
Propositional Dynamic Logic for Hyperproperties
Jens Oliver Gutsfeld
Institut für Informatik, Westfälische Wilhelms-Universität Münster, Germany
jens.gutsfeld@uni-muenster.de

Markus Müller-Olm
Institut für Informatik, Westfälische Wilhelms-Universität Münster, Germany
markus.mueller-olm@uni-muenster.de

Christoph Ohrem
Institut für Informatik, Westfälische Wilhelms-Universität Münster, Germany
christoph.ohrem@uni-muenster.de

Abstract
Information security properties of reactive systems like non-interference often require relating different
executions of the system to each other and following them simultaneously. Such hyperproperties
can also be useful in other contexts, e.g., when analysing properties of distributed systems like
linearizability. Since common logics like LTL, CTL, or the modal µ-calculus cannot express
hyperproperties, the hyperlogics HyperLTL and HyperCTL∗ were developed to cure this defect.
However, these logics are not able to express arbitrary ω-regular properties. In this paper, we
introduce HyperPDL-∆, an adaptation of the Propositional Dynamic Logic of Fischer and Ladner for
hyperproperties, in order to remove this limitation. Using an elegant automata-theoretic framework,
we show that HyperPDL-∆ model checking is asymptotically not more expensive than HyperCTL∗

model checking, despite its vastly increased expressive power. We further investigate fragments of
HyperPDL-∆ with regard to satisfiability checking.

2012 ACM Subject Classification Theory of computation → Modal and temporal logics; Theory of
computation → Verification by model checking; Theory of computation → Logic and verification;
Theory of computation → Automata over infinite objects

Keywords and phrases Hyperlogics, Hyperproperties, Model Checking, Automata

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2020.50

Related Version An extended version of this paper is available at https://arxiv.org/abs/1910.
10546.

Funding This work was partially funded by DFG project Model-Checking of Navigation Logics
(MoNaLog) (MU 1508/3).

Acknowledgements We thank the reviewers for their helpful comments.

1 Introduction

Temporal logics like LTL, CTL or CTL∗ have been used successfully in verification. These
logics consider paths of a structure (in linear time logics) or paths and their possible extensions
(in branching time logics). Notably, since they cannot refer to multiple paths at once, they
cannot express hyperproperties that relate multiple paths to each other. Examples of
hyperproperties include information security properties like non-interference [6] or properties
of distributed systems like linearizablity [2]. In order to develop a dedicated logic for these
properties, Clarkson et. al. [5, 12] introduced HyperLTL and HyperCTL∗, which extend
LTL and CTL∗ by path variables. However, just like LTL and CTL [22], they cannot
express arbitrary ω-regular properties of traces [20], a desirable property of specification
logics [1, 16]. Logics like Propositional Dynamic Logic (PDL) [13, 18] and Linear Dynamic
Logic (LDL) [8, 10] are able to do so for single traces. As we seek to extend this ability to

© Jens Oliver Gutsfeld, Markus Müller-Olm, and Christoph Ohrem;
licensed under Creative Commons License CC-BY

31st International Conference on Concurrency Theory (CONCUR 2020).
Editors: Igor Konnov and Laura Kovács; Article No. 50; pp. 50:1–50:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jens.gutsfeld@uni-muenster.de
mailto:markus.mueller-olm@uni-muenster.de
mailto:christoph.ohrem@uni-muenster.de
https://doi.org/10.4230/LIPIcs.CONCUR.2020.50
https://arxiv.org/abs/1910.10546
https://arxiv.org/abs/1910.10546
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

50:2 Propositional Dynamic Logic for Hyperproperties

hyperproperties, we introduce a variant of PDL for hyperproperties called HyperPDL-∆ in
this paper. HyperPDL-∆ properly extends logics like HyperLTL, HyperCTL∗, LDL and
PDL-∆ and can express all ω-regular properties over hypertraces in a handy formalism
based on regular expressions over programs. We develop a model checking algorithm for
HyperPDL-∆ inspired by one for HyperCTL∗ [12] and show that the model checking problem
for HyperPDL-∆ is decidable at no higher asymptotic cost than the corresponding problem
for HyperCTL∗ despite the vastly increased expressive power. Our algorithm non-trivially
differs from the algorithm in [12] in two ways: first of all, it handles more general, regular
modalities that subsume the modalities of HyperCTL∗ and require different constructions.
Then, we use a different notion of alternation depth (called criticality) which conservatively
extends their notion, but requires handling structurally different operators and regular
expressions. We also show that for fragments of HyperPDL-∆ similar to the fragments of
HyperLTL considered in [11], the satisfiability problem is decidable.

This paper is structured as follows: Section 2 introduces Kripke Transition Systems
and (alternating) Büchi automata. In Section 3, we define our new logic HyperPDL-∆ and
describe properties expressible in it. Afterwards, in Section 4, we outline a model checking
algorithm for HyperPDL-∆ and show that it is asymptotically optimal by providing a precise
complexity classification. In Section 5, we consider fragments of HyperPDL-∆ for which
the satisfiability problem is decidable. Then, in Section 6, we show that HyperPDL-∆ can
express all ω-regular properties over sets of traces and compare it to existing hyperlogics
with regard to expressivity. Finally, in Section 7, we provide a summary of this paper. The
appendices contain two constructions only sketched in the main body of this paper. Due to
lack of space, some proofs can be found in the appendix of the extended version only.

Related Work. Hyperproperties were systematically analysed in [6] and dedicated temporal
logics for hyperproperties, HyperLTL and HyperCTL∗, were introduced in [5]. An overview
of temporal hyperlogics and discussion of their expressive power can be found in [7]. Efficient
model checking algorithms for these logics were introduced in [12] by Finkbeiner et al. and
our model checking algorithm for HyperPDL-∆ builds on ideas from their construction.
Our satisfiability algorithm, on the other hand, is inspired by the corresponding algorithm
for HyperLTL [11]. Recently, Bonakdapour et. al. proposed regular hyperlanguages and a
corresponding automata model [3]. In contrast to our work, their model is concerned with
hyperproperties over finite instead of infinite words and does not concern branching-time
properties. Moreover, they study automata-theoretic questions while our focus here is on
verification of hyperproperties specified by logical means. A different line of research for
properties involving multiple traces at once is given by epistemic temporal logics [14]. An
attempt to unify epistemic temporal logics and hyperlogics is given by Bozzelli et. al in [4]
via a variant of HyperCTL∗ with past modalities. PDL was originally introduced in [13] by
Fischer and Ladner and has been extended in multiple ways [18]. There are several attempts
to extend temporal logic by regular properties: a variant of PDL for linear time properties of
finite traces, LDLf , was introduced in [8] and was extended upon for the infinite setting in
[10] by introducing parametrised operators. Other regular extensions of temporal logics were
studied e.g. by Wolper [22] or by Kupferman et. al [16]. However, all these extensions do
not concern hyperproperties.

2 Preliminaries

Let AP be a finite set of atomic propositions and Σ a finite set of atomic programs. A
Kripke Transition System (KTS) is a tuple T = (S, s0, {δσ | σ ∈ Σ}, L) where S is a finite
set of states, s0 ∈ S is an initial state, δσ ⊆ S × S is a transition relation for each σ ∈ Σ and

https://arxiv.org/abs/1910.10546

J. O. Gutsfeld, M. Müller-Olm, and C. Ohrem 50:3

L : S → 2AP is a labeling function. We assume that there are no states without outgoing
edges, that is for each s ∈ S, there is s′ ∈ S with (s, s′) ∈ δσ for some σ ∈ Σ. A KTS is a
combination of a Kripke Structure and a labeled transition system (LTS) where a Kripke
Structure K is a KTS for |Σ| = 1 and an LTS T is a KTS with the labelling function s 7→ ∅
for all s ∈ S. A path in a KTS T is an infinite alternating sequence s0σ0s1σ1... ∈ (SΣ)ω
where s0 is the initial state of T and (si, si+1) ∈ δσi for all i ≥ 0. We denote by Paths(T , s)
the set of paths in T starting in s and by Paths∗(T , s) the set of corresponding path suffixes
{p[i,∞] | p ∈ Paths(T , s), i ∈ N0} where p[i,∞] is the path suffix of p starting at index i. A
trace is an alternating infinite sequence t ∈ (2APΣ)ω. For a path π = s0σ0s1σ1..., the induced
trace is given by L(s0)σ0L(s1)σ1.... For a KTS T and a state s ∈ S, we write Traces(T , s)
to denote the traces induced by paths of T starting in s.

An alternating Büchi automaton (ABA) is a tuple A = (Q, q0,Σ, ρ, F) where Q is a finite
set of states, q0 ∈ Q is an initial state, Σ is a finite alphabet, ρ : Q × Σ → B+(Q) is a
transition function mapping each pair of state and input symbol to a non-empty positive
boolean combination of successor states and F ⊆ Q is a set of accepting states. We assume
that every ABA has two distinct states true ∈ F and false ∈ Q \ F with ρ(true, σ) = true

and ρ(false, σ) = false for all σ ∈ Σ. Thus, all maximal paths in an ABA are infinite. A
tree T is a subset of N∗ such that for every node t ∈ N∗ and every positive integer n ∈ N:
t · n ∈ T implies (i) t ∈ T (we then call t · n a child of t), and (ii) for every 0 < m < n,
t ·m ∈ T . We assume every node has at least one child. A path in a tree T is a sequence
of nodes t0t1... such that t0 = ε and ti+1 is a child of ti for all i ∈ N0. A run of an ABA
A on an infinite word w ∈ Σω is defined as a Q-labeled tree (T, r) where r : T → Q is a
labelling function such that r(ε) = q0 and for every node t ∈ T with children t1, ..., tk, we
have 1 ≤ k ≤ |Q| and the valuation assigning true to the states r(t1), ..., r(tk) and false to all
other states satisfies ρ(r(t), w(|t|)). A run (T, r) is an accepting run iff for every path t1t2...
in T , there are infinitely many i with r(ti) ∈ F . A word w is accepted by A iff there is an
accepting run of A on w. The set of infinite words accepted by A is denoted by L(A). A
nondeterministic Büchi automaton is an ABA in which every transition rule consists only of
disjunctions.

