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Abstract
The probability of sequencing a set of RNA-seq reads can be directly modeled using the abundances
of splice junctions in splice graphs instead of the abundances of a list of transcripts. We call this
model graph quantification, which was first proposed by Bernard et al. (2014). The model can be
viewed as a generalization of transcript expression quantification where every full path in the splice
graph is a possible transcript. However, the previous graph quantification model assumes the length
of single-end reads or paired-end fragments is fixed. We provide an improvement of this model to
handle variable-length reads or fragments and incorporate bias correction. We prove that our model
is equivalent to running a transcript quantifier with exactly the set of all compatible transcripts.
The key to our method is constructing an extension of the splice graph based on Aho-Corasick
automata. The proof of equivalence is based on a novel reparameterization of the read generation
model of a state-of-art transcript quantification method. This new approach is useful for modeling
scenarios where reference transcriptome is incomplete or not available and can be further used in
transcriptome assembly or alternative splicing analysis.
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1 Introduction

Transcript quantification has been a key component of RNA-seq analysis pipelines, and the
most popular approaches (such as RSEM [9], kallisto [4], and Salmon [12]) estimate the
abundance of individual transcripts by inference over a generative model from transcripts to
observed reads. To generate a read in the model, a transcript is first sampled proportional
to its relative abundance multiplied by length, then a fragment is sampled as a subsequence
of the transcript according to bias correction models. The quantification algorithm thus
takes the reference transcriptome and the set of reads as input and outputs a most probable
set of relative abundances under the model. We focus on a generalization of the problem,
called graph quantification, that allows for better handling of uncertainty in the reference
transcriptome.

The concept of graph quantification was first proposed by Bernard et al. [3], which
introduced a method called FlipFlop. Instead of a set of linear transcripts, a splice graph is
given and every transcript compatible with the splice graph (a path from transcript start to
termination in the splice graph) is assumed to be able to express reads. The goal is to infer
the abundance of edges of the splice graph (or its extensions) under flow balance constraints.
Transcript abundances are obtained by flow decomposition under this setup. FlipFlop infers
network flow on its extension of splice graphs, called fragment graphs, and uses the model
to further assemble transcripts. However, the proposed fragment graph model only retains
its theoretical guarantee when the lengths of single-end reads or paired-end fragments are
fixed. In this work, we propose an alternative approach to graph quantification that correctly
addresses the variable-length reads and corrects for sequencing biases. Our method is based
on flow inference on a different extension of the splice graph.

Modeling RNA-seq reads directly by network flow on splice graphs (or variants) is
advantageous when the set of transcript sequences is uncertain or incomplete. It is unlikely
that the set of reference transcripts is correct and complete for all genes in all tissues, and
therefore, many transcriptome assembly methods have been developed for reconstructing a
set of expressed transcripts from RNA-seq data [18, 13, 10, 14], including FlipFlop [3]. Recent
long read sequencing confirms the expression of unannotated transcripts [17], but they also
show that the individual exons and splice junctions are relatively accurate. With incomplete
reference transcripts but correct splice graphs, it is more appropriate to model RNA-seq
reads directly by splice graph network flows compared to modeling using the abundances of
an incomplete set of transcripts.

The network flow of graph quantification may be incorporated into other transcriptome
assembly methods in addition to FlipFlop. StringTie [13] iteratively finds the heaviest path of
a flow network constructed from splice graphs. A theoretical work by Shao et al. [15] studies
the minimum path decomposition of splice graphs when the edge abundances satisfy flow
balance constraints. Better network flow estimation on splice graphs inspires improvement of
transcriptome assembly methods.

The splice graph flow itself is biologically meaningful as it indicates the relative usage
of splice junctions. Estimates of these quantities can be used to study alternative splicing
patterns under the incomplete reference assumption. PSG [8] pioneered this line of work but
with a different abundance representation in splice graph. It models splice junction usage by
fixed-order Markov transition probabilities from one exon (or fixed number of predecessor
exons) to its successor exon in the splice graph. It develops a statistical model to detect
the difference in transition probability between two groups of samples. However, fixed-order
Markov chain is less expressive: a small order cannot capture long-range phasing relationships,
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and a large order requires inferring a number of transition probabilities that are likely to
lack sufficient read support. Markov models set the abundance of a transcript to the product
of transition probabilities of its splice junctions, which implicitly places a strong constraint
on the resulting transcriptome. Many other previous studies of splice junction usage depend
on a list of reference transcripts and compute the widely used metric Percentage Spliced In
(PSI) [7, 16, 19]. Under an incomplete reference assumption, the estimated network flow is a
potential candidate to compute PSI and study alternative splicing usage.

A key challenge of graph quantification, especially for paired-end reads, is to incorporate
the co-existence relationship among exons in transcripts. When a read spans multiple
exons, the exons must co-exist in the transcript that generates this read. Such a co-
existence relationship is called phasing, and the corresponding read is said to contain phasing
information. For these reads, the flows of the spanned splice edges may be different from
each other, and in this case, the probability of the read cannot be uniquely inferred from the
original splice graph flow. FlipFlop solves this problem by expanding the splice graph into
a fragment graph, assuming all reads are fixed-length. In a fragment graph, every vertex
represents a phasing path, two vertices are connected if the phasing paths represented by the
vertices differ by one exon, and every transcript on the splice graph maps to a path on the
fragment graph. The mapped path in the fragment graph contains every possible phasing
path from a read in the transcript, in ascending order of genomic location. However, it is
not possible to construct this expansion of splice graphs when the reads or fragments are of
variable lengths. There is no longer a clear total order over all phasing paths possible from a
given transcript, and it is unclear how to order the phasing paths in a fragment graph. We
detail the FlipFlop model in Section A.3.

