GraphBin2: Refined and Overlapped Binning of
Metagenomic Contigs Using Assembly Graphs
Vijini G. Mallawaarachchi

Research School of Computer Science, College of Engineering and Computer Science,
Australian National University, Canberra, Australia
vijini.mallawaarachchi@anu.edu.au

Anuradha S. Wickramarachchi

Research School of Computer Science, College of Engineering and Computer Science,
Australian National University, Canberra, Australia
anuradha.wickramarachchi@anu.edu.au

Yu Lin

Research School of Computer Science, College of Engineering and Computer Science,
Australian National University, Canberra, Australia
yu.lin@anu.edu.au

—— Abstract

Metagenomic sequencing allows us to study structure, diversity and ecology in microbial communities

without the necessity of obtaining pure cultures. In many metagenomics studies, the reads obtained
from metagenomics sequencing are first assembled into longer contigs and these contigs are then
binned into clusters of contigs where contigs in a cluster are expected to come from the same species.
As different species may share common sequences in their genomes, one assembled contig may belong
to multiple species. However, existing tools for contig binning only support non-overlapped binning,
i.e., each contig is assigned to at most one bin (species). In this paper, we introduce GraphBin2
which refines the binning results obtained from existing tools and, more importantly, is able to
assign contigs to multiple bins. GraphBin2 uses the connectivity and coverage information from
assembly graphs to adjust existing binning results on contigs and to infer contigs shared by multiple
species. Experimental results on both simulated and real datasets demonstrate that GraphBin2 not
only improves binning results of existing tools but also supports to assign contigs to multiple bins.

2012 ACM Subject Classification Applied computing — Bioinformatics; Applied computing —
Computational genomics

Keywords and phrases Metagenomics binning, contigs, assembly graphs, overlapped binning
Digital Object Identifier 10.4230/LIPIcs.WABI.2020.8
Supplementary Material Our program can be found at https://github.com/Vini2/GraphBin2.

Acknowledgements We would like to thank the anonymous reviewers for their valuable comments.
Furthermore, this research was undertaken with the assistance of resources and services from the
National Computational Infrastructure (NCI Australia), an NCRIS enabled capability supported by

the Australian Government.

1 Introduction

With the advent of high throughput sequencing approaches, the field of metagenomics has
enabled us to access and study the genetic material of entire microbial communities [25, 32].
A microbial community is usually a complex mixture of multiple species and recovering these
species is crucial to understand the behaviour and functions within such communities. To
characterise the composition of a sample, we cluster metagenomic sequences into groups that
represent different taxonomic groups such as species, genera or higher levels [28]. This process

© Vijini G. Mallawaarachchi, Anuradha S. Wickramarachchi, and Yu Lin;
37 licensed under Creative Commons License CC-BY

20th International Workshop on Algorithms in Bioinformatics (WABI 2020).

Editors: Carl Kingsford and Nadia Pisanti; Article No. 8; pp. 8:1-8:21

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-2651-8719
mailto:vijini.mallawaarachchi@anu.edu.au
https://orcid.org/0000-0003-4160-5965
mailto:anuradha.wickramarachchi@anu.edu.au
https://orcid.org/0000-0001-6339-2644
mailto:yu.lin@anu.edu.au
https://doi.org/10.4230/LIPIcs.WABI.2020.8
https://github.com/Vini2/GraphBin2
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2

GraphBin2

is known as metagenomics binning. Although it is possible to bin reads directly (before
assembly) [1, 8, 10, 18, 23, 27, 33|, reads are usually too short to enable accurate binning
results [34]. Hence, a typical approach in metagenomics analysis starts from assembling
short reads into longer contigs and then bin these resulting contigs into groups representing
different taxonomic groups [28].

Existing contig-binning tools can be divided into two categories, (1) reference-based and
(2) reference-free. Reference-based binning approaches [3, 15, 20, 37] rely on a database
of reference genomes and thus may not be applicable in many metagenomic samples when
reference genomes are not available. Reference-free binning tools use unsupervised approaches
to group contigs into unlabelled bins which correspond to different taxonomic groups solely
based on the information obtained from the contigs [28]. These reference-free binning
methods become very useful when analysing environmental samples where many species
are not found in the current reference databases [16]. Most of the reference-free tools
make use of the composition and/or abundance (coverage) information of contigs to bin
them [2, 12, 13, 14, 31, 36, 38]. Although contigs are assembled from reads using assembly
graphs, most existing binning tools do not use the information of the assembly graph. More
recently, GraphBin [19] has been developed to use the connectivity information in the
assembly graph to refine the binning results of existing tools because contigs connected to
each other in the assembly graph are more likely to belong to the same taxonomic group [5].

