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—— Abstract

The deterministic membership problem for timed automata asks whether the timed language
recognised by a nondeterministic timed automaton can be recognised by a deterministic timed
automaton. We show that the problem is decidable when the input automaton is a one-clock
nondeterministic timed automaton without epsilon transitions and the number of clocks of the
deterministic timed automaton is fixed. We show that the problem in all the other cases is undecidable,
i.e., when either 1) the input nondeterministic timed automaton has two clocks or more, or 2) it uses
epsilon transitions, or 3) the number of clocks of the output deterministic automaton is not fixed.
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1 Introduction

Nondeterministic timed automata (NTA) are one of the most widespread model of real-time
reactive systems. They are an extension of finite automata with real-valued clocks which
can be reset and compared by inequality constraints. The nonemptiness problem for NTA is
decidable and in fact PSPACE-complete, as shown by Alur and Dill in their landmark paper
[2]. As a testimony to the importance of the model, the authors received the 2016 Church
Award for the invention of timed automata. This paved the way to the automatic verification
of timed systems, leading to mature tools such as UPPAAL [8], UPPAAL Tiga (timed games)
[14], and PRISM (probabilistic timed automata) [32]. The reachability problem is still a very
active research area to these days [21, 29, 1, 25, 26, 28], as well as expressive generalisations
thereof, such as the binary reachability problem [19, 20, 31, 23].
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Determinisability of One-Clock Timed Automata

Deterministic timed automata (DTA) form a strict subclass of NTA where the next
configuration is uniquely determined from the current one and the timed input symbol.
The class of DTA enjoys stronger properties than NTA, such as decidable universality and
inclusion problems and closure under complementation [2]. Moreover, the more restrictive
nature of DTA is necessary in several applications of timed automata, such as test generation
[36], fault diagnosis [11], and learning [45, 41], winning conditions in timed games [4, 30, 12],
and in a notion of recognisability of timed languages [34]. For these reasons, and for the
more general quest of understanding the nature of the expressive power of nondeterminism
in timed automata, many researchers have focused on defining determinisable classes of
timed automata, such as strongly non-zeno NTA [5], event-clock NTA [3], and NTA with
integer-resets [40]. The classes above are not exhaustive, in the sense that there are NTA
recognising deterministic timed languages not falling into any of the classes above.

Another remarkable subclass of NTA is obtained by requiring the presence of just one
clock (without epsilon transitions). The resulting class of NTA; is incomparable with DTA:
For instance, NTA; are not closed under complement (unlike DTA) and there are very simple
DTA languages which are not recognisable by any NTA;. Nonetheless, NTA;, like DTA, have
decidable inclusion, equivalence, and universality problems [37, 33|, albeit the complexity is
non-primitive recursive [33, Corollary 4.2] (see also [38, Theorem 7.2] for an analogous lower
bound for the satisfiability problem of metric temporal logic). Moreover, the non-emptiness
problem for NTA; is NLOGSPACE-complete (vs. PSPACE-complete for unrestricted NTA and
DTA, already with two clocks [21]), and computing the binary reachability relation is simpler
when there is only one clock than in the general case [16].

The deterministic membership problem. The DTA membership problem asks, given an
NTA, whether there exists a DTA recognising the same language. There are two natural
variants of this problem, which are obtained by restricting the resources available to the
sought DTA. Let £ € N be a bound on the number of clocks, and let m € N be a bound
on the maximal absolute value of numerical constants. The DTA;, and DTA, ,,, membership
problems are the restriction of the problem above where the DTA is required to have at most
k clocks, resp., at most k clocks and absolute value of maximal constant bounded by m.
Notice that we do not bound the number of control locations of the DTA, which makes the
problem non-trivial.

Since regular languages are deterministic, the DTA; membership problem can be seen as
a quantitative generalisation of the regularity problem. For instance, the DTA; membership
problem is exactly the regularity problem since a timed automaton with no clocks is the
same as a finite automaton. We remark that the regularity problem is usually undecidable
for nondeterministic models of computation generalising finite automata, e.g., context-free
grammars/pushdown automata [39, Theorem 6.6.6], labelled Petri nets under reachability
semantics [44], Parikh automata [13], etc. One way to obtain decidability is to either
restrict the input model to be deterministic (e.g., [43, 44, 7]), or to consider finer notions of
equivalence, such as bisimulation (e.g., [27]).

This negative situation is generally confirmed for timed automata. For every number of
clocks k € N and maximal constant m, the DTA, DTA;, and DTA ,,, membership problems
are known to be undecidable when the input NTA has > 2 clocks, and for 1-clock NTA with
epsilon transitions [22, 42]. To the best of our knowledge, the deterministic membership
problem was not studied before when the input automaton is NTA; without epsilon transitions.
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Contributions. We complete the study of the decidability border for the deterministic
membership problem initiated in [22, 42]. Our main result is the following.

» Theorem 1.1. The DTA; membership and the DTAy, ,,, membership problems are decidable
for NTA; languages.

Our decidability result contrasts starkly with the abdundance of undecidability results
for the regularity problem. We establish decidability by showing that if a NTA ,, recognises
a DTA, language, then in fact it recognises a DTAj ,, language and moreover there is
a computable bound on the number of control locations of the deterministic acceptor
(cf. Lemma 4.1). This provides a decision procedure since there are finitely many DTA once
the number of clocks, the maximal constant, and the number of control locations are fixed.

In our technical analysis we find it convenient to introduce the so called always resetting
subclass of NTA,. These automata are required to reset at least one clock at every transition
and are thus of expressive power intermediate between NTA;_; and NTA. Always resetting
NTA, are strictly more expressive than NTA;: For instance, the language of timed words
of the form (a,to)(a,t1)(a,t2) s.t. t2 —tp > 2 and t3 — ¢t; < 1 can be recognised by an
always resetting NTAs but by no NTA;. Despite their increased expressive power, always
resetting NTAs still have a decidable universality problem (the well-quasi order approach of
[37] goes through), which is not the case for NTA;. Thanks to this restricted form, we are
able to provide in Lemma 4.1 an elegant characterisation of those NTA; languages which are
recognised by an always resetting DTA.