To incorporate the phasing information from variable-length reads or fragments, we develop
a dynamic unrolling technique over the splice graph with an Aho-Corasick automaton. The
resulting graph is called prefix graph. We prove that optimizing network flow on the prefix
graph is equivalent to the state-of-the-art transcript expression quantification formulation
when all full paths of splice graphs are provided as reference transcripts, assuming modeled
biases of generating a fragment are determined by the fragment sequence itself regardless
of which transcript it is from. In other words, quantification on prefix graphs generates
exact quantification for the whole set of full splice graph paths. The proof is done by
reparameterizing the sequencing read generation model from transcript abundances to edge
abundances in the prefix graph. We also propose a specialized EM algorithm to efficiently
infer a prefix graph flow that solves the graph quantification problem.

As a case study, we apply our method on paired-end RNA-seq data of bipolar disease
sequencing samples and estimate flows for neurogenesis-related genes, which are known to
have complex alternative splicing patterns and unannotated isoforms. We use this case
study to demonstrate the applicability of our method to handle variable-length fragments.
Additionally, the network flow leads to different PSI compared to the one computed with
reference transcripts, suggesting reference completeness should be considered in alternative
splicing analysis.

2 Methods

We now provide a brief technical overview of the method section.
In Section 2.1, we describe the detailed derivation and procedure to reparameterize the

generative model in transcript quantification. A key component in this process is re-defining
transcript effective length. The transcript effective length is introduced to offset sampling
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biases towards shorter transcripts, and an empirical formula by penalizing transcript length
with average fragment length has been widely used. We show that this empirical formula
has a more elegant explanation, purely from introspection of the generative model. Based
on this observation, we naturally introduce the path abundances, the new set of variables
that parameterize the generative model, and the path effective lengths, weights of the path
abundances in the normalization constraints. To introduce bias correction, we introduce
the concept of affinity that encodes bias corrected likelihood for generating a fragment at a
particular location, and the rest follows naturally by redefining the effective lengths.

In Section 2.2, we describe the prefix graph, whose purpose is to map the abundances of
compatible transcripts onto network flows that preserve path abundances. This is beneficial,
as we avoid enumerating compatible transcripts and only need to infer the prefix graph flow.
The key technical contribution in this section is connecting the process of matching phasing
paths onto transcripts, to the general problem of multi-pattern matching. This leads to a
rollout of the splice graph according to an Aho-Corasick automaton, and the correctness
(that the flow preserves of path abundances) can be proved by running the Aho-Corasick
algorithm on the compatible transcripts.

In Section 2.3, we describe the inference process for the prefix graph flows, as we need to
expand our model to handle multi-mapped reads within a gene or across different genes. We
employ a standard EM algorithm for multi-mapped reads, similar to existing approaches.
Inference across genes is enabled by another reparameterization of the generative model,
which relativizes edge abundances to its incident gene. We are able to decouple the inference
for each gene during the M-step, which combined with a simple E-step, allows for efficient
inference and completes the specification of our methods.

We formally define the following terms. A splice graph is a directed acyclic graph
representing alternative splicing events in a gene. The graph has two special vertices: S
represents the start of transcripts and T represents the termination of transcripts. Every
other vertex represents an exon or a partial exon. Edges in the splice graph represent splice
junctions, potential adjacency between the exons in transcripts, or connect two adjacent
partial exons. A path is a list of vertices such that every adjacent pair is connected by
an edge, and an S − T path is a path that starts with S and ends with T . We refer to
phasing paths as the paths of which the exons co-exist in some transcripts. Specifically,
we use a generalized notion of phasing path that includes singleton path (path of a single
vertex) and path consisting of a single edge, so all vertices and edges are considered phasing
paths. Each transcript corresponds to a unique S − T path in the splice graph, and as
discussed in the introduction, we will assume every S − T path is also a transcript. Graph
quantification generalizes transcript quantification as we can set up a “fully rolled out” splice
graph, containing only chains each corresponding to a linear transcript. We use the phrase
quantified transcript set to denote a set of transcripts with corresponding abundances.

2.1 Reparameterization
Our goal in this section is to establish an alternative set of parameters for the graph
quantification problem. In the transcript quantification model, every transcript corresponds
to a variable denoting its relative abundance. We will identify a more compact set of
parameters that would represent the same model, as described below.

We start with the core model of transcript quantification at the foundation of most
modern methods [9, 6, 4, 12]. Assume the paired-end reads from an RNA-seq experiment
are error-free and uniquely aligned to a reference genome with possible gaps as fragments
(assumptions will be relaxed later). We denote the set of fragments (mapped from paired-
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end reads) as F , the set of transcripts as T = {T1, T2, . . . , Tn} with corresponding lengths
l1, l2, . . . , ln and abundances (copies of molecules) c1, c2, . . . , cn. This can be used to derive
other quantities, for example, the transcripts per million (TPM) values are calculated by
normalizing {ci} then multiplying the values by 106. Under the core model, the probability
of observing F is:

P (F | T , c) =
∏
f∈F

∑
i∈idx(f)

P (Ti)P (f | Ti).

Here, P (Ti) denotes the probability of sampling a fragment from transcript Ti, and P (f | Ti)
denotes the probability of sampling the fragment f given it comes from Ti. idx(f) is the set of
transcript indices onto which f can map. Let D(l) be the distribution of generated fragment
length. In the absence of bias correction, P (f | Ti) is proportional to D(f) = D(l(f)), where
l(f) denotes the fragment length inferred from mapping f to Ti. Define the effective length for
Ti as l̂i =

∑li

j=1
∑li

k=j D(k− j+ 1) (which can be interpreted as the total “probability” for Ti

to generate a fragment), and P (f | Ti) = D(f)/l̂i. The probability of generating a fragment
from Ti is assumed to be proportional to its abundance times its effective length, meaning
P (Ti) ∝ ci l̂i. Our definition of effective length is different from existing literature, where it
is usually defined as li − µ(Ti), the actual length of transcript li minus the truncated mean
of D, and the truncated mean is defined as µ(Ti) = (

∑li

j=1 jD(j))/(
∑li

k=1 D(k)). However,
these two definitions are actually essentially the same most of the time:

I Lemma 1. l̂i =
∑li

j=1
∑li

k=j D(k − j + 1) = (
∑li

t=1 D(t))(li + 1− µ(Ti)).

