Disk Compression of k-mer Sets

Amatur Rahman

Department of Computer Science and Engineering, Pennsylvania State University, University Park,
PA, USA

aurl111@psu.edu

Rayan Chikhi
Department of Computational Biology, C3BI USR 3756 CNRS, Institut Pasteur, Paris, France
rayan.chikhi@pasteur.fr

Paul Medvedev
Pennsylvania State University, University Park, PA, USA
pzm11@psu.edu

—— Abstract

K-mer based methods have become prevalent in many areas of bioinformatics. In applications such
as database search, they often work with large multi-terabyte-sized datasets. Storing such large
datasets is a detriment to tool developers, tool users, and reproducibility efforts. General purpose
compressors like gzip, or those designed for read data, are sub-optimal because they do not take into
account the specific redundancy pattern in k-mer sets. In our earlier work (Rahman and Medvedev,
RECOMB 2020), we presented an algorithm UST-Compress that uses a spectrum-preserving string
set representation to compress a set of k-mers to disk. In this paper, we present two improved
methods for disk compression of k-mer sets, called ESS-Compress and ESS-Tip-Compress. They
use a more relaxed notion of string set representation to further remove redundancy from the
representation of UST-Compress. We explore their behavior both theoretically and on real data.
We show that they improve the compression sizes achieved by UST-Compress by up to 27 percent,
across a breadth of datasets. We also derive lower bounds on how well this type of compression
strategy can hope to do.

2012 ACM Subject Classification Applied computing — Computational biology

Keywords and phrases de Bruijn graphs, compression, k-mer sets, spectrum-preserving string sets
Digital Object Identifier 10.4230/LIPIcs.WABI.2020.16

Supplementary Material Software available at http://github.com/medvedevgroup/ESSCompress.

Funding PM and AR were supported by NSF awards 1453527 and 1439057.

Amatur Rahman: AR is supported by NIH Computation, Bioinformatics, and Statistics training
program.

Rayan Chikhi: INCEPTION project (PIA/ANR-16-CONV-0005).

1 Introduction

Many of today’s bioinformatics analyses are powered by tools that are k-mer based. These
tools first reduce the input sequence data, which may be of various lengths and type, to a
set of short fixed length strings called k-mers. K-mer based methods are used in a broad
range of applications, including genome assembly [4], metagenomics [38], genotyping [36, 14],
variant calling [34], and phylogenomics [25]. They have also become the basis of a recent
wave of database search tools [32, 33, 35, 15, 7, 5, 26, 13, 23], surveyed in [22]. K-mer based
methods are not new, but only recently they have started to be applied to terabyte-sized
datasets. For example, the dataset used to test the BIGSI database search index, which is
composed of 31-mers from 450,000 microbial genomes [7], takes about 12 TB to store in
compressed form.

© Amatur Rahman, Rayan Chikhi, and Paul Medvedev;

licensed under Creative Commons License CC-BY
20th International Workshop on Algorithms in Bioinformatics (WABI 2020).
Editors: Carl Kingsford and Nadia Pisanti; Article No. 16; pp. 16:1-16:18

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:aur1111@psu.edu
mailto:rayan.chikhi@pasteur.fr
mailto:pzm11@psu.edu
https://doi.org/10.4230/LIPIcs.WABI.2020.16
http://github.com/medvedevgroup/ESSCompress
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2

Disk Compression of k-mer Sets

Storing such large datasets is a detriment to tool developers, tool users, and reproducibility
efforts. For tool developers, development time is significantly increased when having to
manage such large files. Due to the iterative nature of the development process, these files
do not typically just sit in one place, but instead get created/moved/recreated many times.
For tool users, the time it takes for the tools to write these files to disk and load them into
memory is non-negligible. In addition, as we scale to even larger datasets, storage costs start
to play a larger factor. Finally, for reproducibility efforts, storing and moving terabytes of
data across networks can be detrimental.

To minimize these negative effects, disk compression of k-mer sets is a natural solution.
By disk compression, we refer to a compressed representation that, while supporting de-
compression, does not support any other querying of the compressed data. Compressed
representations that allow for membership queries [10] are important in their own right, but
are sub-optimal when only storage is required. Most k-mer sets are currently stored on disk
in one of two ways. In the situation where the set of k-mers comes from k-mer counting
reads, one can simply compress the reads themselves using one of many read compression
tools [17, 16, 24]. This approach requires the substantial overhead of running a k-mer counter
as part of decompression, but it is often used in the absence of better options. The second
approach is to gzip/bzip the output of the k-mer counter [19, 30, 21, 27, 37]. As we showed
in [29], both of these approaches are space-inefficient by at least an order-of-magnitude. This
is not surprising, as neither of these approaches was designed specifically for disk compression
of k-mer sets.

Disk compression tailor-made for k-mer sets was first considered in our earlier work [29)].
The idea was based on the concept of spectrum-preserving string sets (SPSS), introduced
in [9, 29, 8]. In [8], the concept of SPSS is introduced under the name simplitigs. A set of
strings S is said to be a SPSS representation of a set of k-mers K iff 1) the set of k-mers
contained in S is exactly K, 2) S does not contain duplicate k-mers, and 3) each string in
S is of length > k. The weight of an SPSS is the number of characters it contains. For
example, if K = {ACG,CGT,CGA}, then {ACGT,CGA} would be an SPSS of weight 7;
also K itself would be an SPSS of K of weight 9. On the other hand, {CGACGT?} is not
an SPSS, because it contains GAC ¢ K. Intuitively, a low weight SPSS can be constructed
by gluing together k-mers in K, with each glue operation reducing the weight by k& — 1.
In [29], we proposed the following simple compression strategy, called UST-Compress. We
find a low-weight SPSS S, using a greedy algorithm called UST, and compress S to disk
using a generic nucleotide compression algorithm (e.g. MFC [28]). UST-Compress achieved
significantly better compression sizes than the two approaches mentioned above.

UST-Compress was not designed to be the best possible disk compression algorithm but
only to demonstrate one of the possible applications of the SPSS concept. When the goal is
specifically disk compression, we are no longer bound to store a set of strings with exactly
the same k-mers as K, as long as a decompression algorithm can correctly recover K. The
main idea of this paper is to replace the SPSS with a more relaxed string set representation,
over the alphabet {A,C,G,T,|[,],+, —}. Our approach is loosely inspired by the notion of
elastic-degenerate strings [18]. It attempts to remove even more duplicate (k — 1)-mers from
the representation than SPSS does, using the extra alphabet characters as placeholders
for nearby repetitive (k — 1)-mers. For the above example, our representation would be
ACG[+A]T, where the “ 4 ” is interpreted as a placeholder for the k — 1 characters before
the open bracket (i.e. CG). After replacing the “ + 7, we get ACG[CGA]T and we split the
string by cleaving out the substring within brackets; i.e., we get ACGT and CGA.

A. Rahman, R. Chikhi, and P. Medvedev

Based on this idea, we present two algorithms for the disk compression of k-mer sets,
ESS-Compress and ESS-Tip-Compress. We explore the behavior of these algorithms both
theoretically and on real data. We give a lower bound on how well this type of algorithm
can compress. We show that they improve the compression sizes achieved by UST-Compress
by 10-27% across a breadth of datasets. The two algorithms present a trade-off between
time/memory and compression size, which we explore in our results. The two algorithms are
freely available open source tools on http://github.com/medvedevgroup/ESSCompress.

