈ coree,

PLemax ,`,τe
(Gfixe) ≥

α− β
1− β ≥ 1− γ. (11)

States in fixe have a high value for θe and thus also for Fϕe.

I Lemma 16. Let 0 < β < 1 and E a tail objective. For all states s ∈ SafeE(β):
1. Ps(FGSafeE(β) \ E) = 0; and
2. Ps(E \ FGSafeE(β)) = 0.

By Lemma 16.2, we satisfy Fϕe almost surely:

PLemax ,`,τe
(Fϕe | Gfixe) = 1. (12)

Using Equations (10) and (11), we prove the following.

B Claim 17. The MD strategy σ̂ is ε-optimal for parity objective ϕ, from every state `0 ∈ L0.
This concludes the proof of Lemma 9.

4 Optimal Strategies for Parity

In this section we show Theorem 2, i.e., that optimal strategies for parity, where they exist,
can be chosen deterministic 1-bit Markov.

First we show the main technical result of this section.
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39:14 Strategy Complexity of Parity Objectives in Countable MDPs

I Lemma 18. Let L(M) be the layered MDP obtained from an acyclic and finitely branch-
ing MDP M and a coloring Col such that all states are almost surely winning for ϕ =
Parity(Col) (i.e., every state s has a strategy σs such that PL(M),s,σs

(ϕ) = 1).
For every initial state s0 there exists an MD strategy σ that almost surely wins, i.e.,

PL(M),s0,σ(ϕ) = 1.

Proof sketch. For a complete proof we refer the reader to the technical report [13].
For some intuition consider Figure 4. The sea urchin construction is a plastering con-

struction with infinitely many iterations where MD strategies are fixed in larger and larger
subspaces. Its name comes from the shape of the subspace in which player choices are
fixed up-to iteration i: A growing finite body of states that are reachable from the initial
state s0 within ≤ ki steps, plus i different spikes of infinite size. Each spike is composed of
nested subsets ALPHAi ⊆ BETAi (and ⊆ GAMMAi, which is used only in the correctness
argument) that correspond to different levels of attainment of certain ε-optimal MD strategies
τi, obtained from Lemma 9. Strategy τi is then fixed in BETAi (and thus in ALPHAi). Other
MD strategies ρi are fixed elsewhere in the finite body, up-to horizon ki. Using Lévy’s
zero-one law, we prove that, once inside ALPHAi, there is a high chance of never leaving
the i-th spike BETAi. Moreover, almost all runs that stay in the i-th spike satisfy parity.
Finally, the strategies ρi ensure that at least 1/2 (by probability mass) of the runs from s0
that don’t stay in one of the first i spikes will eventually stay in the (i + 1)-th spike and
satisfy parity there. Thus, at the stage with i spikes, the fixed MD strategy attains parity
with some probability ≥ 1− 2−i already inside this fixed subspace. In the limit of i→∞,
the resulting MD strategy attains parity almost surely. J

I Definition 19. For a tail objective ϕ and an MDP M = (S, S2, S#,−→, P ), we define
the conditioned version of M w.r.t. ϕ to be the MDP M∗ = (S∗, S∗2, S∗#,−→∗, P∗) with
S∗ = {s ∈ S | ∃σ. PM,s,σ(ϕ) = valM(s) > 0} and S∗2 = S∗ ∩ S2 and S∗# = S∗ ∩ S# and

−→∗ = {(s, t) ∈ S∗ × S∗ | s−→t and if s ∈ S∗2 then valM(s) = valM(t)}

and P∗ : S∗# → D(S∗) so that P∗(s)(t) = P (s)(t) · valM(t)
valM(s) for all s ∈ S∗# and t ∈ S∗ with

s−→∗ t.

A proof that P∗(s) is a probability distribution for all s ∈ S∗# and therefore thatM∗
is well-defined, can be found in the full paper [13], Appendix C. The name “conditional
MDP” stems from a useful property that for all strategies that are optimal for ϕ in M,
the probability inM∗ of any event is the same as that of its probability inM conditioned
under ϕ.

The following theorem is a very slight generalization of [14, Theorem 5]. It gives a
sufficient condition under which we can conclude the existence of MD optimal strategies from
the existence of MD almost-sure winning strategies.

I Theorem 20. Let ϕ be a tail objective. Let M = (S, S2, S#,−→, P ) be an MDP and
M∗ = (S∗, S∗2, S∗#,−→∗, P∗) its conditioned version wrt. ϕ. Then:
1. For all s ∈ S∗ there exists a strategy σ with PM∗,s,σ(ϕ) = 1.
2. Suppose that for every s ∈ S∗ there exists an MD strategy σ′′ with PM∗,s,σ′′(ϕ) = 1. Then

there is an MD strategy σ′ such that for all s ∈ S:(
∃σ ∈ Σ.PM,s,σ(ϕ) = valM(s)

)
=⇒ PM,s,σ′(ϕ) = valM(s)

I Theorem 21. Consider an acyclic MDPM and a parity objective.
There exists a deterministic 1-bit strategy that is optimal from all states that have an

optimal strategy.
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Proof. Consider the corresponding layered system L(M) (cf. Definition 6), which is also
acyclic. Let Sopt be the subset of states that have an optimal strategy inM. Thus all states
in Sopt × {0, 1} have an optimal strategy in L(M) by Lemma 7.