Proof.

l̂i =
li∑

t=1
D(t)(li + 1− t)

= (li + 1)
li∑

t=1
D(t)−

li∑
t=1

tD(t)

=
(

li∑
t=1

D(t)
)(

li + 1−
∑li

t=1 tD(t)∑li

t=1 D(t)

)

=
(

li∑
t=1

D(t)
)

(li + 1− µ(Ti))

This means ignoring the difference between li and li + 1, the two definitions differ by a
multiplicative factor of

∑li

t=1 D(t). J

The factor
∑li

t=1 D(t) is the probability of sampling a fragment no longer than li. It is very
close to 1 as long as the transcript is longer than most fragments, which is usually true in
practice. We refer to previous papers [9, 11, 6, 4, 12] for more detailed explanation of the
model. This leads to:

P (F | T , c) =
∏
f∈F

(
∑

i∈idx(f)

ci)D(f)/(
∑

Ti∈T
ci l̂i).

We now propose an alternative view of the probabilistic model with paths on splice graphs
in order to derive a compact parameter set for the quantification problem. The splice graph
is constructed so each transcript can be uniquely mapped to an S − T path p(Ti) on the
graph, and we assume the read library satisfies that each fragment f can be uniquely mapped
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to a (non S − T ) path p(f) on the graph (this assumption will also be relaxed later). With
this setup, i ∈ idx(f) if and only if p(f) is a subpath of p(Ti), or p(f) ⊂ p(Ti).

We now define cp =
∑

i:Ti∈T ,p⊂p(Ti) ci to be the total abundance of transcripts including
path p, called path abundance, and l̂p =

∑li

j=1
∑li

k=j 1(p(Ti[j, k]) = p)D(k − j + 1) called
path effective length, where Ti[j, k] is the fragment generated from transcript i from base
j to base k and 1(·) is the indicator function. Intuitively, the path effective length is the
total probability of sampling a fragment that maps exactly to the given path. This definition
is independent of the chosen transcript Ti and any Ti yields the same result as long as Ti

includes p. Next, let P be the set of paths from the splice graph satisfying l̂p > 0.

I Lemma 2. The normalization term can be reparameterized:
∑

Ti∈T ci l̂i =
∑

p∈P cp l̂p.

Proof. The idea is to break down the expression of l̂i into a sum over fragments, and regroup
the fragments by the path to which they are mapped:∑

Ti∈T
l̂ici =

∑
Ti∈T

li∑
j=1

li∑
k=j

D(k − j + 1)ci

=
∑
p∈P

∑
i,j,k:p(Ti[j,k])=p

D(k − j + 1)ci

=
∑
p∈P

(
∑

j,k:∃i,p(Ti[j,k])=p

D(k − j + 1))(
∑

i:p⊂p(Ti)

ci)

=
∑
p∈P

l̂pcp

The third equation holds because the sum of D(k − j + 1) across any transcripts containing
path p is the same, as a shift in the reference does not change D(k − j + 1) assuming there
are no sequencing biases. J

The likelihood objective can now be rewritten as:

P (F | T , c) =
∏
f∈F

(
∑

j:p(f)⊂p(Tj)

cj)D(f)/(
∑
p∈P

cp l̂p)

∝
∏
f∈F

cp(f)/(
∑
p∈P

cp l̂p) (1)

This reparameterizes the model with {cp}, the path abundance. In practice, we reduce
the size of P by discarding long paths with small l̂p and no mapped fragments, as they
contribute little to the likelihood (see Section A.2). To incorporate bias correction into our
model, we define the affinity Ap(j, k) to be the unnormalized likelihood of generating a read
pair mapped to path p from position j to k. This is the analog for P (f | ti) in the transcript
quantification model. In the non-bias-corrected model, we simply have Ap(j, k) = D(k−j+1).
Certain motif-based corrections and GC-content-based corrections, which are calculated from
the genomic sequence in between the paired-end alignment, can then be integrated into our
analysis naturally. To adapt the likelihood model to bias correction, we define transcript and
path effective length as follows:

l̂i =
li∑

j=1

li∑
k=j

Ap(Ti[j,k])(j, k)

l̂p =
li∑

j=1

li∑
k=j

Ap(j, k)1(p(Ti[j, k]) = p),∀p ⊂ p(Ti)
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l̂p is still the same for any Ti that includes p, so it does not matter which transcript is used
to compute it. p(Ti[j, k]) denotes the path that Ti[j, k] (transcript Ti from location j to k)
maps to, and we assume the coordinate when calculating Ap coincides with that of Ti. The
definition of path abundance remains unchanged, and all of our proposed methods will work
in the same way. Transcript-specific bias correction requires an approximation to the affinity
term, and we discuss this topic in detail in Section A.1.

We have now completed the necessary steps to claim the following theorem, which formally
establishes the correctness of the reparameterization procedure with bias correction:

I Theorem 3. Assuming each read is uniquely mapped to one phasing path, the following
two optimization instances are equivalent:

optimizing {cp}, which are the path abundances under the reparameterized objective∏
f∈F cp(f)/(

∑
p∈P cp l̂p), conditioned on {cp} corresponding to a valid quantified set of

transcripts;
optimizing {ci} which are the transcript abundances under the original objective∏

f∈F (
∑

i∈idx(f) ci)/(
∑

Ti∈T ci l̂i).
Here l̂i and l̂p are transcript effective length and path effective length defined with the same
set of affinities Ap(j, k).