2 Preliminaries

2.1 Basic definitions

Strings: The length of string x is denoted by |z|. A string of length k is called a k-mer. We
assume k-mers are over the DNA alphabet. A string over the alphabet {A,C, G, T,[,],+, —}
is said to be enriched. We use - as the string concatenation operator. For a set of strings S,
weight(S) = Y, cg|z| denotes the total count of characters. We define sufy(z) (respectively,
preg(x)) to be the last (respectively, first) k characters of x. We define cutPrex(x) =
sufiz|—k(7) as @ with the prefix removed. When the subscript is omitted from pre, suf, and
cutPre, we assume it is k — 1. A string x is canonical if it is the lexicographically smaller of
x and its reverse complement.

For z and y with suf(z) = pre(y), we define gluing = and y as © ©y = x - cut Pre(y). For
s € {0, 1}, we define orient(x, s) to be z if s = 0 and to be the reverse complement of x if
s = 1. We say that o and z; have a (sg, $1)-oriented-overlap if suf(orient(zg,1 — s9)) =
pre(orient(x1,s1)). Intuitively, such an overlap exists between two strings if we can orient
them in such a way that they are glueable. For example, AAC and T'T'G have a (0, 0)-oriented
overlap.

Bidirected de Bruijn graphs: A bidirected graph G is a pair (V, E) where the set V are
called vertices and F is a set of edges. An edge e is a set of two pairs, {(uo, o), (u1,$1)},
where u; € V and s; € {0,1}, for ¢ € {0,1}. Note that this differs from the notion of an
edge in an undirected graph, where £ C V x V. Intuitively, every vertex has two sides,
and an edge connects to a side of a vertex (see Figure 1 for examples). An edge is a loop
if up = uy. Given a non-loop edge e that is incident to a vertex u, we denote side(u,) as
the side of u to which it is incident. We say that a vertex u is a dead-end if it has exactly
one side to which no edges are incident. A bidirected DNA graph is a bidirected graph G
where every vertex u has a string label lab(u), and for every edge e = {(ug, s0), (u1,51)},
there is a (sg, $1)-oriented-overlap between lab(ug) and lab(uy) (see Figure 1 for examples).
G is said to be overlap-closed if there is an edge for every such overlap. Let K be a set of
canonical k-mers. The node-centric bidirected de Bruijn graph, denoted by dBG(K), is the
overlap-closed bidirected DNA graph where the vertices and their labels correspond to K.
In this paper, we will assume that dBG(K) is not just a single cycle; such a case is easy to
handle in practice but is a space-consuming corner-case in all the analyses.

Paths and spellings: A sequence p = (ug, €1,U1,...,€n,Uy) is a path iff 1) for all 1 <i < n,
e; is incident to u;—1 and to u;, 2) for all 1 <i < n —1, side(u;,e;) = 1 — side(u;, e;41), and
3) all the u;s are different. A path can also be any single vertex. Vertices uq,...,u,_1 are

called internal and ug and u,, are called endpoints. We call ug to be the initiator vertex
of p. We say that p is normalized if for every e;, side(u;—1,e;) = 1 and side(u;, e;) = 0;
intuitively, the path uses edges like in a directed graph. The spelling of a normalized path
p is defined as spell(p) = lab(ug) @ - -+ © lab(uy,). If P is a set of normalized paths, then

spell(P) = U, p spell(p).

16:3

WABI 2020

http://github.com/medvedevgroup/ESSCompress

16:4

Disk Compression of k-mer Sets

Unitigs and the compacted de Bruijn graph: A path in dbG(K) is a unitig if all its vertices
have in- and out-degrees of 1, except that the first vertex can have any in-degree and the last
vertex can have any out-degree. A single vertex is also a unitig. A unitig is mazimal if it is
not a sub-path of another unitig. It was shown in [12] that if dBG(K) is not a cycle, then
the set of maximal unitigs forms a unique decomposition of the vertices in dBG(K) into
vertex-disjoint paths. The bidirected compacted de Bruijn graph of K, denoted by cd BG(K),
is the overlap-closed bidirected DNA graph where the vertices are the maximal unitigs of
dBG(K), and the labels of the vertices are the spellings of the unitigs. In practice, this
graph can be efficiently constructed from K using the BCALM?2 tool [12, 11].

Spanning out-forest: Given a directed graph D, an out-tree is a subgraph in which every
vertex except one, called the root, has in-degree one, and, when the directions on the edges
are ignored, is a tree. An out-forest is a collection of vertex-disjoint out-trees. An out-forest
is spanning if it covers all the vertices of D.

2.2 Path covers and UST-Compress

A wvertez-disjoint normalized path cover ¥ of ¢dBG(K) is a set of normalized paths such
that every vertex is in exactly one path and no path visits a vertex more than once; we
will sometimes use the shorter term path cover to mean the same thing. There is a close
relationship between SPSS representations of K and path covers, shown in [29]. In particular,
a path cover ¥ induces the SPSS spell(¥). An example of a path cover is one where every
vertex of cdBG(K) is in its own path, and the corresponding SPSS is the set of all maximal
unitig sequences. Figures 1 and 2 show examples of path covers. The number of paths in ¥
(denoted as |¥|) and the weight of the induced SPSS is closely related:

weight(spell(V)) = | K|+ |V|(k — 1) (1)

This relationship also translates to the number of edges in ¥; by its definition, the number
of edges in ¥ is simply the number of vertices in ¢d BG(K) minus |¥|.

The idea of our previous algorithm UST-Compress [29] is to find a path cover Uy with
as many edges as possible. Having more edges reduces the number of paths, which in turn
reduces the weight of the corresponding SPSS and the size of the final compressed output.
We can understand this intuitively as follows. Edges in ¢d BG(K) connect unitigs whose
endpoints have the same (k — 1)-mer (after accounting for reverse complements). For every
edge we add to our path cover, we glue these two unitigs and remove one duplicate instance
of the (k — 1)-mer from the corresponding SPSS. Note however that Uy gr does not remove
all duplicate (k — 1)-mers from the SPSS, because ¥ can only have two edges incident on a
vertex, one from each side, and hence a unitig can only be glued at most twice. If a unitig
has edges to more than two other unitigs, then some of the adjacent unitigs would include
the duplicate (k — 1)-mer in the SPSS. The idea of our paper is to exploit the redundancy
due to those remaining edges an thus further reduce the size of the representation.

3 ESS-Compress

3.1 Main algorithm

Our starting point is a set of canonical k-mers K, the graph ¢dBG(K), and a vertex-disjoint
normalized path cover ¥ of cd BG(K) returned by UST.! To develop the intuition for our

b Though we did not explain it in [29], UST always returns normalized paths. It flips any vertex that is in
the wrong orientation on its path, by reverse complementing its label, without affecting anything else.