Different bacterial genomes in a metagenomic sample may share similar genes and genomic
regions [26], which is a major challenge in assembling metagenomic reads into contigs [22].
Therefore, some assembled contigs from metagenomic reads may be shared by multiple species
in the sample. However, very few contig-binning tools support overlapped binning (i.e.,
assigning shared contigs to multiple species). S-GSOM [7] abstracts the flanking sequences
of highly conserved 16S rRNA and incorporates them into Growing Self-Organising Maps
(GSOM) to bin contigs into overlapping bins. MetaPhase [6] uses Hi-C reads to scaffold
assembled contigs into assemblies of individual species and allows certain contigs to belong
to multiple species. However, the applications of S-GSOM and MetaPhase are limited
due to their required additional sequencing effort (e.g., 16S RNA or Hi-C sequencing). As
shared contigs correspond to shared vertices between different genomic paths on the assembly
graph [22], it is worth investigating whether it is possible to infer such shared contigs from
the assembly graph without additional sequencing requirements.

In this paper, we present GraphBin2, the new generation of GraphBin, to refine binning
results using the assembly graph. While GraphBin only uses the topology information of
the assembly graph, GraphBin2 improves the algorithms to adjust existing binning results
and to support overlapped binning based on both the connectivity and coverage information
of assembly graphs. Experimental results show that GraphBin2 not only improves existing
binning results, but also infers contigs that may belong to multiple species.

2 Methods

Figure 1 denotes the workflow of GraphBin2. The preprocessing steps of GraphBin2 assemble
reads into contigs using the assembly graph and then bin the contigs (i.e., assign coloured
labels to contigs) using existing contig-binning tools. GraphBin2 takes this labelled assembly
graph as the input, removes unsupported labels, corrects the labels of inconsistent vertices,
propagates labels to unlabelled vertices and finally infers vertices with multiple labels
(colours).

V. G. Mallawaarachchi, A.S. Wickramarachchi, and Y. Lin 8:3

Metagenomic Reads

£

Preprocessing

Construct the Assembly Graph Label the Assembly Graph

GraphBin2

Step 2: Correct Labels of Inconsistent Vertices Step 1: Remove Labels of Unsupported Vertices

OUTPUT
Bin 1 Bin 2 Bin 3

NS NS

Figure 1 The workflow of GraphBin2.

WABI 2020

8:4

GraphBin2

2.1 Preprocessing

In this step, we assemble the next generation reads (e.g., Illumina reads with length ranging
from 75bp to 300bp) into contigs using the assembly graph. There are two dominant
paradigms for genome assembly: overlap-layout-consensus (or string graphs) [21] and de
Bruijn graphs [24]. We select two representative assemblers from each paradigm, SGA [30]
and metaSPAdes [22] respectively, to demonstrate the adaptability of GraphBin2. In the
assembly graph, each vertex represents a contig with coverage denoting the average number
of reads that map to each base of the contig and each edge indicates a significant overlap
between a pair of contigs. In an ideal case, a genome corresponds to a path in the assembly
graph and its genomic sequence corresponds to the concatenation of contigs along this path.
Hence, if two contigs are connected by an edge in the assembly graph, they are more likely
to belong to the same genome. Previous studies [5, 19] have shown that the connectivity
information between contigs can be used to refine binning results. In the assembly graph of
metagenomic datasets, different genomes usually correspond to different paths in the assembly
graph. If two genomes share a common contig (e.g., unresolved “interspecies repeat” [22]),
the corresponding vertex would be shared by two genomic paths in the assembly graph.

After assembling reads into contigs using assembly graphs, GraphBin2 uses an existing
contig-binning tool to derive an initial binning result. Note that most of the existing tools
for binning contigs require a minimum length for the contigs (e.g., 1,000bp for MaxBin2 [38]
and SolidBin [36], 500bp for BusyBee Web [16] and 1500bp for MetaBAT2 [13]). Therefore,
many short contigs in the assembly graph will be discarded, resulting in low recall values
as a common limitation of existing binning tools. For example, 65% of the contigs in the
metaSPAdes assembly of the Sharon-All dataset were discarded by MaxBin2 due to their
short length.

