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Abstract
Genome assembly is one of the most important problems in computational genomics. Here, we
suggest addressing the scaffolding phase, in which contigs need to be linked and ordered to obtain
larger pseudo-chromosomes, by means of a second incomplete assembly of a related species. The
idea is to use alignments of binned regions in one contig to find the most homologous contig in the
other assembly. We show that ordering the contigs of the other assembly can be expressed by a
new string problem, the longest run subsequence problem (LRS). We show that LRS is NP-hard
and present reduction rules and two algorithmic approaches that, together, are able to solve large
instances of LRS to provable optimality. In particular, they can solve realistic instances resulting
from partial Arabidopsis thaliana assemblies in short computation time. Our source code and all
data used in the experiments are freely available.
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1 Introduction

Genome assembly from sequencing reads enables the analysis of an organism at its genome
level and is one of the most important problems in computational genomics. The first step is
usually to assemble the reads based on overlap or k-mer based approaches to create contigs,

1 Corresponding author
© Sven Schrinner, Manish Goel, Michael Wulfert, Philipp Spohr, Korbinian Schneeberger, and
Gunnar W. Klau;
licensed under Creative Commons License CC-BY

20th International Workshop on Algorithms in Bioinformatics (WABI 2020).
Editors: Carl Kingsford and Nadia Pisanti; Article No. 6; pp. 6:1–6:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-6712-2198
mailto:sven.schrinner@hhu.de
https://orcid.org/0000-0002-6087-6990
https://orcid.org/0000-0002-6039-377X
https://orcid.org/0000-0002-5512-0443
https://orcid.org/0000-0002-6340-0090
mailto:gunnar.klau@hhu.de
https://doi.org/10.4230/LIPIcs.WABI.2020.6
https://github.com/AlBi-HHU/longest-run-subsequence
https://github.com/AlBi-HHU/longest-run-subsequence
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


6:2 The Longest Run Subsequence Problem

(a)

Assembly 2

Assembly 1

Assembly 2

Assembly 1

homology-based contig joining

Contigs

Pseudo-
chromosomes

(b)
Contig_A1

Contig_B1 Contig_B2 Contig_B3

Figure 1 Homology-based scaffolding. (a) Independent initial assemblies (contigs), which
are joined into pseudo-chromosomes by using homologies between contigs for scaffolding. (b)
Alignments between contigs from different samples. A1 determines the order of B1, B2 and B3.

which then need to be put into correct order and orientation in a scaffolding phase to generate
the final assembly of pseudo-chromosomes. Presence of a high-quality chromosome-level
reference genome of the same species can significantly simplify assembly generation as it
can be used as a template to order these contigs [1, 3]. However, for many species, such a
reference genome is not available.

There are two commonly used approaches for scaffolding. First, different types of maps
provide anchors for the contigs in the genome. These could be, for example, genetic maps,
physical maps or cytological maps providing markers with known positions in the genome
and known distances between each other [9]. The other approach is to use long-range
genomic information to link multiple contigs and put them into correct order and orientation.
Prominent examples are linked barcoded reads like 10X sequencing [10], Hi-C data based on
chromatin conformation capture [2] and optical mapping [7].

Yet another way for contig scaffolding is to use two or more incomplete assemblies from
closely related samples [4]. Regions of unconnected contigs for one sample might be connected
with the help of another, related sample, e.g., a genome assembly of an individual of the
same species, providing an overall gain in information for both samples. Local similarities
between contigs from different samples can be used to align and order them. Ideally, this
leads to long chromosome like sequences called pseudo-chromosomes, where the contigs of
different samples are aligned like shingles next to each other, as illustrated in Figure 1(a).

Note that structural rearrangements (such as translocations or inversions) and repeat
regions between genomes can result in non-sequential and non-unique mappings within
contigs and can thus lead to misleading connections between contigs. These events need to
be considered when finding homologous contigs as shown in Figure 1(b).