A. Rahman, R. Chikhi, and P. Medvedev

algorithm, we first consider a simple example (Figure 1A). In this example, we see a vertex-
disjoint path cover ¥ composed of two paths, P and °. There is an edge between an
internal vertex (=unitig 2) u? of ¥? and the initiator vertex u¢ of 1. Such an edge is an
example of an absorption edge. ESS-Compress constructs an enriched string representation
of K, as shown in the figure. The basic idea is that u” and u° share a common (k — 1)-mer
(i.e. GT). We can cut out this common portion from the string representing u¢ and replace
it with a special marker character “+”. We can then include u¢ inside of the representation
of P by surrounding u® with brackets. The marker character “ 4+ ” is a placeholder for the
k — 1 nucleotides right before the opening bracket. To decompress the enriched string, we
first replace the marker to get TCGT[GT AA|T and then cleave out the bracketed string to
get {TCGTT,GTAA}. This exactly recovers the SPSS representation of ¢? and °.

Formally, we say that an edge in cd BG(K) is an absorption edge iff 1) it connects two
unitigs u? and u€, on two distinct paths ¢¥? and ¢, respectively, 2) uP is an internal vertex,
and 3) u€ is an initiator vertex. We refer to u? and ¢? as parents and u® and ¢ as children;
we also say that 1? and uP absorb ¢ and u°. 3

Figure 1B-D shows the other cases, corresponding to the possible orientation of the
absorption edge. The logic is the same, but we need to introduce a second marker character
“ — 7 that is a placeholder for the reverse complement of the last k£ — 1 characters right before
the opening bracket. In each of these cases, we add 3 extra characters (two brackets and one
marker) and remove k — 1 nucleotide characters.

Next, observe that a single parent path can absorb multiple children paths, as illustrated
in Figure 2A. Also, observe that a single parent unitig can absorb more than one child path,
as shown in Figure 2B. As in the previous example, we save k — 1 — 3 = k — 4 characters for
every absorbed edge.

These absorptions can be recursively combined, as shown in Figure 2C. Because we
require a parent unitig to be an internal vertex and a child unitig to be an initiator vertex,
the same unitig cannot be both parent and child. Therefore, ESS-Compress can construct a
representation recursively, without any conflicts. The recursion tree is reflected in the nesting
structure of the brackets in the enriched string.

However, we must be careful to avoid cycles in the recursion. We define the absorption
digraph D 4 as the directed graph whose vertex set is the set of paths ¥ and an edge (¢ — ¢°)
if 1P absorbs €. For every edge in D 4, we also associate the corresponding bidirected edge
between u? and u° in ¢dBG(K). We would like to select a subset of edges F' along which to
perform absorptions, so as to avoid cycles in D 4 and to make sure a path cannot be absorbed
by more than one other path. We would also try to choose as many edges as possible, since
each absorption saves k — 4 characters. To achieve these goals, ESS-Compress defines F' as a
spanning out-forest in D4 with the maximum number of edges. We postpone the algorithm
to find F' to Section 3.2.

The high-level pseudo-code of ESS-Compress is shown in Algorithm 1 and illustrated
in Figure 3. The recursive algorithm to create the enriched representation using F' as a
guide is shown in Algorithm 2. It follows the intuition we just developed. It starts from the
paths that will not be absorbed (i.e. the roots in F'). For a path ¢?, it first computes the
enriched representations of all the child paths (Lines 3 to 9). It then integrates them into

Note that the vertices of this graph (i.e. cd BG(K)) correspond to maximal unitigs in the non-compacted
graph (i.e. dBG(K)). We will generally use “vertex” and “unitig” interchangeably, to refer to a vertex
in cdBG(K). We never use “unitig” to refer to a type of path in cdBG(K).

In our code, we actually allow a slightly broader definition of absorption. In particular, we also allow an
edge to be absorbing if u? is an initiator and s =1, or if u? is an initiator and |lab(u?)| > 2k — 2. For
the sake of simplicity, we do not consider this edge case in the paper.

16:5

WABI 2020

16:6

Disk Compression of k-mer Sets

Panel (A) Panel (B)

uP P
g 106 >—[cet »—{arT > o 106 >— o >—lem >

N u 7
v lema) v [T y—om
uC
TCGTT Compress TCGTT Compress
GTAA TCGT[+AA]T ACTA TCGT[-TA]T
Decompress Decompress
SPsS ESS-Compress representation SPSS ESS-Compress representation
Panel (C) Panel (D)

\
v

u? p
v [P > HaacH—ncs > o [10e> Jear> [orm>

. uf

Y°| | ceca CGC

TAACG Compress [] TCGTT Compress []
TAA[-GA]CG TCG[C+C]TT
TTGA Decompress ccac Decompress
SPSS ESS-Compress representation SPSS ESS-Compress representation

Figure 1 Examples of the four types of absorption. Each panel shows the edges along two paths:
P (red vertices inside a shaded rectangle) and ¢ (blue vertices inside a shaded rectangle) and an
absorption edge e = {(u?, s?), (u®, s°)} (dashed line) between the parent unitig v* and the child
unitig u¢. The graph being shown in each panel is cd BG(K), but only the absorption edge and the
edges of ¢¥” and ¢° are shown. In this simple example, the unitigs of dBG(K) are just paths made of
single vertices, and hence the vertices of cd BG(K) have labels of length k = 3. Each vertex is shown
as a pointed rectangle with its label inside; we use the convention that the “zero” side of a vertex
is the flat side on the left, and the “one” side is the pointy side on the right. At the bottom left
of each panel, we show the spectrum-preserving string set (SPSS) spell({¢?,¢°}). At the bottom
right, we show the enriched representation generated by our algorithm. Depending on the value of s?
and s°, four different cases can arise. When s = 1,s° = 0 (shown in (A)), pre(lab(u®)) is replaced
with marker “4”, as it is same as suf(lab(u?)). When s? = 1,s° =1 (shown in (B)), pre(lab(u®))
is replaced by “—”, as it is same as the reverse complement of suf(lab(u?)). When s = 0,s° =0
(shown in (C)), pre(lab(u®)) is replaced with “—7, as it is the same as the reverse complement of
pre(lab(u?)). When s? = 0,s° =1 (shown in (D)), suf(lab(u®)) is replaced with “+”, as it is the
same as pre(lab(uP)).

A. Rahman, R. Chikhi, and P. Medvedev

Panel (A) Panel (B)

w

T

\
\

p

CTCGTT Compress

TTCC CTC[T+C]GT[+AA]T ATCT
L GTAA) Decompress CTCGTT Compress

SPSS ESS-Compress representation TTCCA T CTC[A+T][T+CA]G[+CT]TT
Decompress
CGCT
SPSS ESS-Compress representation

Panel (C)

CTCGTT Compress
TTCCA CTC[T+C[+GC]JA]GTT
CCGC Decompress

SPSS ESS-Compress representation

Figure 2 More complex absorption examples. In (A), one path absorbs multiple paths. In (B),
one unitig u? absorbs multiple paths. In (C), one path (1) absorbs another (¢2) which itself absorbs
another (13). This is a recursive absorption, showing how a path can be both a child and a parent.