We complement the decidability result above by showing that the problem becomes
undecidable if we do not restrict the number of clocks of the DTA.

» Theorem 1.2. The DTA and DTA ,, (m > 0) membership problems are undecidable
for NTA;.

Finally, by refining the analysis of [22], we show that the DTA; and DTAy, ,,, membership
problems for NTA; are non-primitive recursive.

» Theorem 1.3. The DTA;, and DTAy, ,,, membership problems are HYPERACKERMANN-hard
for NTA;1 and undecidable for NTA; with epsilon transitions.

Related research. Many works addressed the construction of a DTA equivalent to a given
NTA (see [9] and references therein), however since the general problem is undecidable, one
has to either sacrifice termination, or consider deterministic under/over-approximations. In
a related line of work, we have shown that the deterministic separability problem is decidable

for the full class of NTA, when the number of clocks of the separator is given in the input [18].

This contrasts with undecidability of the corresponding membership problem. Decidability
of the deterministic separability problem when the number of clocks of the separator is not
provided remains a challenging open problem.

2 Preliminaries

Timed words and languages. Fix a finite alphabet ¥. Let R and R denote reals and
nonnegative reals!, respectively. A timed word over ¥ is any sequence of the form

w = (a17t1) (an,tn) S (E XRZ())* (1)

! Equivalently, nonnegative rationals may be considered in place of reals.
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which is monotonic, in the sense that the timestamps ¢;’s satisfy 0 < t; <ty <--- <t,. Let
T(X) be the set of all timed words over 3, and let T>4(X) be, for ¢t € R>q, the set of timed
words with t; > t. A timed language is a subset of T(X).

The concatenation w - v of two timed words w and v is defined only when the first
time-stamp of v is greater or equal than the last timestamp of w. Using this partial operation,
we define, for a timed word w € T(X) and a timed language L C T(X), the left quotient
wlL:={veT(X)|w-ve L} Clearly w 'L CTs; ().

Clock constraints and regions. Let X = {x1,...,x;} be a finite set of clocks. A clock
valuation is a function p € szo assigning a non-negative real number u(x) to every clock
x € X. A clock constraint is a quantifier-free formula of the form

0, == true|false |x;, —xj~z | x;~z | 2o | pAY | @V,

« 7

where “~7” is a comparison operator in {=,<,<,>,>} and z € Z. A clock valuation p
satisfies a constraint ¢, written u |= ¢, if interpreting each clock x; by p(x;) makes ¢ a
tautology. An k,m-region is a non-empty set of valuations [¢] satisfied by a constraint ¢
with k clocks and absolute value of maximal constant bounded by m, which is minimal
w.r.t. set inclusion. For instance, the clock constraint 1 < x; <2 A4 <x9 <5 A X—%1 <3
defines a 2, 5-region consisting of an open triangle with nodes (1,4), (2,4) and (2, 5).

Timed automata. A (nondeterministic) timed automaton is a tuple A = (X,L, X, I,F, A),
where X is a finite input alphabet, L is a finite set of control locations, X is a finite set of
clocks, I,F C L are the subsets of initial, resp., final, control locations, and A is a finite set
of transition rules of the form

(p,a,0,Y,q) (2)

with p, q € L control locations, a € ¥, ¢ a clock constraint to be tested, and Y C X the set of
clocks to be reset. We write NTA for the class of all nondeterministic timed automata, NTAj
when the number £ of clocks is fixed, NTA ,, when the bound m on constants is fixed, and
NTAg ., when both k and m are fixed.

An NTA ,, A is always resetting if every transition rule as in (2) resets some clock
Y # (), and greedily resetting if, for every clock x, whenever ¢ implies that x belongs to
{0,...,m} U (m,o0), then x € Y.

Reset-point semantics. A configuration of an NTA A is a tuple (p, i, to) consisting of a
control location p € L, a reset-point assignment p € RY ), and a “now” timestamp ty € R>g
satisfying p(x) < to for all clocks x € X. Intuitively, to is the last timestamp seen in the
input and, for every clock x, p(x) stores the timestamp of the last reset of x. A configuration
is initial if p is so, to = 0, and u(x) = 0 for all clocks x, and it is final if p is so (without
any further restriction on p or ¢p). For a set of clocks Y C X and a timestamp u € Rxq, let
u[Y — u] be the assignment which is « on Y and agrees with p on X\ Y. An assignment
& together with tg induces a clock valuation tg — p defined as (tg — p)(x) = to — u(x) for
all clocks x € X. Clock assignments and valuations have the same type R, however we
find it technically convenient to store assignments in configurations and use the derived
valuations to interpret the clock constraints. Such reset-point semantics based on reset-point
assignments has already appeared in the literature on timed automata [24] and it is the
foundation of the related model of timed-register automata [10].
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Every transition rule (2) induces a transition between configurations (p, u, to) LN (¢q,v,1)
labelled by (a,t) € ¥ x R>g whenever t > %9, t — pp = ¢, and v = p[Y — ¢]. The
timed transition system induced by A is ([A],—, F'), where [A] is the set of configurations,

— C [A] x ¥ x R>g x [A4] is as defined above, and F C [A] is the set of final configurations.