S. Schrinner, M. Goel, M. Wulfert, P. Spohr, K. Schneeberger, and G.W. Klau 6:3

Contig A1 (binned)

B1

S: S′:

Contig A1 (binned)

LRS

Ordered B-contigsUnordered B-contigs

b1b1 b1b1b1b3b3b3b4 b3b1 b2b2 b2b3 b1b1 b1b1b1b3b3b3b4 b3b1 b2b2 b2b3
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Figure 2 Processing of a single contig A1. The bins are matched against all contigs of another
sample B. Solving Longest Run Subsequence (LRS) on the corresponding string S, yields a maximal
subsequence with at most one run for every contig. This induces the optimal order for a subset of
B-contigs.

In the simplest setting of two incomplete assemblies we are given two sets of contigs
A = {A1, . . . , Al} and B = {B1, . . . , Bm} computed from two different samples. As already
stated, the contigs are not ordered with respect to genome positions, and it is this order
we rather want to compute. More precisely, we aim at inferring the most likely order from
between-sample overlaps among the contigs.

Assuming we want to order the contigs in B, we divide every contig Ai of A into smaller,
equally sized chunks, called bins, map them against the contigs in B and determine the best
matching contig for every bin. If Ai actually overlaps with multiple contigs in B, we should
be able to partition Ai into smaller parts based on mapping the bins to different contigs in B.
However, sequencing or mapping errors as well as mutations between the samples can cause
some bins to map onto a “wrong” contig, i.e., a contig belonging to a different area than the
bin. Therefore a method to find the best partition of Ai needs to distinguish between actual
transitions from one B-contig to another and noise introduced by errors or mutations.

Figure 2 illustrates the different steps in solving this problem. Starting from a binned
contig from A, here A1 for illustration, and its mapping preferences to the unordered contigs
in B, we reformulate this ordering problem as a string problem. In essence, we want to
find the longest subsequence of the input string of mapping preferences that consists only
of consecutive runs of contigs from B where each such run may occur at most once. This
subsequence corresponds to an ordering of the contigs in B, which can be transferred to the
original problem.

In this paper we formalize this process and introduce the Longest Run Subsequence problem
(LRS). We show that LRS is NP-hard. Nevertheless, we want to solve large instances of LRS
to provable optimality in reasonable running time and therefore present a number of reduction
rules and two algorithms based on integer linear programming and dynamic programming,
respectively. We evaluate both approaches on synthetic instances and find that they show
complementary strengths regarding the number of runs and the alphabet size. We also test
our approaches on realistic instances, which occurred during assembly of Arabidopsis thaliana
samples and could not be solved by a brute-force method. We show that all those instances
can be solved within short computation time. Our code and all data used in the experiments
are freely available at https://github.com/AlBi-HHU/longest-run-subsequence.
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2 Problem Formulation

A string S = s1, . . . , sm is a sequence over characters from a finite alphabet Σ. A subsequence
of S is a sequence si1 , . . . , sik , such that 1 ≤ i1 < i2 < . . . < ik ≤ m. We denote the substring
si, . . . , sj of S as S[i, j] and k consecutive occurrences of a character σ inside a string S as σk
and call it a run. Let σ(r) be the character of the run r and L(r) its length. By summarizing
the characters of S into maximally long runs, S can be represented as a unique sequence of
runs r1, . . . , rn = σ(r1)L(r1) . . . σ(rn)L(rn). For every σ ∈ Σ we define Pσ(i) as the index of
the last run before ri containing σ in S (0 if it does not occur). As an example, the string
from Figure 2 can be compressed to b12b4

3b1
3b3

3b1
1b3

1b2
3b3

1 with Pb1(4) = 3, Pb1(3) = 1
and Pb4(1) = 0.