1. Input: set 2. Build the cdBG and a path 3. Build an absorption graph D, 4. Compute edge-maximizing

of canonical coverv spanning forest F
k-mers K e RIS
OO0 ! oo
a P g I ’ 71—
’ I P / ’

5. Output: enriched string set X [(-1l 0 | 11 D

Figure 3 Visual overview of the steps in Algorithm 1.

16:7

WABI 2020

16:8

Disk Compression of k-mer Sets

Algorithm 1 ESS-Compress (K)
Input: a set of canonical k-mers K
Output: a set of enriched strings X.

1: Construct cd BG(K)

2: Run UST to get a path cover ¥

3: Run DFS algorithm to get F, a spanning out-forest of the absorption graph D 4
4: X <0

5. for each path ¢ which is a root in F' do

6: add Spell-Path-Enrich (3, null) to X

7. end for

8 return X

the appropriate locations of spell(1?) (Lines 10 to 14). It then uses a marker to replace the
redundant sequence in the spelling of ¢?, with respect to ¢?’s own parent (Lines 17 to 31).
To decide which marker to use, it receives as a parameter the absorption edge ep that was
used to absorb P.

Decompression is done by a recursive algorithm DEC that takes as input an enriched
string x and a (k — 1)-mer called marker Replacement. Initially, DEC is called independently
on every enriched string x € ESS-Compress(K), with marker Replacement = null. We call
the characters of = which are not enclosed within brackets outer. The brackets themselves
are not considered outer characters. DEC first replaces any occurrence of an outer “ + ”
(respectively, “ — 7) with markerReplacement (respectively, the reverse complement of
marker Replacement). It then outputs all the outer characters as a single string. Then, for
every top-level open/close bracket pair in z, it calls DEC recursively on the sequence in
between the brackets, and passes as marker Replacement the rightmost k£ —1 outer characters
to the left of the open bracket.

3.2 Algorithm to choose absorption edges

Let D be any directed graph and consider the problem of finding a spanning out-forest with
the maximum number of edges. We call this the problem of finding an edge-maximizing
spanning out-forest. This problem is a specific instance of the maximum weight out-forest
problem [3], which allows for weights to be placed on the edges. As we show in this section,
there is an optimal algorithm for our problem that is simpler than the algorithm for arbitrary
weights described in [3].

Our algorithm first decomposes D into strongly connected components, and builds SC(D),
the strongly connected component digraph of D. In SC(D), the vertices are the strongly
connected components of D, and there is an edge from component ¢; to ¢y if there is an edge
in D from some vertex in ¢; to some vertex in cs. For every component that is a source in
SC(D), we pick an arbitrary vertex from it (in D) and put it into a “starter” set. Then, we
perform a depth-first search (DFS) traversal of D, but whenever we start a new tree, we
initiate it with a vertex from the starter set, if one is available. We remove the vertex from
the starter set once it is used to initiate a tree. We then output the DFS forest F'.

We will prove that F' is a spanning out-forest of D with the maximum number of edges.

» Lemma 1 (Correctness of edge-maximizing spanning out-forest algorithm). Let D be a directed
graph, let F be the spanning out-forest returned by our algorithm run on D, and let ng. be
the number of source components in SC(D). Then, the number of out-trees in F is ng. and
this is the smallest possible for any spanning out-forest. Also, the number of edges in F is
the maximum possible for any spanning out-forest.

A. Rahman, R. Chikhi, and P. Medvedev

Algorithm 2 Spell-Path-Enrich(y,ep)
Input: a path 1 corresponding to the sequence of unitigs uo, ..., un. If ¥ is itself absorbed, then
the absorption edge ep.
Output: an enriched string representation of i) and all its descendent paths in F.

for i =0 ton do > for each unitig in 1
Use u” to denote the i*" unitig of 1.
> absorbed enriched strings to insert at the end

wn

1:
2:
3 NSy =
4 insy =7 > absorbed enriched strings to insert after prefix
5: for each unitig u¢ absorbed by u? in F' do

6 Let e = {(u?, sP), (u, s°)} be the corresponding absorption edge in cd BG(K)

7 Let ¢ € ¥ be the path containing u°.

8 insge < insge - Spell-Path-Enrich(y°, e)

9

: end for
10: if i =0 then > if u? is the first unitig in ¢
11: enrichedStr[i] < pre(lab(u?)) - insg - cut Pre(lab(u?)) - ins;
12: else
13: enrichedStr(i] < insg - cut Pre(lab(u?)) - insy
14: end if
15: end for
16: = < concatenate enrichedStr[i], in increasing order of i
17: if ep # null then > if ¢ is not a root in F’
18: /* Perform marker replacement, following Figure 1 */

19: Let {(uP, sP), (u®, s} =ep
20: if (sP xor s°) =1 then

21: marker =“+7

22: else

23: marker =“—7"

24: end if

25: if s° =1 then

26: In z, replace suf(lab(u)) with marker
27: else

28: In z, replace pre(lab(u®)) with marker
29: end if

30: e K R I

31: end if

32: return x

Proof. Consider any spanning out-forest of D. If it has less than ng. out-trees, then by the
pigeonhole principle, there are two source components c¢; and ¢y with vertices v; and ws,
respectively, belonging to the same out-tree. This is a contradiction, since ¢; and ¢y are source
components and hence there cannot be a path between them. Hence, any spanning out-forest
must have at least ng. out-trees. Now, consider F'. Every vertex in D is reachable from one
of the vertices in the starter set, by its construction. There are ng. starter vertices, so F' will
have at most ng. out-trees. Since any spanning out-forest must have at least ng. out-trees,
F will have ng. out-trees and it will be the minimum achievable. Also, in any spanning
out-forest, the number of edges is the number of vertices minus the number of out-trees;
hence F will have the the maximum number of edges of any spanning out-forest. <

16:9

WABI 2020

16:10

Disk Compression of k-mer Sets

3.3 The weight of the ESS-Compress representation

In this section, we derive a formula for the weight of the ESS-Compress representation and
explore the potential benefits of some variations of ESS-Compress.

» Theorem 2. Let K be a set of canonical k-mers, and let U be a vertex-disjoint normalized
path cover of cdBG(K) that is used by ESS-Compress(K). Let ng. be the number of sources
in the strongly connected component graph of the absorption graph D 4. Let X be the solution
returned by ESS-Compress(K). Then

weight(X) = |K| + 3|¥| 4+ nge(k — 4)

Proof. If we unroll the recursion of ESS-Compress, then there are exactly |¥| runs of
Spell-Path-Enrich, one for each 1) € ¥. For each call, we let ny be the number of characters
in the returned string that are added non-recursively (i.e. everything except insg and insy).
Considering the structure of the recursion and accounting for characters in this way, we have
that weight(X) =3 ,cq -

Prior to marker replacement (Line 17, the non-recursive part of x is spell(1)). When
1 is a root in the absorption forest F', then the marker absorption stage is not executed
and so ny = |spell(y)|. Otherwise, the marker absorption phase (Lines 17 to 31) removes
k — 1 characters, adds 1 new marker character, and adds two new bracket characters. Hence,
ny = |spell(y)] — (kK — 1)+ 3 = |spell(y)| — (k —4). By Lem. 1, F' contains n,. roots. Hence,

weight(X) =Y ny = Y lspell()|+ Y |spell(¥)] — (k —4)

