Fast Lightweight Accurate Xenograft Sorting

Jens Zentgraf

Bioinformatics, Computer Science XI, TU Dortmund University, Germany
http://www.rahmannlab.de/people/zentgraf
Jens.Zentgraf@tu-dortmund.de

Sven Rahmann

Genome Informatics, Institute of Human Genetics, University of Duisburg-Essen, Essen, Germany
http://www.rahmannlab.de/people/rahmann

Sven.Rahmann@uni-due.de

—— Abstract

Motivation: With an increasing number of patient-derived xenograft (PDX) models being created
and subsequently sequenced to study tumor heterogeneity and to guide therapy decisions, there is a
similarly increasing need for methods to separate reads originating from the graft (human) tumor
and reads originating from the host species’ (mouse) surrounding tissue. Two kinds of methods
are in use: On the one hand, alignment-based tools require that reads are mapped and aligned
(by an external mapper/aligner) to the host and graft genomes separately first; the tool itself then
processes the resulting alignments and quality metrics (typically BAM files) to assign each read or
read pair. On the other hand, alignment-free tools work directly on the raw read data (typically
FASTQ files). Recent studies compare different approaches and tools, with varying results.
Results: We show that alignment-free methods for xenograft sorting are superior concerning CPU
time usage and equivalent in accuracy. We improve upon the state of the art by presenting a fast
lightweight approach based on three-way bucketed quotiented Cuckoo hashing. Our hash table
requires memory comparable to an FM index typically used for read alignment and less than other
alignment-free approaches. It allows extremely fast lookups and uses less CPU time than other
alignment-free methods and alignment-based methods at similar accuracy.

2012 ACM Subject Classification Applied computing — Molecular sequence analysis; Applied
computing — Bioinformatics; Theory of computation — Bloom filters and hashing; Theory of
computation — Data structures design and analysis

Keywords and phrases xenograft sorting, alignment-free method, Cuckoo hashing, k-mer
Digital Object Identifier 10.4230/LIPIcs.WABI.2020.4

Related Version This work is on bioRxiv. https://www.biorxiv.org/content/10.1101/2020.05.
14.095604v2

Supplementary Material Our software zengsort is available under the MIT license at http://
gitlab.com/genomeinformatics/xengsort. It is written in numba-compiled Python and comes
with Snakemake workflows for hash table construction and dataset processing.

Funding Sven Rahmann: DFG SFB 876 subproject C1; Mercator Research Center Ruhr (MERCUR),
project Pe-2013-0012.

1 Introduction

To learn about tumor heterogeneity and tumor progression under realistic in vivo conditions,
but without putting human life at risk, one can implant human tumor tissue into a mouse
and study its evolution. This is called a (patient-derived) xenograft (PDX). Over time,
several samples of the (graft / human) tumor and surrounding (host / mouse) tissue are
taken and subjected to exome or whole genome sequencing in order to monitor the changing
genomic features of the tumor. This information can be used to predict the response to
© Jens Zentgraf and Sven Rahmann;

37 licensed under Creative Commons License CC-BY
20th International Workshop on Algorithms in Bioinformatics (WABI 2020).
Editors: Carl Kingsford and Nadia Pisanti; Article No. 4; pp.4:1-4:16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-9444-2755
http://www.rahmannlab.de/people/zentgraf
mailto:Jens.Zentgraf@tu-dortmund.de
https://orcid.org/0000-0002-8536-6065
http://www.rahmannlab.de/people/rahmann
mailto:Sven.Rahmann@uni-due.de
https://doi.org/10.4230/LIPIcs.WABI.2020.4
https://www.biorxiv.org/content/10.1101/2020.05.14.095604v2
https://www.biorxiv.org/content/10.1101/2020.05.14.095604v2
http://gitlab.com/genomeinformatics/xengsort
http://gitlab.com/genomeinformatics/xengsort
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2

Fast Lightweight Accurate Xenograft Sorting

Table 1 Tools for xenograft sorting and read filtering with key properties. See text for definition
of operations; Lang.: programming language.

Tool Ref. Input Operations Lang.
XenofilteR [13] aligned BAM filter R
Xenosplit [9 aligned BAM filter, count Python

Bamcmp 12] aligned BAM partial sort C++

]
[12

Disambiguate [1] aligned BAM partial sort Python or C++
(4]

]

BBsplit 4 raw FASTQ partial sort Java
Tenome [7 raw FASTQ count, sort C++
zengsort (this) raw FASTQ count, sort Python + numba

different chemotherapy alternatives and to monitor treatment success or failure. A key step
in such analyses is zenograft sorting, i.e., separating the human tumor reads from the mouse
reads. A recent study [10] showed that if such a step is omitted, several mouse reads would
be aligned to certain regions of the human genome (HAMA: human-aligned mouse allele) and
induce false positive variant calls for the tumor; this especially concerns certain oncogenes.

Several tools have been developed for xenograft sorting, motivated by different goals and
using different approaches; a summary appears below. Here we improve upon the existing
approaches in several ways: By using carefully engineered k-mer hash tables, our approach is
both faster and needs less memory than existing tools. By designing a new decision function,
we also obtain fewer unclassified reads and in some cases even higher classification accuracy.
Since we use a comprehensive reference of the genome and transcriptome, we are able to
uniformly deal with genome, exome, and transcriptome data of xenografts.

Concerning related work, we distinguish alignment-based methods that work on already
aligned reads (BAM files), versus alignment-free methods that directly work on short
subsequences (k-mers) of the raw reads (FASTQ files). On the other hand, we do not
distinguish between the type of data that the tools have been applied to (transcripts, or
genomic DNA), because this does not depend so much on the tool but rather on the reference
sequences used (genome, exome, set of transcripts, etc.).

Alignment-based methods scan existing alignments in BAM files and test whether each
read maps better to the graft or to the host genome. Differences result from different
parameter settings used for the alignment tool (often bwa or bowtie2) and from the way
“better alignment” is defined by each of these tools. Alignment-free methods use a large
lookup table to associate species information with each k-mer.

In Table 1, we list properties of existing tools and of zengsort, our implementation of
the method we describe in this article. These tools support different operations: Operation
“count” outputs proportions of reads belonging to each category (host, graft, etc.); operation
“sort” sorts reads or alignments into different files according to origin, ideally into five
categories: host, graft, both, neither, ambiguous; a “partial sort” only has three categories:
host, graft, both/other; operation “filter” writes only an output file with graft reads or
alignments. The sort operation is more general than the filter or partial sort operation and
allows full flexibility in downstream processing. When available, the count operation is faster
than counting the output of the sort operation, because it avoids the overhead of creating
new BAM or FASTQ files.

XenofilteR, Xenosplit, Bamemp and Disambiguate all work on aligned BAM files. This
means that the reads must be mapped and aligned with a supported read mapper first
(typically, 'bwa mem’) and the resulting BAM file must be sorted in a specific way required
by the tool. The tool is typically a script that reads and compares the mapping scores and

J. Zentgraf and S. Rahmann

qualities in the two BAM files containing host and graft alignments. In principle, all of these
tools do the same thing; large differences result rather from different alignment parameters
than the tool itself. We therefore picked XenofilteR as a representative of this family, also
because it performed well in a recent comparison [10].