We will make use of two well-known theorems about ABA:

I Proposition 1 ([19]). For every ABA A with n states, there is a nondeterministic Büchi
automaton MH(A) with 2O(n) states that accepts the same language.

I Proposition 2 ([19, 17]). For every ABA A with n states, there is an ABA A with O(n2)
states that accepts the complement language, i.e., L(A) = L(A).

3 Propositional Dynamic Logic for Hyperproperties

In this section, we define our new logic, HyperPDL-∆. Structurally, it consists of formulas ϕ
referring to state labels and programs α referring to transition labels. We use the syntax
of HyperCTL* as a basis for formulas but replace the modalities ©,U and R by PDL-
like expressions 〈α〉ϕ, [α]ϕ and ∆α constructed from programs. These programs α are
regular expressions over tuples of atomic programs τ capturing the transition behaviour
on the considered paths. Additionally, we allow test-operators ϕ? in α in order to enable
constructions like conditional branching.

CONCUR 2020

50:4 Propositional Dynamic Logic for Hyperproperties

I Definition 3 (Syntax of HyperPDL-∆). Let N = {ε, π1, π2 . . .} be a set of path variables
with a special path variable ε ∈ N . A formula ϕ is a HyperPDL-∆ formula if it is built from
the following context-free grammar:

ϕ ::= ∃π.ϕ | ∀π.ϕ | aπ | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈α〉ϕ | [α]ϕ | ∆α
α ::= τ | ε | α+ α | α · α | α∗ | ϕ?

where π ∈ N \ {ε}, a ∈ AP and τ ∈ (Σ ∪ {·})n for the number n > 0 of path quantifiers that
α is in scope of. The constructs 〈α〉ϕ, [α]ϕ and ∆α are only allowed in scope of at least one
quantifier.

We call a HyperPDL-∆ formula ϕ closed iff all occurrences of path variables π in ϕ

(as indices of atomic propositions or in atomic programs) are bound by a quantifier. In
this paper, we only consider closed formulas ϕ. In programs α, each component of tuples
τ ∈ (Σ ∪ {·})n corresponds to one of the path variables bound by a quantifier α is in scope
of. We assume that a quantifier that is in scope of i − 1 other quantifiers quantifies path
variable πi.

Connectives inherited from HyperCTL∗ are interpreted analogously: quantifiers ∃ and ∀
should be read as “along some path” and “along all paths”. Using different path variables π
enables us to refer to multiple paths at the same time. For example, with ∀π1.∃π2.∃π3.ϕ,
one can express that for all paths π1, there are paths π2 and π3 such that ϕ holds along
these three paths. Boolean connectives are defined in the usual way. Atomic propositions
a ∈ AP express information about a state and have to be indexed by a path variable π to
express on which path we expect a to hold.

Intuitively, a program α explores all paths it is in scope of synchronously and thus allows
us to pose a regular constraint on the sequence of atomic programs visited on path prefixes
of equal length. In addition, properties of infinite suffixes can be required at certain points
during the exploration using tests ϕ?. In formulas ϕ, atomic propositions aπ on single
paths suffice to relate behavior on different paths because boolean connectives are available.
Referring to occurences of atomic programs on single paths in programs α in a similar way,
however, would reduce expressivity since neither negation nor conjunction are present in α.
As a remedy, we use tuples τ ∈ (Σ ∪ {·})n to refer to atomic programs on paths π1, ..., πn,
where σ in position i means that on path πi, we expect a use of σ to reach the next state. A
wildcard symbol · expresses that any atomic program is allowed on the corresponding path.

The constructs using α can be interpreted as follows: the diamond operator 〈α〉ϕ means
that α matches a prefix of the current paths after which ϕ holds. The box operator [α]ϕ is
the dual of 〈α〉ϕ, meaning ϕ holds at the end of all prefixes matching α. The last construct
∆α is of a different kind and expresses ω-regular rather than regular properties. It says that
α occurs repeatedly, i.e., the currently quantified paths can be divided into infinitely many
segments matching α. ∆α expresses a variant of a Büchi condition. Instead of moving from
accepting states to accepting states in a Büchi automaton, one moves from initial states to
accepting states repeatedly.

Using our logic, common hyperproperties can be expressed easily and intuitively. Let us
consider two examples: the first, observational determinism [6], states that if two executions of
a system receive equal low security inputs, they are indistinguishable for a low security observer
all the time. It can be expressed by ∀π1.∀π2.(

∧
a∈L(aπ1 ↔ aπ2)) → [•∗]

∧
a∈L(aπ1 ↔ aπ2),

where low security observable behaviour is modelled by the atomic propositions in L. Here,
we use the common boolean abbreviations → for implication and ↔ for equivalence as

J. O. Gutsfeld, M. Müller-Olm, and C. Ohrem 50:5

well as • as an abbreviation the program τ = (·, ..., ·). The second example, generalized
noninterference [6], states that high security injections do not interfere with low security
observable behaviour. It can be expressed by stating that for all pairs of executions π1, π2 there
is a third execution π3 agreeing with π1 on high security injections and is indistinguishable
from π2 for a low security observer: ∀π1.∀π2.∃π3.[•∗]

∧
a∈H(aπ1 ↔ aπ3) ∧

∧
a∈L(aπ2 ↔ aπ3).

Since these hyperproperties can already be expressed in HyperLTL [5], which is subsumed
by our logic by encoding ϕ1Uϕ2 formulas with 〈(ϕ1? · •)∗〉ϕ2, it is no surprise, that they can
be expressed in HyperPDL-∆ as well.

The ability to express arbitrary ω-regular properties however, allows a much more fine-
grained analysis of a system than HyperLTL. For example, by replacing the program •∗ with
(• · •)∗ · • · (σ1, σ1) in the observational determinism formula, we can restrict the requirement
on low security outputs to only apply for every other state with the additional constraint
that some specific program σ1 was last executed in both π1 and π2. As was argued in [1]
for linear time specification logics, the ability to express ω-regular properties can indeed
become a practical issue when in an assume-guarantee setting detailed information about
the behaviour of the context has to be taken into account in order to prove properties of
interest. This indicates that availability of ω-regular properties is not just a theoretical issue
in specification logics.

While there are hyperlogics with the ability to express all ω-regular languages [7], these
lack properties desirable for verification: HyperQPTL obtains the ability to express ω-
regular properties from the addition of propositional quantification, which complicates
its use for specification purposes since the user has to keep track of heterogeneous types
of quantifiers. The simple property that all executions π1 and π2 agree on propositions
from a set P in every other state for example is expressed by the HyperQPTL formula
∀π1.∀π2.∃t : t ∧ �(©t ↔ ¬t) ∧ �(t →

∧
a∈P aπ1 ↔ aπ2) [15]. The specification of this

property in HyperPDL-∆ is much more direct: ∀π1.∀π2.[(• · •)∗]
∧
a∈P aπ1 ↔ aπ2 . This

example also illustrates another problem: due to the additional quantifier alternation, the
only known model checking algorithm for HyperQPTL [20] is exponentially more expensive
than that of HyperPDL-∆ for such formulas. S1S[E] on the other hand, while being even
more expressive than HyperPDL-∆, has an undecidable model checking problem [7].

Before formally defining our logic’s semantics, we introduce some notation. We call a
partial function Π : N Paths∗(T , s0) with dom(Π) = {ε, π1, ..., πn} a path assignment and
denote by PA the set of all path assignments. In the context of a subformula ϕ, dom(Π)
contains exactly the variables it is in scope of as well as ε. The path variable ε refers to the
most recently assigned path in a path assignment and is used to ensure that paths induced
by quantifiers branch from the most recently quantified path. We use {ε→ p} for a path p
to denote the path assignment Π with dom(Π) = {ε} and Π(ε) = p. We introduce Π[i,∞] as
a notation to manipulate path assignments Π such that Π[i,∞](π) = Π(π)[i,∞] holds for all
π ∈ dom(Π). Also, Π[πi → p] is a notation for a path assignment Π′ where Π′(πi) = p and
Π′(πj) = Π(πj) for all j 6= i. As a convention, we do not count ε when determining |dom(Π)|.
For a tuple τ = (σ1, ..., σn), we write τ |i to refer to σi.

We write Π |=T ϕ to denote that in the context of a KTS T , a path assignment Π fulfills
a formula ϕ. We also write (Π, i, k) ∈ R(α) for a path assignment Π and two even numbers
i ≤ k to denote that the transition labels on the paths in Π between i and k match α.
Formally, we define these two relations as follows:

CONCUR 2020

50:6 Propositional Dynamic Logic for Hyperproperties

I Definition 4 (Semantics of HyperPDL-∆). Given a KTS T = (S, s0, {δσ | σ ∈ Σ}, L), we
inductively define both satisfaction of formulas ϕ and programs α on path assignments Π.

Π |=T ∃π.ϕ iff there is p ∈ Paths(T ,Π(ε)(0)) s.t. Π[π → p, ε→ p] |=T ϕ
Π |=T ∀π.ϕ iff for all p ∈ Paths(T ,Π(ε)(0)) : Π[π → p, ε→ p] |=T ϕ
Π |=T aπ iff a ∈ L(Π(π)(0))
Π |=T ¬ϕ iff Π 6|=T ϕ
Π |=T ϕ1 ∧ ϕ2 iff Π |=T ϕ1 and Π |=T ϕ2

Π |=T ϕ1 ∨ ϕ2 iff Π |=T ϕ1 or Π |=T ϕ2

Π |=T 〈α〉ϕ iff there is i ≥ 0 s.t. Π[i,∞] |=T ϕ and (Π, 0, i) ∈ R(α)
Π |=T [α]ϕ iff for all i ≥ 0 with (Π, 0, i) ∈ R(α) : Π[i,∞] |=T ϕ
Π |=T ∆α iff there are 0 = k1 ≤ k2 ≤ ... s.t. for all i ≥ 1 :

(Π, ki, ki+1) ∈ R(α)

(Π, i, k) ∈ R(τ) iff k = i+ 2 and for all 1 ≤ l ≤ |dom(Π)| :
τ |l = · or Π(πl)(i+ 1) = τ |l

(Π, i, k) ∈ R(ε) iff i = k

(Π, i, k) ∈ R(α1 + α2) iff (Π, i, k) ∈ R(α1) or (Π, i, k) ∈ R(α2)
(Π, i, k) ∈ R(α1 · α2) iff there is j s.t. i ≤ j ≤ k, (Π, i, j) ∈ R(α1) and

(Π, j, k) ∈ R(α2)
(Π, i, k) ∈ R(α∗) iff there are l ≥ 0, i = j0 ≤ j1 ≤ ... ≤ jl = k s.t.

for all 0 ≤ m < l : (Π, jm, jm+1) ∈ R(α)
(Π, i, k) ∈ R(ϕ?) iff i = k and Π[i,∞] |=T ϕ

A KTS T satisfies a formula ϕ, denoted by T |= ϕ, iff {ε → p} |=T ϕ holds for an
arbitrary p ∈ Paths(T , s0). Note that the choice of p ensures that the outermost quantified
paths in a formula always branch from the starting state of K, i.e. s0.