Ppew 1 is a root 1 is not a root
= > lspell ()] = (k = (|| = nue) = |K| + 3¥| = nye(k — 1)
Ppew
The last equality follows by applying Equation (1) from Section 2. <

We can use Thm. 2 to better understand ESS-Compress. The weight depends on the
choice of ¥. The ¥ returned by UST has, empirically, almost the minimum |¥| possible [29].
This (almost) minimizes the 3|¥| term in Thm. 2. However, this may not necessarily lead to
the lowest total weight, because there is an interplay between ¥ and n,., as follows. Let ¥’
be a vertex-disjoint normalized path cover with |¥’| > |¥|. Its paths are shorter, on average,
than W’s. There may now be edges of cdBG(K) that become absorption edges, that were
not with W. For example, an edge between two unitigs which are internal in ¥ is not, by our
definition, an absorption edge. With the shorter paths in ¥’, one of these unitigs may become
an initiator vertex, making the edge absorbing. This may in turn improve connectivity in
D4 and decrease ng., counterbalancing the increase in |¥’|. Nevertheless, ESS-Compress
does not consider alternative path covers and always uses the one returned by UST.

Another aspect of ESS-Compress that could be changed is the definition of absorption
edge. We restrict absorption edges to be between an initiator unitig and an internal unitig;
however, one could in principle also define ways to absorb between an endpoint unitig and
an internal unitig, or between two internal unitigs. This could potentially decrease ng. by
increasing the number of absorption edges, though it would likely need more complicated
and space-consuming encoding schemes.

How much could be gained by modifying the path cover and the absorption rules that
ESS-Compress uses? We can answer this by observing that ng. cannot be less than C| the
number of connected components of the undirected graph underlying cd BG(K). At the same
time, in [29] we gave an algorithm to compute an instance-specific lower bound /3 on the
number of paths in any vertex-disjoint path cover. Putting this together, we conclude that

A. Rahman, R. Chikhi, and P. Medvedev

regardless of which path cover is used and which subset of cd BG(K) edges are allowed to be
absorbing, the weight of a ESS-Compress representation cannot be lower than:

|K|+ 36+ C(k—4) (2)

As we will see in the results, the weight of ESS-Compress is never more than 2% higher
than this lower bound, which is why we did not pursue these other possible optimizations to
ESS-Compress. We note, however, that the above is not a general lower bound and does not
rule out the possibility of lower-weight string set representations that beat ESS-Compress.

4 ESS-Tip-Compress: a simpler alternative

ESS-Compress is designed to achieve a low compression size but can require a large memory
stack due to its recursive structure. The memory during compression and decompression
is proportional to the depth of this stack, which is the depth of the out-forest F. If
F were to be more shallow, then the memory would be reduced. In this section, we
describe ESS-Tip-Compress, a simpler, faster, and lower-memory technique that can be used
when compression speed/memory are prioritized. It is centered on dead-end vertices in the
compacted graph, which usually correspond to tips in the uncompacted dBG and are typically
due to sequencing errors, endpoints of transcripts, or coverage gaps. ESS-Tip-Compress is
based on the observation that a large chunk of the graph is dead-end vertices (at least for
sequencing data), and limiting absorption to only them can yield much of the benefits of a
more sophisticated algorithm.

First, we find a vertex-disjoint normalized path cover ¥ that is forced to have each
dead-end vertex in its own dedicated path (i.e. its path only contains the vertex itself). This
can be done easily by running UST on the graph obtained from ¢dBG(K) by removing all
dead-end vertices. Next, we select the absorption forest F' as follows. For each dead-end
vertex v, we identify a non-dead-end vertex u which is connected to v via an edge e. In the
rare case that such a u does not exist, we skip v. Otherwise, we add (u — v) to F. We can
assume without loss of generality that side(u,e) = 1 — side(v, e) because if that is not the
case, than we can replace lab(v) by its reverse complement and thereby change the side to
which e is incident. For any paths that remain uncovered by F', we add them as roots of
their own tree. Finally, we run a slightly modified version of Spell-Path-Enrich, using this ¥
and this F.

We modify Spell-Path-Enrich as follows. First, observe that F' has max depth of 2 vertices.

Hence, the parenthesis generated by Spell-Path-Enrich are never nested. Second, observe
that the marker value is always “ + ”, because side(u,e) = 1 — side(v, e) for all absorption
edges in F'. These observations allow us to reduce the number of extra characters we need
for each absorption down to 2, instead of 3 (we omit the implementation details).

5 Empirical Results

We evaluated our methods on one small bacterial dataset, two metagenomic datasets from

NTH human microbiome project, and RNA-seq reads from both human and plant (Table 1).

To obtain the set of k-mers K from these datasets, we ran the DSK k-mer-counter [30]
with & = 31 and filtered out low-frequency k-mers (<5 for whole human and <2 for the
other datasets). We then constructed cd BG(K) using BCALM2. The last three columns
in Table 1 show the properties of the graph: number of vertices, number of dead-end vertices
and total percentage of isolated vertices. We ran all our experiments single-threaded on

16:11

WABI 2020

16:12

Disk Compression of k-mer Sets

Table 1 Dataset characteristics.

Read distinct dead-end isolated
Dataset Source Length # reads # 31-mers # unitigs g unitigs K unitigs

(bp)
R. sphaeroides GAGE [31] 101 2,050,868 5,908,467 442,681 47% 8%
Human RNA-seq SRR957915 101 49,459,840 101,017,526 7,665,682 40% 13%
Gingiva metagenome SRS014473 101 55,419,548 101,872,420 5,678,516 36% 15%
Soybean RNA-seq SRR11458718 125 83,594,116 111,206,789 3,659,969 28% 12%
Tongue metagenome SRS011086 101 81,664,789 165,159,726 11,358,233 37% 11%
Whole human ERR174310 101 207,579,467 2,319,022,432 51,094,913 14% 18%

a server with an Intel(R) Xeon(R) CPU E5-2683 v4 @ 2.10GHz processor with 64 cores
and 512 GB of memory. We used /usr/bin/time to measure time and memory. Detailed
steps to reproduce our experiments are available at https://github.com/medvedevgroup/
ESSCompress/tree/master/experiments.

The output of our tools was compressed with MFC. Note that MFC is not optimized
for non-nucleotide characters, but such characters are rare in our string sets (< 0.1 bits per
k-mer). We compared our tools against four other approaches. The first is UST-Compress,
which we showed in our previous work to outperform other disk compressors [29]. The second
is to strip the read FASTA files of all non-sequence information and compress them using
MFC. The third is to simply write one distinct k-mer per line to a file and compress it
using MFC. The fourth is the BOSS method, as implemented in [1]. BOSS is a succinct
implementation of a de Bruijn graph [6]. Though it is designed to answer membership queries,
it also achieved the closest compression size to UST-Compress in our previous study [29]. As
in [29], we compressed BOSS’s binary output using LZMA. We confirmed the correctness of
all evaluated tools, including our own, on the datasets.