2.2 Step 1: Remove Labels of Unsupported Vertices

A linear (or circular) chromosome usually corresponds to a path (or a cycle) that traverses
multiple vertices in the assembly graph. If two contigs belong to the same chromosome,
they are likely to be connected by a path which consists of other contigs from the same
chromosome. Therefore, a labelled vertex is defined as supported if and only if one of the
following conditions hold.

It is an isolated vertex

It directly connects to a vertex of the same label

It connects to a vertex of the same label through a path that consists of only unlabelled

vertices
Otherwise, a labelled vertex is defined as unsupported. Note that the definition of unsupported
vertices in GraphBin2 is more strict than ambiguous vertices in GraphBin.! For example,
in the initial labelled assembly graph of Figure 1, vertex 2 in red is supported by vertex
6 in red as they are directly connected. Note that vertex 18 in green is also supported by
vertex 15 in green as there exists a path (i.e., 18 — 19 — 14 — 15) between them that
traverses only unlabelled vertices (i.e., 19 and 14). However, vertex 1 in blue is unsupported
as it cannot reach another blue vertex through a path consisting of only unlabelled (white
coloured) vertices.

! In GraphBin, a vertex i is denoted as an ambiguous vertex if at least one of its closest labelled vertices
has a label that is different than the label of the vertex 1.
An ambiguous vertex in GraphBin may be supported (in GraphBin2) by another vertex of the same
label if they are directly connected or connected through a path consisting of only unlabelled vertices.
An unsupported vertex in GraphBin2 is always ambiguous in GraphBin.

V. G. Mallawaarachchi, A.S. Wickramarachchi, and Y. Lin

To check whether a labelled vertex is supported or unsupported, a naive approach is to
perform a breadth-first-search from each labelled vertex. A refined algorithm first initialises
all labelled vertices as unsupported and scans the graph to identify all labelled vertices
that are either isolated or directly connected to a vertex of the same label and classifies
them as supported vertices. This refined algorithm then uses breadth-first-search to find
all connected components that consist of only unlabelled vertices and for each component
Component stores a set of labelled vertices N(Component) that are connected to vertices
in Component. If multiple labelled vertices in N(Component) have the same label, these
vertices are supported because they connect to each other through a path that consists of
only unlabelled vertices in Component. GraphBin2 removes the labels for all unsupported
vertices because these labels may not be reliable. For example, the label of the unsupported
vertex 1 is removed by GraphBin2 in Step 1 of Figure 1.

2.3 Step 2: Correct Labels of Inconsistent Vertices

After Step 1, each non-isolated labelled vertex v is supported by at least one vertex with
the same label. The closer two vertices are in the assembly graph, the more likely they have
the same label. For each vertex v, we introduce a labelled score, S(v,x), for each label z by
considering all vertices of label x that are directly connected to v or connected to v through
a path that consists of only unlabelled vertices. A vertex ¢ of label x contributes to S(v, z)
by 27 P8 where D(v,t) is the shortest distance between v and ¢ using only unlabelled
vertices. This distance is measured by the number of edges in a path and D(v,t) =1 if v
and t are directly connected. Therefore, the labelled score S(v,x) is the sum of contributions
from all vertices of label x that are directly connected to v or connected to v through a path
that consists of only unlabelled vertices. In Step 1 of Figure 1, vertex 17 contributes 1/2
to S(18, blue) because D(17,18) = 1 and vertex 8 contributes 1/8 to S(18, green) because
D(8,17) = 3. The labelled score of S(18,blue) is 2 to which all four blue vertices 17, 20, 23
and 24 contribute 1/2 respectively while S(18, green) = 5/16 to which vertex 8 contributes
1/8, vertex 15 contributes 1/8 and vertex 26 contributes 1/16.

A labelled vertex v of label z is defined as inconsistent if and only if the labelled score of
its current label x times « is less than or equal to the labelled score of another label y where
« is a parameter, i.e., a X S(v,z) < S(v,y). We have set a = 1.5 in the default settings
of GraphBin2. In Step 1 of Figure 1, vertex 18 in green is an inconsistent vertex because
1.5 x S(18,green) = 1.5 x 5/16 = 0.47 is less than S(18,blue) = 2.