4 Model Checking HyperPDL-∆

In order to tackle the model checking problem for HyperPDL-∆, that is to check whether
T |= ϕ holds for arbitrarily given KTS T and closed HyperPDL-∆ formulas ϕ, we de-
velop a new algorithm inspired by the HyperCTL∗ model checking algorithm from [12].
A crucial idea is to represent a path assignment Π with dom(Π) = {ε, π1, ..., πn} by an
ω-word over (Sn × Σn). Formally, we define a translation function ν : PA→

⋃
n∈N0

(Sn ×
Σn)ω such that a path assignment Π with Π(πi) = s0

iσ
0
i s

1
iσ

1
i ... is mapped to ν(Π) =

((s0
0, ..., s

0
n), (σ0

0 , ..., σ
0
n))((s1

0, ..., s
1
n), (σ1

0 , ..., σ
1
n))... ∈ (Sn×Σn)ω for n = |dom(Π)|. Note that

ε need not be encoded separately in ν(Π) since Π(πn) = Π(ε) always holds. Similar to the
notation for τ used before, we use the notation s to refer to tuples (s1, ..., sn) and write s |i
to refer to si. Then, given a formula ϕ and a KTS T , we construct an ABA Aϕ recognising
ν(Π) iff Π |=T ϕ holds.

First, we transform all formulas into a variation of negation normal form, where only
existential quantifiers are allowed and negation can only occur in front of existential quantifiers,
atomic propositions or ∆s. This form differs from conventional NNF in that negated existential
instead of universal quantifiers are used, because they can be handled more efficiently in our

J. O. Gutsfeld, M. Müller-Olm, and C. Ohrem 50:7

setup. The transformation is done by driving all negations in the formula inwards using De
Morgan’s laws and the duality ¬〈α〉ϕ ≡ [α]¬ϕ while also replacing universal quantifiers ∀
with ¬∃¬ and cancelling double negations successively. For example, the formula ∀π.[α]¬aπ
is transformed into ¬∃π.¬[α]¬aπ, ¬∃π.〈α〉¬¬aπ and then ¬∃π.〈α〉aπ successively.

Then, as another preprocessing step, all programs α appearing in the formula are
inductively translated to an intermediate automaton representationMα = (Q, q0,Σn, ρ, qf ,Ψ).
The automaton Mα can be seen as a nondeterministic finite automaton (NFA) with access to
oracles for the tests in α which recognises all prefixes up to index j of the ω-word ν(Π[i,∞])
such that (Π, i, j) ∈ R(α). This is formalised in Lemma 5. The only differences in syntax
when compared to a conventional NFA are (i) there is exactly one final state qf instead
of a set F , (ii) ε-edges are not eliminated and (iii) we have a state marking function Ψ
mapping every state q ∈ Q to a singleton or empty set of formulas Ψ(q). State markings
Ψ(q) are introduced to tackle tests ψ? and are later replaced by transitions to automata Aψ,
which we define in the construction for formulas. These state markings make the standard
elimination of ε-edges impossible, which is why we delay the elimination until the markings
are eliminated as well. This approach is similar to the one used in [10] to transform LDL
formulas into automata. However, we apply the construction in a hyperlogic context and
make it more succinct by offering an alternative approach to constructing the transition
function, thus avoiding an exponential blowup.

Construction of Mα. We now describe the construction of Mα. When an expression α has
one or more subexpressions αi, we assume that automata Mαi = (Qi, q0,i,Σn, ρi, qf,i,Ψi) are
already constructed. Intuitively, most cases are analogous to the translation from regular
expressions to NFA. For the case of a test ψ?, a state marked with ψ is introduced in between
starting and final state. Detailed constructions are shown in Figure 1.

Let ε=⇒X⊆ Q×Q for a set of formulas X be the smallest relation such that (i) q ε=⇒Ψ(q) q

and (ii) q′ ε=⇒X q′′ and q′ ∈ ρ(q, ε) imply q ε=⇒X∪Ψ(q) q
′′. Then, for τ ∈ Σn, let τ=⇒X be the

smallest relation such that q τ=⇒X q′′ iff there is a q′ ∈ Q such that q ε=⇒X q′ and q′′ ∈ ρ(q′, τ).
These relations capture the encountered markings along ε-paths in Mα in the following way:
q

ε=⇒X q′ holds if there is an ε-path from q to q′ in Mα that encounters exactly the state
markings in the set X. q τ=⇒X q′ is used to describe the same behaviour, but requires an
additional τ -step at the end.

We obtain the following Lemma:

I Lemma 5. Let Π be a path assignment with ν(Π) = (s0τ1)(s2τ3)... and α a program, then
(Π, i, k) ∈ R(α) iff there is a state sequence q0q1...qm with m = k−i

2 in Mα and sets of
formulas X0, ..., Xm such that
(i) q0 is the initial state of Mα,
(ii) qm

ε=⇒Xm qf for the final state qf of Mα,
(iii) ql

τi+2l+1====⇒Xl ql+1 for all l < m and
(iv) ψ ∈ Xl implies Π[i+ 2l,∞] |=T ψ for all l ≤ m.

As mentioned, we transform ϕ into an ABA Aϕ recognising ν(Π) iff Π |=T ϕ holds.
Formally, a language L ⊆ (Sn × Σn)ω is called T -equivalent to a formula ϕ, if for each
Π the statements ν(Π) ∈ L(Aϕ) and Π |=T ϕ are equivalent; we say that an ABA A is
T -equivalent to ϕ iff its language L(A) is T -equivalent to ϕ. As a closed formula ϕ is a
boolean combination of quantified subformulas, the model checking problem can be solved
by performing separate nonemptiness checks on Aψ for all maximal quantified subformulas
ψ and combining the results in accordance with the global structure of ϕ. For example, if ϕ
is given as ψ1 ∧ ¬ψ2 for quantified formulas ψ1 and ψ2, one performs emptiness tests on Aψ1

as well as Aψ2 and accepts iff the first test is positive and the second test is negative.

CONCUR 2020

50:8 Propositional Dynamic Logic for Hyperproperties

τ Mα = ({q0, q1}, q0,Σn, ρ, q1,Ψ), Ψ(qi) = ∅

ρ(q, (σ1, . . . , σn)) =

{
{q1} if ∀i.τ |i = · ∨ τ |i = σi and q = q0

∅ else
ρ(q, ε) = ∅

ε Mα = ({q0, q1}, q0,Σn, ρ, q1,Ψ), Ψ(qi) = ∅
ρ(qi, τ) = ∅

ρ(qi, ε) =

{
{qi+1} if i = 0
∅ else

α1 + α2 Mα = (Q1∪̇Q2∪̇{q0, qf}, q0,Σn, ρ, qf ,Ψ),
Ψ(q0) = Ψ(qf) = ∅, Ψ(q) = Ψi(q) for q ∈ Qi

ρ(q, τ) =

{
ρi(q, τ) if q ∈ Qi
∅ else

ρ(q, ε) =

{q0,1, q0,2} if q = q0

ρi(q, ε) if q ∈ Qi \ {qf,i}
ρi(q, ε) ∪ {qf} if q = qf,i

α1 · α2 Mα = (Q1∪̇Q2, q0,1,Σn, ρ, qf,2,Ψ), Ψ(q) = Ψi(q) for q ∈ Qi
ρ(q, τ) = ρi(q, τ) for q ∈ Qi

ρ(q, ε) =

{
ρi(q, ε) if q ∈ Qi, q 6= {qf,1}
ρ1(q, ε) ∪ {q0,2} if q = qf,1

(α1)∗ Mα = (Q1∪̇{q0, qf}, q0,Σn, ρ, qf ,Ψ) ,Ψ(q0) = Ψ(qf) = ∅, Ψ(q) = Ψ1(q), for q ∈ Q1

ρ(q, τ) =

{
ρ1(q, τ) if q ∈ Q1

∅ else

ρ(q, ε) =

ρ1(q, ε) if q 6∈ {q0, qf , qf,1}
{q0,1, qf} if q = q0

{q0} if q = qf

ρ1(q, ε) ∪ {qf} if q = qf,1

ψ? Mα = ({q0, q1, q2}, q0,Σn, ρ, q2,Ψ),Ψ(q0) = Ψ(q2) = ∅, Ψ(q1) = {ψ}
ρ(q, τ) = ∅

ρ(qi, ε) =

{
{qi+1} if i = 0, 1
∅ else

Figure 1 Construction of Mα.

Construction of Aϕ. We construct the ABA Aϕ inductively. The alphabet of Aϕ is given
as Σϕ = Sn × Σn where n is the number of path quantifiers the formula ϕ is in scope of.
When constructing an automaton for ϕ with subformulas ϕi, we assume that the automata
Aϕi = (Qϕi , q0,ϕi ,Σϕi , ρϕi , Fϕi) are already constructed. Similarly, when a formula contains
an expression α, we assume that not only Mα = (Qα, q0,α,Σn, ρα, qf,α,Ψ) but also Aψi in
the case of 〈α〉ϕ and ∆α or Aψ̄i in case of [α]ϕ for each construct ψi? in α are already
constructed. Here, ψ̄i is the negation normal form of ¬ψi. Recall that states true and
false are always part of an ABA in our definition, so we will not mention them explicitly.
Furthermore, let T = (S, s0, {δσ | σ ∈ Σ}, L) be the KTS to be checked.