We did not explore the possibility of replacing UST in our pipeline with ProphAsm [2].
ProphAsm is an alternative algorithm to compute an SPSS called simplitigs, but we showed
in [29] that the UST SPSS representation is nearly optimal, with only 2-3% difference to
the lower bound of weight. Since ProphAsm computes the same kind of representation,
it is impossible for it to improve result beyond 2-3%. We also did not compare against
other k-mer membership data structures because in our previous paper [29], we showed that
UST-Compress and BOSS achieve a better compression ratio on the tested datasets.

String set properties

We first measure the weights and sizes of our ESS-Compress and ESS-Tip-Compress, shown
in Table 2. ESS-Compress uses 13-42% less characters than UST. ESS-Tip-Compress was
worse than ESS-Compress (6-13% larger), but still better than UST-Compress (3-38%
smaller). The lower bound computed by Eq. 2 is very close to the weight of ESS-Compress
(within 1.7%, Table 2), indicating that the alternate strategies explored in Section 3.3 would
not be useful on these datasets.

Compression size

Table 3 shows the final compression sizes, after the string sets are compressed with MFC.
ESS-Compress outperforms the second best tool (which is usually UST-Compress) by 4-27%.
It outperforms the naive strategies (i.e. read FASTA or one k-mer per line) by an order-
of-magnitude. Interestingly, it outperforms ESS-Tip-Compress by only 1-8%; this can be
attributed to the large number of dead-end vertices (Table 1).

https://github.com/medvedevgroup/ESSCompress/tree/master/experiments
https://github.com/medvedevgroup/ESSCompress/tree/master/experiments

A. Rahman, R. Chikhi, and P. Medvedev

Table 2 The weights and sizes of various string set representations. The rightmost column shows
the lower bound computed by Equation (2) in Section 3.3. The weight of ESS-Compress was verified
to be the same as predicted by Theorem 2.

Eq. 2

UST ESS-Tip-Compress ESS-Compress lower

bound

. #char/ . #char/ . #kchar/ | #char/

Dataset # strings fe-mer # strings feomer # strings fe-mer fe-mer
R. sphaeroides 240,562 2.22 61,909 1.38 36,456 1.29 1.28
Human RNA-seq 4,098,389 2.22 1,834,945 1.60 1,098,938 1.42 1.39
Gingiva metagenome 3,095,476 1.91 1,499,270 1.48 917,388 1.33 1.32
Soybean RNA-seq 1,806,078 1.49 1,137,350 1.32 515,244 1.17 1.17
Tongue metagenome 6,030,814 2.10 2,664,422 1.53 1,327,701 1.33 1.32
Whole human 22,072,219 1.32 | 21,320,263 1.28 | 10,321,275 1.15 1.14

Table 3 The compression sizes, as measured in bits per k-mer in the compressed output. All
string representations (i.e. not BOSS) are compressed using MFC in the final step. Since BOSS is a
binary representation, we use LZMA for the final compression step.

Read One k-mer UST- ESS-Tip- ESS-
Dataset FASTA per line BOSS Compress Compres]'ps Compress
R. sphaeroides 45.4 28.4 6.55 3.93 2.90 2.87
Human RNA-seq 45.8 31.7 6.89 4.14 3.43 3.33
Gingiva metagenome 48.0 324 10.64 3.76 3.22 3.05
Soybean RNA-seq 43.0 33.1 5.97 2.83 2.66 2.55
Tongue metagenome 48.1 33.3 3.59 4.07 3.32 3.07
‘Whole human 31.9 48.2 4.65 2.49 2.46 2.40

We observe that our improvement in weight (Table 2) does not directly translate to
improvement after compression with MFC (Table 3). For ESS-Compress, the average
improvement in weight over UST is 30% but the improvement in bits is 17%. We attribute
this to the fact that MFC works by exploiting redundant regions, based on their context.
Thus, the redundant sequence that ESS-Compress removes is likely the sequence that was
more compressible by MFC and hence MFC looses some of its effectiveness.

We also verified that ESS-Compress can successfully compress datasets of varying k-
mer sizes (between 21 and 71) and low-frequency thresholds (2,3, and 4). Figure 4 shows
compressed sizes of human RNA-seq data in bits/k-mer as well as their weights compared
to the lower bounds. The weight of ESS-Compress closely matches the lower bound across
all parameters (< 2.4% gap), but the weight and compression size increase for larger k and
lower thresholds.

Decompression and compression time and memory

The cost of decompression is important since it is incurred every time the dataset is used
for analysis. For both ESS-Compress and ESS-Tip-Compress, the decompression memory is
< 1 GB (Table 5) the time is < 10 minutes for the large whole human dataset and < 1.5

minutes for the other datasets (Table 4). Both of these are dominated by the MFC portion.

Compression is typically done only once, but the time and memory use can still be
important in some applications. Tables 5 and 6 show the compression time and memory

16:13

WABI 2020

16:14

Disk Compression of k-mer Sets

2.4

—+— threshold=2 —+— threshold=2

————— threshold=2 24 | threshold=3
& 4 |~ threshold=3 —+— threshold=4

———— threshold=3

—+— threshold=4

- | threshold=4

2.0

3.0

number of char/k-mer
1.6 18
|

compression size (bits/k—-mer)

14
25

—

Figure 4 Compression performance of ESS-Compress when varying k and the low-frequency filter
threshold, on Human RNA-seq dataset. In the left panel, solid lines represent the weight of the
ESS-Compress representation, compared against the lower bound, represented by the dashed lines.
In the right panel, compressed sizes are shown in bits/k-mer.

Table 4 Decompression time in seconds. The time is broken down into the portion taken by
MFC to decompress the binary file into an enriched string set and the portion taken by our core
algorithm to decompress the enriched string set into an SPSS. Note that BOSS does not implement
decompression (because it is a membership data structure) so it is not included.

D ‘ UST-Compress ‘ ESS-Tip-Compress ‘ ESS-Compress
ataset

| MFC-D | MFC-D Core Total | MFC-D Core Total
R. sphaeroides 3 2 1 4 2 1 3
Human RNA-seq 40 41 19 60 34 17 51
Gingiva metagenome | 37 38 16 54 30 15 45
Soybean 31 33 13 46 29 13 42
Tongue metagenome | 62 61 28 89 49 25 74
‘Whole human 302 337 259 596 303 250 553

usage. For UST-Compress, the time is dominated by the ¢dBG construction step (i.e.
BCALM2). For ESS-Compress, the time and memory are significantly increased beyond
that. Here, the advantage of ESS-Tip-Compress stands out. Its run time is nearly the same
as UST-Compress, and its memory, while close to UST-Compress, is significantly lower than
ESS-Compress.

Note that MFC is one of many DNA sequence compressors that can be used with
our algorithms. MFC is known to achieve superior compression ratios but is slower for
compression/decompression than other competitors [20]. We recommend using MFC since it
was not the time or memory bottleneck during compression, in our datasets.

A. Rahman, R. Chikhi, and P. Medvedev

Table 5 Peak memory usage for compression and decompression. Decompression takes far less
memory than compression, so compression memory is shown in GB and decompression memory in
MB. Decompression memory is split in the same manner as the running time in Table 4.