BBsplit (part of BBTools) is special in the sense that it performs the read mapping
itself, against multiple references simultaneously, based on k-mer seeds. Unfortunately, only
up to approximately 1.9 billion k-mers can be indexed because of Java’s array indexing
limitations (up to 23! elements) and a table load limit of 0.9; so BBsplit was not usable for
our human-mouse index that contains approximately 4.5 - 10° > 232 k-mers.

The tool xzenome [7] is similar to our approach: It is based on a large hash table of
k-mers and sorts the reads into several categories (host, graft, both, neither, ambiguous). A
read is classified based on its k-mer content according to relatively strict rules. We found
the threading code of zenome to be buggy, such that the pure counting mode resulted in
a deadlock and produced no output. The sorting mode produced the complete output but
then did not terminate either.

Recent studies [5, 8, 10] have compared the computational efficiency of several methods,
as well as the classification accuracy of these methods and the effects on subsequent variant
calling after running vs. not running xenograft sorting. The results were contradictory, with
some studies reporting that alignment-based tools are more efficient than alignment-free
tools, and different tools achieving highest accuracy. Our interpretation of the results of
[10] is that each of the existing approaches is able to sort with good accuracy and the main
difference is in computational efficiency. Results about efficiency have to be interpreted with
care because sometimes the time for alignment is included and sometimes not.

2 Methods

2.1 Overview

By considering all available host and graft reference sequences (both transcripts and genomic
sequences of mouse and human), we build a large key-value store that allows us to look up
the species of origin (host, graft or both) of each DNA/RNA k-mer that occurs in either
species. A sequenced dataset (a collection of single-end or paired-end FASTQ files) is then
processed by iterating over reads or read pairs, looking up the species of origin of each k-mer
in a read (host, graft, both or none) and classifying the read based on a decision rule.

Our implementation of the key-value store as a three-way bucketed Cuckoo hashtable
makes k-mer lookup faster than in other methods; the associated value can often be retrieved
with a single random memory access. A high load factor of the hash table, combined with the
technique of quotienting, ensures a low memory footprint, without resorting to approximate
membership data structures, such as Bloom filters.

2.2 Key-value stores of canonical k-mers

We partition the reference genome (plus alternative alleles and unplaced contigs) and
transcriptome into short substrings of a given length k (so-called k-mers); we evaluated
k € {23,25,27}. For each k-mer (“key”) in any of the reference sequences, we store whether
it occurs exclusively in the host reference, exclusively in the graft reference, or in both,
represented by “values” 1, 2, 3, respectively. For the host- and graft-exclusive k-mers, we also
store whether a closely similar k-mer (at Hamming distance 1) occurs in the other species
(add value 4); such a k-mer is then called a weak (host or graft) k-mer. This idea extends

4:3

WABI 2020

4:4

Fast Lightweight Accurate Xenograft Sorting

Figure 1 Illustration of (3,4) Cuckoo hashing with 3 hash functions and buckets of size 4. Left:
Each key-value pair can be stored at one of up to 12 locations in 3 buckets. For key z, the bucket
given by fi(z) is full, so bucket f2(x) is attempted, where a free slot is found. Right: If all hb slots
are full, key x is placed into one of these slots at random (blue), and the currently present key-value
pair is evicted and re-inserted into an alternative slot.

the k-mer classification of zenome [7], where a k-mer can be host, graft, both, or marginal,
the latter category comprising both our weak host and weak graft k-mers. So we store,
for each k-mer, a value from the 5-element set “host” (1), “graft” (2), “both” (3), “weak
host” (5), “weak graft” (6). This value is stored using 3 bits. While a more compact base-5
representation is possible (e.g., storing 3 values with 125 < 128 = 27 combinations in 7 bits
instead of in 9 bits), we decided to use slightly more memory for higher speed.

To be precise, we do not work on k-mers directly, but on their canonical integer represen-
tations (canonical codes), such that a k-mer and its reverse complement map to the same
number. We use a simple base-4 numeric encoding A — 0, C — 1, G — 2, T/U 3, e.g.
reading the 4-mer AGCG as (0212)4 = 38 and its reverse complement CGCT as (1213), = 103.
The canonical code is then the mazimum of these two numbers; here the canonical code of
both AGCG and CGCT is thus 103. (In zenome, canonical k-mer codes are implemented with
a more complex but still deterministic function of the two base-4 encodings; in other tools,
it is often the minimum of the two encodings.) For odd k, there are exactly c(k) := 4% /2
different canonical k-mer codes, so each can be stored in 2k — 1 bits in principle. However,
implementing a fast bijection of the set of canonical codes (which is a subset of size c¢(k) of
{0..(4* —1)}) to {0..(c(k) — 1)} seems difficult, so we use 2k bits to store the canonical
code directly, which allows faster access. We do use quotienting, described below, to reduce
the size; yet in principle, one additional bit could be saved.

2.3 Multi-way bucketed quotiented Cuckoo hashing

We use multi-way bucketed Cuckoo hash table as the data structure for the k-mer key-
value store. Let C be the set of canonical codes of k-mers; as explained above, we take
C = {0.. (4% — 1)}, even though only half of the codes are used (for odd k). Let P be the set
of locations (buckets) in the hash table and p their number; we set P := {0..(p — 1)}. Each
key can be stored at up to h different locations (buckets) in the table. The possible buckets
for a code are computed by h different hash functions fi, fa,..., fr : C — P. Each bucket
can store up to a certain number b of key-value pairs. So there is space for N := pb key-value
pairs in the table overall, and each pair can be stored at one of hb locations in h buckets.
Together with an insertion strategy as described below, this framework is referred to as (h,b)
Cuckoo hashing. Classical Cuckoo hashing uses h = 2 and b = 1; for this work, we use h = 3
and b = 4. A visualization is provided in Figure 1. Using several hash functions and larger
buckets increases the load limit; using h = 3 and b = 4 allows a load factor of over 99.9% [17,
Table 1], while classical Cuckoo hashing only allows to fill 50% of the table.

J. Zentgraf and S. Rahmann

Search and insert. Searching for a key-value pair works as follows. Given key (canonical
code) z, first fi(x) is computed, and this bucket is searched for key x and the associated
value. If it is not found, buckets fa(x) and then f3(x) are searched similarly. Each bucket
access is a random memory lookup and most likely triggers a cache miss. We can ensure
that each bucket is contained within a single cache line (by using additional padding bits if
necessary). Then, the number of cache misses is limited to h = 3 for one search operation.