We now use Theorem 20 to obtain an MD strategy σ′ in L(M) that is optimal for all
states in L(M) that have an optimal strategy. First, the parity objective is tail. Second, in
L(M), any two siblings have the same value w.r.t. parity by Remark 8. Therefore the changes
from L(M) to its conditioned version L(M)∗ (wrt. the parity objective) are symmetric in
the two layers. Thus L(M)∗ is also a layered acyclic MDP (i.e., there exists some acyclic
MDPM′ s.t. L(M)∗ = L(M′)), and by Theorem 20.1 all states in L(M)∗ are almost surely
winning. Now we can apply Lemma 18 (generalized to infinitely branching acyclic layered
MDPs by Lemma 3) to L(M)∗ and obtain that for every state in L(M)∗ there is an MD
strategy that almost surely wins. By Theorem 20.2 there is an MD strategy σ′ in L(M) that
is optimal for all states that have an optimal strategy. In particular, σ′ is optimal for the
states in Sopt × {0, 1} in L(M). By Lemma 7, this yields a deterministic 1-bit strategy in
M that is optimal for all states in Sopt . J

In Theorem 21 the initial memory mode of the 1-bit strategy is irrelevant (recall Remark 8).
Theorem 2 now follows directly from Theorem 21 and Lemma 4(3).

5 Optimal Strategies for {0, 1, 2}-Parity

I Theorem 22. LetM = (S, S2, S#,−→, P ) be an MDP, ϕ a {0, 1, 2}-Parity objective and
M∗ = (S∗, S∗2, S∗#,−→∗, P∗) its conditioned version wrt. ϕ. Assume that inM∗ for every
safety objective (given by some target T ⊆ S∗) and ε > 0 there exists a uniformly ε-optimal
MD strategy. Let Sopt be the subset of states that have an optimal strategy for ϕ inM.

Then there exists an MD strategy inM that is optimal for ϕ from every state in Sopt.

The above result generalizes [14, Theorem 16], which considers only finitely-branching
MDPs and uses the fact that for every safety objective, an MD strategy exists that is
uniformly optimal. This is not generally true for infinitely-branching acyclic MDPs [14]. To
prove Theorem 22, we adjust the construction so that it only requires uniformly ε-optimal
MD strategies for safety objectives (in the conditioned MDPM∗).

In order to apply Theorem 22 to infinitely-branching acyclic MDPs, we now show that
acyclicity guarantees the existence of uniformly ε-optimal MD strategies for safety objectives.

I Lemma 23. For every acyclic MDP with a safety objective and every ε > 0 there exists
an MD strategy that is uniformly ε-optimal.

While we defined ε-optimality wrt. additive errors (cf. Section 2), our proof of Lemma 23
shows that the claim holds even wrt. multiplicative errors (in the style of [16]).

I Theorem 24. Consider an MDPM with a {0, 1, 2}-Parity objective and let Sopt be the
subset of states that have an optimal strategy.
1. IfM is acyclic then there exists an MD strategy that is optimal from every state in Sopt.
2. There exists a deterministic Markov strategy that is optimal from every state in Sopt.

Proof. Towards item 1, ifM is acyclic then also its conditioned versionM∗ (with respect
to {0, 1, 2}-Parity) is acyclic. Thus, by Lemma 23, in M∗ for every ε > 0 and every
safety objective there is a uniformly ε-optimal MD strategy. The result now follows from
Theorem 22.

Item 2 follows from Item 1 and Lemma 4 (item 3 with k = 0). J
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6 ε-Optimal Strategies for {0, 1}-Parity (co-Büchi)

I Theorem 25. Suppose thatM = (S, S2, S#,−→, P ) is an MDP such that for every safety
objective (given by some target T ⊆ S) and ε > 0 there exists a uniformly ε-optimal MD
strategy.

Then for every co-Büchi objective (given by some coloring Col : S → {0, 1}) and ε > 0
there exists a uniformly ε-optimal MD strategy.

The precondition of Theorem 25 is satisfied by many classes of MDPs. Indeed, we obtain
the following.

I Corollary 26. Consider an MDPM and a co-Büchi objective.
1. IfM is acyclic then, for every ε > 0, there exists a uniformly ε-optimal MD strategy.
2. IfM is finitely branching then, for every ε > 0, there exists a uniformly ε-optimal MD

strategy.
3. For every ε > 0 there exists a deterministic Markov strategy that, from every initial state

s, attains at least valM(s)− ε.

Proof. Towards (1), for acyclic MDPs, uniformly ε-optimal strategies for safety can be
chosen MD by Lemma 23. Towards (2), for finitely branching MDPs there always exists even
a uniformly optimal MD strategy for every safety objective. In both cases the claim then
follows from Theorem 25. Claim (3) follows directly from (1) and Lemma 4 (item 2 with
k = 0). J
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