H Compression (GB) H Decompression (MB)

Dataset H UST- ESS-Tip- ESS- H UST-Compress ‘ ESS-Tip-Compress ‘ ESS-Compress
BOSS Compress Compress Compress

| || MFCD | MFCD Core | MFC-D Core
R. sphaeroides 2 3 3 3 509 513 3 513 4
Human RNA-seq 4 3 3 6 515 515 3 515 38
Gingiva metagenome 4 2 2 5 515 515 3 515 4
Soybean 4 2 2 3 515 515 3 515 12
Tongue metagenome 4 2 2 9 515 515 3 515 6
Whole human 5 12 11 42 515 515 3 515 735

Table 6 Compression time, measured in minutes. The column for BOSS includes the time for
k-mer counting the reads using KMC [19], the time to run BOSS construction, and the time to run
LZMA. The total time in UST-Compress, ESS-Tip-Compress and ESS-Compress include the time
to compute cd BG from the reads using BCALM, which is same for all three. The columns labelled
core refer to Algorithm 1. ESS-Tip-Compress core uses the specific instance of Algorithm 1 defined
in Section 4.

Dataset ‘ BOSS ‘ BOALM ‘ UST-Compress ‘ ESS-Tip-Compress ‘ ESS-Compress

\ \ | UST MFC Total | Core MFC Total | Core MFC Total
R. sphaeroides 0.2 0.4 0.1 0.1 1 0.1 0.0 1 0.2 0.0 1
Human RNA-seq 4.0 6.6 1.6 0.8 9 1.3 0.7 9 5.0 0.6 12
Gingiva metagenome 4.3 5.5 1.2 0.7 7 1.0 0.7 7 3.4 0.6 10
Soybean 5.7 9.6 0.8 0.6 11 0.7 0.7 11 2.4 0.5 13
Tongue metagenome 7.4 8.7 1.6 0.8 11 1.9 1.1 12 7.6 0.9 17
Whole human 95 106 11 7 124 10 6 122 40 7 152

6 Discussion

In this paper, we presented a disk compression algorithm for k-mer sets called ESS-Compress.
ESS-Compress is based on the strategy of representing a set of k-mers as a set of longer
strings with as few total characters as possible. Once this string set is constructed, it is
compressed using a generic nucleotide compressor such as MFC. On real data, ESS-Compress
uses up to 42% less characters than the previous best algorithm UST-Compress. After MFC
compression, ESS-Compress uses up to 27% less bits than UST-Compress.

We also presented a second algorithm ESS-Tip-Compress. It is simpler than ESS-Compress
and does not achieve as good of compression sizes. However, the difference is less than 8%
on our data, and it has the advantage of being about twice as fast and using significantly
less memory during compression. For many users, this may be a desirable trade-off.

Our algorithms can also be used to compress information associated with the k-mers in K,
such as their counts. Every k-mer in K corresponds to a unique location in the enriched string
set. The counts can then be ordered sequentially, in the same order as the k-mers appear in
the string set, and stored in a separate file. This file can then be compressed/decompressed
separately using a generic compressor. After decompression of the enriched string set, the
order of k-mers in the output SPSS will be the same as in the counts file.

We discussed several potential improvements to ESS-Compress, such as allowing more
edges in the compacted de Bruijn graph to be absorbing or exploring the space of all path
covers. We also gave a lower bound to what such improvements could achieve and showed

16:15

WABI 2020

16:16

Disk Compression of k-mer Sets

they cannot gain more than 2% in space on our datasets. This makes these improvement of
little interest, unless we encounter datasets where the gap is much larger.

ESS-Compress works by removing redundant (k — 1)-mers from the string set, but a more
general strategy could be to somehow remove /-mer duplicates, for all £,,;, < £ < k—1. Such
a strategy would require novel algorithms but would still be unable to reduce the characters
per k-mer below one. On our datasets, this amounts to at most a 30% improvement in
characters, which would be further reduced after MFC compression. It is also not clear if a
30% improvement in characters is even possible, since this kind of strategy would require a
more sophisticated encoding scheme with more overhead.

Another direction to achieve lower compression sizes is to look beyond string set approaches.
We observe, for example, that the large improvement of ESS-Compress compared to UST-
Compress, measured in the weight of the string set, was significantly reduced when measured
in bits after MFC compression. This indicates that some of the work done by ESS-Compress
duplicates the work done by MFC on UST, which is itself designed to remove redundancy in
the input. Thus, generic compressors such as MFC could potentially be modified to work
directly on k-mer sets.

We believe that the biggest opportunity for improving the two algorithms of this paper
are the compression time and memory. The time is dominated by the initial step of running
BCALM2 to find unitigs. It may be possible to avoid this step by running UST directly on
the non-compacted graph. Such an approach was taken in [8], and it would be interesting to
see if it ends up improving on the memory and run-time of BCALM2. The memory usage,
on the other hand, can likely be optimized with better software engineering. The current
implementation of Algorithm 2 is done in a memoized bottom-up manner. Instead, a top
down iterative implementation can reduce memory usage by directly writing to disk as soon
as a vertex is processed. A “max-depth” option in Algorithm 2 could also be used to limit
the depth of the recursion, thereby controlling memory at the cost of the compression ratio.

—— References

1 URL: https://github.com/cosmo-team/cosmo/tree/VARI.
URL: https://github.com/prophyle/prophasm.

3 Jorgen Bang-Jensen and Gregory Z Gutin. Digraphs: theory, algorithms and applications.
Springer Science & Business Media, 2008.

4 Anton Bankevich, Sergey Nurk, Dmitry Antipov, Alexey A Gurevich, Mikhail Dvorkin,
Alexander S Kulikov, Valery M Lesin, Sergey I Nikolenko, Son Pham, Andrey D Prjibelski,
et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing.
Journal of computational biology, 19(5):455-477, 2012.

5 Timo Bingmann, Phelim Bradley, Florian Gauger, and Zamin Igbal. COBS: a compact
bit-sliced signature index. arXiv preprint arXiv:1905.09624, 2019.

6 Alexander Bowe, Taku Onodera, Kunihiko Sadakane, and Tetsuo Shibuya. Succinct de bruijn
graphs. In Proceedings of the 12th International Conference on Algorithms in Bioinformatics,
volume 7534 of LNCS, page 225-235. Springer, 2012.

7 Phelim Bradley, Henk C den Bakker, Eduardo PC Rocha, Gil McVean, and Zamin Igbal.
Ultrafast search of all deposited bacterial and viral genomic data. Nature biotechnology,
37(2):152, 2019.

8 Karel Brinda, Michael Baym, and Gregory Kucherov. Simplitigs as an efficient and scalable
representation of de Bruijn graphs. bioRziv, 2020. doi:10.1101/2020.01.12.903443.

9 Karel Brinda. Nowvel computational techniques for mapping and classifying Next-Generation
Sequencing data. PhD thesis, Université Paris-Est, November 2016. doi:10.5281/zenodo.
1045317.

https://github.com/cosmo-team/cosmo/tree/VARI
https://github.com/prophyle/prophasm
https://doi.org/10.1101/2020.01.12.903443
https://doi.org/10.5281/zenodo.1045317
https://doi.org/10.5281/zenodo.1045317

A. Rahman, R. Chikhi, and P. Medvedev

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Rayan Chikhi, Jan Holub, and Paul Medvedev. Data structures to represent sets of k-long
DNA sequences. arXiw:1903.12312 [cs, g-bio], 2019.