We propose to model the optimal partition of a single contig as a string optimization
problem. Formally, we use the contigs from set B as the alphabet, that is Σ = {b1, . . . , bl}
and write the contig Ai as a string S = bi1 . . . bim over Σ by replacing the bins of Ai with the
corresponding character of the best match from B. On the one hand, we want every single
bin to be assigned to its preferred contig in B, but we also want a simple partition, which is
not skewed by wrong mappings of single bins. We therefore restrict valid partitions of Ai to
contain at most one continuous part for every contig in B. This prevents large parts to be
interrupted by single mismatching bins, at the cost of not being able to capture short-ranged
translocations as seen in Figure 1(b). A partition can be represented as a subsequence S′ of
the string S, which only contains at most one run for every σ ∈ Σ. The runs in S′ are the
parts corresponding to one B-contig each, while the dropped characters from S are bins in
conflict with S′. Finding the best partition can thus be stated as the following optimization
problem:

I Problem 1 (Longest Run Subsequence, LRS). Given an alphabet Σ = {σ1, . . . , σ|Σ|} and a
string s = s1, . . . , sm with si ∈ Σ, find a longest subsequence S′ = s′1, . . . , s

′
k of S, such that

S′ contains at most one run for every σ ∈ Σ. That is, for every pair of positions i and j with
i < j, it holds that

s′i = s′j ⇒ s′l = s′i for all i < l < j .

We denote the length of an optimal LRS solution for S with LRS (S). Since we want
to maximize the length of the run subsequence, it is always beneficial to either completely
add or completely remove a run of S. Once a character si ∈ Σ from a run ski is added to s′,
there can never be any other occurrence of si outside this run. Thus, the entire run must be
added to s′ to achieve maximum length. We will therefore mainly refer to runs instead of
single characters.

3 Complexity

In this section we prove hardness of the Longest Run Subsequence problem. More precisely,
we show that dLRS, the decision version of the problem is NP-complete. An instance of
dLRS is given by a tuple (S, k) and consists in answering the question whether S has a
longest run subsequence of length at least k.

I Theorem 1. dLRS is NP-complete.

Proof. It is easy to see that dLRS is in NP, because it can be checked in polynomial time
whether a string s′ is a soluton, that is, s′ is a run subsequence and |s′| ≥ k.



S. Schrinner, M. Goel, M. Wulfert, P. Spohr, K. Schneeberger, and G.W. Klau 6:5

To prove NP-hardness, we reduce from the Linear Ordering Problem (LOP), which has
been shown to be NP-hard [5]. LOP takes a complete directed graph with edge weights
and no self-loops as input and looks for an ordering among the vertices, such that the total
weights of edges following this order (i.e., edges leading from lower ordered vertices to higher
ordered vertices) is maximized.

We show that dLOP, the decision problem of LOP, that is, the question whether a vertex
ordering exists whose weight is at least a given threshold, can be polynomially reduced
to dLRS. Let G = (V,E) be a complete digraph with |V | = n. We denote the weight of
(vi, vj) ∈ E with wij and the sum of all weights of G as wsum. Without loss of generality we
can assume that all edge weights are positive: The number of edges following a linear order
is fixed, so adding a sufficiently large offset to all weights only adds a fixed value to any
solution without changing the core problem. This allows us to characterize LOP as finding
an acyclic subgraph G′ with maximum weight, because the non-negativity of the weights
always forces either (vi, vj) or (vj , vi) to be in G′ for every pair of vertices vi, vj ∈ V .

The proof consists of two parts. First, we show how to transform G into a string S.
Second, we show that G has a LOP solution of weight k if and only if S has a LRS of size

fG(k) := (n− 1) ·M + n(n− 1)(n− 2)
3 ·M ′ + n(n− 1) · wsum + 2k (1)

with M ′ := 4n2 · wsum and M := M ′ · n3.
For the transformation, we define Σ using three different types of characters:

1. Separators $i for every vertex vi ∈ V .
2. Edge signs E{i,j} for every pair vi, vj ∈ V . Note that E{i,j} = E{j,i}.
3. Triangle signs ∆(i,j,k) for every triangle in G. Note that triangles between three vertices

have an orientation and can be rotated. Therefore ∆(i,j,k) = ∆(j,k,i) = ∆(k,i,j) 6=
∆(i,k,j) = ∆(k,j,i) = ∆(j,i,k).