Since there is no danger of confusion, we use [A] to denote either the timed transition

system above, or its domain. A run of A over a timed word w as in (1) starting in

configuration (p, u,tg) and ending in configuration (g, v,t,) is a path p in [A] of the form
ai,ly

p = (p,p,tg) — ... Gnstn, (¢,v,t,). The run p is accepting if its last configuration
satisfies (q,v,t,) € F. The language recognised by configuration (p, i, to) is defined as:

Lyay(p; s to) = {w € T(X) | [A] has an accepting run over w starting in (p, u,t0)} -

Clearly Lyap(p, i, to) € T, (X). We write L a(c) instead of Ly4j(c). The language recognised
by the automaton A is L(A) =, iniia LAa(c). A configuration is reachable if it is the ending
configuration in a run starting in an initial configuration. In an always resetting NTA ,,,
every reachable configuration (p, u,to) satisfies tg € pu(X), and in a greedily resetting one, 1)
(p, pb, to) has m-bounded span, in the sense that u(X) C (to — m, to], and moreover 2) any two
clocks x,y with integer difference p(x) — u(y) € Z are actually equal pu(x) = p(y). Condition
2) follows from the fact that if x, y have integer difference and y was reset last, then x was
itself an integer when this happened, and in fact they were both reset together in a greedily
resetting automaton.

Deterministic timed automata. A timed automaton A is deterministic if it has exactly
one initial location and, for every two rules (p,a,¢,Y,q), (p,a’,¢’,Y,¢) € A, if a =a’ and

[p A '] # 0 then Y =Y and q = ¢’. Hence A has at most one run over every timed word w.

A DTA can be easily transformed to a total one, where for every location p € L and a € X,

the sets defined by clock constraints {[¢] | 3Y, ¢ (p, a,p,Y,q) € A} are a partition of szo-

Thus, a total DTA has exactly one run over every timed word w. We write DTA for the
class of deterministic timed automata, and DTA, DTA ,,, and DTAy ,, for the respective
subclasses thereof. A timed language is called NTA language, DTA language, etc., if it is
recognised by a timed automaton of the respective type.

» Example 2.1. Let ¥ = {a} be a unary alphabet. As an example of a timed language L
recognised by a NTA;, but not by any DTA, consider the set of non-negative timed words
of the form (a,t1)---(a,t,) where t, —t; = 1 for some 1 < i < n. The language L is
recognised by the NTA; A = (X,L,X,I,F, A) with a single clock X = {x} and three locations
L = {p,q,r}, of which I = {p} is initial and F = {r} is final, and transition rules

(p7a7true7®’p) (p7a7true7 {X}Vq) (q7a’7x< 1’®7Q) (q’a”X: 17®7T)'

Intuitively, in p the automaton waits until it guesses that the next input will be (a,t;), at
which point it moves to g by resetting the clock (and subsequently reading a). From g, the
automaton can accept by going to r only if exactly one time unit elapsed since (a,t;) was
read. The language L is not recognised by any DTA since, intuitively, any deterministic
acceptor needs to store unboundedly many timestamps ¢;’s.

Deterministic membership problems. Let X be a subclass of NTA. We are interested in
the following decision problem.

X MEMBERSHIP PROBLEM.
Input: A timed automaton A € NTA.
Output: Does there exist a B € X' s.t. L(A) = L(B)?
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In the rest of the paper, we study the decidability status of the X membership problem
where X ranges over DTA, DTA, (for every fixed number of clocks k), DTA ,, (for every
maximal constant m), and DTAy ,,, (when both clocks & and maximal constant m are fixed).
Example 2.1 shows that there are NTA languages which cannot be accepted by any DTA.
Moreover, there is no computable bound for the number of clocks k which suffice to recognise
a NTA; language by a DTA (when such a number exists), which follows from the following
three observations: 1) the DTA membership problem is undecidable for NTA; (Theorem 1.2),
2) the problem of deciding equivalence of a given NTA; to a given DTA is decidable [37], and
3) if a NTA; ,, is equivalent to some DTAy, then it is in fact equivalent to some DTAy ,,, with
computably many control locations (by Lemma 4.1).

3 Timed automorphisms and invariance

A fundamental tool in this paper is invariance properties of timed languages recognised by
NTA with respect to permutations of R preserving integer differences. In this section we
establish these properties. A timed automorphism is a monotone bijection 7 : R — R s.t. for
every x € R, w(z + 1) = m(x) + 1. For instance, if 7(3.4) = 4.5, then necessarily m(5.4) = 6.5
and 7(—3.6) = —2.5. Timed automorphisms 7 are extended point-wise to timed words
w((a1,t1) ... (an,tn)) = (ag,m(t1)) ... (an,w(t,)), configurations 7w (p, u, to) = (p, mou, 7(to)),
transitions 7(c ot ) =m(c) LLION m(c'), and sets X thereof 7(X) = {n(z) |z € X}.

» Remark 3.1. A timed automorphism 7 can in general take a nonnegative real ¢ > 0 to a
negative one. Whenever we write 7(z), we always implicitly assume that 7 is defined on x.

Let S C R>g. An S-timed automorphism is a timed automorphism s.t. w(¢) = ¢ for all
t € S. Let IIg denote the set of all S-timed automorphisms, and let IT = IIy. A set X is
S-invariant if 7(X) = X for every m € Ilg; equivalently, for every 7 € Ilg, € X if, and
only if 7(z) € X. A set X is invariant if it is S-invariant with S = (). The following three
facts express some basic invariance properties.

» Fact 3.2. The timed transition system [A] is invariant.

By unrolling the definition of invariance in the previous fact, we obtain that the set of
configurations is invariant, the set of transitions — is invariant, and that the set of final
configurations F' is invariant.

» Fact 3.3 (Invariance of the language semantics). The function ¢ — La(c) from [A] to
languages is invariant, i.e., for all timed permutations w, La(w(c)) = m(La(c)).