Again, GraphBin2 uses the breadth-first-search to check if a labelled vertex is inconsistent.

GraphBin2 corrects the label of an inconsistent vertex v to another label that maximises the
labelled score. For example, GraphBin2 corrects the label of vertex 18 from green to blue

and corrects the label of vertex 22 from red to green (refer from Step 1 to Step 2 in Figure 1).

2.4 Step 3: Propagate Labels to Unlabelled Vertices

As existing contig-binning tools discard contigs due to their short lengths in the initial
binning, many vertices are still unlabelled in the current assembly graph. In this step, we

will propagate existing labels to the remaining unlabelled vertices using the assembly graph.

There are two intuitions behind this label propagation process. Firstly, vertices that are
closer to each other in the assembly graph are more likely to have the same label. Secondly,
vertices with similar coverages are more likely to have the same label because contigs from the
same genome usually have similar coverages [39, 12]. GraphBin2 uses both the connectivity
and coverage information of the assembly graph to propagate the labels.

8:5

WABI 2020

8:6

GraphBin2

For each unlabelled vertex v with coverage c(v) (i.e., coverage of the contig that corres-
ponds to the vertex), a candidate propagation action (D(v,t),|c(v) — ¢(t)],t,v) is recorded
as a tuple where ¢ is the nearest labelled vertex to v, ¢(¢) is the coverage of ¢ and D(v,t) is
the shortest distance between v and ¢ (as defined in Step 2). Given two candidate propaga-
tion actions, (dy,c1,t1,v1) and (ds, ca, ta,v2), GraphBin2 will execute (dy, c1, t1,v1) before
(da, ca,ta,v2), i.e., propagating the label of ¢; to v; before propagating the label of t5 to v,
if (d1 < dg) or (¢1 < ¢ and d; = dg). In other words, GraphBin2 puts more emphasis on the
connectivity information than the coverage information because the edges in the assembly
graph are expected to be more reliable than the coverage information on vertices, especially
for vertices corresponding to short contigs (which are discarded by initial binning tools).

GraphBin?2 first uses the breadth-first-search to compute all candidate propagation actions
for unlabelled vertices and sort them into a ranked list according to the order defined above.
At each iteration, GraphBin2 executes the first candidate propagation action and then
updates the ranked list of candidate propagation actions. Note that one unlabelled vertex
receives its label at each iteration and updating the ranked list of candidate propagation
actions can be done efficiently by breadth-first-search from this unlabelled vertex. Please refer
to the Supplementary Material Section A to see a step-by-step label propagation process from
Step 2 to Step 3 in Figure 1. Note that this label propagation process in GraphBin2 improves
on the label propagation algorithm in GraphBin by incorporating both the connectivity
and coverage information in the assembly graph. So far, GraphBin2 does not generate
multi-labelled vertices. In the next step, we will show how GraphBin2 uses the labelling,
connectivity and coverage information together on the assembly graph to infer multi-labelled
vertices.

2.5 Step 4: Infer Multi-Labelled Vertices

Contigs belonging to multiple genomes correspond to multi-labelled vertices in the assembly
graph. What are the characteristics of shared contigs between multiple species? Firstly, a
contig shared by multiple genomes may connect other contigs in these genomes. Secondly,
the coverage of a contig shared by multiple genomes should be equal to the sum of coverages
of these genomes in the ideal case. After label propagation, vertices of the same label are
likely to form connected components in the assembly graph and multi-labelled vertices are
likely to be located along the borders between multiple connected components where distinct
labels meet and have a coverage similar to the sum of the average coverages of multiple
components that they belong to.

GraphBin2 checks labelled vertices that are connected to vertices of multiple different

labels. The average coverage of a connected component P is calculated by % for

each vertex 4 in the connected component P, where ¢(i) is the coverage of the vertex ¢ and
L(i) is the length of the contig corresponding to vertex ¢. Assume v is a labelled vertex v from
a component P, the coverage of v is ¢(v) and the average coverage of P is ¢(P). When c(v) is
larger than ¢(P) and v is connected to other components Py, Py, ..., P, with different labels,
it is possible that v also belongs to one or more components (in addition to P). For example,
if v belongs to P, P; and P; in the ground-truth, the coverage of v, ¢(v), is expected to be
close to the sum of average coverages of the above three components, ¢(P) + ¢(P;) + ¢(P;).
In fact, finding which components in {P;, P, ..., Py} that v also belongs to (in addition to
P) can be modelled as the following subset sum problem [9]. Given a set of positive numbers
{c(P1),c(Py),...,c(Pr)}, find a subset whose sum is or is closest to ¢(v) — ¢(P). Then v will
be assigned to the corresponding components in this subset as well as to P. Note that it is
possible that the selected subset is empty and thus v only belongs to P.