On the highest level the string S is constructed as shown in Equation 2. It consists of
one large block per vertex, each of them separated by a run of the associated separation sign
of length M .

S =

edge block
for (v1,v2)︷ ︸︸ ︷
[EB]1,2 [EB]1,3 . . . [EB]1,n︸ ︷︷ ︸

vertex block for v1

$M1 [EB]2,1 . . . [EB]2,n$M2 . . . $Mn−1[EB]n,1 . . . [EB]n,n−1 (2)

Each vertex block consists of a series of edge blocks (EB), which we define as follows:

[EB]i,j = E
wij+wsum
{i,j} ∆M ′

(i,j,1) . . .∆M ′

(i,j,n) E
wij+wsum
{i,j} (3)

In the same way as the i-th vertex block is associated with vertex vi, the edge substrings
in it are associated with the outgoing edges of vi. Note that there is one EB missing in every
vertex block, as self-loops are not allowed. Finally, [EB]i,j contains all triangle signs for
triangles, in which (vi, vj) occurs, i.e., {∆(i,j,k) | 1 ≤ k ≤ n, k 6= i, k 6= j}, which, for the sake
of notation, is written as ∆M ′

(i,j,1) . . .∆M ′

(i,j,n) in Equation 3. The triangle signs are padded by
edge signs for (vi, vj). Every edge sign E{i,j} occurs only in the two edge blocks [EB]i,j and
[EB]j,i. The length of the edge sign runs depends on the weight of the corresponding edge
(in either direction), rewarding the higher weighted edge. We also add wsum to the length
every edge sign run E{i,j}.

WABI 2020
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As for the numbers M and M ′, the latter is chosen to be larger than the combined length
of all edge sign runs. This makes a single triangle sign run more profitable than any selection
of edge sign runs. In the same manner, M is chosen to be larger than all triangle sign runs
combined.

Using this construction, a valid solution G′ = (V,E′) for a dLOP instance (G, k), i.e., an
acyclic subgraph of G with total weight at least k, can be transformed into a valid solution
for a dLRS instance (S, fG(k)). First, all separation runs are selected, yielding a total length
of (n− 1) ·M . Second, for every edge in E′, all edge signs in the corresponding edge blocks
are selected. Since |E′| = n(n−1)

2 , this adds at least 2 ·
(
n(n−1)

2 · wsum + k
)
characters to the

solution. Finally, G′ is acyclic, so for every triangle in G, there is at least one edge missing
in G′. Thus, by construction of S, one run can be selected for every triangle sign without
interfering with the edge sign runs, adding the missing n(n−1)(n−2)

3 ·M ′ characters.
Given a solution S′ for the dLRS instance (S, fG(k)), we show how to obtain a subgraph

G′ of total weight at least k for the original dLOP instance. The subsequence S′ must contain
all separation runs and a run for every triangle sign, because without all separation and
triangle signs selected at some place, it is (by choice of M and M ′) impossible to reach length
fG(k) for any k. Every selected edge sign run is therefore restricted to a single edge block.
The idea is that the choice of selecting E{i,j} either in [EB]i,j or [EB]j,i corresponds to the
choice of having either (i, j) or (j, i) in the DAG G′ for the original LOP. Since we added
wsum to the length of every edge sign run and there are only n(n−1)

2 edge signs in total, S′
must contain both runs inside an edge block, in order to reach length n(n− 1) · wsum (the
third summand in fG(k)). Thus, either edge signs or triangle signs may be selected inside an
edge block, but not both. G′ is finally obtained by selecting an edge e if and only if the edge
sign runs in the corresponding edge block are selected. This yields n(n−1)

2 edges with a total
weight of at least k. For every vertex pair vi, vj , exactly one of the edges (vi, vj) and (vj , vi)
is selected, because their corresponding edge blocks share the same edge sign.