Because we fill the table well below the load limit (at 88% of 99.9%), we are able to store
most key-value pairs in the bucket indicated by the first hash function f;, and only incur
a single cache miss when looking for them. Unsuccessful searches (for k-mers that are not
present in either host or graft genome) will always need h memory accesses. However, one
optimization is possible: If, say, the first bucket fi(x) contains an empty slot, we do not
need to search further, because the insertion procedure produced a tight layout, in the sense
that if a single element could be moved to an “earlier” bucket, it would have been done.

Insertion of a key-value pair works as follows. First, the key is searched as described
above. If it is found, the value is updated with the new value. For example, if an existing
host k-mer is to be inserted again as a graft k-mer, the value is updated to “both”. If the
key is not found, we check whether any of the buckets f1(z), f2(z), f3(z) contains a free slot.
If this is the case, z and its value are inserted there. If all buckets are full, a random slot
among the hb slots is picked, and the key-value pair stored there is evicted (like a cuckoo
removes eggs from other birds’ nests) to make room for z and its value. Then an alternative
location for the evicted element is searched. This process may continue for several iterations
and is called a “random walk” through the table. If the walk becomes too long (longer than
5000 steps, say), we declare that the table is too full, and construction fails and has to be
restarted with a larger table or different random seed.

We require that the final size (number of buckets p) of the hash table is known in advance,
so we can pre-allocate it. The genome length is a good (over-)estimate of the number of
distinet k-mers and can be used. We recently presented a practical algorithm [18] to optimize
the assignment of k-mers to buckets (i.e., their hash function choices) such that the average
search cost of present k-mers is minimized to the provable optimum. This optimization
takes significant additional time and requires large additional data structures; so we took the
opportunity here to evaluate whether it significantly improves lookup times in comparison to
a table filled by the above random walk strategy.

Bijective hash functions and quotienting. In principle, we need to store the 2k bits for
the canonical k-mer code x and the 3 bits for the value at each slot. However, by using
hash functions of the form f(z) := g(z) mod p, where p is the number of buckets and g is
a bijective (randomized) transformation on the full key set {0..(4* — 1)}, we can encode
part of x in f(z): Note that from f(x) and ¢(x) := g(x)//p (integer division), we can recover
g(z) =p-q(x) + f(z), and since g is bijective, we can recover z itself. This means that we
only need to store g(z), not x itself in bucket f(x), which only takes [2k — log, p]| instead of
2k bits. However, since we have h alternative hash functions, we also need to store which
hash function we used, using 2 bits for h = 3 (0 indicating that the slot is empty). This
technique is known as quotienting. It gives higher savings for smaller buckets (for constant

N = pb, smaller b means larger p), but on the other hand the load limit is smaller for small b.

We find b = 4 to be a good compromise, allowing table loads of 99.9%.
For the bijective part g(x), we use affine functions of the form

Gap() = [a - (roty(x) xor b)] mod 4%,

4:5

WABI 2020

4:6

Fast Lightweight Accurate Xenograft Sorting

M

where roty, performs a cyclic rotation of k bits (half the width of x), moving the “random’
inner bits to outer positions and the less random outer bits (due to the max operation when
taking canonical codes) inside, b is a 2k-bit offset, and a is an odd multiplier. Picking a
“random” hash function means picking random values for a and b.

» Lemma 1. For any 2k-bit number b and any odd 2k-bit number a, the function gqp is a
bijection on K := {0..(4* — 1)}.

Proof. Let y = gq5(2). By definition, the range of g, on K is a subset of K. Because
|K| is a power of 2 and a is odd, the greatest common divisor of |K| and a is 1, and so
there exists a unique multiplicative inverse a’ of a modulo 4* = |K|, such that aa’ = 1
(mod 4%). The other operations (xor b, rotj) are inverses of themselves; so we recover
x = rot,([(a’ - y) mod 4¥] xor b). <

In summary, each stored canonical k-mer needs 2 + 3 + [2k — log, p] bits to remember
the hash function choice and to store the value (species), and the quotient, respectively. For
k =25 and p = 1276 595 745 buckets, this amounts to 25 bits per k-mer, or 100 bits for each
bucket of 4 k-mers. To ensure cache line aligned pages, we could insert 28 padding bits to
grow the bucket size to 128 bits; however, we chose less memory for a small speed decrease,
and let some buckets cross cache line boundaries.

2.4 Annotating weak k-mers

A E-mer that occurs only in the host (graft) reference, but has a Hamming-distance-1 neighbor
in the graft (host) reference, is called a weak host (graft) k-mer. So for a weak k-mer, a
single nucleotide variation could flip its assigned species, while a k-mer that is not weak is
more robust in this sense. A similar concept exists in zenome; however, weak host and graft
k-mers are combined into “marginal” k-mers, and their origin is not stored. After the hash
table has been constructed with all k-mers and their values “host”, “graft” or “both”, we
mark weak k-mers by modifying the value, setting an additional “weak” bit. In principle, we
could scan over the k-mers and query all 3k neighbors of each k-mer, but this is inefficient.

Instead, we extract from the hash table a complete list L of k-mers and their reverse
complements (not canonical codes; approx. 9-10° entries for 4.5-10% distinct k-mers), together
with their current values. To save memory, this list is created and processed in 16 chunks
according to the first two nucleotides of the k-mer, thus needing approx. 4.5 GB of additional
memory temporarily. Since we use odd k = 2¢ + 1, we can partition a k-mer into its /-prefix,
its middle base and its f-suffix. We make use of the following observation.

» Observation 1. For k =20+ 1, two k-mers x,y with Hamming distance 1 differ either in
their £-suffiz, in the £-suffiz of their reverse complement or in their middle base.

We thus partition the sorted list into blocks of constant (¢ + 1)-prefixes. Different blocks
are processed independently in parallel threads. The ¢-suffixes of all pairs of k-mers in such
a block are queried with a fast bit-vector test for Hamming distance 1. If a pair is found
and the k-mers occur in different species, the “weak bit” (value 4) is set. It remains to find
pairs of k-mers that differ only in their middle base. We conceptually partition the list into
blocks of constant ¢-prefixes and use that such pairs must occur consecutively in a block and
agree in the f-suffix. So these pairs can be identified within a single linear scan. In the end,
updated values are transferred to the values of the canonical k-mers in the hash table.

J. Zentgraf and S. Rahmann

4
b

Figure 2 Decision rule tree for classifying a DNA fragment from k-mer statistics (h, k', g, g’, b, z;n),
meaning number of k-mers of type “host” (h), “weak host” (h'), “graft” (g), “weak graft” (g'),
“both” (b), and number of k-mers not present in the key-value store (), respectively; n is the total
number of (valid) k-mers in the fragment. We also use weighted scores Shost := h + |h'/2] and
Seratt := g + |¢'/2] and thresholds Thost := [1n/4], Terats := |n/4] and Thotn := |n/4]. A fragment
is thus classified as “host”, “graft”, “both”, “neither”; or “ambiguous”. Category “ambiguous” is
chosen if no other rule applies and no “else” rule is present in a node.