» Fact 3.4 (Invariance of the language of a configuration). The language La(p, u,to) is
(w(X)U{to})-invariant. Moreover, if A is always resetting, then La(p, p,to) is p(X)-invariant.

Since timed automorphisms preserve integer differences, only the fractional parts of
elements of § C R>( matter for S-invariance, and hence it makes sense to restrict to subsets
of the half-open interval [0,1). Let fract(S) = {fract(z) | z € S} C [0,1) stand for the set of
fractional parts of elements of S. The following lemma shows that, modulo the irrelevant
integer parts, there is always the least set S witnessing S-invariance.

» Lemma 3.5. For finite subsets S, S" C Rxg, if a timed language L is both S-invariant and
S’-invariant, then it is also S"'-invariant where S” = fract(S) N fract(S’).
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The S-orbit of an element € X (which can be an arbitrary object on which the action of
timed automorphisms is defined) is the set ORBITs(z) = {n(z) € X | m € Ilg} of all elements
m(2) which can be obtained by applying some S-automorphism to z. The orbit of z is just
its S-orbit with S = ), written ORBIT(z). Clearly x and z’ have the same S-orbit if, and
only if, 7(z) = 2’ for some 7 € IIg. For greedily resetting NTA, orbits of single configurations
are in bijective correspondence with bounded regions.

» Fact 3.6. Assume A is a greedily resetting NTAy . Two reachable configurations (p, u,to)
and (p, (', ty) of A with the same control location p have the same orbit if, and only if, the
corresponding clock valuations to — p and t;, — p' belong to the same k, m-region.

The S-closure of a set Y, written II5(Y") = J ¢y ORBITs(x), is the union of the S-orbits
of all its elements. The following fact characterises invariance in term of closures.

» Fact 3.7. A setY is S-invariant if, and only if, Ig(Y) =Y.

Proof. Only if direction follows by the definition of S-invariance. For the converse direction
observe that IIg(X) = X implies 7(X) C X for every m € IIg. The opposite inclusion follows
by closure of S-timed automorphisms under inverse: 7=1(X) C X, hence X C m(X). <

4 Decidability of DTA; and DTA,, ,,, membership for NTA;

In this section we prove Theorem 1.1 thus establishing decidability of the DTA; and DTA ,,
membership problems for NTA;. Both results are shown using the following key characterisa-
tion of DTAj languages as a subclass of NTA; languages. In particular, this characterisation
provides a small bound on the number of control locations of a DTAj equivalent to a given
NTA; (if any exists).

» Lemma 4.1. Let A be a NTA; ,,, with n control locations, and let k € N. The following

conditions are equivalent:

1. L(A) = L(B) for some always resetting DTAy B.

2. For every timed word w, there is S C R>q of size at most k s.t. the last timestamp of w
is in S and w™rL(A) is S-invariant.

3. L(A) = L(B) for some always resetting DTA .., B with at most f(k,m,n) = Reg(k,m) -
2n(km+1) control locations (Reg(k,m) stands for the number of k, m-regions).

The proof of Theorem 1.1 builds on Lemma 4.1 and on the following fact:

» Lemma 4.2. The DTAy and DTAy, ,,, membership problems are both decidable for DTA

languages.

Proof. We reduce to a deterministic separability problem. Recall that a language S separates
two languages L, M if L C S and SN M = (). It has recently been shown that the DTA,
and DTAg_,, separability problems are decidable for NTA [18, Theorem 1.1], and thus, in
particular, for DTA. To solve the membership problem, given a DTA A, the procedure
computes a DTA A’ recognising the complement of L(A) and checks whether A and A’
are DTA), separable (resp., DTAg ., separable) by using the result above. It is a simple
set-theoretic observation that L(A) is a DTAy language if, and only if, the languages L(A)
and L(A’) are separated by some DTA, language, and likewise for DTAj ,,, languages. <«

Proof of Theorem 1.1. We solve both problems in essentially the same way. Given a
NTA; ,, A, the decision procedure enumerates all always resetting DTAg 11, B with at most
f(k, m,n) locations and checks whether L(A) = L(B) (which is decidable by [37]). If no such
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DTAj+1 B is found, the L(A) is not an always resetting DTAg;1 language, due to Lemma 4.1,
and hence forcedly is not a DTAy language either; the procedure therefore answers negatively.
Otherwise, in case when such a DTAy1; B is found, then DTA;, membership (resp. DTAx
membership) test is performed on B, decidable due to Lemma 4.2. |

» Remark 4.3 (Complexity). The decision procedure for NTA; invokes the HYPERACKER-
MANN subroutine of [37] to check equivalence between a NTA; and a candidate DTA. This is
in a sense unavoidable, since we show in Lemma 5.5 that the DTA; and DTAy, ,,, membership
problems are HYPERACKERMANN-hard for NTA;.

In the rest of this section we present the proof of Lemma 4.1. Let us fix a NTA; ,,
A= (3,L,{x},I,F,A), where m is the greatest constant used in clock constraints in A, and
k € N. We assume w.l.o.g. that A is greedily resetting: This is achieved by resetting the
clock as soon as upon reading an input symbol its value becomes greater than m or is an
integer < m; we can record in the control location the actual integral value if it is < m, or a
special flag otherwise. Consequently, after every discrete transition the value of the clock is
at most m, and if it is an integer then it equals 0.

The implication 3 = 1 follows by definition. For the implication 1 = 2 suppose, by
assumption, L(A) = L(B) for a total always resetting DTA; B. Every left quotient w=!L(A)
equals Lp(c) for some configuration ¢, hence Point 2 follows by Fact 3.4. Here we use the
fact that B is always resetting in order to apply the second part of Fact 3.4; without the
assumption, we would only have S-invariance for sets S of size at most k + 1.