It remains to be shown that the obtained subgraph G′ is acyclic. We can directly conclude
that G′ contains no triangles, since every triangle sign ∆(i,j,k) has to be taken, prohibiting
either (i, j), (j, k) or (k, i) (or two of them) to be part of G′. Assume that G′ contains a cycle
vi1 , vi2 , vi3 , . . . , vil , vi1 of length l ≥ 4. Then, either (vi1 , vi3) or (vi3 , vi1) must be in G′. The
latter would lead to a triangle, which we could already exclude from G′. But (vi1 , vi3) ∈ G′
implies that a circle of length l − 1 also exists in G′. Repeated use of this argument implies
that G′ also has a cycle with length 3, which is a contradiction to triangles being excluded.
Thus, G′ cannot contain a cycle of length 4 or greater and must be acyclic.

In summary, the decision problem whether there is a solution for a dLOP instance (G, k)
can be reduced to the decision problem whether a solution for the dLRS instance (S, fG(k))
obtained from G exists. J

4 Solution Strategies

To solve instances of LRS in practice we propose three reduction rules and two algorithmic
approaches. As of Theorem 1 we cannot guarantee a polynomial running time.

4.1 Reduction Rules
In Section 2 we already pointed out that an optimal solution for LRS always selects complete
runs of characters and we reduced the notation of the input to runs of characters with
a certain length each. This can also be seen as a reduction rule to the original problem
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formulation as the remaining size of the solution space now depends on the number of runs n
instead of the actual string length m. We refer to this as the run rule. Two more reduction
rules rely on the following lemma:

I Lemma 2. Let S, T be two strings over the disjoint alphabets ΣS and ΣT . Then the
optimal LRS solutions for S and T can be concatenated to form an optimal solution for the
concatenated string ST .

Proof. Since the two alphabets are disjoint, an LRS solution for S does not contain any
characters from ΣT . Therefore the choice of the subsequence for S does not influence the
valid subsequences for T and vice versa. This means that optimal solutions for S and T can
be computed independently and concatenated fo form a valid solution for ST . Obviously, an
optimal solution for ST cannot be longer than the combined length of optimal solutions for
the S and T , otherwise the latter would not be optimal. J

According to Lemma 2 we can divide an LRS instance S into smaller independent
instances, if we find a prefix r1, . . . , rl of S, which uses an exclusive sub-alphabet Σp, i.e.,
r1, . . . , rl ∈ Σ∗p and rl+1, . . . , rn ∈ (Σ \ Σp)∗. This prefix rule can be applied in linear time
by starting with the prefix r1 and extending it until we either reach the end of S, in which
case no independent suffix exists, or until the prefix is closed regarding the used characters.
Let l be the index of the last occurrence of σ(r1). Since σ(r1) is used in the prefix, all runs
r2, . . . , rl must belong to the prefix. Now start with k = 2 and update l to the index of the
last occurrence of σ(rk) (if this index is higher than l), increase k by 1 and repeat until k > l.
If l < n, an independent prefix is found, otherwise such a prefix does not exist.

This idea can be extended to the infix rule, which finds independent infixes via the
following lemma.

I Lemma 3. Let S, T be two strings over the disjoint alphabets ΣS and ΣT and let l be an
arbitrary position in S. Then it holds that

LRS (s1 . . . slTsl+1 . . . sm) = LRS
(
s1 . . . sl$LRS(T )sl+1 . . . s

)
with $ 6∈ ΣS ∪ ΣT .

Proof. For the same reason as in Lemma 2 LRS for T can be solved independently from
S. For the combined string s1 . . . slTsl+1 . . . sm the infix T is either entirely dropped in
the optimal subsequence or the optimal solution of T itself is entirely taken as a part of
the combined solution. Thus, T contributes either 0 or LRS (T ) characters to the optimal
combined solution. Therefore, if the solution for T is already known, s1 . . . slTsl+1 . . . sm
can be solved by replacing T with a run of length LRS (T ) of a new character $. J