Proof. This naturally follows in two steps. First, we can prove Lemma 2 with bias correction
using the identical technique of breaking l̂i down to sum over fragments, then regroup by
path mappings. This means the normalization term can be reparameterized. We finish by
reparameterizing the whole likelihood in the same way as in the non-bias-corrected case (see
equation (1)), again with identical technique. J

With reads multimapped to different phasing paths (within or across genes), let M(f)
denote the set of phasing paths f can map onto, and for p ∈M(f) let A(f | p) denote the
affinity of f mapping to p. In this case, we can use the same idea of grouping transcripts by
the phasing path that f maps onto:

P (f) =
∑

i∈idx(f)

P (Ti)P (f | Ti)

=
∑

p∈M(f)

∑
i:p⊂Ti

ciA(f | p)

=
∑

p∈M(f)

cpA(f | p).

The reparameterization theorem holds by replacing cp(f) with
∑

p∈M(f) cpA(f | p) in the
objective function.

2.2 Prefix Graphs
In Theorem 3, we showed that to perform graph quantification, it is sufficient to optimize
the path abundances under a reparameterized objective, conditioned on that the path
abundances correspond to a quantified set of transcripts. This means to apply the theorem
for optimization of path abundance, we need a set of constraints that ensures this condition.
One solution is to introduce a variable for every compatible transcript and then use the
definition of cp as the constraints. However, this will lead to an impractically large model, as
the number of S − T paths in the splice graph can be exponentially larger than the size of
the prefix graph. In this section, we derive a set of linear constraints governing {cp} that
achieves this purpose.

WABI 2020



12:8 Exact Transcript Quantification Over Splice Graphs

To motivate the next step, assume every inferred fragment either resides within an exon
or contains one junction. In this case, the phasing paths are nodes or edges in the splice
graph. If the quantified transcript set is mapped onto the splice graph, we obtain a network
flow. The path abundance for a phasing path equals either the flow through a vertex or an
edge. By the flow decomposition theorem, given a network flow on the splice graph, we can
decompose it into S − T paths with weights, which then naturally maps back to a quantified
transcript set. As the two-way mapping (between quantified transcript sets and splice graph
flows) preserves path abundances, we conclude optimization over a splice graph flow would
achieve the goal of graph quantification. Specifically, it is easy to restructure the constraints
to represent a splice graph flow, and optimizing the resulting model is equivalent to the
transcript quantification model with all compatible transcripts included.

This solution no longer works when some phasing path p contains three or more exons.
This is because one cannot determine the total flow that goes through two consecutive
edges (corresponding to a phasing path with two junctions) just from the flow graph, and
different decompositions of the flow lead to different answers. Informally, this can be solved
by constructing higher-order splice graphs (as done by Legault et al. [8] for example), or
fixed-order Markov models, but the size of the resulting graph grows exponentially fast and
some phasing paths can be very long. Instead, we choose to “unroll” the graph just as
needed, roughly corresponding to a variable-order Markov model, similar to FlipFlop [3] but
applicable to paired-end reads.

To motivate our proposed unrolling method, consider the properties it needs to satisfy.
Roughly speaking, the unrolled graph needs to exactly identify every path in P to accurately
calculate the path abundances. That is, for every path p in P, there is a set of vertices or
edges in the unrolled graph, such that a transcript includes p if and only if its corresponding
S − T path intersects with this set. We can view this “identify phasing paths” problem as
an instance of multiple pattern matching. That is, given P, for a given transcript Ti, we
want to determine the set of paths in P that are subpaths of Ti, reading one exon of Ti

at a time. Similar to our previous example, if P contains only single exons, we only need
to recognize [x] (the singleton path including only x) when we read exon x, and we will
recognize a general phasing path p when the transcript we have seen admits p as a suffix.
To speed up the process, we can memorize a suffix of the transcript we have seen that is a
prefix of some path in p, so we do not need to check all preceding exons again when trying to
recognize p. This is not a new idea and in fact is the Aho-Corasick algorithm [1], a classical
algorithm for multiple pattern matching where the nodes in the splice graph (set of exons)
is the alphabet, P is the set of patterns and Ti is the text, and the idea is formalized as a
finite state automaton (FSA) that maintains the longest suffix of current text that could
extend and match a pattern in the future. This can be regarded as an unrolling of the splice
graph, which has the power of exactly matching arbitrarily phasing paths, and a flow on the
automaton is the analog of a splice graph flow that also is unrolled enough to recover path
abundances, as we will prove in this section.

We formalize the idea. Consider the Aho-Corasick FSA constructed from P, where we
further modify the finite state automaton as follows. Transitions between states of the FSA,
called dictionary suffix links, indicate the next state of the FSA given the current state and
the upcoming character. We do not need the links for all characters (exons), as we know
Ti ∈ T is an S−T path on the splice graph. If x is the last seen character, the next character
y must be a successor of x in the splice graph, and we only generate the state transitions for
this set of movements. With an FSA, we now construct a directed graph from its states and
transitions as described above:
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I Definition 4 (Prefix Graph). Given splice graph GS and set of splice graph paths P
(assuming every single-vertex path is in P), we construct the corresponding prefix graph G as
follows:

The vertices V of G are the splice graph paths p such that p is a prefix of some path in P.
For p ∈ V , let x be the last exon in p. For every y that is a successor of x in the splice graph,
let p′ be the longest path in V that is a suffix of py (py is the path generated by appending y
to p). We then add an edge from p to p′.

The source and sink of G are the vertices corresponding to splice graph paths [S] and [T ],
where [x] denotes a single-vertex path. The set AS(p) is the set of vertices p′ such that p is a
suffix of p′.