The cases of the constructions shown in Figure 2 are straightforward: for aπk (resp.
¬aπk), only those words are accepted where the state first read for path πk is labelled with a
(resp. not labelled with a). For the connectives ∧ and ∨, one checks whether both automata
Aϕ1 and Aϕ2 accept (resp. at least one automaton accepts) the word.

J. O. Gutsfeld, M. Müller-Olm, and C. Ohrem 50:9

aπk
Aϕ = ({q0}, q0,Σϕ, ρ, ∅)

ρ(q0, (s , τ)) =

{
true if a ∈ L(s |k)
false else

¬aπk
Aϕ = ({q0}, q0,Σϕ, ρ, ∅)

ρ(q0, (s , τ)) =

{
false if a ∈ L(s |k)
true else

ϕ1 ∧ ϕ2 Aϕ = (Q1∪̇Q2∪̇{q0}, q0,Σϕ, ρ, F1∪̇F2)

ρ(q, (s , τ)) =

{
ρ1(q0,1, (s , τ)) ∧ ρ2(q0,2, (s , τ)) if q = q0

ρi(q, (s , τ)) if q ∈ Qi, i ∈ {1, 2}
ϕ1 ∨ ϕ2 Aϕ = (Q1∪̇Q2∪̇{q0}, q0,Σϕ, ρ, F1∪̇F2)

ρ(q, (s , τ)) =

{
ρ1(q0,1, (s , τ)) ∨ ρ2(q0,2, (s , τ)) if q = q0

ρi(q, (s , τ)) if q ∈ Qi, i ∈ {1, 2}

Figure 2 Construction of Aϕ in basic cases.

We now discuss how to handle the PDL-like modalities 〈α〉ϕ, [α]ϕ and ∆α. In the
correctness statement for the automata Mα constructed for this purpose, we rely on oracle
requests for tests ψ? (Lemma 5 (iv)). As mentioned, we eliminate these oracle requests by
transitioning into the automaton Aψ whenever we reach a state marked with ψ?.

In the construction for 〈α〉ϕ1, we want to recognise a single path where after a prefix
satisfying α, ϕ1 holds. This is achieved by enabling a move into Aϕ1 whenever the final state
qf,α of Mα is reached. Since none of the states of Mα are declared final in Aϕ, an accepting
run in Aϕ cannot stay in Mα forever and thus eventually has to move into Aϕ1 in this way.
Moves into Aψ for tests ψ? are made conjunctively since all tests on an accepting run have
to be successful. For the dual case [α]ϕ1, we want ϕ1 to hold after all prefixes satisfying
α. Thus, dual to the previous construction, whenever reaching the state qf,α, we are not
only given the possibility to, but have to move into Aϕ1 as well. Since all transitions in this
construction are combined with ∧ to ensure that all prefixes satisfying α are considered, we
have to take care of paths in Aϕ that never leave Mα by declaring all states of Mα accepting.
On the other hand, paths not satisfying α due to a violation of a test ψ? are ruled out by
a disjunctive test for the negation of ψ. An illustration of these two cases can be found in
Figure 4. To handle formulas of the form ∆α, we transform Mα into a Büchi automaton
with a distinguished new initial state q0 which ensures that in between two visits of q0, α
is satisfied. The state q0 acts like the initial state q0,α for outgoing, and like the final state
qf,α for incoming transitions and is the only accepting state (apart from those in the Aψi
automata). Moves into test-automtata are handled just as in the 〈α〉ϕ1 case. This ensures
that an accepted input word consists of repeated segments matched by α. Negated ∆α
constructions can be handled by complementation using Proposition 2.

Note that when we translate state markings in Mα into transitions in Aϕ, q
ε=⇒X q′

may hold for exponentially many sets X, resulting in disjunctions of exponential size (in
|α|) in the transition functions for 〈·〉 and ∆, and conjunctions of exponential size for [·].
This can, however, be avoided by constructing formulas equivalent to these disjunctions and
conjunctions during the inductive construction of Mα, the size of which is not larger than
3 · |α|+ 2. We discuss the case of disjunctions; the other case can be handled in a dual way.
Two observations are exploited. First of all, the formula need not be written in a disjunctive
form but can mix disjunctions and conjunctions freely. Thus, one source of exponential
increase can be avoided by constructing the formulas for nested sums and concatenations

CONCUR 2020

50:10 Propositional Dynamic Logic for Hyperproperties

〈α〉ϕ1 Aϕ = (Q1∪̇Qα∪̇
⋃
i
Qψi , q0,α,Σϕ, ρ, F1∪̇

⋃
i
Fψi)

ρ(q, (s , τ)) =

ρ1(q, (s , τ)) if q ∈ Q1

ρψi(q, (s , τ)) if q ∈ Qψi∨
{q′ ∧

∧
ψi∈X

ρψi(q0,ψi , (s , τ)) | q τ=⇒X q′} ∪
{ρ(q0,1, (s , τ))∧∧

ψi∈X
ρψi(q0,ψi , (s , τ)) | q ε=⇒X qf,α} if q ∈ Qα

[α]ϕ1 Aϕ = (Q1∪̇Qα∪̇
⋃
i
Qψ̄i , q0,α,Σϕ, ρ, F1∪̇Qα∪̇

⋃
i
Fψ̄i)

ρ(q, (s , τ)) =

ρ1(q, (s , τ)) if q ∈ Q1

ρψ̄i(q, (s , τ)) if q ∈ Qψ̄i∧
{q′ ∨

∨
ψi∈X

ρψ̄i(q0,ψ̄i , (s , τ)) | q τ=⇒X q′} ∪
{ρ(q0,1, (s , τ))∨∨

ψi∈X
ρψ̄i(q0,ψ̄i , (s , τ)) | q ε=⇒X qf,α} if q ∈ Qα

∆α Aϕ = (Qα∪̇{q0}∪̇
⋃
i
Qψi , q0,Σϕ, ρ, {q0}∪̇

⋃
i
Fψi)

ρ(q, (s , τ)) =

ρψi(q, (s , τ)) if q ∈ Qψi∨
{q′ ∧

∧
ψi∈X

ρψi(q0,ψi , (s , τ)) | q0,α
τ=⇒X q′}∪

{
∧
ψi∈X

ρψi(q0,ψi , (s , τ)) | q0,α
ε=⇒X qf,α} if q = q0∨

{q′ ∧
∧
ψi∈X

ρψi(q0,ψi , (s , τ)) | q τ=⇒X q′} ∪
{q0 ∧

∧
ψi∈X

ρψi(q0,ψi , (s , τ))∧∧
ψi∈Y

q0,ψi | q
τ=⇒X q′

ε=⇒Y qf,α} if q ∈ Qα
¬∆α Aϕ = A∆α

Figure 3 Construction of Aϕ for α formulas.

inductively using that their contribution is directly captured by disjunction and conjunction,
respectively. The second observation is that the conjunction resulting from a subpath of a
path subsumes the conjunction for that path. This can be exploited to show that only paths
using backwards edges (i.e., edges from qf to q0 in *-constructions) at most once and using
only particular backward edges have to be considered for treating iteration. We refer the
interested reader to Appendix B for a more detailed look at this alternative construction.

In the constructions for path quantifiers (Figure 5), we eliminate one component of the
alphabet Σϕ1 = Sn+1 × Σn+1 and switch to Σϕ = Sn × Σn. The eliminated component is
now simulated by the state space of Aϕ, which ensures that said component is indeed a
path in T by using the additional components from S and Σ. The rule for the initial state
guarantees that this path from T starts in the state it is branching from. Negated existential
quantifiers that by our definition can occur in formulas in negation normal form are handled
straightforwardly by complementation.

Mα,
∨

Aψ Aϕ

ψ
∧ ∨

Mα,
∧

A¬ψ Aϕ

ψ
∨ ∧

Figure 4 Illustration of the constructions for 〈α〉ϕ and [α]ϕ. In automata shown with a single
dashed line all states are non-final. In automata shown with a double dashed line all states are final.

J. O. Gutsfeld, M. Müller-Olm, and C. Ohrem 50:11

∃π.ϕ1 Aϕ1 dealternised: MH(Aϕ1) = (Q1, q0,1,Σϕ1 , ρ1, F1)
Aϕ = (Q1 × S × Σ∪̇{q0}, q0,Σϕ, ρ, F1 × S × Σ)
ρ(q0, (s , τ)) = {(q′, s′, σ′) | q′ ∈ ρ1(q0,1, s + s |n, τ + σ), s′ ∈ δσ(s |n), σ, σ′ ∈ Σ}
ρ((q, s, σ), (s , τ)) = {(q′, s′, σ′) | q′ ∈ ρ1(q, s + s, τ + σ), s′ ∈ δσ(s), σ′ ∈ Σ}

¬∃π.ϕ1 Aϕ = A∃π.ϕ1

Figure 5 Construction of Aϕ for quantifier formulas.

For the construction, we obtain the following theorem via induction:

I Theorem 6. The automaton Aϕ is T -equivalent to ϕ.

For the complexity analysis, we introduce a notion of criticality.

I Definition 7 (Criticality). The criticality of a HyperPDL-∆ formula ϕ in negation normal
form equals the highest number of critical quantifiers along any path in the formula’s syntax
tree. A quantifier is called critical iff it is a non-outermost quantifier, fulfills at least one of
the following three conditions:
(i) it is a negated quantifier,
(ii) it is an outermost quantifier in a test ϕ? in some program α,
(iii) it is an outermost quantifier in the subformula ϕ of [α]ϕ,
and is not a negated outermost quantifier in a test ϕ? occuring in a modality [α] where the
automaton Mα is deterministic.
We call a HyperPDL-∆ formula with criticality 0 uncritical.

This definition is designed carefully in order to ensure that the alternation depth of
HyperCTL∗ formulas coincides with the criticality of their direct translation to HyperPDL-∆.
Intuitively, an uncritical quantifier is one where the next dealternation construction MH(A)
does not cause another exponential blowup on this part of the automaton. Accordingly, a
critical quantifier is one where this exponential blowup for the next dealternation construction
cannot be avoided in general. Thus, the criticality of a formula accounts for the number of
times an exponential blowup may happen during the construction.