Following Lemma 3 we can search for an independent infix in S to obtain two smaller
instances. Instead of starting with r1, we start with an arbitrary character σ ∈ Σ as anchor
and use the infix rk, . . . , rl as a start with rk and rl being the first and last occurrence of σ,
respectively. Similarly to the prefix search, we iterate over all runs in the infix and move the
markers k, l to the left and right, whenever we encounter a new character with occurrences
outside rk, . . . , rl, until the infix is closed (with respect to used characters) or the entire
string is contained. This is repeated with every character in Σ as anchor, possibly yielding
multiple infixes. Adjacent independent infixes are merged into larger ones, since we want
as many runs as possible to be replaced with a single run, as shown in Lemma 3. Infixes,
which consist of only one run, are discarded, because they do not pose an actual reduction.
Finding and merging all infixes can be done in time O(n · |Σ|).

WABI 2020
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For a maximum reduction, the rules are applied as follows: First, the prefix rule is
iteratively applied on S until no further independent prefix can be found. Second, the infix
rule is applied on every sub-instance found so far. For every infix found the procedure is
repeated by starting with the prefix rule again.

4.2 Solving with Integer Linear Programming
We present two algorithms to solve LRS to optimality, which have complementary strengths
and weaknesses. The first is based on an Integer Linear Program (ILP). This approach scales
well with large alphabets, but struggles with a large number of runs. We also propose a
dynamic programming (DP) approach, which remains fast for long strings, but suffers from
large alphabets. Both algorithms work exclusively on the runs of an input string S.

ILPs are a commonly used technique to model and solve combinatorial optimization
problems. We model the LRS formulation from before as an ILP in the following way: Let
n be the number of runs in S and let x1, . . . , xn be binary variables with xi = 1 if ri is
in the optimal subsequence and xi = 0 otherwise. Any possible subsequence of runs can
therefore be represented by a variable assignment. Since we want to maximize the length of
the subsequence, we define our objective function as the weighted sum over all taken runs,
using their lengths as weights:

max
n∑
i=1

xiL(ri) (4)

Let ri, rj be two runs with i < j and σ(ri) = σ(rj). If both runs are selected, no other
intermediate run with a different character can be selected according to the LRS conditions.
This is ensured by adding the following constraints for any pair of run ri, rj , with the same
character.

subject to (j − i)xi +

 ∑
i<l<j

σ(rl)6=σ(ri)

xl

+ (j − i)xj ≤ 2(j − i) for all 1 ≤ i < j (5)

If either ri or rj are not taken, the constraint does not prevent any other combination of
runs between them. The total number of constraints is bounded by dn2 e

2 and the number
of non-zero entries in the constraint matrix is bounded by n · dn2 e

2. The ILP has been
implemented using the Python interface of PuLP, which solves the ILP with the free solver
CoinOR2.

4.3 Solving with Dynamic Programming
As an alternative to the ILP formulation the problem can also be solved bottom-up by a
DP. Let D[i, F ] be the length of an optimal LRS solution for r1 . . . ri, which includes ri
itself and one run for every σ ∈ F ⊆ Σ only. The DP can be initialized with D[0, ∅] = 0
and D[0, F ] = −∞ for F 6= ∅. Known solutions can be extended by adding the runs of S
iteratively, always selecting an optimal predecessor for each run and keeping track of already
used characters with the second parameter F .

2 https://github.com/coin-or/pulp

https://github.com/coin-or/pulp
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D[1, {b1}]

D[4, {b1, b3}]

D[6, {b1, b3}]

D[7, {b1, b2, b3}] =

D[3, {b1}]D[0, {}]

Figure 3 Graph visualizing the recursion for the running example. Arcs represent the possible
predecessors for every run. Colors mark the optimal path and the DP entries taken by the recursion.