V. G. Mallawaarachchi, A.S. Wickramarachchi, and Y. Lin

In all of our experiments, the maximum number of different components that a vertex
connects to in the assembly graph is less than 5. We use a brute-force way to enumerate
all possible combinations of components and find out the combinations that best explain
the observed coverages. For example, after Step 3 in Figure 1, vertex 3 in green connects
to another red component. The coverage of vertex 3 is 108 while the average coverage of
the green component is 95 and the average coverage of the red components is 19. Because
the coverage of vertex 3 (108) is closer to the sum of average coverages of green and red
components (95+19=114) compared to the average coverage of the green component (95),
vertex 3 is assigned both green and red labels. Similarly, the coverage of vertex 25 (142) is
closer to the sum of average coverages of green and blue components (95+49=144) compared
to the average coverage of the green component (95). Hence, vertex 25 is assigned both green
and blue labels. In the same assembly graph after Step 3 in Figure 1, vertex 14 in red does
not gain any other labels because its own coverage is closest to the average coverage of the
red component (19) compared to other possible combinations (i.e., red+blue, red+green,
green+blue and red+green+blue).

3 Experimental Setup

3.1 Datasets
3.1.1 Simulated Datasets

We simulated three metagenomic datasets according to the species found in the simMC—+
dataset [38]. Three datasets were simulated each containing 5 species (referred as Sim-5G),
10 species (referred as Sim-10G) and 20 species (referred as Sim-20G) respectively. Paired-
end reads were simulated using the tool InSilicoSeq [11] modelling a MiSeq instrument with
300bp mean read length. More details about the simulated datasets can be found in Table 1
and Supplementary Material Section B.

3.1.2 Real Datasets

We used the preborn infant gut metagenome, commonly known as the Sharon dataset [29]
(NCBI accession number SRA052203). There are 18 Illumina (Illumina HiSeq 2000) runs
available for this dataset. Omne run SRR492184 is included as a representative dataset
(referred as Sharon-1) and all the 18 Illumina runs are combined to form the Sharon-
All dataset in our experiments. Further details can be found in Supplementary Material
Section B.

3.2 Tools Used

To derive the assembly graph, there are two dominant assembly paradigms, de Bruijn
graphs [24] and overlap-overlap-layout-consensus (or string graphs) [21]. We selected one
representative tool from each paradigm to show the effectiveness of GraphBin2. To represent
the de Bruijn graph paradigm, we used metaSPAdes[22] (from SPAdes version 3.13.0 [4]) with
its default parameters to generate the assembly graph. As for the overlap-layout-consensus
paradigm, we selected SGA (version 0.10.15) [30] to derive the assembly graph.

We used MaxBin2 (version 2.2.5) [38] with default parameters and SolidBin (version
1.3) [36] in SolidBin-SFSmode to obtain the initial binning results for our experiments.
MaxBin2 and SolidBin are considered as hybrid contig-binning tools as they use both the
composition and coverage information. They make use of tetranucleotide frequencies and

8:7

WABI 2020

8:8

GraphBin2

Table 1 Details about the simulated datasets.

Dataset Species present Genome size Coverage Abundance
Acetobacter pasteurianus 2.9 Mb 115x 28%
Aeromonas veronii 4.6 Mb 72x% 28%

Sim-5G Amycolatopsis mediterranei 10.4 Mb 26X 22%
Arthrobacter arilaitensis 3.9 Mb 41x 13%
Azorhizobium caulinodans 5.4 Mb 20x 9%
Acetobacter pasteurianus 2.9 Mb 357x% 25%
Aeromonas veronii 4.6 Mb 225x 25%
Amycolatopsis mediterranei 10.4 Mb 80x 20%
Arthrobacter arilaitensis 3.9 Mb 128x 12%