Since exponential blowups occur in a nested manner, we can only bound the size of the
resulting automaton by an exponential tower. As argued in the last paragraph, its height is
determined by criticality rather than quantifier depth. Formally, we define a function g as
gp,c(0, n) = p(n) and gp,c(k + 1, n) = cg(k,n) for a constant c > 1 and a polynomial p. We
use O(g(k, n)) as an abbreviation for O(gp,c(k, n)) for some c > 1 and polynomial p.

Two remarks are in order about the next Lemma. Firstly, the statement refers to the
number of states of the construction, disregarding the number of transitions. However, this
is harmless for our complexity analysis: while the alphabet size increases exponentially
with the nesting depth of quantifiers, alphabets need not be represented explicitly and the
number of transitions of the automata can be kept polynomial by delaying the substitution
of the wildcard symbol · by concrete programs until the intersection with the system T . We
refrain from explicating this in our construction in order to increase readability. Secondly,
the construction’s size can also increase exponentially in the nesting level of negated ∆α
constructions. Since we expect that negated ∆α constructions are rarely nested in formulas,
we assume for the remainder of this paper a bound on this nesting level in order to simplify
our complexity statement. Indeed, in Section 6, we will show that a bound of 1 suffices to
express ω-regular properties, thus making this a reasonable constraint. The dependency from
the nesting depth is reflected in the proof of Lemma 8 in Appendix A.

CONCUR 2020

50:12 Propositional Dynamic Logic for Hyperproperties

I Lemma 8. The automaton Aϕ has size O(g(k + 1, |ϕ| + log(|T |))) for formulas ϕ with
criticality k.

Proof (Sketch). By induction on the criticality k. In the base case, the dealternation
constructions from Proposition 1 overall cause a single exponential blowup at most since
in all constructions not increasing the criticality, one has to keep track of only a single
state of each already dealternised subautomaton in further dealternations. Since the only
dealternation is done before the system T is folded around the automaton, the automaton’s
size is only exponential in the size of ϕ, but not in the size of T .

In the inductive step, the construction for the outermost critical quantifier increases the
size of the automaton exponentially. For all further constructions, it can be argued that the
automaton’s size is asymptotically not further increased, just like in the base case. J

I Theorem 9. The problem to decide whether T |= ϕ holds for KTS T and HyperPDL-∆
formulas ϕ with criticality k is in NSPACE(g(k, |ϕ|+ log(|T |)).

Proof. The formula arising from the transformation of ϕ to our variant of negation normal
form is a boolean combination of subformulas ψ with an outermost existential quantifier. Due
to dealternation for the existential quantifier, the automata Aψ are non-deterministic Büchi
automata. We perform nonemptiness checks on these automata separately. It is well-known
that the nonemptiness check for Büchi automata is possible in NLOGSPACE in the size of the
automaton [9]. We then combine the results in accordance with the structure of ϕ. This does
not add to the complexity. Thus, by Lemma 8, we obtain an NSPACE(g(k, |ϕ|+ log(|T |))
model checking algorithm for criticality k HyperPDL-∆ formulas. J

Since we can easily translate HyperCTL∗ formulas to HyperPDL-∆ while preserving the
alternation depth as criticality, we can use known hardness results for HyperCTL∗ model
checking [20] to obtain the following Theorem:

I Theorem 10. Given a KTS T and a HyperPDL-∆ formula ϕ with criticality k, the
model checking Problem for HyperPDL-∆ is hard for NSPACE(g(k, |ϕ|)) and NSPACE(g(k−
1, |T |)).1

5 Satisfiability

While model checking of temporal logics is an essential technique for verification, it requires
meaningful specifications in order to be useful. For example, if a formula is fulfilled by every
or no structure, it is useless for specification purposes. To evaluate whether this is the case,
satisfiability testing can be employed as a sanity check [21]. Since satisfiability checking
is already undecidable for HyperLTL [11] via a reduction from the Post Correspondence
Problem (PCP) and HyperLTL can be embedded into HyperPDL-∆, we consider only
restrictions of a fragment of HyperPDL-∆ where quantified paths can be traversed linearly
for the purpose of this section.

1 Note that we have not defined g(−1, n) in this paper. For k = 0 and a fixed size formula ϕ, we use the
definition from [12], where NSPACE(g(−1, n)) was defined as NLOGSPACE. Since one can see that
our algorithm has NLOGSPACE complexity in this instance, the lower and upper bounds match in all
cases. For k = 0 and a fixed size structure T or k > 1, we can use Savitch’s Theorem to see that the
problems are actually complete for the deterministic space classes.

J. O. Gutsfeld, M. Müller-Olm, and C. Ohrem 50:13

I Definition 11. A linear HyperPDL-∆ formula is of the form Q1π1 . . . Qnπn.ψ for Qi ∈
{∃,∀} and ψ a quantifier-free formula. A linear HyperPDL-∆ formula ϕ is an ∀∗-formula if
Qi = ∀ for all 1 ≤ i ≤ n. The ∃∗-fragment and the ∃∗∀∗-fragment are defined analogously.

For linear HyperPDL-∆, we generalise the semantics to arbitrary sets of traces T instead
of only those induced by KTS. More concretely, for a fixed set of traces T , we let the
assignment functions Π map variables to traces in T instead of paths of a structure. Such
a function Π is called a trace assignment; the set of all trace assignments is called TA.
Furthermore, we let all quantifiers range over T instead of Paths(T ,Π(ε)(0)). We further
define T |= ϕ to hold for a linear HyperPDL-∆ formula ϕ iff {} |= ϕ holds for the trace
assignment {} with empty domain over T . For linear HyperPDL-∆ formulas and using
T = Traces(T , s0), this definition coincides with the definition in Section 3. We then call a
linear HyperPDL-∆ formula ϕ satisfiable iff there is a non-empty set of traces T such that
T |= ϕ holds. The satisfiability problem for linear HyperPDL-∆ is to check whether a linear
HyperPDL-∆ formula ϕ is satisfiable. For full linear HyperPDL-∆, we obtain undecidability
via a reduction from HyperLTL satisfiability [11]:

I Theorem 12. The satisfiability problem for linear HyperPDL-∆ is undecidable.

However, since the encoding relies on the availability of arbitrary combinations of quanti-
fiers, a natural question is whether fragments of linear HyperPDL-∆ with restricted quantifier
combinations yield a decidable satisfiability problem. For HyperLTL, several such restric-
tions were considered [11]. In [11], the satisfiability problem for the restricted fragments
in HyperLTL is solved via the transformation of a HyperLTL formula to an equisatisfiable
LTL formula and solving the satisfiability problem for the latter. Since there is no apparent
connection of this form between HyperPDL-∆ and LTL, we use a similar type of translation,
but instead translate our formulas into suitable ABA and check those for emptiness. In
all cases, the lower complexity bound can be obtained via reduction from the satisfiability
problem of the corresponding fragment of HyperLTL.

I Theorem 13. The satisfiability problem for the ∀∗-fragment of HyperPDL-∆ is PSPACE-
complete.

Proof (Sketch). Let ϕ be a ∀∗-fragment formula, i.e. ϕ ≡ ∀π1 . . . ∀πn.ψ for a quantifier-free
formula ψ. We manipulate ψ by substituting π1, ..., πn with a single fresh variable π and
obtain a formula ψ′. This is done by (i) replacing every occurence of an atomic proposition
aπi with aπ and (ii) compressing each tuple of atomic programs τ into a program α with
only 1-tuples. The compression discriminates three cases. If τ only consists of wildcard
programs, i.e. τ = •, then it is compressed to (·). If τ is composed from the set {σ, ·} for
some atomic program σ, then it is compressed to (σ). Otherwise, i.e. if τ is composed of
distinct non-wildcard atomic programs, it is compressed to false? · (·). For example, for
ϕ ≡ ∀π1∀π2〈(·, σ)〉aπ1 ∧ [•+ (σ, σ′)]¬aπ2 , ψ′ is given by 〈(σ)〉aπ ∧ [(·) + false? · (·)]¬aπ. Let
A be the ABA for ψ′ as described in Section 4. We can test A for emptiness in PSPACE
[9]. A is non-empty iff ϕ is satisfiable: any word w accepted by A gives rise to the trace set
{w} satisfying ϕ. Analogously, a non-empty trace set T with T |= ϕ can be used to obtain a
word accepted by A since A accepts all traces satisfying ψ′ and we can thus pick any trace t
in T as a witness.

The lower bound directly follows by a reduction from the satisfiability problem for the
∃∗∀∗ fragment of HyperLTL [11]. J

Similarly, we can show that the ∃∗ fragment is also PSPACE-complete.

CONCUR 2020

50:14 Propositional Dynamic Logic for Hyperproperties

I Theorem 14. The satisfiability problem for the ∃∗-fragment of HyperPDL-∆ is PSPACE-
complete.

Proof (Sketch). Let ϕ be a ∃∗-fragment formula, i.e. ϕ ≡ ∃π1 . . . ∃πn.ψ for a quantifier-free
formula ψ. We construct the alternating Büchi automaton A for ψ. Non-emptiness of A
and satisfiability of ϕ are equivalent: every trace set T fulfilling ϕ contains traces t1 . . . tn
fulfilling ψ and these give rise to a word accepted by A. On the other hand, if L(A) is
non-empty, the trace set T induced by an arbitrary w ∈ L(A) fulfills ϕ.

The lower bound follows straightforwardly by a reduction from the satisfiability problem
for the ∃∗ fragment of HyperLTL [11]. J

For the ∃∗∀∗-fragment, we eliminate the universal quantifiers by taking the variables
bound by existential quantifiers and replacing the variables bound by universal quantifiers
by all possible combinations of them. Unlike the previous two fragments, this increases the
complexity beyond PSPACE.

I Theorem 15. The satisfiability problem is EXPSPACE-complete for the ∃∗∀∗-fragment of
HyperPDL-∆.

Proof (Sketch). Let ϕ be a ∃∗∀∗-formula, i.e. ϕ ≡ ∃π1 . . . ∃πn∀π′1 . . . ∀π′m.ψ for a quantifier-
free formula ψ. For a formula ψ and path variables π, π′, we define the substitution ψ[π/π′]
to be the variant of ψ in which all occurences of π′ have been replaced by π similar
to the substitution in the proof of Theorem 13. The main difference here is that only
two instead of n path variables are compressed into one. Thus only two instead of all
atomic programs have to be considered when determining the replacement of a tuple. Let
ϕ′ ≡ ∃π1 . . . ∃πn.