2.5 Reference sequences

To build the k-mer hash table from genomic and transcribed sequences from human and
mouse, we obtained the “toplevel DNA” genome FASTA files, which include both the primary
assembly, unplaced contigs and alternative alleles, and the “all cDNA” files, which contain
the known transcripts, from the ensembl FTP site, release 98.

As the alternative alleles of the human and mouse toplevel references contain mostly Ns
to keep positional alignment of alternative alleles to the consensus reference, they decompress
to huge FASTA files (over 60 GB for human, over 12 GB for mouse). Therefore we condensed
the toplevel reference sequences by replacing runs of more than 25 Ns by 25 Ns. This does
not change the k-mer content, as k-mers containing even a single N are ignored. It does
provide an efficiency boost to alignment-based tools because read mappers build an index of
every position in the genome and typically replace runs of Ns by random sequence.

2.6 Fragment classification

Given a sequenced fragment (single read or read pair), we query each k-mer of the fragment
about its origins; k-mers with undetermined bases are ignored. Our implementation reads
large chunks (several MB) of FASTQ files and distributes read classification over several
threads (we found that 8 threads saturate the I/0).

We collect k-mer statistics for each fragment (adding the numbers of both reads for a
read pair): Let n be the number of (valid) k-mers in the fragment. Let h be the number
of host k-mers and A’ the number of weak host k-mers, and analogously define g and ¢’
for the graft species. Further, let b be the number of k-mers occuring in both species, and
let = be the number of k-mers that were not found in the key-value store. Based on the
vector (h,h',g,4¢',b,x;n), we use a tree of hierarchical rules to classify the fragment into one
of five categories: “host”, “graft”, “both”, “neither” and “ambiguous”. Categories “host”
and “graft” are for reads that can be clearly assigned to one of the species. Category “both”
is for reads that match equally well to both references. Category “neither” is for reads
that contain many k-mers that cannot be found in the key-value store; these could point

4:7

WABI 2020

4:8

Fast Lightweight Accurate Xenograft Sorting

Table 2 Properties of the k-mer index for different values of k (wk: weak). Underlying reference
sequences are given in Section 2.5.

k-mers k=23 (%) k=25 (%) k=27 (%)
total 4396323491 (100) 4496607845 (100) 4576953994 (100)
host 1924087512 (43.8) 2050845757 (45.6) 2105520461 (46.0)
graft 2173923063 (49.4) 2323880612 (51.7) 2395147724 (52.3
both 18701862 (0.4) 12579160 (0.3) 9627252 (0.2
.0) 2)
A4) 3)

wk host 132469231 (3 52063110 (1 32445717 (0.7
wk graft 147141823 (3 57239206 (1 34212840 (0.7

to technical problems (primer dimers) or contamination of the sample with other species.
Finally, category “ambiguous” is for reads that provide conflicting information. Such reads
should not usually be seen; they could result from PCR hybrids between host and graft
during library preparation. The precise rules are shown in Figure 2. Category “ambiguous”
is chosen if no “else” rule exists and no other rule applies in any given node.

Quick mode. Inspired by a similar acceleration in the kallisto software [3] for transcript
expression quantification, we additionally implemented a “quick mode” that initially looks
only at the type of the third and third-last k-mer in every read. If the two (for single-end
reads) or four (for paired-end reads) types agree (e.g. all are “graft”), the fragment is classified
on this sampled evidence alone. This results in quicker processing of large FASTQ files, but
only considers a small sample of the available information.

3 Results

We evaluate our alignment-free xenograft sorting approach and its implementation zengsort
for the common case of human-tumor-in-mouse xenografts, by using mouse datasets, human
datasets, xenograft datasets and datasets from other species, and compare against an existing
tool with the same purpose, zenome from the gossamer suite [7], and against a representative
of alignment-based filtering tools, XenofilteR [13]. The hardware used for the benchmarks
was one server with two AMD Epyc 7452 CPUs (with 32 cores and 64 threads each), 1024 GB
DDR4-2666 memory and one 12 TB HDD with 7200 rpm and 256 MB cache.

3.1 Hash table construction

Table size and uniqueness of k-mers. We evaluated k € {23,25,27} and then decided to
use k = 25 because it offers a good compromise between species specificity and memory
requirements. Table 2 shows several index properties. In particular, moving from k = 25 to
k = 27, the small decrease in k-mers that map to both genomes and in weak k-mers did not
justify the additional memory requirements. In addition, longer k-mers lead to lower error
tolerance against sequencing errors, as each error affects up to k of the k-mers in a read.

Construction time and memory. Table 3 shows time and memory requirements for building
the k-mer hash table or FM index for bwa (for XenofilteR). The main difference is that the
BWA index is a succinct representation of the suffix array of the references and not a k-mer
hash table. Our hash table construction is not paralellized; hence CPU times and wall clock
times agree and are less than one hour. The hash construction of xzenome is paralellized; we
gave it 8 threads (but 9 were sometimes used); yet it does about 20 times the CPU work and
takes three times as long as zengsort, even when using multiple threads.

J. Zentgraf and S. Rahmann

Table 3 Index construction: CPU times and wall clock times in minutes and memory in Gigabytes
using different tools and different k-mer sizes for zengsort. “Build” times refer to collecting and
hashing the k-mers according to species, but without marking weak k-mers. “Mark” times refer
to marking weak k-mers. “Total” times are the sum of build and mark times, plus additional I/O
times. “CPU” times measure total CPU work load (as reported by the time command as user time),
and “wall” times refer to actually passed time. Final size (“mem final”) is measured by index size
on disk (GB). Memory peak (“mem peak”) is the highest memory usage during construction (GB).

build build mark mark total total| mem mem
tool k |CPU wall CPU wall CPU wall| final peak
xengsort 23 50 50 591 176 641 226| 12.8 17.3
xengsort 25 53 53 437 158 490 211| 159 204
xengsort 27 51 51 495 214 546 265| 17.3 21.8
renome 25 992 151 2338 356 3626 552| 31.2 57.1
XenofilteR — 528 658 — — 528 658| 13.0 22.0

Marking weak or marginal k-mers is paralellized in both approaches; wall clock times are
measured using 8 threads. Again, zengsort finds the weak k-mers faster, both in terms of
total CPU work and wall clock time.

The indexing method of bwa is not comparable, as it builds a complete suffix array
(FM index) that is independent of k¥ and does not include marking weak k-mers. Here the
CPU time is lower than the wall clock time, which indicates an I/O starved process.

We note that xzenome uses a large amount of memory during hash table construction (it
was given up to 64 GB). It works with less if restricted, but at the expense of longer running
times. BWA indexing also needs significant additional memory during construction. The
additional memory required by zengsort results from the additional sorted k-mer list required
for detecting weak k-mers. Overall, our construction is fast (even though serial only) and
uses a reasonable amount of memory.