The full DP is as follows:

D[0, F ] = 0 ∀F ⊆ Σ
D[0, F ] = −∞ ∀F 6= ∅

D[i, F ] =


max

σ∈Σ∪{$}

{
D[Pσ(i), F ] + L(ri) if σ = σ(ri)
D[Pσ(i), F \ {σ(ri)}] + L(ri), if σ 6= σ(ri)

}
if σ(ri) ∈ F

−∞ otherwise
(6)

The recursion can be visualized by a directed acyclic graph as shown in Figure 3. It
contains a start vertex corresponding to the empty prefix of S and one vertex for every run in
S. Each vertex has an incoming edge from the start vertex and from position Pσ(i) for every
σ ∈ Σ. Every path in the graph corresponds to a (possibly invalid for LRS) subsequence of S.
It is optimal to only consider the last occurrences of any character before ri as predecessors
for ri itself, because if we take a LRS subsequence s′, where ri is proceeded by the second to
last occurrence of some other character σ before ri, we can make s′ longer by adding the last
occurrence of σ as well.

To compute D[i, F ] we first check whether the character of the i-th run is in F . If not,
then there is no subsequence using only characters from F , but containing ri, so the optimal
value for this case is −∞. Otherwise, D[i, F ] is computed by taking the maximum over all
previous occurrences for every σ ∈ Σ ∪ {$}: For σ we take the longest solution from position
Pσ(i) and the set F \ {σ(ri)} as used characters, because such a solution can be extended to
a solution for D[i, F ] by appending ri. Note that $ is a character not in Σ and that P$(i) = 0.
The only exception is made for σ = σ(ri), where we know that D[Pσ(i), F ] corresponds to
a subsequence ending with σ(ri), such that we can append ri without any new characters
being used.

The optimal solution for LRS can be found by taking the entry of D with the highest
score and using the backtracking information from the DP to obtain the corresponding
subsequence. The DP table has a total of n+ 1 columns and 2|Σ| rows with each entry taking
O(|Σ|) time to compute. This leads to a worst-case runtime of O

(
|Σ| · n · 2|Σ|

)
for the DP,

making this a fixed parameter tractable (FPT) approach for LRS with the alphabet size as
parameter.
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5 Experiments

We performed computational experiments on two different types of instances. First, we
generated random instances to see how the two algorithms scale on string length and alphabet
size. Second, we ran both algorithms on instances, which we came across a different project
[4]. Originally these instances were solved by a brute-force approach, but this failed for
longer strings, which motivated us to further investigate this problem.

All tests were run on an AMD Ryzen 7 2700X with 32GB of memory on Ubuntu 20.04.
The algorithms are implemented in Python and executed via Snakemake [8] using Python
3.7.6 and PuLP version 1.6.8.
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Figure 4 Run time plotted against string length (top) and alphabet size (bottom). Each curve
represents an algorithm and an additional parameter (number in parentheses), which is alphabet
size in the top blot and the string length in the bottom plot.

5.1 Synthetic Data
The synthetic data was created by randomly generating strings with different lengths and
alphabet sizes. For any combination a total of 20 strings was generated, such that every
string is guaranteed to use the entire alphabet assigned to it. These instances pose worst-case
instances for our algorithms, as the proposed reduction rules can hardly be applied. The
runs are quite short in general and since there is no structurally induced locality among
the characters, instances could be split very rarely. All runs instances were solved with all
reductions rules applied.

Figure 4 shows how the runtime scales with both increasing string lengths and increasing
alphabet size. For a fixed alphabet size the runtime scales about exponentially with the
string length for the ILP as shown in the top plot. In fact, the alphabet size only has very
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Table 1 Comparison of runtime (in seconds) between DP and ILP on instances from real data.
The times are for all 15 instances.

Algorithm All rules Runs and prefix Only runs
DP 0.01 0.01 out of memory
ILP 2.15 2.03 0.09

minor effect on the ILP compared to the string length, which becomes visible in the bottom
plot, with a slight favor of larger alphabets. The DP behaves complementary to the ILP,
scaling exponentially in the alphabet size and sub-exponentially with string length. Longer
strings take longer to process according to the top plot as opposed to the ILP being almost
oblivious to the alphabet size. However, if the alphabet becomes very large in relation to the
string length, the running time suddenly decreases for the DP.