∧n
j1=1 · · ·

∧n
jm=1 ψ[πj1/π

′
1] . . . [πjm/π′m]. For example, for ϕ ≡ ∃π1.∃π2.∀π′1.

〈(·, ·, σ)〉aπ1 ∧¬aπ2 ∧ aπ′1 , ϕ
′ = ∃π1.∃π2.(〈(σ, ·)〉aπ1 ∧¬aπ2 ∧ aπ1) ∧ (〈(·, σ)〉aπ1 ∧ ¬aπ2 ∧ aπ2).

ϕ′ is an ∃∗ formula and is equisatisfiable to ϕ: any trace assignment satisfying ϕ naturally
induces a model of ϕ′. For the reverse direction, assume Π |= ϕ′. ϕ′ contains all possible
combinations of assignments for the variables π′1 . . . π′m with traces chosen for the existentially
quantified variables π1 . . . πn. Then T = {Π(πi) | 1 ≤ i ≤ n} |= ϕ. ϕ′ is constructible in
EXPTIME. Therefore the satisfiability check is possible in EXPSPACE due to Theorem 14.

The lower bound easily follows by a reduction from the satisfiability problem for the ∃∗∀∗
fragment of HyperLTL [11]. J

As in [11], from Theorem 15, we obtain that it is an EXPSPACE-complete problem to
decide whether one uncritical HyperPDL-∆ formula is implied by another. In particular, the
uncritical fragment includes properties like variants of observational determinism enriched
by regular predicates.

6 Expressivity Results

As mentioned in the introduction, a desirable property of temporal logics is the ability to
specify arbitrary ω-regular properties. We show that HyperPDL-∆ indeed has this property.

I Theorem 16. Let Π be a trace assignment and π1 . . . πn be the variables bound by Π. Let
νAP : TA→ ((2AP)n × Σn)ω be the analog of ν for trace assignments. For a given ω-regular
language L over (2AP)n × Σn, there is a quantifier-free HyperPDL−∆ formula ϕ with path
variables π1 . . . πn such that Π |= ϕ iff νAP (Π) ∈ L.

J. O. Gutsfeld, M. Müller-Olm, and C. Ohrem 50:15

Proof. Let L be an ω-regular language over (2AP)n × Σn. It is well-known [9] that L =⋃k
i=1 Li,0Lωi,1 holds for some regular languages Li,0, Li,1. Let ri,j be a regular expression for
Li,j . Every symbol in ri,j has the form ((P1, ..., Pn), τ) for Pk ⊆ AP and τ ∈ Σn. Let αi,j be
the regular expression obtained by replacing each such symbol in ri,j by (

∧n
l=1

∧
a∈Pl aπl ∧∧

a6∈Pl ¬aπl)? · τ . Then ϕ ≡
∨k
i=1〈αi,0〉∆αi,1 yields the desired formula. J

It follows from this theorem that HyperPDL-∆ can express an infinitary version of the
regular hyperlanguages recently proposed in [3].

We now compare our logic to other hyperlogics. For this purpose we introduce a logic
that adds to HyperCTL∗ the ability to quantify over atomic propositions.

I Definition 17 ([7]). The logic HyperQCTL∗ is obtained by adding to the syntax of
HyperCTL∗ the rules ϕ ::= q | ∃q.ϕ and to the semantics the rules

Π |=T q iff q ∈ Π(πq)(0)

Π |=T ∃q.ϕ iff ∃t ∈ (2{q})ω.Π[πq → t] |=T ϕ

The sub-logic HyperQPTL consists of the HyperQCTL∗ formulas where both path quantifiers
Qπ.ϕ and propositional quantifiers Qq.ϕ only occur at the front of the formula.

I Theorem 18.
1. HyperCTL∗ < HyperPDL-∆ ≤ HyperQCTL∗
2. HyperLTL < Linear HyperPDL-∆ ≤ HyperQPTL

Proof. Part one of both claims is straightforward: Embedding HyperLTL and HyperCTL∗
into (linear) HyperPDL-∆ works as described in Section 3. An embedding in the other
direction is impossible due to the inability of HyperLTL and HyperCTL∗ to express arbitrary
ω-regular properties [20].

For the second part of the first claim, we observe that the semantics of HyperPDL-∆ can
straightforwardly be encoded in MSO[E], which is equally expressive as HyperQCTL∗ by [7].
The last claim can be shown by a direct translation via Büchi automata: A quantifier-free
HyperPDL-∆ formula can be translated into a Büchi Automaton as described in Section 4.
By [15], there is a QPTL formula for that automaton, where the quantifiers can be reattached
to yield the desired formula. J

By the results of [7], we obtain that linear HyperPDL-∆ is stricly less expressive than
S1S[E], which, as mentioned, has an undecidable model checking problem. We leave a more
precise localisation of linear and unrestricted HyperPDL-∆ in the hierarchies of hyperlogics
from [7] for future work. This includes comparisons with FO[<,E] and MPL[E] and an answer
to the question if the second inequalities from the claims in Theorem 18 are indeed strict.

7 Conclusion

We introduced the logic HyperPDL-∆ as a variant of Propositional Dynamic Logic for
hyperproperties that can express all ω-regular properties. Our model checking algorithm has
the same complexity as model checking HyperCTL∗, despite the increased expressive power.
Finally, we showed that satisfiability checking for certain fragments has the same complexity
as for structurally similar, but less expressive fragments of HyperLTL.

Future work includes implementing a model checker for HyperPDL-∆. It would also be
interesting to explore alternative model checking and satisfiability testing algorithms for
subfragments of HyperPDL-∆, possibly by exploiting classical techniques for PDL.

CONCUR 2020

50:16 Propositional Dynamic Logic for Hyperproperties

References
1 Roy Armoni, Limor Fix, Alon Flaisher, Rob Gerth, Boris Ginsburg, Tomer Kanza, Avner

Landver, Sela Mador-Haim, Eli Singerman, Andreas Tiemeyer, et al. The ForSpec temporal
logic: A new temporal property-specification language. In International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, pages 296–311. Springer, 2002.
doi:10.1007/3-540-46002-0_21.

2 Borzoo Bonakdarpour, Cesar Sanchez, and Gerardo Schneider. Monitoring hyperprop-
erties by combining static analysis and runtime verification. In International Sympo-
sium on Leveraging Applications of Formal Methods, pages 8–27. Springer, 2018. doi:
10.1007/978-3-030-03421-4_2.

3 Borzoo Bonakdarpour and Sarai Sheinvald. Automata for hyperlanguages, 2020. arXiv:
2002.09877.

4 Laura Bozzelli, Bastien Maubert, and Sophie Pinchinat. Unifying hyper and epistemic
temporal logics. In FoSSaCS, volume 9034 of Lecture Notes in Computer Science, pages
167–182. Springer, 2015. doi:10.1007/978-3-662-46678-0_11.

5 Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N.
Rabe, and César Sánchez. Temporal logics for hyperproperties. In POST 2014, pages 265–284,
2014. doi:10.1007/978-3-642-54792-8_15.

6 Michael R. Clarkson and Fred B. Schneider. Hyperproperties. Journal of Computer Security,
18(6):1157–1210, 2010. doi:10.3233/JCS-2009-0393.

7 Norine Coenen, Bernd Finkbeiner, Christopher Hahn, and Jana Hofmann. The hierarchy of
hyperlogics. In 34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
2019, Vancouver, BC, Canada, June 24-27, 2019, pages 1–13, 2019. doi:10.1109/LICS.2019.
8785713.

8 Giuseppe De Giacomo and Moshe Y Vardi. Linear temporal logic and linear dynamic logic on
finite traces. In Twenty-Third International Joint Conference on Artificial Intelligence, 2013.
URL: http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997.

9 Stéphane Demri, Valentin Goranko, and Martin Lange. Temporal Logics in Computer Sci-
ence: Finite-State Systems. Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, 2016. doi:10.1017/CBO9781139236119.

10 Peter Faymonville and Martin Zimmermann. Parametric linear dynamic logic. Information
and Computation, 253:237–256, 2017. GandALF 2014. doi:10.1016/j.ic.2016.07.009.

11 Bernd Finkbeiner and Christopher Hahn. Deciding hyperproperties. In CONCUR 2016, pages
13:1–13:14, 2016. doi:10.4230/LIPIcs.CONCUR.2016.13.

12 Bernd Finkbeiner, Markus N. Rabe, and César Sánchez. Algorithms for model checking Hyper-
LTL and HyperCTL∗. In CAV 2015, pages 30–48, 2015. doi:10.1007/978-3-319-21690-4_3.

13 Michael J. Fischer and Richard E. Ladner. Propositional dynamic logic of regular programs.
J. Comput. Syst. Sci., 18(2):194–211, 1979. doi:10.1016/0022-0000(79)90046-1.

14 Joseph Y. Halpern, Ron van der Meyden, and Moshe Y. Vardi. Complete axiomatizations
for reasoning about knowledge and time. SIAM J. Comput., 33(3):674–703, 2004. doi:
10.1137/S0097539797320906.

15 Yonit Kesten and Amir Pnueli. Complete proof system for QPTL. J. Log. Comput., 12(5):701–
745, 2002. doi:10.1093/logcom/12.5.701.

16 Orna Kupferman, Nir Piterman, and Moshe Y. Vardi. Extended temporal logic revisited. In
CONCUR 2001, pages 519–535, 2001. doi:10.1007/3-540-44685-0_35.

17 Orna Kupferman and Moshe Y. Vardi. Weak alternating automata are not that weak. ACM
Trans. Comput. Logic, 2(3):408–429, July 2001. doi:10.1145/377978.377993.

18 Martin Lange. Model checking propositional dynamic logic with all extras. J. Applied Logic,
4(1):39–49, 2006. doi:10.1016/j.jal.2005.08.002.