. Azorhizobium caulinodans 5.4 Mb 62x 8%

Sim-10G
Bacillus cereus 5.3 Mb 58x% 7%
Bdellovibrio bacteriovorus 3.8 Mb 11x 1%
Bifidobacterium adolescentis 2.1 Mb 20x 1%
Brachyspira intermedia 3.4 Mb 11x 1%
Campylobacter jejuni 1.7 Mb 21x 1%
Acetobacter pasteurianus 2.9 Mb 705 % 23%
Aeromonas veronii 4.6 Mb 445% 23%
Amycolatopsis mediterranei 10.4 Mb 157x% 18%
Arthrobacter arilaitensis 3.9 Mb 253 % 11%
Azorhizobium caulinodans 5.4 Mb 123x 7%
Bacillus cereus 5.3 Mb 114x 7%
Bdellovibrio bacteriovorus 3.8 Mb 22x 1%
Bifidobacterium adolescentis 2.1 Mb 40x 1%
Brachyspira intermedia 3.4 Mb 21x 1%

. Campylobacter jejuni 1.7 Mb 41x 1%

Sim-20G
Candidatus Pelagibacter ubique 1.3 Mb 54x 1%
Chlamydia trachomatis 1.1 Mb 64x 1%
Clostridium acetobutylicum 4.0 Mb 18x 1%
Corynebacterium diphtheriae 2.5 Mb 28 x 1%
Cyanobacterium UCYN 1.5 Mb 47x 1%
Desulfovibrio vulgaris 3.6 Mb 20% 1%
Ehrlichia ruminantium 1.5 Mb 47x 1%
Enterococcus faecium 3.0 Mb 24 x 1%
Erysipelothrix rhusiopathiae 1.8 Mb 39x 1%
Escherichia coli 5.0 Mb 14x 1%

coverages of reads with different machine learning approaches to bin contigs. Note that both
MaxBin2 and SolidBin only bin contigs which are longer than 1,000bp by default. We also
compared GraphBin2 with its predecessor GraphBin [19]. The commands used to run all the
assembly and binning tools can be found in Supplementary Material Section C.

3.3 Evaluation Criteria

Since the reference genomes of the simulated datasets were known, we used BWA-MEM [17]
to align the contigs to their reference genomes to determine the ground truth species to
which the contigs actually belonged to. If at least 50% of a contig aligns to a species, then
a contig is considered to belong to this species. Note that a contig may be considered to
belong to multiple species if multiple such alignments exist. To reduce the effect of random
alignments between short contigs and multiple genomes, a contig is considered to belong
to multiple species when its length is at least 1,000bp long. Furthermore, isolated contigs
(corresponding vertices with zero degree in the assembly graph) were not considered for the
ground-truth set of the datasets.

V. G. Mallawaarachchi, A.S. Wickramarachchi, and Y. Lin

For the Sharon dataset, we considered the annotated contigs from 12 species which are
available at https://ggkbase.berkeley.edu/carrol/organisms as references. A process
similar to the simulated datasets were followed for the Sharon datasets to determine the
origin species of contigs and contigs belonging to multiple species.

To evaluate the binning results of MaxBin2 [38], SolidBin [36], GraphBin [19] and
GraphBin2, we used the metrics (1) precision, (2) recall and (3) Fl-score which have been
used in previous studies [2, 19, 35]. The binning result is denoted as a K x .S matrix where K
is the number of bins identified by the binning tool and S is the number of species available
in the ground truth. In this matrix, the element ays; denotes the number of contigs binned to
the k" bin and belongs to the s species. Note that contigs belonging to multiple species are
not included in this matrix. Unclassified denotes the number of contigs that are unclassified
or discarded by the tool. Following are the definitions and equations that were used to
calculate the precision, recall and F1-score.

Yo mazg{ags}
Zk Zs Qks

Precision =

(1)

>osmazp{ars}

=
fieca (O 2o aks + Unclassified)

(2)

Precision x Recall
F1=2
% Precision + Recall (3)

To evaluate the detection of multi-labelled vertices corresponding to contigs that may
belong to multiple species, we used the criteria (1) sensitivity (also known as true positive
rate or recall) which measures the proportion of actual positives that are correctly identified,
(2) specificity (also known as true negative rate) which measures the proportion of actual
negatives that are correctly identified and (3) balanced accuracy as follows.