Load factor and hash choice distribution. As explained in Section 2.3, 3-way Cuckoo hash
tables support very high loads (fill ratios) over 99.9%. However, such loads come at the
expense of distributing all k-mers almost evenly across hash function choices. For faster
lookup, it is beneficial to leave part of the hash table empty. We used a load factor of 88%
and thus find 76.7% of the k-mers at their first bucket choice, 15.5% at their second choice

and only 7.8% at their third choice, yielding an average of 1.31 lookups for a present k-mer.

Applying assignment optimization [18], which takes an additional 5 hours (serial CPU
time, not parallelized) and needs over 80 GB of RAM, we achieve a slightly better average of
1.17 lookups for a present k-mer.

3.2 Classification results

We applied our method zengsort, zenome and XenofilteR to several datasets with reads of
known origin (except possible contamination issues or technical artefacts), that however
present certain particular challenges. A summary of running times for all datasets appears
in Table 4.

Human-captured mouse exomes. A recent comparative study [10] made five mouse exomes
accessible, which were captured with a human-exome capture kit and hence presents mouse
reads that are biased towards high similarity with human reads. The mouse strains were

4:9

WABI 2020

4:10

Fast Lightweight Accurate Xenograft Sorting

Table 4 Dataset sizes (number of fragments; M: millions) and CPU times in minutes spent on
different datasets, measured with the “time” command (user time) when running with 8 threads
(zenome, zengsort, bwa-mem, BAM sorting, except for XenofilteR (XfR), which is single-threaded).
N/A: not applicable; tool could not be run on this dataset.

dataset / tool size XfR + bwa + sort zenome zengsort
mouse exomes 307 M 310 + 8291 + 179 1823 368
human matepair 1258 M N/A + 222939 + 940 9845 2463
chicken genome 251 M 76 + 6976 + 118 1273 592
leukemia RNA 1760 M 778 4+ 22111 + 521 5188 1680
PDX RNA 9742 M 16043 + 278329 + 5862 59692 13555

Table 5 Detailed classification results on five human-captured mouse exomes from different
mouse strains (2x A/J, 1x BALB/c, 2x C57BL/6). Running times are reported both in CPU
minutes [Cm]|, measuring CPU work, and wall clock minutes [Wm)], measuring actual time spent.
Times for XenofilteR (XfR) do not include alignment or BAM sorting time. Classification results
report the number and percentage (in brackets) of fragments classified as mouse (correct), both
human and mouse (likely correct), human (incorrect), ambiguous (no statement) and neither (likely
incorrect). XenofilteR (XfR) only extracts human fragments and does not classify the remainder; so
only the number of fragments classified as human are reported.

A/J-1 zengsort zenome XfR A/J-2 zengsort zenome XfR

time 70 Cm 14 Wm 371 Cm 45 Wm 56 Cm 56 Wm time 70 Cm 15 Wm 416 Cm 50 Wm 67 Cm 67 Cm
fragmets (%) fragmets (%) fragmets (%) fragmets (%) fragmets (%) fragmets (%)

mouse | 46648014 (78.03) 45759814 (76.54) mouse | 60255189 (95.57) 59135489 (93.80)

both 120808 (0.20) 65260 (0.11) both 151396 (0.24) 89089 (0.14)

human | 12813583 (21.43) 12500844 (20.91) 6315955 (10.56) human 2301384 (3.65) 2271131 (3.60) 1718545 (2.73)

ambgs. 58449 (0.10) 1383547 (2.31) ambgs. 57827 (0.09) 1340814 (2.13)

neither 143775 (0.24) 75155 (0.13) neither 279556 (0.44) 208 829 (0.33)

BALB/c | zengsort zenome XIR C57BL/6-1 | azengsort Tenome XfR

time 68 Cm 15 Wm 392Cm 45Wm 61 Cm 61 Wm time 72 Wm 14 Wm 359 Wm 44 Wm 58 Cm 58 Wm

mouse 62235960 (98.09) 61274277 (97.46) mouse 57993361 (98.03) 57522446 (98.13)

both 118541 (0.19) 68 949 (0.11) both 118984 (0.20) 74325 (0.13)

human 342908 (0.55) 348154 (0.55) 285556 (0.45) human 375716 (0.64) 376653 (0.64) 290894 (0.50)

ambgs. 45063 (0.07) 1098036 (1.65) ambgs. 27731 (0.05) 571542 (0.98)

neither 127035 (0.20) 80091 (0.13) neither 103895 (0.18) 74721 (0.13)

C57BL/6-2 zengsort zenome XfR

time 67 Cm 15 Wm 422 Cm 51 Wm 62 Cm 62 Wm

mouse 62384448 (99.00) 61941783 (98.30)

both 107019 (0.17) 66163 (0.10)

human 189536 (0.30) 208149 (0.33) 132535 (0.21)

ambgs. 27142 (0.04) 562659 (0.89)

neither 304677 (0.48) 234068 (0.37)

A/J (two mice), BALB/c (one mouse), and C57BL6 (two mice); they were sequenced on the
Ilumina HiSeq 2500 platform, resulting in 11.8 to 12.7 Gbp. The datasets are available under
accession numbers SRX5904321 (strain A/J, mouse 1), SRX5904320 (strain A/J, mouse
2), SRX5904319 (strain BALB/c, mouse 1), SRX5904318 (strain C57BL/6, mouse 1) and
SRX5904322 (strain C57BL/6, mouse 2).

Ideally, all reads should be classified as mouse reads.

Table 5 shows detailed classification results and running times. Considering the BALB/c
and C57BL/6 strains first, it is evident that classification accuracy is high (over 98.9% mouse
for zengsort, over 97.4% for zenome; with less than 0.64% human reads for both tools). The
main difference between the tools is that zenome is more conservative, assigning a larger
fraction of reads to the “ambiguous” (unclassified) category. With zenome, this happens for
reads that contain two k-mers x,y, where z maps uniquely to human and y maps uniquely
to mouse. The decision rule of zengsort is more permissive and tolerant towards small
inconsistencies. Therefore, zengsort assigns more reads correctly to mouse, and fewer to the
ambiguous category. Additionally, xengsort assigns fewer reads incorrectly to human.

J. Zentgraf and S. Rahmann

However, the two samples of strain A/J give different results. Both zengsort and xzenome
assign a large fraction of reads (around 21% and 3.6% in the two samples) to the human
genome, while XenofilteR assigns only 10.5% and 2.7%, respectively. While zengsort does
assign more reads to mouse, it also assigns more reads to human, following its strategy of
leaving fewer reads unassigned (ambiguous). Inspection of these reads revealed that almost
all of them are low-complexity, i.e. consist of repetitive sequence, and a check with BLAT [11]
revealed no hits in mouse and several gapped hits in the human genome. So the classification
as human reads is not incorrect from a technical standpoint, but in fact these reads appear
to point to techincal problems during then enrichment step of the library generation. An
additional low-complexity filter would remove most problematic reads.