The scaling can be explained by the properties of the algorithms. The ILP has a binary
decision variable for every run, increasing the number of possible (but not necessarily feasible)
variable assignments exponentially with the number of runs. Since ILP solvers usually fall
back to branching in case cutting planes do not suffice, the bad scaling with running times
appears logical. Larger alphabets might lead to a lower number of constraints (and thus
a lower runtime), as the ILP contains one constraint for every pair of runs with the same
character. As already pointed out in Section 4.3 the DP table grows linearly with the number
of runs and exponentially with alphabet size, explaining the high running time on large
alphabets. But also the memory consumption grew drastically. While the DP only needed
227MB of RAM for a string of length of 60 and |Σ| = 16, the consumption went up to 2,8GB
for |Σ| = 20 and to 9,2GB for |Σ| = 22. With |Σ| = 24 the machine ran out of memory,
making the memory consumption a larger bottleneck than the computation time. With the
ILP no such issues could be observed. The decreasing running time for very large alphabets
is caused by the reduction rules, as it leads to a higher number of characters occurring only
in a single run and thus to a higher chance of the string being splittable into independent
parts.

5.2 Real-World Data
We consider a dataset which was generated to test the performance of an approach to find
structural rearrangements [4]. It consists of fragmented assemblies that have been generated
by introducing random breaks in chromosome-level assemblies of the Col-0 and Ler accessions
of Arabidopsis thaliana [6, 4]. We tested 15 instances, which remained unsolved by brute-force
methods, containing string lengths between 34 and 50 and alphabets of size 31 to 38.

Using all three reduction rules, both algorithms were able to solve all instances in very
short time with the DP outperforming the ILP quite significantly, see Table 1. However, not
using the prefix and infix rules caused the DP to run out of memory because of the large
alphabets, while the ILP got faster. Since the reduction rules themselves only have minimal
impact on the runtime, this must be due to overhead in the ILP solver when solving many
small instances instead of one large one.

6 Discussion

The experiments showed that optimal LRS solutions can be found in short time for instance
sizes that occur on assemblies of real samples. We presented two different algorithms whose
running times depend on two important instance properties, namely string length and
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alphabet size. Random strings, however, do not seem to be a good indicator for actual
assembly instances, which are already pre-sorted except for some noise or rearrangements.
The reduction rules have little to no impact on random strings, while they reduce the assembly
instances to almost trivial sub-instances. This implies that reduction rules might be more
important in practice than the algorithm to process the remaining preprocessed instance.

One potential problem of the model itself was mentioned in Section 2. LRS only allows
for one run per character, which automatically induces an ordering on the underlying contigs.
This can be problematic if the binned contig contains a translocation that splits a long run
into two, e.g., b1b1b1b2b2b2b1b1b1. The LRS model will drop one of the b1 runs, even though
it would be better to leave the order of B1 and B2 open due to lack of evidence.

Another limitation arises while mapping the bins. Since only the best match for every bin
is taken, any mapping ambiguity is ignored, which might drop valuable information. There is
also no support for inversions inside the model. While inverted alignments can be taken into
account for the mapping step of a single bin, the model stays unaware of inversions and the
fact that an interval of bins is actually in the reverse order compared to the second assembly.
However, this might not be as problematic as it sounds, because the bins are not mapped to
other bins but to entire contigs. As long as inversions are contained in a single contig, they
should have no impact on the ordering that the model produces.

7 Conclusion

Ordering contigs by means of an incomplete assembly of a related species occurs as a variant
of homology-assisted assembly, which does not require chromosome-level assemblies already.
We introduced the Longest Run Subsequence (LRS) problem, formalizing the contig ordering
problem as a string problem. We proved that LRS is NP-complete and presented reduction
rules and two algorithms, which work well for long instances and large alphabets, respectively,
which we showed on a synthetic data set. Regarding real data, we managed to solve all
instances that could not be solved by a brute force approach in short computation time.

From the theoretical side, we find it interesting to further investigate approximability and
fixed-parameter tractability of LRS. From a practical perspective, we plan to further test the
approach on real assembly data, also taking more than two related assemblies into account.
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