19 Satoru Miyano and Takeshi Hayashi. Alternating finite automata on omega-words. Theoretical
Computer Science, 32(3):321–330, 1984. doi:10.1016/0304-3975(84)90049-5.

https://doi.org/10.1007/3-540-46002-0_21
https://doi.org/10.1007/978-3-030-03421-4_2
https://doi.org/10.1007/978-3-030-03421-4_2
http://arxiv.org/abs/2002.09877
http://arxiv.org/abs/2002.09877
https://doi.org/10.1007/978-3-662-46678-0_11
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.1109/LICS.2019.8785713
https://doi.org/10.1109/LICS.2019.8785713
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997
https://doi.org/10.1017/CBO9781139236119
https://doi.org/10.1016/j.ic.2016.07.009
https://doi.org/10.4230/LIPIcs.CONCUR.2016.13
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1016/0022-0000(79)90046-1
https://doi.org/10.1137/S0097539797320906
https://doi.org/10.1137/S0097539797320906
https://doi.org/10.1093/logcom/12.5.701
https://doi.org/10.1007/3-540-44685-0_35
https://doi.org/10.1145/377978.377993
https://doi.org/10.1016/j.jal.2005.08.002
https://doi.org/10.1016/0304-3975(84)90049-5

J. O. Gutsfeld, M. Müller-Olm, and C. Ohrem 50:17

20 Markus N. Rabe. A temporal logic approach to Information-flow control. PhD thesis, Saarland
University, 2016. doi:10.22028/D291-26650.

21 Kristin Y. Rozier and Moshe Y. Vardi. LTL satisfiability checking. In SPIN 2007, pages
149–167, 2007. doi:10.1007/978-3-540-73370-6_11.

22 Pierre Wolper. Temporal logic can be more expressive. Information and Control, 56(1/2):72–99,
1983. doi:10.1016/S0019-9958(83)80051-5.

A Detailed Complexity Analysis

Proof of Lemma 8. By induction on the criticality k.

Base case: ϕ has criticality 0. We show inductively that Aϕ has size 2O(p(n)+p′(log(m)))

in the size n of ϕ and the size m of T for some polynomials p, p′. First, notice that |Mα|
is linear in the size of α. This can easily be shown by a structural induction, where each
construction adds a constant number of states to its subautomata only.

Basic constructions Aaπ and A¬aπ have constant size. For boolean connectives as well as
〈α〉ϕ, [α]ϕ and ∆α, the construction of Aϕ again just adds a constant number of states to
the automata for the subformulas. The construction for ¬∆α introduces a quadratic increase
by Proposition 2. Throughout the whole construction, this results in an exponential increase
in the nesting depth of negated ∆α constructs at most. More precisely, when bounding this
nesting depth to a constant d, the polynomial p on top of the exponential tower has degree
at most 2d. Existential quantifiers increase the size of the automaton exponentially in the
size of the formula ϕ and add a factor polynomial in the size of the structure T . Using
logarithmic laws, this translates to the form above. Note that the factor depending on |T | is
added after the exponential blowup from the dealternation construction MH(A).

It remains to show that the dealternation construction MH(A) introduces an exponential
blowup of the structure’s size at most once for formulas of criticality 0, regardless of how
many quantifiers the formula contains. In order to do this, we have to look closer at the
proof of Proposition 1. We show that once the dealternation construction MH(A) is done
for the innermost quantifiers, at most one state of each dealternised automaton has to be
tracked in further dealternations. Thus, the exponential size of the subautomaton is added
as a factor rather than in an exponent when determining the size of the state space of the
full automaton.

Our claim can be shown by an induction over the number of constructions on top of the
dealternised automaton. In the base case, no construction is done on top of a dealternised
automaton Aϕ. Since Aϕ is a Büchi automaton, a run of the resulting automaton is a path
rather than a tree on every word. Thus, only one state has to be tracked. In the inductive
step, we discriminate cases for the outermost construction. By the induction hypothesis, at
most one state of each dealternised automaton has to be tracked in each subautomaton. For
the construction ϕ1 ∨ ϕ2, a run tree moving into Aϕ1 or Aϕ2 never returns to the initial
state. Thus, since Aϕ1 and Aϕ2 are unconnected, we track states of only one of the automata.
Then, the claim is implied by the induction hypothesis. The construction for Aϕ1∧ϕ2 works
similarly, with the difference that we have to track states of both subautomata when a run
moves into this automaton over the initial state. This does, however, not lead to an increase
in states of each dealternised automaton that have to be tracked, since these subautomata
are unconnected. The next construction we have to consider is A〈α〉ϕ. Here, a run has
the property that at most one state of Mα has to be tracked, which can be replaced by
states of Aϕ at some point. Additionally, arbitrarily many states of Aψ for subformulas
ψ of α can be tracked. However, this is no contradiction to our claim, since α may not

CONCUR 2020

https://doi.org/10.22028/D291-26650
https://doi.org/10.1007/978-3-540-73370-6_11
https://doi.org/10.1016/S0019-9958(83)80051-5

50:18 Propositional Dynamic Logic for Hyperproperties

contain any quantified subformulas and thus Aψ may not contain dealternised automata in
uncritical formulas. Thus, since the induction hypothesis states that at most one state of
each dealternised automaton of Aϕ has to be tracked at any point, this shows our claim.
As another case, we consider the construction for ∃π.ϕ. Here, since only a disjunctive
transition is added on top of Aϕ, we can argue similar as in the case for ϕ1 ∨ ϕ2 with the
difference that we consider only a single subautomaton. Due to the exemption rule in the
definition of criticality, there is an additional construction to be considered: [α]ϕ, where α
is deterministic and the outermost quantifier inside α is negated.2 Since tests ψ in α are
handled by disjunctively transitioning into the automaton for ¬ψ in the [α]ϕ construction,
this cancels out the negation of the quantifier. Therefore, no critical negation construction
has to be performed on a dealternised subautomaton during the construction of A¬ψ. Then,
since due to the fact that Mα is deterministic, conjunctions of transitions in Mα behave the
same as disjunctions and we can argue just as in the case for A〈α〉ϕ. Finally, observe that
we do not have to consider constructions for ∆α, ¬∆α, or general [α]ϕ, since the resulting
formula is not uncritical when any of these contain a quantified subformula.

Inductive step: ϕ has criticality k+1. On the path in ϕ’s syntax tree inducing the criticality,
we inspect the outermost critical quantifier. Its subformulas ϕi have criticality at most
k. Using the induction hypothesis on all subformulas, we obtain automata of size at most
O(g(k+1, |ϕi|+log(|T |))). The next dealternation will result in an automaton of size 2O(|Aϕi |)

(by Proposition 1) which can be bounded by 2O(g(k+1,|ϕi|+log(|T |))) = O(g(k+2, |ϕ|+log(|T |))).
Since we inspected the outermost critical quantifier on the path inducing the criticality of
the formula, any of the subsequent constructions will not cause a further exponential blowup
of the automaton’s size, as argued in the base case. J

B Alternative Construction for the Transition Function of Aϕ

In the main body of the paper, we have argued that the transition function in Aϕ for ϕ
containing α can be exponential in the size of α. Consider the automaton in Figure 6
where states annotated with ψi,j are marked with the corresponding formula and each
unannotated edge stands for an ε-transition. Such an automaton can occur when α has
the form (ψ0,1? + ψ0,2?)(ψ1,1? + ψ1,2?)...(ψn,1? + ψn,2?)τ and should serve as an illustrative
example. We consider the case where this α is used in a 〈.〉 formula. For ease of presentation,
we assume that ψi,j can be tested by moving into a state pi,j . It is possible to reach qf from
q0 with an exponential number of ε-paths, each with a different combination of markings.
Therefore we have q0

τ=⇒X q for exponentially many X, transferring into the size of the
transition function when constructing ρ(q0, τ) ≡

∨
{q ∧

∧
ψi,j∈X pi,j | q0

τ=⇒X q}.
For this example, it is easy to see that these exponentially many different combinations

of transitions could equally be represented by a formula of a much smaller size, namely
(p0,1 ∨ p0,2) ∧ (p1,1 ∨ p1,2) ∧ ... ∧ (pn,1 ∨ pn,2). This is due to the fact that conjunction and
disjunction closely resemble the behaviour of concatenation and sum constructions in Mα

when considering ε-paths for the construction of ρ. We will show here, that using these ideas
it is possible to construct such a formula of size not greater than 3 · |α|+ 2 for every α.

2 There are additional forms of α, where explosion through a negated quantifier inside the modality [α]
can be avoided. This includes all forms where in any run in Mα, a test for ¬ψ occurs only in a situation
where all states occurring at the same level of the run can transition into A¬ψ . Then, when a transition
into A¬ψ can be taken in one of the states, it can be taken in all of the states. Since they are on the
same level, the same continuation in A¬ψ can be used for all these branches, such that only a single
state of each dealternised subautomaton of A¬ψ needs to be tracked.

J. O. Gutsfeld, M. Müller-Olm, and C. Ohrem 50:19

q0

ψ0,1

ψ0,2

q1

ψ1,1

ψ1,2

q2 qn

ψn,1

ψn,2

qf q

...

...

...

τ

Figure 6 Automaton Mα with an exponential number of test combinations.

We proceed by constructing a function εp such that εp(q, q′, α) = ϑ for a formula
ϑ equivalent to

∨
{
∧
ψi∈X vi | q

ε=⇒X q′} for ε=⇒X constructed from Mα. Here we use
variables vi as placeholders for formulas ψi to be later replaced by a transition into the
corresponding automaton Aψi . For τ -transitions, this can straightforwardly be extended
to a function τp which can then be used to construct the τ transition function for a
state q in a more succinct way. For a 〈α〉ϕ formula and some q ∈ Qα we then have
ρ(q, (s , τ)) =

∨
{q′ ∧ τp(q, q′, α)[ρψi(q0,ψi , (s , τ))/vi] | q′ ∈ Q}. Some remarks are in order

for this transition function construction: (i) in this construction, opposed to the one used
before, each q′ ∈ Q can occur at most once in the disjunction, (ii) for q′ ∈ Q such that there
is no X with q τ=⇒X q′, i.e. q′ is not reachable from q with τ , we have τp(q, q′, α) ≡ false

and thus the state can be eliminated from the disjunction and (iii) for [.] formulas, τp and ρ
can similarly be constructed in a dual way.