Concerning running times, we find that zengsort needs around 70 CPU minutes for one
of these datasets, and less than 15 minutes of wall clock time using 8 threads. The speed-up
being less than 8 results from serial intermediate I/O steps. While zenome makes better
use of parallelism, it is slower overall, requiring 5 to 6 times the CPU work of zenome. For
only scanning already aligned BAM files, XenofilteR is surprisingly slow, and we see that we
can sort the reads from scratch in almost the same amount of CPU work that is required
to compare alignment scores. When adding bwa mem alignment times (even without the
time required for sorting the resulting BAM files), XenofilteR needs an additional 887 to
1424 CPU minutes for the human alignments and an additional 424 to 777 minutes for the
mouse alignments per dataset, making the alignment-based approach far less efficient than
the alignment-free approach.

Human genome (GIAB) matepair library. We obtained FASTQ files of an Illumina-
sequenced 6kb matepair library from the Genome In A Bottle (GIAB) Ashkenazim trio dataset
according to the provided sequence file index (ftp://ftp-trace.ncbi.nlm.nih.gov/giab/
ftp/data_indexes/AshkenazimTrio/sequence.index.AJtrio_Illumina_6kb_matepair_
wgs_08032015). The data represents a family (mother, father, son). Ideally, we see only
human reads.

Figure 3A shows the classification results for zengsort and zenome. XenofilteR reported
that the BAM files were too large to be processed and did not give a result (400 GB total
for human and mouse; each BAM file over 30 GB in size). We see that almost all reads
are correctly identified as human, while a small fraction is neither, which could be adapter
dimers or other technical issues. However, zenome classifies a similarly small fraction as
ambiguous. We observe the same wall clock time ratio (about 3.5) between zenome and
zengsort as for the mouse exome dataset.

Because this is a very large dataset (112 GB gzipped FASTQ), we additionally evaluated
the effects of using zengsort’s “quick mode”. We observed a significant reduction in processing
time (by about 33%) and almost unchanged classification results. We also ran the xengsort
classification with the optimized hash table (using an optimized assignment computed using
the methods from [18] and found a small reduction (9%) in running time.

We conclude that both alignment-free tools accurately recognize that this is a pure human
dataset, and that zengsort is again more CPU-efficient and faster, given the same resources.

Chicken genome. We obtained a paired-end (2x101bp) Illumina whole genome sequencing
run of a chicken genome from a whole blood sample (accession SRX6911418) with a total of
251 million paired-end reads. Ideally, none of these reads are recognized as mouse or human
reads. Figure 3B shows divergent results. For XenofilteR, we can only say that almost no
reads are extracted as human; the remainder is unclassified. Xenome assigns a small number
of reads to each category and only around 90% into the “neither” category, while zengsort
assigns 98.11% of the reads as “neither”.

4:11

WABI 2020

ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data_indexes/AshkenazimTrio/sequence.index.AJtrio_Illumina_6kb_matepair_wgs_08032015
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data_indexes/AshkenazimTrio/sequence.index.AJtrio_Illumina_6kb_matepair_wgs_08032015
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data_indexes/AshkenazimTrio/sequence.index.AJtrio_Illumina_6kb_matepair_wgs_08032015

4:12 Fast Lightweight Accurate Xenograft Sorting

l \ host graft both neither ambiguous B host graft both neither ambiguous
1.0 1.04 tools
M xenofilteR
0.9 0.9 M xengsort
xenome
0.8+ 0.8+ M quick
0.74 0.7+
0.6 0.6
c
S
£05- 0.5
I
4
£
0.4+ 0.4+
0.3+ 0.3+
0.2 0.2
0.14 0.1+
0.0 EEER —— 0.0——== — —
gE5g $Eg TEgeg e fE¢g $E5¢ $85¢ $E& §EE $ 5 ¢
S 2 § 5 2 § 5 2 5 5 @ 5 ER £ 8 5 2 8 5 2 2 5 £ 3 5 2 4 5
T 2 ¢ T 2 ¢ T o c T o 2 T o 2 £ o 2 £ o 2 z o 2 £ o 2 £ o 2
g g § ¢ § ¢ § ¢ g g 2§ ¢ 2§ ¢ 2 g5 ¢ 2§ ¢ 2§ ¢
x % x % x X x X x x o X x o X x o X x o X x o X x
g ¢ £ g g
host graft both neither ambiguous D host graft both neither ambiguous
1.04 1.0+
0.9+ 0.9+
0.8 0.8+
0.74 0.7+
0.6 0.6+
c
S
£0.54 0.5+
g
&
0.4 0.4-
0.3+ 0.3+
0.2+ 0.2+
0.14 0.1
0.0y E‘C-H 0.0 FRE R T T =
P o o o o o o o o VR
$5¢ §5¢ §sE ossr o ogsog 5852 FEEE FzLEE sLEe grgd
29t fgE 2gE 28t 2gE g2gtE 22gE BZgtEt 2T2gE 82t
£%5¢ £5%¢8 58 £5%5g E£5¢ £32%e £38%¢ 3% E£3B%B:es £ 3B
5 2 g 5 2 ¢ 5 2 ¢ 5 2 g 5 2 ¢ - 5 %2 ¢ 5 %2 ¢ § %2 & 5% 2 ¢
§ % x g % x § % % § % % g % x g £ x g £ % g g x g £ x g g x
g g ¢ g g g [g g g
E Sum of running times [min]
ok 10k 20k 30k 40k 50k 60k 250k 300k
1 1
bwa+sorting I 254101
xenofilteR 16043
xengsort 13555
sort xenome 59691

count xengsort 13285
xengsort opt 11516
xengsort f99 14667
xengsort f99 opt 11824
xengsort quick

5713

Figure 3 Classification results of different tools (XenofilteR, zenome, zengsort, and partially
zengsort with “quick” option) on several datasets: A: GIAB human matepair dataset (XenofilteR
did not run on this dataset); B: Chicken genome; C: Human lymphocytic leukemia RNA-seq data;
D: Patient-derived xenograft (PDX) RNA-seq data. E: CPU times on the PDX RNA-seq dataset
with different tools and different zengsort parameters (see text).

J. Zentgraf and S. Rahmann

Concerning running time (cf. Table 4), the scan of XenofilteR here beats the alignment-free
tools because both BAM files are essentially empty, as very few reads align against human or
mouse. Also, the speed advantage of xengsort over xenome is less on this dataset, mainly
because most k-mers are not found in the index and require 1 = 3 memory lookups and
likely cache misses. Such a dataset that contains neither graft nor host reads is aversarial for
our design of zengsort; it is also unlikely to be encountered in practice.

Human lymphocytic leukemia tumor RNA-seq data. We obtained single-end FASTQ files
from RNA-seq data of 5 human T-cell large granular lymphocytic leukemia samples, where
recurrent alterations of TNFAIP3 were observed, and 5 matched controls (13.4 Gbp to
27.5 Gbp). The files are available from SRA accession SRP059322 (datasets SRX1055051 to
SRX1055060). Surprisingly, not all fragments were recognized as originating from human
tissue (Figure 3C). While zenome and zengsort agreed that the human fraction is close to
75%, XenofilteR assigned considerably fewer reads to human origins (less than 70%).