Intuitively, the states of the automaton are the vertices of the graph and are labeled with
the suffix in consideration at that state. The edges of the graph are the dictionary suffix
links of the FSA, now connecting vertices. For p ∈ P, AS(p) denotes the set of states in
FSA that recognizes p. All transcripts start with S, end with T and there is no path in P
containing either of them as they are not real exons, so there exist two vertices labeled [S]
and [T ]. We call them the source and sink of the prefix graph respectively, and we will see
they indeed serve a similar purpose.

I Lemma 5. There is a one-to-one correspondence between S − T paths in the splice graph
and [S]− [T ] paths in the prefix graph.

Proof. Every transcript can be mapped to an [S]− [T ] path on the prefix graph by feeding
the transcript to the finite state automaton and recording the set of visited states, excluding
the initial state where no string is matched. The first state after the initial state is always
[S] as the first vertex in an S − T path is S, and the last state is always [T ] because there
are no other vertexes in the prefix graph that would contain T . Conversely, a [S]− [T ] path
on the prefix graph can also be mapped back to a transcript, as it has to follow dictionary
suffix links (transitions between FSA states), which by our construction can be mapped back
to edges in the splice graph. J

This implies that the prefix graph is also a DAG: If there is a cycle in the prefix graph, it
implies an exon appears twice in a transcript, which violates our assumption that the splice
graph is a DAG.

1

2

3

4

5
1 2 3 4 5

13 24 35

135

Root State

P={135,24,35}

AS(24) AS(35)Fail Edges Trie Edges

Splice Graph Aho-Corasick Automaton Prefix Graph

1

2

13

3

4

24

135

35

5

Source Sink

Figure 1 An example construction of the Prefix Graph. The source and sink of the prefix graph
are [S] and [T ], respectively. The set of phasing paths P is shown in blue in the left panel, and we
does not include the singleton paths for simplicity. We draw the trie and the fail edges for the A-C
automaton as it reduces cluttering (dictionary suffix link can be derived from both edge sets). The
colored nodes in prefix graph are the vertices (states) in AS(35) and AS(24).

The resulting prefix graph flow serves as a bridge between the path abundance {cp} and
the quantified transcript set {ci}:
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I Theorem 6. Every quantified transcript set can be mapped to and from a prefix graph flow.
The path abundance is preserved during the mapping and can be calculated exactly from prefix
graph flow: cp =

∑
s∈AS(p) fs, where fs is the flow through vertex s.

Proof. Using the path mapping between splice graph and prefix graph, we can map a
quantified transcript set onto the prefix graph as a prefix graph flow and reconstruct a
quantified transcript set by decomposing the flow and map each [S]− [T ] path back to the
splice graph as a transcript.

To prove the second part, let {cp} be the path abundance calculated from the definition
given a quantified transcript set, and {c′p} be the path abundance calculated from the prefix
graph flow. We will show {cp} = {c′p} for any finite decomposition of the prefix graph flow.

For any transcript Ti and any path p ∈ P , since no exon appears twice for a transcript, if
Ti contains p, it will be recognized by the FSA exactly once. This means the [S]− [T ] path to
which Ti maps intersects with AS(p) by exactly one vertex in this scenario, and it contributes
the same abundance to c′p and cp. If Ti does not contain p, by similar reasoning, it contributes
to neither c′p nor cp. This holds for any transcript and any path, so the two definitions of
path abundance coincide and are preserved in mapping from quantified transcript set to
prefix graph flow. Since the prefix graph flow is preserved in flow decomposition, the path
abundance is preserved as a function of prefix graph flow. J

This connection allows us to directly optimize over {cp} by using the prefix graph flow
as variables (the path abundances cp is now represented as seen in Theorem 6), and use
flow balance and non-negativity as constraints, as we describe in the next section. The
corresponding quantified transcript set is guaranteed to exist by a flow decomposition followed
by the mapping process.

We next describe an improvement to the prefix graph, which we call compact prefix graph.
The idea is to recognize phasing paths at the edges of the resulting graph, instead of at the
vertices. We will still start with the Aho-Corasick FSA, but we will be building the graph in
a way that states of the FSA correspond to edges of the resulting graph, as described below:

I Definition 7 (Compact Prefix Graph). Given splice graph GS and set of splice graph paths
P, we construct the corresponding compact prefix graph G′ as follows. The vertex set of the
compact prefix graph is the union of

all single-vertex paths on the splice graph;
any splice graph path p that is the prefix of some path p′ in P, while strictly shorter than
p′.

For p in the compact prefix graph, let x be its last exon and y be a successor of x in the splice
graph. We create an edge which has label py (again, appending y to p), originates from p,
and leads to the node that is the longest suffix of py in the compact prefix graph.

The source and sink of G are the vertices corresponding to splice graph paths [S] and [T ].
The set AS(p) is the set of edges p′ such that the edge label on p′ is a suffix of p.

The set AS(p) bears the same meaning as in the original prefix graph, as the states of
the Aho-Corasick FSA are now (roughly) the edges of the compact prefix graph. With this
intuition, we can prove the same property as stated in Lemma 5 and Theorem 6 for compact
prefix graph. The compact prefix graph by the virtue of its construction is a smaller graph
(compared to the original prefix graph) with the same power and is preferred in practice.
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2.3 Inference
While the restructuring process described in the previous section reduces the size of the
optimization problem, we still need to solve it efficiently. We start with the base case, that
is, a single gene and every read pair maps to exactly one path. Recall that P is the set of
phasing paths we consider, p(f) is the path fragment f maps to. For a phasing path p, cp is
the path abundance, l̂p is the path effective length. For the prefix graph, we let fe denote the
flow through an edge, fv denote the flow through a vertex, and AS(p) is the set of vertices
(as FSA states) that recognize p. We also use In(v) to denote the incoming edges of vertex v,
and Out(v) similarly for the outgoing edges. The full instance in this case, with the prefix
graph proposed the previous section, is:

max
∑
f∈F

log cp(f)

s.t.
∑
p∈P

cp l̂p = 1

cp =
∑

v∈AS(p)

fv ∀p ∈ P

fv =
∑

e∈In(v)

fe =
∑

e∈Out(v)

fe ∀v ∈ V − {[S], [T ]}

fe ≥ 0 ∀e ∈ E

This is slightly different from what we described in Section 2.1. First, we maximize the
logarithm of the likelihood objective. Second, we explicitly fix the normalization constant to
be 1, instead of placing it on the divisor of the fragment likelihood. This does not change the
objective, and the only difference is that in the original form {cp} can be arbitrarily scaled,
while here the scaling is fixed. The variables and the constraints come from the prefix graph
flow, and cp is represented as in Theorem 6. For a compact prefix graph as described in
Definition 7, we simply replace the equation of cp to sum over fe with e ∈ AS(p). This is a
convex problem, as the target function is convex with respect to {cp}, and the constraints
are all linear. We can solve the problem with general purpose convex solvers.

With the presence of multimapped reads (to multiple genes and/or multiple paths within
one gene), we can employ a standard EM approach. Recall M(f) is the set of phasing paths
onto which f can map, and for p ∈ M(f) let A(f | p) denote the affinity of f mapping to
p, as described in Section 2.1. We also let z denote the hidden allocation vector, where
zf,p denotes the probability that fragment f is mapped onto splice graph path p. We can
alternatively optimize for {zf,p} and {cp} until convergence as follows:

z
(t)
f,p = c(t)

p A(f | p)/(
∑

p′∈M(f)

c
(t)
p′ A(f | p′))

c(t+1) = arg max
c

∑
p∈P

(
∑
f∈F

z
(t)
f,p) log cp, s.t.

∑
p∈P

cp l̂p = 1

z(t) and c(t) denote the variables at iteration t. We hide the constraint from prefix graphs
for clarity. The optimization for z(t)

f,p can be run in parallel, so we focus on the M-step that
optimizes c(t+1) = {c(t+1)

p }, hiding the superscript whenever it is clear from context. When
we optimize over the whole genome, the instance becomes impractically huge. This is because
we need to infer the flow for every prefix graph (one for each gene) across the whole genome,
and we need to satisfy flow balance for each graph and normalization for all graphs together.
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We let G denote the set of genes. Denote the gene abundance cg =
∑

p∈Pg
cp l̂p, where Pg

is the set of phasing paths in gene g. We then define relative abundance c∗p = cp/cg for every
phasing path p. Plugging cp = cgc

∗
p into the expression for M-step, we have the following

transformed objective:

max
∑
p∈P

(
∑
f∈F

z
(t)
f,p)(log c∗p + log cg)

=
∑
g∈G

∑
p∈Pg

(
∑
f∈F

z
(t)
f,p) log c∗p +

∑
g∈G

(
∑
f∈F

∑
p∈Pg

z
(t)
f,p) log cg

=
∑
g∈G

∑
p∈Pg

(
∑
f∈F

z
(t)
f,p) log c∗p +

∑
g∈G

sg log cg

s.t.
∑
p∈P

cgc
∗
p l̂p =

∑
g∈G

cg = 1

∑
p∈Pg

c∗p l̂p = 1,∀g ∈ G

Here, sg =
∑

f∈F

∑
p∈Pg

z
(t)
f,p can be interpreted as the estimated read count of gene g. Again

for clarity we hide the prefix graph constraints for c∗p, which retain their original form because
all prefix graph constraints are affine. Now, we can decouple optimization of c∗p and cg, as the
objective function is split into two parts, and each constraint only involves one of them. The
optimization for c∗p can be done for each gene independently, and it is exactly the single-gene
optimization as we described above except we weight log cp(f) with z

(t)
f,p in the objective.

The optimization for cg has the form max
∑

g∈G sg log cg constrained by
∑

g∈G cg = 1, from
which we derive that cg ∝ sg. Since

∑
g∈G sg =

∑
p∈P

∑
f∈F z

(t)
f,p =

∑
f∈F 1 = |F |, we have

the following localized EM algorithm:

Global E-step: z
(t)
f,p = c(t)

p A(f | p)/(
∑

p′∈M(f)

c
(t)
p′ A(f | p′))

Gene-Level M-step: c(t+1) = arg max
c

∑
p∈Pg

(
∑
f∈F

z
(t)
f,p) log cp

s.t.
∑

p∈Pg

cp l̂p =
∑

p∈Pg

∑
f∈F

z
(t)
f,p/|F |,∀g ∈ G

The M-step is run independently for each gene and can be parallelized. Again we omit listing
the prefix graph constraint over cp for clarity, and cg is implicitly derived as the right-hand
side of the normalization constraint.

3 Experiments

Based on the expression quantification method Salmon [12] and its effective lengths, we
implement our method and call it Graph Salmon. We apply Graph Salmon on three
bipolar disease (BD) RNA-seq samples and three control samples to estimate the expression
network flow on neurogenesis-related genes (GO:0022008), which are known to have complex
alternative splicing patterns and novel isoforms. We use this as a case study to show that
Graph Salmon is applicable with variable fragment lengths and that the relative usage of
splice junctions under the incomplete reference assumption are different from those under
complete reference assumption.
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3.1 Implementation
The splice graphs are constructed using the reference exons and splice junctions of Gencode [5]
version 26. Since Salmon’s effective lengths are needed for path effective lengths, we
first run Salmon on the samples. We also use Salmon read mappings (obtained with the
–writeMappings argument) and convert their coordinates onto splice graph nodes and edges.
Prefix graphs are constructed with the converted read mappings. Each edge in the prefix
graph corresponds to a path in the original splice graph, and we compute the path effective
length by taking the average of the effective lengths of the corresponding region in reference
transcripts that include the corresponding path (for details see Supplementary Material
Section A.1). With the converted read mappings and path effective lengths, the probabilistic
model of graph quantification can be specified.