It thus remains to prove the implication 2 = 3, which will be the content of the rest
of the section. Assuming Point 2, we are going to define an always resetting DTA, ,, B’
with clocks X = {x1, ..., %} and with at most f(k, m,n) locations such that L(B’) = L(A).
We start from the timed transition system X obtained by the finite powerset construction
underlying the determinisation of A, and then transform this transition system gradually,
while preserving its language, until it finally becomes isomorphic to the reachable part of [B’]
for some DTAy, ,, B’. As the last step we extract from this deterministic timed transition
system a syntactic definition of B’ and prove equality of their languages. This is achievable
due to the invariance properties witnessed by the transition systems in the course of the
transformation.

Macro-configurations. Configurations of the NTA; A are of the form ¢ = (p,u,tg) where
u,to € R>g and u < tg. A macro-configuration is a (not necessarily finite) set X of
configurations (p,u,tg) of A which share the same value of the current timestamp to, which
we denote as NOW(X) = tg. We use the notation L4(X) := ..y La(c). Let SUCC, +(X) :=

c € [4] ‘ ¢ 2 ¢ for some c € X} be the set of successors of configurations in X. We

ceX

define a deterministic timed transition system X consisting of the macro-configurations
reachable in the course of determinisation of A. Let X be the smallest set of macro-
configurations and transitions such that

X contains the initial macro-configuration: X = {(p,0,0) |p € I} € X;

X is closed under successor: for every X € X and (a,t) € ¥ x R>¢, there is a transition

x 24 SUCC, (X)) in X.
Due to the fact that [A] is finitely branching, i.e. SUCC,({c}) is finite for every fixed
(a,t), all macro-configurations X € X are finite. Let the final configurations of X be
Fyr={XeX|XNF#0}.

> Claim 4.4. La(X)= Lx(X) for every X € X. In particular L(A) = Lx(Xp).
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For a macro-configuration X we write VAL(X) := {u | (p,u,NOoW(X)) € X} U {NOoW(X)} to
denote the reals appearing in X. Since A is greedily resetting, every macro-configuration
X € X satisfies VAL(X) C (Now(X) — m,NOW(X)]. Whenever a macro-configuration X
satisfies this condition we say that the span of X is bounded by m.

Pre-states. By assumption (Point 2), L4(X) is S-invariant for some S of size at most k,
but the macro-configuration X itself needs not be S-invariant in general. Indeed, a finite
macro-configuration X € X is S-invariant if, and only if, fract(VAL(X)) C fract(S), which is
impossible in general when X is arbitrarily large, its span is bounded (by m), and size of
S is bounded (by k). Intuitively, in order to assure S-invariance we will replace X by its
S-closure TIg(X) (recall Fact 3.7).

A set S C Ry is fraction-independent if it contains no two reals with the same fractional
part. A pre-state is a pair Y = (X, S), where X is an S-invariant macro-state, and S is a
finite fraction-independent subset of VAL(X) that contains NOw(X). The intuitive rationale
behind assuming the S-invariance of X is that it implies, together with the bounded span
of X and bounded size of S, that there are only finitely many pre-states, up to timed
automorphism. We define the deterministic timed transition system ) as the smallest set of
pre-states and transitions between them such that:

Y contains the initial pre-state: Yy = (Xo,{0}) € V;

Y is closed under the closure of successor: for every (X,S) € Y and (q,t) € £ x Rx,

there is a transition (X,.S) at, (X’,8"), where S’ is the least, with respect to set

inclusion, subset of S U {t} containing ¢ such that the language L' = (a,t) " *La(X) =

L4(suce,, (X)) is S'-invariant, and X’ = IIg/ (SUCC, ¢ (X)).

» Example 4.5. Suppose k =3, m = 2, sUCC,+(X) = {(p,3.7,5), (¢,3.9,5), (r,4.2,5)} and
S' ={3.7,4.2,5}. Then X' = {(p,3.7,5)}U{(¢,t,5) | t € (3.7,4)} U{(r,4.2,5)}. Now(X') =
5. A corresponding state is (X', '), where ' = {x1 — 3.7,x2 — 4.2,x3 — 5}.

Observe that the least such fraction-independent subset S’ exists due to the following facts:
as X is S-invariant, due to Fact 3.3 so is its language L4(X), and hence L’ is necessarily
(S U {t})-invariant; by assumption (Point 2), L’ is R-invariant for some set R C R>( of size
at most k containing t; let T' C R be the least set given by Lemma 3.5, i.e., fract(T") C
fract(S) N fract(R); and finally let S’ C S be chosen so that fract(S’) = fract(T'U {t}). Due

to fraction-independence of S the choice is unique, S’ is fraction-independent, and ¢t € S’.

Furthermore, the size of S’ is at most k. By Fact 3.3, we deduce:

a,tl

> Claim 4.6 (Invariance of )). For every two transitions (X1,S5;) — (X1,S5]) and
(X2,52) 2z, (X4,5%) in Y and a timed permutation 7, if 7(X;) = X5 and #(S7) = S2 and
m(t1) = t2, then we have 7(X1) = X} and 7(5]) = 5.

Let the final configurations of ) be Fy, = {(X,S) € Y | X NF # @}. By induction on the
length of timed words it is easy to show:

> Claim 4.7. L)((Xo) = Ly(Yb)

Due to the assumption that A is greedily resetting and due to Point 2, in every pre-state
(X,S) € Y the span of X is bounded by m and the size of S is bounded by k.