Since there is no direct way to create the desired formula for α = α∗1 while meeting the
size constraints, we cannot do a direct inductive construction for εp. Instead we perform
an inductive construction dp that is similar to εp but does not take backwards edges (qf , q0)
originating from α∗-constructions into account. Then, εp can be constructed from dp by only
considering a single backwards edge for each pair of states. The idea behind this is that each
path p∗ considering more than one backwards edge is subsumed by some path p1 considering
only one backwards edge in the sense that if p∗ visits the set X∗ of markings and p1 visits
the set X1 of markings, then X1 ⊆ X∗. Then, the conjunction over X∗ is implied by the
conjunction over X1. Since in the construction of ρ, we perform a disjunction over all paths
with a conjunction over all seen markings inside, we can then omit p∗ from the disjunction.

Construction of dp and εp. First, we construct dp inductively.

α = τ dp(q, q′, α) =
{

false if q 6= q′

true else

α = ε dp(q, q′, α) =
{

false if q = q1 and q′ = q0

true else

α = α1 + α2 dp(q, q′, α) =

dp(q, q′, αi) if q, q′ ∈ Qi
dp(q0,i, q

′, αi) if q = q0 and q′ ∈ Qi
dp(q, qf,i, αi) if q ∈ Qi and q′ = qf

dp(q0,1, qf,1, α1) ∨ dp(q0,2, qf,2, α2) if q = q0 and q′ = qf

false else

CONCUR 2020

50:20 Propositional Dynamic Logic for Hyperproperties

α = α1 · α2 dp(q, q′, α) =

dp(q, q′, αi) if q, q′ ∈ Qi
dp(q, qf,1, α1) ∧ dp(q0,2, q

′, α2) if q ∈ Q1 and q′ ∈ Q2

false else

α = (α1)∗ dp(q, q′, α) =

dp(q, q′, α1) if q, q′ ∈ Q1

true if q = q0 and q′ = qf

dp(q0,1, q
′, α1) if q = q0 and q′ ∈ Q1

dp(q, qf,1, α1) if q ∈ Q1 and q′ = qf

false else

α = ψk? dp(q, q′, α) =

true if q = q′ 6= q1

false if q = qi, q
′ = qj , i > j

vk else

Using dp, we are now able to construct εp directly for all q, q′ and α.

εp(q, q′, α) = dp(q, q′, α) ∨ (dp(q, qf,ᾱ, α) ∧ dp(q0,ᾱ, q
′, α))

Here ᾱ is the innermost ∗-construction that contains both q and q′. In case no such ᾱ exists,
both dp(q, qf,ᾱ, α) and dp(q0,ᾱ, q

′, α) are given by false instead.

Theoretical justification. In order to use this succinct alternative in our construction, we
have to argue that it indeed has the desired properties. Therefore we establish a number of
theorems:

I Theorem 19. |dp(q, q′, α)| ≤ |α| and |εp(q, q′, α)| ≤ 3 · |α|+ 2 for all q, q′ and α.

Proof. The first claim can be established by a straightforward structural induction on α.
It is easy to see that in each case of the construction, at most one operator is added to
dp(q, q′, α) and each partial term is used at most once.

The second claim follows directly from the first claim and the definition of εp. J

I Lemma 20. We have dp(q, q′, α) ≡
∨
{
∧
ψi∈X vi | q

ε=⇒X q′} for ε=⇒X constructed from Mα

where all backwards edges from ∗-constructions are removed.

Proof. We show this claim by a structural induction on α.
Case α = τ : There are two unmarked states q0, q1 in Mα with a τ -transition connecting

them. There are no ε-transitions. Thus, we have q ε=⇒X q′ iff q = q′ and X = ∅. Therefore
we have

∨
{
∧
ψi∈X vi | q

ε=⇒X q′} ≡ false for q 6= q′ and
∨
{
∧
ψi∈X vi | q

ε=⇒X q′} ≡ true
for q = q′, establishing the claim.

Case α = ε: There are two unmarked states q0, q1 in Mα with an ε-transition connecting q0
to q1. Thus, we have q ε=⇒X q′ iff X = ∅ and either q 6= q1 or q′ 6= q0. Therefore we have∨
{
∧
ψi∈X vi | q

ε=⇒X q′} ≡ false for q = q1,q′ = q0 and
∨
{
∧
ψi∈X vi | q

ε=⇒X q′} ≡ true
else, establishing the claim.

Case α = α1 + α2: By induction hypothesis, the claim holds for α1 and α2. To obtain
Mα from Mα1 and Mα2 , a new starting and final state are added with ε-transitions to
the old starting states and from the old final states, respectively. We consider different
cases how a path inducing q

ε=⇒X q′ could have been constructed. In the first case,
where both q and q′ are in the same automaton Mαi , no additional paths could have
been introduced by the new transitions. Thus, the claim follows immediately from the
induction hypothesis. In the second case, where q = q0 and q′ is in Mαi a path must
take the ε-transition to q0,i and then take a path between q0,i and q′. Since q0 is not

J. O. Gutsfeld, M. Müller-Olm, and C. Ohrem 50:21

marked, we have q0
ε=⇒X q′ iff q0,i

ε=⇒X q′, establishing the claim by induction hypothesis.
The third case, where q is in Mαi and q′ = qf is analogous to the second one. Another
case is q = q0 and q′ = qf . Since Mα1 and Mα2 are not connected, we have q ε=⇒X q′ iff
q0,1

ε=⇒X qf,1 or q0,2
ε=⇒X qf,2 with the same argument as used in cases two and three.

Since no paths are added from q0,i to qf,i when going over from Mαi to Mα, q0,i
ε=⇒X qf,i

holds for ε=⇒X constructed from Mαi iff it holds for ε=⇒X constructed from Mα. Therefore
we have

∨
{
∧
ψi∈X vi | q

ε=⇒X q′} ≡
∨
{
∧
ψi∈X vi | q0,1

ε=⇒X qf,1} ∨
∨
{
∧
ψi∈X vi|q0,2

ε=⇒X

qf,2} ≡ dp(q0,1, qf,1, α1) ∨ dp(q0,2, qf,2, α2) = dp(q, q′, α) using the induction hypothesis.
The remaining cases include q = qf with q′ = q0 and q being in Mαi with q′ being in
Mα1−i . In both cases, q′ is not reachable from q using only ε-transitions. Thus, the claim
is established with similar arguments as in previous cases.

Case α = α1 · α2: We consider three cases. In the first one, q and q′ are both inMαi . Since
only transitions from Mα1 into Mα2 are possible but not backwards, a path inducing
q

ε=⇒X q′ has to stay in Mαi the whole time. The claim then follows from the induction
hypothesis. In the second case, q is in Mα1 and q′ is in Mα2 . A path from q to q′ has to
transition through qf,1 and q0,2 to be able to switch automata, thus we have q ε=⇒X q′ iff
q

ε=⇒Y qf,1 and q0,2
ε=⇒Z q

′ for some Y, Z with X = Y ∪Z. Since for state pairs inside one
of the subautomata it does not matter whether ε=⇒X was constructed from Mα or Mαi ,
the claim follows from the induction hypothesis. In the last case, q is in Mα2 and q′ is in
Mα1 . Since q′ is not reachable from q, q ε=⇒X q′ can not hold for any X and the claim
follows immediately.

Case α = α∗
1: We consider five cases. In the first case, we have q, q′ ∈ Q1. Since the

backwards edge that was added during the construction is ignored for this lemma, no
new paths from q to q′ are added compared to Mα1 . Therefore the claim follows from
the induction hypothesis. In the second case, we have q = q0 and q′ = qf . The claim
follows immediately from the fact that there is an ε-edge in between the two states. The
third case, where q = q0 and q′ ∈ Q1, and the fourth case, where q ∈ Q1 and q′ = qf
work in a similar way by considering the added ε edges between old and new starting and
final states and by using the induction hypothesis. In the last case, we have q = qf and
q′ = q0. The claim holds since the backwards edge connecting the two states is ignored
for this lemma.

Case α = ψk?: We consider the different cases how q′ can be reached by ε-transitions from
q in Mα. In the first case, q = q′ with q 6= q1, we have trivial reachability without
encountering a state marking. Here, the claim is established as in previous cases. In
the second case, where q = qi, q

′ = qj with i > j, q′ is not reachable from q since the
ε-transitions only point in the other direction. The claim is again established as in
previous cases. In all other cases, q′ can be reached from q with ε-transitions, but only
with encountering the state marking in q1. Since this is the only state marking in Mα,
we have

∨
{
∧
ψi∈X vi | q

ε=⇒X q′} ≡ vi = dp(q, q′, α), establishing the claim. J

I Theorem 21. We have εp(q, q′, α) ≡
∨
{
∧
ψi∈X vi | q

ε=⇒X q′} for ε=⇒X constructed from
the automaton Mα.

Proof. Compared to the claim made about dp in Lemma 20, backwards edges must now be
considered in our claim about εp. The central observation is that the contribution of all
ε-paths from q to q′ is already captured by two particular types of ε-paths: either by going
from q to q′ directly without taking a backwards edge, or by taking only the backwards
edge from the construction of Mᾱ exactly once (where ᾱ is the innermost *-construction

CONCUR 2020

50:22 Propositional Dynamic Logic for Hyperproperties

that contains both q and q′). As was shown in Lemma 20, the first type is captured by
dp(q, q′, α). It is also straightforward to see from Lemma 20 that the second type is captured
by dp(q, qf,ᾱ, α) ∧ dp(q0,ᾱ, q

′, α).
We now argue that further backwards edges need not be considered and thus all paths

are subsumed by these two cases. In order to use a backwards edge outside of Mᾱ, a path
has to leave Mᾱ via qf,ᾱ and finally reenter it via q0,ᾱ. The contribution of such paths to
the disjunction is subsumed by paths taking the backwards edge from qf,ᾱ to q0,ᾱ directly.
Backwards edges on the paths from q to qf,ᾱ or on the paths from q0,ᾱ to q′ on the other
hand that originate in a final state qf of some subautomaton only lead to paths that later
visit qf a second time. Thus their contribution is again subsumed by the contribution of the
path where loops from qf to itself are cut out. J

	Introduction
	Preliminaries
	Propositional Dynamic Logic for Hyperproperties
	Model Checking HyperPDL-Delta
	Satisfiability
	Expressivity Results
	Conclusion
	Detailed Complexity Analysis
	Alternative Construction for the Transition Function of A_{phi}