For this and other RNA-seq datasets, we trimmed the Illumina adapters using cutadapt
[15] prior to classification, as some RNA fragments may be shorter than the read length. If
this step is omitted, even fewer fragments are classified as human (graft): just below 70% for
zenome and zengsort, and only about 53% for XenofilteR. The number of fragments classified
as neither increases correspondingly.

We investigated the reads classified by xzengsort as neither human nor mouse. Quality
control with FastQC [2] revealed nothing of concern, but showed an unusual biomodal
per-fragment GC content distribution with peaks at 45% and 55%. BLASTing the fragments
against the non-redundant nucleotide database [6] yielded no hits at all for 97% of these
fragments. A small number (2%) originated from the bacteriophage PhiX, which was to
be expected, because it is a typical spike-in for Illumina libraries. The remaining 1% of
fragments showed random hits over many species without a distinctive pattern. We therefore
concluded that the neither fragments mainly consisted of artefacts from library construction,
such as ligated and then sequenced random primers.

Concerning running times (Table 4), we observed again that zengsort is more than 3
times faster than zenomeand that zengsort needs time comparable to Xenofilte Reven when
only the time for sorting and scanning existing BAM files is taken into account. Producing
the alignments takes much longer.

Patient-derived xenograft (PDX) RNA-seq samples from human pancreatic tumors. We
evaluated 174 pancreatic tumor patient-derived xenograft (PDX) RNA-seq samples that are
available internally at University Hospital Essen. Figure 3D shows that all three tools classify
between 70% and 74% as graft (human) fragments. Again, XenofilteR seems to be the most
conservative tool with about 70%, and zenome classifies about 72% as human and zengsort
74%. The remaining reads are not classified by XenofilteR, while zenome and zengsort both
assign about 25% to host (mouse). Furthermore, zenome classifies about 2% and xzengsort
less than 1% as ambiguous. So we observe that on all datasets, zengsort is more decisive

than zenome and, judging from the pure human and mouse datasets, mostly correct about it.

Because this is a large dataset, we also applied zengsort’s quick mode and found essentially
no differences in classification results (less than 0.001 percentage points in each class; e.g. for
graft: quick 74.0111% vs. standard 74.0105% of all reads; difference 0.0006%; cf. Fig. 3D).

Concerning running time, Figure 3E shows that the alignment using bwa-mem and the

sorting of the BAM file for XenofilteR took over 284191 CPU minutes (close to 200 days).

After that, XenofilteR required an additional 16 043 CPU minutes (over 11 days) to classify

4:13

WABI 2020

4:14

Fast Lightweight Accurate Xenograft Sorting

the aligned and sorted reads. In comparison, zenome with 59691 CPU minutes (41.5 days)
took only 20% of the time used by bwa-mem and XenofilteR, and zengsort needed 13 555 CPU
minutes (9.5 CPU days) to sort all reads and is therefore even faster than the classification
by XenofilteR alone, even excluding the alignment and sorting steps, and over 4 times faster
than zenome. Using the “quick mode” with an optimized hash table at 88% load needed only
5713 CPU minutes (less than 4 CPU days), i.e., less than half of the time of a full analysis.

We additionally examined some trade-offs for this dataset. First, we note that only
counting proportions without output (“count” operation) is not much faster than sorting the
reads into different output files (“sort” operation): 13285 vs. 13555 CPU minutes (2% faster).
We additionally measured the running time of the xzengsort’s count operation on hash tables
with different load factors (88% and 99%) using both the standard assignment by random
walk and an optimal assignment [18]. As expected, a load factor of 99% was slower than 88%
(by 10.4% on the random walk assignment, but only by 2.6% on the optimized assignment).
Using the optimal assignment gives a speed boost (13.3% faster at 88% load; 19.3% at 99%
load). The optimized assignment at 99% load yields an even faster running time than the
random walk assignment at 88% load by 11% (11824 vs. 13285 CPU minutes).

4 Discussion and Conclusion

We revisited the xenograft sorting problem and improved upon the state of the art in
alignment-free methods with our implementation of zengsort.

On typical datasets (PDX RNA-seq), it is at least four times faster and needs less
memory than the comparable zenome tool. Our experiments show that it provides accurate
classification results, and classifies more reads than zenome, which more often bails out when
uncertain. Surprisingly, on PDX datasets, our approach is even faster than scanning already
aligned BAM files. This favorable behavior arises because almost every k-mer in every read
can be expected to be found in the key-value store, and lookups of present keys are faster
than lookups of absent keys with our data structure.

On adversarial datasets (e.g., a sequenced chicken genome, where almost none of the
k-mers can be found in the hash table), zengsort is 2 times faster than zenome and about 8
times slower than scanning pre-aligned and pre-sorted BAM files (which are mostly empty).

However, given that producing and sorting the BAM files takes significant additional
time, especially for computing the (non-existing) alignments, our results show that overall,
alignment-free methods require significantly less computational resources than alignment-
based methods. In view of the current worldwide discussions on climate change and energy
efficiency, we advocate that the most resource-efficient available methods should be used for a
task, and we propose that zengsort is preferable to existing work in this regard. Even though
one could argue that alignments are needed later anyway, we find that this is not always
true: First, to analyze PDX samples, typically only the graft reads are further considered
and need to be aligned. Second, recent research has shown that more and more application
areas can be addressed by alignment-free methods, even structural variation and variant
calling [16], so alignments may not be needed at all.

On the methodological side, we developed a general key-value store for DNA/RNA k-mers
that allows extremely fast lookups, often only a single random memory access, and that has
a low memory footprint thanks to a high load factor and the technique of quotienting.

Thus this work might be seen as a blueprint for implementations of other alignment-free
methods (for gene expression quantification, metagenomics, etc.). In principle, one could
replace the underlying key-value store of each published k-mer based method by the hashing

J. Zentgraf and S. Rahmann

approach presented here and probably obtain a speed-up of factor 2 to 4, while at the same
time saving some space for the hash table. In practice, such an approach may be difficult
because the code in question is often deeply nested in the application. However, we would
like to suggest that for future implementations, three-way bucketed Cuckoo hash tables with
quotienting should be given serious consideration.

A (small) limitation of our approach is that the size of the hash table must be known (at
least approximately) in advance. (Growing it would mean re-hashing everything). Fortunately,
the total length of the sequences in the k-mer key-value store provides an easily calculated
upper bound. The advantage of such a static approach is that only little additional memory
is required during construction.

The software xengsort is availableat http://gitlab.com/genomeinformatics/xengsort
under the MIT license. Installation and usage instructions are provided within the README
file of the repository. The software is written in Python, but makes use of just-in-time
compilation at runtime using the numba package [14]. While requiring an additional 1-2
seconds of startup time, this allows for many optimizations, because certain parameters that
become only known at run time, such as random parameters for the hash functions, can be
compiled as constants into the code. These optimizations yield savings that can exceed the
initial compilation effort.