States. We now introduce states, which are designed to be in one-to-one correspondence
with configurations of the forthcoming DTA, B’. Intuitively, a state differs from a pre-state
(X, S) only by allocating the values from S into k clocks, thus while a pre-state contains a set
S, the corresponding state contains a clock assignment p : X — R with image p(X) = S.
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Let X = {x1,...,%x%} be a set of k clocks. A state is a pair Z = (X, u), where X is a
macro-configuration, u : X — VAL(X) is a clock reset-point assignment, p(X) is a fraction-
independent set containing NOwW(X), and X is u(X)-invariant. Thus every state Z = (X, u)
determines uniquely a corresponding pre-state o(Z) = (X, .5) with S = u(X). We define the
deterministic timed transition system Z consisting of those states Z s.t. o(Z) € ), and of
transitions determined as follows: (X, p) N (X', ') if the corresponding pre-state has a

transition (X, S) LN (X’,8") in Y, where S = u(X), and

{t if p(x;) ¢ 5" or pu(x;) = p(x;) for some j > ¢

W(xi) = 3)

wu(x;) otherwise.
Intuitively, the equation (3) defines a deterministic update of the clock reset-point assignment
& that amounts to resetting (u'(x;) := t) all clocks x; whose value is either no longer needed
(because p(x;) ¢ S’), or is shared with some other clock z;, for j >4 and is thus redundant.
Due to this disciplined elimination of redundancy, knowing that ¢ € S’ and the size of S’ is at
most k, we ensure that at least one clock is reset in every step. In consequence, p'(X) = 57,
and the forthcoming DTA; B’ will be always resetting. Using Claim 4.6 we derive:

> Claim 4.8 (Invariance of Z). For every two transitions (Xi, 1) ah, (X1, 1)) and
(Xa, o) LN (X}, 1b) in Z and a timed permutation 7, if m(X;) = X5 and mou; = g and
m(t1) = to, then we have 7(X1{) = X} and mopu| = pb.

Let the initial state be Zy = (Xo, p0), where ug(x;) = 0 for all x; € X, and let final states
be Fz = {(X,u) € Z| X N F # (}. By induction on the length of timed words one proves:

> Claim 4.9. Ly(Yb) = LZ(Z()).

In the sequel we restrict Z to states reachable from Zy. In every state Z = (X, u) in Z, we
have Now(X) € p(X). This will ensure the resulting DTA;, B’ to be always resetting.

Orbits of states. While a state is designed to correspond to a configuration of the forthcom-
ing DTA, B’, its orbit is designed to play the role of control location of B’. We therefore need
to prove that the set of states in Z is orbit-finite, i.e., the set of orbits {ORBIT(Z) | Z € Z}
is finite and its size is bounded by f(k, m,n). We start by deducing an analogue of Fact 3.6:

> Claim 4.10. For two states Z = (X, ) and Z' = (X', 1) in Z, their clock assignments
are in the same orbit, i.e., moy = u’ for some 7 € II, if, and only if, the corresponding clock
valuations NOW(X) — u and NOw(X’) — i/ belong to the same k, m-region.

(In passing note that, since in every state (X, ) in Z the span of X is bounded by m, only
bounded k, m-regions can appear in the last claim. Moreover, in each of k, m-regions one
of clocks equals 0.) The action of timed automorphisms on macro-configurations and clock
assignments is extended to states as m(X, u) = (7(X), mou). Recall that the orbit of a state
Z is defined as ORBIT(Z) = {n(Z) | = € II}.

> Claim 4.11. The number of orbits of states in Z is bounded by f(k, m,n).
Proof. We finitely represent a state Z = (X, u), relying on the following general fact.

» Fact 4.12. For every u € R>g and S C Rxq, the S-orbit?> ORBITs(u) is either the singleton

{u} (when uw € S) or an open interval with ends-points of the form t + z where t € S and
z €Z (whenu ¢ S).

2 The orbits of states Z should not be confused with S-orbits of individual reals u € R>o.
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We apply the fact above to S = p(X). In our case the span of X is bounded by m,
and thus the same holds for u(X). Consequently, the integer z in the fact above always
belongs to {—m, —m+1,...,m}. In turn, X splits into disjoint u(X)-orbits ORBIT,,(x)(u)
consisting of open intervals separated by endpoints of the form ¢ + z where ¢ € p(X) and
z € {—m,—m+1,...,m}.

» Example 4.13. Continuing Example 4.5, the endpoints are {3,3.2,3.7,4,4.2,4.7,5}, as

shown in the illustration:
1 2 3 3.7 44.2 5 6 7 time

|
y
L
T
[]

Recall that p(X) is fraction-independent. Let e; < e < - -+ < ;41 be all the endpoints of open-
interval orbits (I < km), and let 01,09,03,... := {e1},(e1,€2),{ea},... be the consecutive
S-orbits ORBIT,,(y)(u) of elements u € p(X). The number thereof is 21 + 1 < 2km + 1. The
finite representation of Z = (X, i) consists of the pair (O, i), where

O ={(o1, P1),..., (02141, Par1)} (4)

assigns to each orbit o; the set of locations P; = {p | (p,u,tg) € X for some u € 0;} C L,
(which is the same as P; = {p | (p,u, o) € X for all u € 0;} since X is p(X)-invariant, and
hence p(X)-closed). Thus a state Z = (X, p1) is uniquely determined by the sequence O as
in (4) and the clock assignment .