Rayan Chikhi, Antoine Limasset, Shaun Jackman, Jared T Simpson, and Paul Medvedev.
On the representation of de Bruijn graphs. In Research in Computational Molecular Biology,
RECOMB 2014, volume 8394 of Lecture Notes in Computer Science, pages 35-55. Springer,
2014.

Rayan Chikhi, Antoine Limasset, and Paul Medvedev. Compacting de Bruijn graphs from
sequencing data quickly and in low memory. Bioinformatics, 32(12):i201-1208, 2016.
Temesgen Hailemariam Dadi, Enrico Siragusa, Vitor C Piro, Andreas Andrusch, Enrico Seiler,
Bernhard Y Renard, and Knut Reinert. DREAM-Yara: An exact read mapper for very large
databases with short update time. Bioinformatics, 34(17):i766-i772, 2018.

Luca Denti, Marco Previtali, Giulia Bernardini, Alexander Schénhuth, and Paola Bonizzoni.
MALVA: genotyping by Mapping-free ALlele detection of known VAriants. #Science, 18:20-27,
2019.

R. S. Harris and P. Medvedev. Improved Representation of Sequence Bloom Trees. Bioinfor-
matics, 36(3):721-727, 2020.

Mikel Hernaez, Dmitri Pavlichin, Tsachy Weissman, and Idoia Ochoa. Genomic Data Com-
pression. Annual Review of Biomedical Data Science, 2, 2019.

Morteza Hosseini, Diogo Pratas, and Armando Pinho. A survey on data compression methods
for biological sequences. Information, 7(4):56, 2016.

Costas S Iliopoulos, Ritu Kundu, and Solon P Pissis. Efficient pattern matching in elastic-
degenerate texts. In International Conference on Language and Automata Theory and Appli-
cations, pages 131-142. Springer, 2017.

Marek Kokot, Maciej Dtugosz, and Sebastian Deorowicz. KMC 3: counting and manipulating
k-mer statistics. Bioinformatics, 33(17):2759-2761, 2017.

Kirill Kryukov, Mahoko Takahashi Ueda, So Nakagawa, and Tadashi Imanishi. Nucleotide
Archival Format (NAF) enables efficient lossless reference-free compression of DNA sequences.
bioRxiv, page 501130, 2018.

Guillaume Margais and Carl Kingsford. A fast, lock-free approach for efficient parallel counting
of occurrences of k-mers. Bioinformatics, 27(6):764-770, 2011.

Camille Marchet, Christina Boucher, Simon J Puglisi, Paul Medvedev, Mikaél Salson, and
Rayan Chikhi. Data structures based on k-mers for querying large collections of sequencing
datasets. bioRziv, page 866756, 2019.

Camille Marchet, Zamin Igbal, Daniel Gautheret, Mikaél Salson, and Rayan Chikhi. Reindeer:
efficient indexing of k-mer presence and abundance in sequencing datasets. bioRziv, 2020.
Ibrahim Numanagié, James K Bonfield, Faraz Hach, Jan Voges, Jorn Ostermann, Claudio
Alberti, Marco Mattavelli, and S Cenk Sahinalp. Comparison of high-throughput sequencing
data compression tools. Nature methods, 13(12):1005, 2016.

Brian D Ondov, Todd J Treangen, Pall Melsted, Adam B Mallonee, Nicholas H Bergman,
Sergey Koren, and Adam M Phillippy. Mash: fast genome and metagenome distance estimation
using MinHash. Genome biology, 17(1):132, 2016.

Prashant Pandey, Fatemeh Almodaresi, Michael A Bender, Michael Ferdman, Rob Johnson,
and Rob Patro. Mantis: A fast, small, and exact large-scale sequence-search index. Cell
systems, 7(2):201-207, 2018.

Prashant Pandey, Michael A Bender, Rob Johnson, and Rob Patro. Squeakr: an exact and
approximate k-mer counting system. Bioinformatics, 34(4):568-575, 2017.

Armando J Pinho and Diogo Pratas. MFCompress: a compression tool for FASTA and
multi-FASTA data. Bioinformatics, 30(1):117-118, 2013.

Amatur Rahman and Paul Medvedev. Representation of k-mer sets using spectrum-preserving
string sets. In Research in Computational Molecular Biology - 24th Annual International
Conference, RECOMB 2020, Padua, Italy, May 10-18, 2020, Proceedings, volume 12074 of
Lecture Notes in Computer Science, pages 152—-168. Springer, 2020.

16:17

WABI 2020

16:18

Disk Compression of k-mer Sets

30

31

32

33

34

35

36

37

38

Guillaume Rizk, Dominique Lavenier, and Rayan Chikhi. DSK: k-mer counting with very low
memory usage. Bioinformatics, 29(5):652-653, 2013.

Steven L Salzberg, Adam M Phillippy, Aleksey Zimin, Daniela Puiu, Tanja Magoc, Sergey
Koren, Todd J Treangen, Michael C Schatz, Arthur L Delcher, Michael Roberts, et al.
GAGE: A critical evaluation of genome assemblies and assembly algorithms. Genome research,
22(3):557-567, 2012.

B. Solomon and C. Kingsford. Fast search of thousands of short-read sequencing experiments.
Nature biotechnology, 34(3):300-302, 2016.

B. Solomon and C. Kingsford. Improved Search of Large Transcriptomic Sequencing Databases
Using Split Sequence Bloom Trees. Journal of Computational Biology, 25(7):755-765, 2018.
Daniel S Standage, C Titus Brown, and Fereydoun Hormozdiari. Kevlar: a mapping-free
framework for accurate discovery of de novo variants. #Science, 18:28-36, 2019.

Chen Sun, Robert S. Harris, Rayan Chikhi, and Paul Medvedev. AllSome Sequence Bloom
Trees. In Research in Computational Molecular Biology - 21st Annual International Conference,
RECOMB 2017, Hong Kong, China, May 3-7, 2017, Proceedings, volume 10229 of Lecture
Notes in Computer Science, pages 272-286, 2017.

Chen Sun and Paul Medvedev. Toward fast and accurate snp genotyping from whole genome
sequencing data for bedside diagnostics. Bioinformatics, 35(3):415-420, 2018.

Isaac Turner, Kiran V Garimella, Zamin Igbal, and Gil McVean. Integrating long-range
connectivity information into de bruijn graphs. Bioinformatics, 34(15):2556-2565, 2018.
Derrick E Wood and Steven L Salzberg. Kraken: ultrafast metagenomic sequence classification
using exact alignments. Genome biology, 15(3):R46, 2014.

	Introduction
	Preliminaries
	Basic definitions
	Path covers and UST-Compress

	ESS-Compress
	Main algorithm
	Algorithm to choose absorption edges
	The weight of the ESS-Compress representation

	ESS-Tip-Compress: a simpler alternative
	Empirical Results
	Discussion