Further variants of our approach can be explored and evaluated: We already introduced
a “quick mode”, similar to the one in kallisto [3], that is faster, but may falsely classify
problematic (amiguous) reads as belonging to a specific species. In practice, this does not
appear to be a problem. In the future, we may alternatively reduce the number of k-mer
lookups by not examining every k-mer, but only minimizers in windows of fixed size, using
min-hashing or other sampling methods. Another alternative is to base the classification
not on the number of (overlapping) k-mers belonging to each species, but on the number of
basepairs covered by k-mers of each species. Such investigations are ongoing.

While we have indications that classification results agree well overall among all methods
and variants, we concur with a recent study [10] that there exist subtle differences, whose
effects can propagate through computational pipelines and influence, for example, variant
calling results downstream, and we believe that further evaluation studies are necessary. In
contrast to their study, we however suggest that a best practice workflow for PDX analysis
should start (after quality control and adapter trimming on RNA-seq data) with alignment-
free xenograft sorting, followed by aligning the graft reads and the reads that can originate
from both genomes to the graft genome. In any workflow, the latter reads, classified as
“both”, may pose problems, because one may not be able to decide the species of origin.
Indeed, ultraconserved regions of DNA sequence exist between human and mouse. In this
sense we believe that full read sorting (into categories host, graft, both, neither, ambiguous,
as opposed to extracting graft reads only) gives the highest flexibility for downstream steps
and is prefereable to filter-only apporaches.

—— References

1 M. J. Ahdesmaki, S. R. Gray, J. H. Johnson, and Z. Lai. Disambiguate: An open-source
application for disambiguating two species in next generation sequencing data from grafted
samples. F'1000Res, 5:2741, 2016.

2 Simon Andrews. FastQC: A quality control tool for high throughput sequence data, 2010.
URL: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.

4:15

WABI 2020

http://gitlab.com/genomeinformatics/xengsort
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

4:16

Fast Lightweight Accurate Xenograft Sorting

3

10

11
12

13

14

15

16

17

18

N. L. Bray, H. Pimentel, P. Melsted, and L. Pachter. Near-optimal probabilistic RNA-seq
quantification. Nat. Biotechnol., 34(5):525-527, May 2016. Erratum in Nat. Biotechnol.
34(8):888 (2016).

Brian Bushnell. BBsplit, 2014-2020. Part of BBTools, https://jgi.doe.gov/
data-and-tools/bbtools/.

M. Callari, A. S. Batra, R. N. Batra, S. J. Sammut, W. Greenwood, H. Clifford, C. Hercus,
S. F. Chin, A. Bruna, O. M. Rueda, and C. Caldas. Computational approach to discriminate
human and mouse sequences in patient-derived tumour xenografts. BMC Genomics, 19(1):19,
2018.

C. Camacho, G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos, K. Bealer, and T. L. Madden.
BLAST+: architecture and applications. BMC' Bioinformatics, 10:421, December 2009.

T. Conway, J. Wazny, A. Bromage, M. Tymms, D. Sooraj, E. D. Williams, and B. Beresford-
Smith. Xenome-a tool for classifying reads from xenograft samples. Bioinformatics, 28(12):1172—
i178, June 2012.

W. Dai, J. Liu, Q. Li, W. Liu, Y. X. Li, and Y. Y. Li. A comparison of next-generation
sequencing analysis methods for cancer xenograft samples. J Genet Genomics, 45(7):345-350,
2018.

Gnoknur Giner. XenoSplit, 2019. Unpublished; source code available at https://github.com/
goknurginer/XenoSplit.

S. Y. Jo, E. Kim, and S. Kim. Impact of mouse contamination in genomic profiling of
patient-derived models and best practice for robust analysis. Genome Biology, 20(1):Article
231, November 2019. URL: https://europepmc.org/article/med/31707992.

W. J. Kent. BLAT-the BLAST-like alignment tool. Genome Res., 12(4):656-664, April 2002.
G. Khandelwal, M. R. Girotti, C. Smowton, S. Taylor, C. Wirth, M. Dynowski, K. K. Frese,
G. Brady, C. Dive, R. Marais, and C. Miller. Next-generation sequencing analysis and
algorithms for PDX and CDX models. Mol. Cancer Res., 15(8):1012-1016, August 2017.

R. J. C. Kluin, K. Kemper, T. Kuilman, J. R. de Ruiter, V. Iyer, J. V. Forment, P. Cornelissen-
Steijger, I. de Rink, P. Ter Brugge, J. Y. Song, S. Klarenbeek, U. McDermott, J. Jonkers,
A. Velds, D. J. Adams, D. S. Peeper, and O. Krijgsman. XenofilteR: computational deconvo-
lution of mouse and human reads in tumor xenograft sequence data. BMC Bioinformatics,
19(1):366, October 2018.

Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: a LLVM-based python JIT
compiler. In Hal Finkel, editor, Proceedings of the Second Workshop on the LLVM Compiler In-
frastructure in HPC, LLVM 2015, pages 7:1-7:6. ACM, 2015. doi:10.1145/2833157.2833162.
Marcel Martin. Cutadapt removes adapter sequences from high-throughput sequencing reads.
EMBnet.journal, 17(1):10-12, May 2011. doi:10.14806/ej.17.1.200.

D. S. Standage, C. T. Brown, and F. Hormozdiari. Kevlar: A mapping-free framework for
accurate discovery of de novo variants. iScience, 18:28-36, July 2019.

Stefan Walzer. Load thresholds for cuckoo hashing with overlapping blocks. In loannis
Chatzigiannakis, Christos Kaklamanis, Daniel Marx, and Donald Sannella, editors, 45th
International Colloguium on Automata, Languages, and Programming, ICALP 2018, volume
107 of LIPIcs, pages 102:1-102:10. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.
doi:10.4230/LIPIcs.ICALP.2018.102.

Jens Zentgraf, Henning Timm, and Sven Rahmann. Cost-optimal assignment of elements
in genome-scale multi-way bucketed cuckoo hash tables. In Proceedings of the Symposium
on Algorithm Engineering and Ezxperiments (ALENEX) 2020, pages 186-198. STAM, 2020.
doi:10.1137/1.9781611976007.15.

https://jgi.doe.gov/data-and-tools/bbtools/
https://jgi.doe.gov/data-and-tools/bbtools/
https://github.com/goknurginer/XenoSplit
https://github.com/goknurginer/XenoSplit
https://europepmc.org/article/med/31707992
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.14806/ej.17.1.200
https://doi.org/10.4230/LIPIcs.ICALP.2018.102
https://doi.org/10.1137/1.9781611976007.15

	Introduction
	Methods
	Overview
	Key-value stores of canonical k-mers
	Multi-way bucketed quotiented Cuckoo hashing
	Annotating weak k-mers
	Reference sequences
	Fragment classification

	Results
	Hash table construction
	Classification results

	Discussion and Conclusion