We claim that the set of all the finite representations (O, i), as defined above, is orbit-finite.
Indeed, the orbit of (O, u) is determined by the orbit of 1 and the sequence

P, P, ..., Pogmy1 (5)

induced by the assignment O as in (4). Therefore, the number of orbits is bounded by the
number of orbits of u (which is bounded, due to Claim 4.10, by Reg(k,m)) times the number
of different sequences of the form (5) (which is bounded by (27)2*™+1). This yields the
required bound f(k,m,n) = Reg(k,m) - 27(2km+1), <

Construction of the DTA. As the last step we define a DTA, B’ = (5,1, X, {og},F/, A")
such that the reachable part of [B’] is isomorphic to Z. Let locations L'={ORBIT(Z) | Z € Z}
be orbits of states from Z, the initial location be the orbit oy of Zy, and final locations
F' = {ORBIT(Z) | Z € Fz} be orbits of final states. A transition Z = (X, p) LN (X, u)y=2z
in Z induces a transition rule in B’

(0,a,9,Y,0) € A (6)

whenever o = ORBIT(Z), o = ORBIT(Z'), ¢ is the unique k, m-region satisfying t — u € [¢],
and Y = {x; € X | ¢/(x;) = t}. The automaton B’ is indeed a DTA since o, a and @ uniquely
determine Y and o'

> Claim 4.14. Suppose that two transitions (X7, y1) ah, (X1, 1y) and (Xa, po) LN (X5, ub)
in Z induce transition rules (o, a,%,Y1,0}), (0,a,1,Ys,04) € A’ with the same source location
o and constraint v, i.e,

ty —p1 € Y] to —po € [Y]. (7)

Then the target locations are equal 0] = 0}, and the same for the reset sets Y; = Yo.
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Proof. We use the invariance of semantics of A and Claim 4.8. Let 0 = ORBIT (X1, 1) =
ORBIT (X3, t12). Thus there is a timed automorphism 7 such that

Xp=m(X1)  pa=mop. (8)

It suffices to show that there is a (possibly different) timed permutation o satisfying the
following equalities:

to=o(t1) {ilpi(x) =t} ={i|ps(xi) =ta} pp=oopy X5=o(X7). 9)

We now rely the fact that both t5; = NOw(X1) € pu1(X) and toy = NOW(X3) € pa(X) are
assigned to (the same) clock due to the second equality in (8): to; = p1(x;) and tog = pa(x;).
We focus on the case when t; — tg; < m (the other case is similar but easier as all clock
are reset due to greedy resetting), which implies ty — tgo < m due to (7). In this case we
may assume w.l.o.g., due to (7) and the equalities (8), that 7 is chosen so that m(t1) = to.
We thus take o = 7 for proving the equalities (9). Being done with the first equality, we
observe that the last two equalities in (9) hold due to the invariance of Z (cf. Claim 4.8).
The remaining second equality in (9) is a consequence of the third one. <

> Claim 4.15. Let Z = (X,u) and Z' = (X', u) be two states in Z with the same clock
assignment. If m(X) = X’ and mou = u for some timed automorphism 7 then X = X".

> Claim 4.16. Z is isomorphic to the reachable part of [B’].

Proof. For a state Z = (X, u), let ¢(Z) = (0, i, t), where o = ORBIT(Z) and t = NOW(X).
By Claim 4.15, the mapping ¢(__) is a bijection between Z and its image ¢(Z) C [B’]. By
(6), Z is isomorphic to a subsystem of the reachable part of [B’]. The converse inclusion
follows by the observation that Z is total: for every (ai,t1) ... (an,t,) € T(X), there is a

Gn,tn

- t .
sequence of transitions (Xo, o) LN S <

Claims 4.4, 4.7, 4.9, and 4.16 prove L(A) = L(B').

5 Undecidability and hardness

In this section we complete the decidability status of the deterministic membership problem by
providing matching undecidability and hardness results. In Section 5.1 we prove undecidability
of the DTA,,, embership problem for NTA; (cf. Theorem 1.2) and in Section 5.2 we prove
HYPERACKERMANN-hardness of the DTA; membership problem for NTA; (cf. Theorem 1.3).

5.1 Undecidability of DTA and DTA ,, membership for NTA;

It has been shown in [22, Theorem 1] that it is undecidable whether a NTA; timed language
can be recognised by some DTA, for any fixed k¥ > 2. This was obtained by a reduction
from the NTAy universality problem, which is undecidable for any fixed k > 2. While the
universality problem becomes decidable for k£ = 1, we show in this section that, as announced
in Theorem 1.2, the DTA membership problem remains undecidable for NTA;.

Since the universality problem for NTA; is decidable, we need to reduce from another
(undecidable) problem. Our candidate is the finiteness problem of lossy counter machines,
which is undecidable [35, Theorem 13]. A k-counters lossy counter machine (k-LCM) is a
tuple M = (C,Q, qo, A), where C = {c1,...,cx} is a set of k counters, @Q is a finite set of
control locations, gy € Q) is the initial control location, and A is a finite set of instructions
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of the form (p, op, ¢), where op is one of c++, ¢c-, and ¢ 20.A configuration of an LCM M
is a pair (p,u), where p € Q is a control location, and u € N% is a counter valuation. For
two counter valuations u,v € N, we write u < v if u(c) < v(c) for every counter ¢ € C.
The semantics of an LCM M is given by a (potentially infinite) transition system over the
configurations of M s.t. there is a transition (p, u) LN (g,v), for § = (p,op,q) € A, whenever
1) op = c++ and v < ufc — u(c) + 1], or

2) op=c-and v < ufc+ u(c) — 1], or

3) opzc;()andu(c):()andvgu.

The finiteness problem (a.k.a. space boundedness) for an LCM M asks to decide whether the
reachability set Reach(M) = {(p,u) | (go,u0) —=* (p,u)} is finite, where ug is the constantly
0 counter valuation.

» Theorem 5.1 ([35, Theorem 13]). The 4-LCM finiteness problem is undecidable.