Since only neurogenesis-related genes are of interest and the rest of the genes are assumed
to have complete reference transcripts, we assume that Salmon correctly estimates the
probability of each paired-end read generated from each gene when the read is mapped to
multiple genes. We use Salmon’s gene-level weight assignment as read count and only solve
the flow optimization problem within each gene, which corresponds to one round of the
gene-level M step for each gene.

3.2 Graph Salmon reveals unique between-sample differences of PSI
for neurogenesis genes

The RNA-seq data can be accessed from Gene Expression Omnibus (GEO) database with
accession numbers GSM1288369, GSM1288370, GSM1288371 for bipolar disease samples,
and GSM1288374, GSM1288375, GSM1288376 for control samples [2].

The mean fragment lengths of the six sample range from 349.17 bp to 375.28 bp. The
standard deviations of fragment lengths are between 53.00 bp and 82.15 bp. Meanwhile, 30%
of the exons (or subexons) across the splice graphs are less than 56 bp long, and the 40%
quantile of subexon lengths is 79 bp. Graph Salmon is needed in this dataset because of the
large standard deviation of fragment lengths compared to subexon lengths.

We computed Percentage Spliced In (PSI) of 2441 skipped exon events using the Graph
Salmon network flow and compare them with PSIs calculated using Salmon’s expression
quantification based on the reference transcripts. Given three exons, the PSI is defined as
the total abundance of transcripts that include all three of them, divided by total abundance
of transcripts that include the first and the last (but not necessarily the middle one). The
correlations of Graph Salmon PSI and Salmon PSI of the same sample are around 0.51 to 0.57
(for both Spearman and Pearson), while the correlations of PSI between different samples
computed by the same quantification method are over 0.75 (for both Spearman and Pearson
and both methods). The large correlation between different samples can be explained by
the fact that they are from the same tissue and should follow the tissue-specific expression
and alternative splicing patterns. The smaller correlation between different quantification
methods indicates the incomplete reference and complete reference assumptions lead to very
different splice junction abundance estimates.

An example of different PSI computed by Graph Salmon and Salmon is shown in Figure 2
and Supplementary Figure A2 on LPAR1 gene. LPAR1 gene encodes a lysophosphatidic acid
(LPA) receptor that functions in the LPA signaling pathway, which is related to cognitive
behavioral deficits such as schizophrenia and depression when dysregulated [20]. We focus
on the event that describes the percentage of expression of the inclusions of exon 6 (position
110973480-110973558 in GRCh38) between exon 3 (position 111037840-111038043 in GRCh38)
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Figure 2 (A) Network flow of BD 1 and control 3 samples estimated by Graph Salmon. The
subgraph includes exons 1, 3 to 7, and exons are represented by nodes and node label indicates the
index of exon. PSI of inclusion of exon 6 between exon 3 and 7 is computed. Edges of which the
flows are involved in PSI calculation are solid; the rest edges are dashed. (B) Network flow of the
same samples computed by Salmon with reference transcripts.

and exon 7 (position 110972072-110972220 in GRCh38). Graph Salmon computes the PSIs to
be 0.45 to 0.64 for BD samples and 0.07 to 0.33 for control samples, whereas PSIs computed
by Salmon are larger than 0.95 for all six samples.

Even though this difference is not evaluated by rigorous statistical testing, it indicates
that when reference is incomplete, previous reference-based alternative splicing analysis may
lead to different results. Considering the incomplete reference assumption in alternative
splicing analysis enlarges the pool of candidate alternative splicing events.

4 Discussion

We improve the graph quantification model of FlipFlop to incorporate phasing information
from variable length reads or fragments. The key algorithmic contributions are a provably
correct reparameterization process and the introduction of the prefix graph inspired by
Aho-Corasick automata for inference.

To demonstrate the feasibility of our method to handle variable length fragments, we apply
our method to neurogenesis-related genes of bipolar disease RNA-seq samples and control
RNA-seq samples. The RNA-seq samples contain paired-end reads with mean fragment
lengths around 350 bp and standard deviation around 53 – 82 bp. We show that our
method successfully estimates network flows on prefix graphs and the estimated flow (under
the incomplete reference assumption) only has around 0.5 correlation (both Pearson and
Spearman) with the flow estimated by Salmon under the complete reference assumption.
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The size of the prefix graph depends on the length of the phasing paths exponentially.
Unfortunately, for long read sequencing, especially with transcript-long reads, the prefix graph
may be as large as the set of all S − T paths (equivalently the set of all possible transcripts)
and its efficiency compared to the naïve implementation of graph quantification (where we
enumerate every compatible transcript) may diminish. It is still open what algorithmic tools
are required to avoid this inefficency.

An intrinsic issue with graph quantification is non-identifiability: Many configurations
of transcript abundances lead to the same read generation model, and thus it is impossible
to distinguish which configuration is closer to the ground truth if our goal is to recover
an underlying transcriptome. While our prefix graph representation is compact, for many
downstream analyses, we are invariably forced to perform a flow decomposition to transform
prefix graph flow into quantified transcript sets. The non-identifiability problem manifests
in this step, as different decompositions can lead to the same prefix graph flow, which as
we proved implies the same model of read generation. Therefore, it is possible to assess the
severity of non-identifiability problem by inspecting different ways of decomposing a fixed
prefix graph flow.