We use the following encoding of LCM runs as timed words over the alphabet ¥ = QUAUC
(cf. [33, Definition 4.6] for a similar encoding). We interpret a counter valuation u € N as
the word over X

U = C1C1-+"C1 CCg:-:Cy C3C3-:+-C3 C4Cq-"-C4 .
—_——— N — —— —
u(cy) letters w(cz) letters u(cs) letters w(ca) letters
. . . . 6 5’71
With this interpretation, we encode an LCM run 7 = (po, ug) — (p1,u1) — -+ — (Pn, Un)
as the following timed word, called the reversal-encoding of r,

Pndnlln -+ p1d1u1  Polo,

s.t. p, occurs at time 0, for every 1 < i < n, p; occurs exactly after one time unit since p;11,
and if a “unit” of counter ¢; did not disappear due to lossiness when going from u; to w;1,
then the timestamps of the corresponding occurrences of letter ¢; in u; and w41 are also at
distance one (and similarly for the other counters). Under the encoding above, we can build
a NTA; A recognising the complement of the set of reversal-encodings of the runs of M ([33]
for more details about the construction of A). Intuitively, when reading the reversal-encoding
of a run of M, the counters are allowed to spontaneously increase. Therefore, the only kind
of error that A must verify is that some counter spontaneously decreases. This can be done
by guessing an occurrence of letter (say) ¢; in the current configuration which does not have
a corresponding occurrence in the next configuration after exactly one time unit. This check
can be performed by an NTA with one clock.

» Lemma 5.2. The set of reachable configurations Reach(M) is finite if, and only if, L(A)
is a deterministic timed language.

Since the timed automaton constructed in the proof uses only constant 1, the reduction
works also for the DTA ,,, membership problem for every m > 0:

» Corollary 5.3. For every fired m > 0, the DTA _,,, membership problem for NTA; languages
is undecidable.

This result is the best possible in terms of the parameter m since the problem becomes
decidable for m = 0. In fact, the class of DTA o languages coincides with the class of DTA; o
languages (one clock is sufficient; cf. [37, Lemma 19]), and thus DTA  membership reduces
to DTA; o membership, which is decidable for NTA; by Theorem 1.1.
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» Remark 5.4. We observe that the reduction above uses a large alphabet ¥ whose size

depends on the input LCM M. In fact, an alternative encoding exists using a unary alphabet

Y = {a}. Let the input LCM M have control locations Q = {p1,...,pm} and instructions

A ={01,...,0n}. An LCM configuration p;diu is represented by the timed word consisting

of 6 blocks a---a a---a a---a a---qa a---q a---a s.t.in each block the
—— —— —— —— ——

j letters k letters wu(cy) letters wu(cz) letters w(cs) letters w(cy) letters
last a is at timed distance exactly one from the last a of the previous block. A unit of counter

¢1 now repeats at distance 6 in the next configuration (instead of 1). This shows that the
DTA membership problem is undecidable for NTA; using maximal constant m = 6 over a
unary alphabet.

5.2 Undecidability and hardness for DTA; and DTA; ,, membership

All the lower bounds in this section are obtained by a reduction from the universality problem
for the respective language classes (does a given language L C T(X) satisfy L = T(X)?).
The reduction is a suitable adaptation, generalization, and simplification of [22, Theorem 1]
showing undecidability of DTA membership for NTA languages.

A timed language L is timeless if L = L(A) for A € NTAg a timed automaton with no
clocks (hence timestamps appearing in input words are irrelevant for acceptance). For two
languages L C T(X) and M C T(T'), and a fresh alphabet symbol $ ¢ ¥ UT, we define their
composition L > {$} > M to be the following timed language over ¥’ = X U {$} UT":

Le{$}oM = {08, )(ar,ti +1) ... (an,ta +1) € T(X) | v € L, (a1, t1) ... (an,tn) € M} .

» Lemma 5.5. Let k,m € N and let Y be a class of timed languages that

1. contains all the timeless timed languages,

2. is closed under union and composition, and

3. contains some non-DTAy (resp. non-DTAk ) language.

The universality problem for languages in Y reduces in polynomial time to the DTAy (resp.
DTAg ) membership problem for languages in Y.

We immediately obtain Theorem 1.3 as a corollary of Lemma 5.5, thanks to the following
observations. First, the lemma is applicable by taking as ) the classes of languages recognised
by NTA; since this class contains all timeless timed languages, is closed under union and
composition, and is not included in DTAy, for any k nor in DTAy, ,,, for any k,m (cf. the NTA;
language from Example 2.1 which is not recognised by any DTA). Second, HYPERACKER-
MANN-hardness of the universality problem for NTA; follows form the same lower bound
for the reachability problem in lossy channel systems [15, Theorem 5.5], together with the
reduction from this problem to universality of NTA; given in [33, Theorem 4.1].

Since the universality problem is undecidable for NTAg [2, Theorem 5.2] and NTA] (NTA;
with epsilon steps) [33, Theorem 5.3], using the same reasoning we can apply Lemma 5.5
to observe that the DTA; and DTAj, ,,, membership problems are undecidable for NTA; and
NTAS, which refines the analysis of [22, Theorem 1].

6 Conclusions

We have shown decidability and undecidability results for several variants of the deterministic
membership problem for timed automata. Regarding undecidability, we have extended the
previously known results [22, 42] by proving that the DTA membership problem is undecidable
already for NTA; (Theorem 1.2), and, over a unary input alphabet, it is undecidable for
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NTA; ,, with m > 6 (Remark 5.4). We leave open the question of what is the minimal m
guaranteeing undecidability. Regarding decidability, we have shown that when the resources
available to the deterministic automaton are fixed (either just the number of clocks &, or both
clocks k and maximal constant m), then the respective deterministic membership problem is
decidable (Theorem 1.1) and HYPERACKERMANN-hard (Theorem 1.3).

Our deterministic membership algorithm is based on a characterisation of NTA; languages
which happen to be DTAy (Lemma 4.1), which is proved using a semantic approach leveraging
on notions from the theory of sets with atoms [10]. Analogous decidability results for register
automata can be obtained with similar techniques. It would be interesting to compare this
approach to the syntactic determinisation method of [6].

Finally, our decidability results extend to the slightly more expressive class of always
resetting NTA,, which have intermediate expressive power strictly between NTA; and NTA,.
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