This work focuses on theoretical improvements of the graph quantification model, while
its practical utility is still largely unexplored. For example, our proposed approach may be a
promising method for transcript assembly similar to FlipFlop, where we use quantification
for assembly. The method also has potential use cases in alternative splicing analyses and
other related tasks in RNA-seq. However, careful benchmarking is needed to determine the
cases when graph quantification is superior to standard quantification with a given set of
transcripts.
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A Additional Methods

In Section A.1 and Section A.2, we describe two modifications to our proposed model in
practice. These modifications greatly improve practicality of our proposed model. On the
other hand, inclusion of these modifications means the conditions for Theorem 3 no longer
hold and the inference is no longer over the exact set of all possible transcripts with exact
bias correction. In Section A.3, we describe the fragment graph constructed in FlipFlop in
more detail, and describe our reasoning why it loses the theoretical guarantee in presence of
variable-length reads or fragments.

A.1 Bias Correction, Continued
Admittedly, there is no way to know the exact location of the read pair within the
transcript after reparameterization with path abundance, so these specific biases can-
not be integrated into our proposed models directly. Nonetheless, since the splice graph
is known in full, approximate bias correction is possible. Let Bi(j, k) denote the affin-
ity value calculated from a full bias correction model for the fragment generated from
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base j to k on transcript Ti, and r̂i be the reference abundance of transcript Ti. We let
Ap(j, k) = (

∑
i:p⊂p(Ti) r̂iBi(j′, k′))/(

∑
i:p⊂p(Ti) r̂i), where j′ and k′ are the coordinates of the

path sequence in the reference coordinates of Ti. This means we average the affinity value
calculated from known transcripts on this locus, weighted by their reference abundance. For
simplicity, we use Salmon outputs as reference abundance, but other approaches, including
an iterative process of estimating Ap(j, k) and cp alternatively, are possible.

One limiting factor for bias correction in our proposed framework is that calculating
l̂p can be expensive as we need to calculate the affinity value for every possible fragment.
While we did this for our experiments, there are also alternative approaches that speeds
up the process by approximating l̂p. We can use a simplified form for Ap(j, k) so l̂p has a
closed-form solution (for example, do not allow bias correction when calculating effective
length, similar to existing approaches to calculate effective length of transcripts), sample
from possible Ap(j, k) when the number of fragments from a particular path is large, or
precompute the values for fixed genome and bias correction model. These approaches may
result in slightly inaccurate path effective length, and it is still an open question how it
affects downstream procedures.

A.2 Trimming Set of Phasing Paths
Recall the likelihood function under our reparameterized model:
P (F | T , c) ∝

∏
f∈F cp(f)/(

∑
p∈P cp l̂p). Paths p ∈ P with no mapped fragments do not

contribute to
∏

f∈F cp(f), as there are no f ∈ F such that p(f) = p. These paths do play a
role in calculating the normalization constant

∑
p∈P cp l̂p. However, since we only remove

paths with very low l̂p, the contribution of cp l̂p from this set is small. This removal thus
causes small underestimation of the normalization constant, and in turn small overestimation
of transcript abundances (and path abundances).

If there is a removed path with large cp when optimized under this model, it means in the
inferred quantified transcript set there is are many fragments mapped to path p, even though
exactly zero fragments are mapped to p in the sequencing library. This mostly happens if
there is a dominant transcript with high abundance, and p is part of the transcript. For such
things to happen, the transcript must have many fragments mappable, and the fact that
no single fragment mapped to path p indicates l̂p is small, or the modeling might be faulty.
This trimming is necessary in practice, as the fragment length distribution D(l) usually has
a long tail when inferred from experiments, due to smoothing and potential mapping errors,
leading to many extremely long paths that are near impossible to sample a read from.

A.3 FlipFlop and the Fragment Graph
The fragment graph constructed by FlipFlop is defined as follows. Given splice graph G
and a set of phasing paths P (again we consider a general notion of phasing paths, meaning
single exon paths also count as phasing), the fragment graph GF is constructed such that

Each vertex in GF is either S, T , or a phasing path.
There is an edge connecting X to Y only if Y is a single exon extension or shrinking of
X (unless one of them is either S or T ).
Every S − T path in the splice graph can be mapped uniquely to a S − T path in the
fragment graph, and the set of vertices included in the S − T path is exactly the set of
phasing paths that are a subpath of the transcript.
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We only list a necessary condition in the second item, and we will not discuss how the graph
is constructed in practice here. The third item is essential for the FlipFlop algorithm, as it
solves the inference problem with convex cost flows which requires that every phasing path
is represented by a single vertex in the graph.

As discussed in the introduction, the FlipFlop algorithm is correct when input library is
single-end reads with fixed read length. This implies that if X is a phasing path, there are no
phasing paths that are extension of X on both ends (for example, if X = [3, 4], then [2, 3, 4, 5]
cannot be a phasing path), otherwise it would violate the condition that all reads have equal
length. We now show that there exists no correct fragment graph when the condition is
violated.

Figure A1 The fragment graph with 4 exons and 10 phasing paths, not including S and T . Blocks
denote vertices of the fragment graph, and lines denote possible edges between vertices (phasing
paths). A path visiting 9 vertices (excluding the singleton phasing path [2]) is marked in dark red,
and there is no Hamiltonian path in the graph.

Consider a splice graph with a chain of four exons denoted 1, 2, 3 and 4, and where
every subpath of [1, 2, 3, 4] is a phasing path. The fragment graph, if exists, will contain
10 vertices (excluding S and T ) and a Hamiltonian path corresponding to the transcript
[1, 2, 3, 4]. However, as seen in the above figure, the graph will not contain a Hamiltonian
path no matter how the graph is constructed.
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Figure A2 (A) Network flow of BD 2, BD 3, control 1, and control 2 samples estimated by Graph
Salmon. The subgraph includes exons 1, 3 to 7, and exons are represented by nodes and node label
indicates the index of exon. PSI of inclusion of exon 6 between exon 3 and 7 is computed. Edges of
which the flows are involved in PSI calculation are solid; the rest edges are dashed. (B) Network
flow of the same samples computed by Salmon with reference transcripts.
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