TP
e TP)
Sensitivity TP+ FN @
TN
Specificity = 75— Fp)
Sensitivit Specificit
Balanced accuracy = ensiiivt y—2|— pecificity ©)

Here TP refers to the true positives (i.e., the number of multi-labelled vertices correctly
assigned with multiple labels), FP refers to the false positives (i.e., the number of single-
labelled vertices incorrectly assigned with multiple labels), FN refers to the false negatives
(i.e., the number of multi-labelled vertices incorrectly assigned with a single label) and TN
refers to the true negatives (i.e., the number of single labelled vertices correctly assigned with
a single label). We use the balanced accuracy because the dataset is imbalanced; i.e., the
number of multi-labelled contigs is much smaller than the number of single-labelled contigs.

4 Results and Discussion

4.1 Binning Results

8:9

WABI 2020

https://ggkbase.berkeley.edu/carrol/organisms

8:10 GraphBin2

Table 2 Comparison of binning results of MaxBin2 [38], GraphBin [19] and GraphBin2 (on top of
MaxBin2 results) using assembly graphs built by metaSPAdes [22]. The best values are highlighted

in bold.
No. of bins Evaluation GraphBin with GraphBin2 with
Dataset identified Criteria MaxBin2 MaxI];in2 results MafBin2 results
Precision 92.28% 99.80% 99.03%
Sim-5G 5 Recall 44.16% 97.08% 99.03%
F1 score 59.74% 98.42% 99.03%
Precision 90.24% 99.77% 99.78%
Sim-10G 10 Recall 38.21% 98.66% 99.78%
F1 score 53.69% 99.21% 99.78%
Precision 89.48% 98.28% 97.78%
Sim-20G 21 Recall 41.37% 94.06% 97.71%
F1 score 56.59% 96.12% 97.74%
Precision 75.46% 89.28% 90.02%
Sharon-1 5 Recall 31.59% 61.44% 62.53%
F1 score 44.54% 72.79% 73.80%
Precision 83.80% 90.02% 90.09%
Sharon-All 11 Recall 28.55% 82.04% 83.25%
F1 score 42.58% 85.84% 86.53%

Table 3 Comparison of binning results of SolidBin [36], GraphBin [19] and GraphBin2 (on top of
SolidBin results) using assembly graphs built by metaSPAdes [22]. The best values are highlighted

in bold.
No. of bins Evaluation . . GraphBin with GraphBin2 with
Dataset identified Criteria SolidBin Soli;)Bin results Soli(P;Bin results
Precision 91.94% 99.40% 99.03%
Sim-5G 5 Recall 44.36% 96.50% 99.03%
F1 score 59.84% 97.93% 99.03%
Precision 92.17% 99.21% 98.77%
Sim-10G 10 Recall 39.44% 98.99% 99.55%
F1 score 55.24% 99.10% 99.16%
Precision 17.51% 35.30% 46.05%
Sim-20G 10 Recall 8.80% 89.62% 90.05%
F1 score 11.72% 50.65% 60.94%
Precision 72.31% 83.98% 86.93%
Sharon-1 5 Recall 30.08% 86.99% 92.95%
F1 score 42.49% 85.46% 89.84%
Precision 78.30% 82.98% 81.13%
Sharon-All 9 Recall 22.63% 66.75% 68.30%

F1 score 35.11% 73.99% 74.16%

V. G. Mallawaarachchi, A.S. Wickramarachchi, and Y. Lin

Table 4 Comparison of binning results of MaxBin2 [38], GraphBin [19] and GraphBin2 (on top
of MaxBin2 results) using assembly graphs built by SGA [30]. The best values are highlighted in

bold.
No. of bins Evaluation GraphBin with GraphBin2 with
Dataset identified Criteria MaxBin2 Maxl:];in2 results MafBinZ results
Precision 93.01% 99.45% 99.57%
Sim-5G 5 Recall 2.70% 99.35% 99.57%
F1 score 5.26% 99.40% 99.57%
Precision 97.12% 93.03% 98.08%
Sim-10G 9 Recall 5.21% 89.73% 94.70%
F1 score 9.89% 91.35% 96.36%
Precision 96.30% 87.66% 94.39%
Sim-20G 20 Recall 4.03% 85.91% 92.69%
F1 score 7.74% 86.78% 93.53%
Precision 91.29% 85.90% 93.48%
Sharon-1 5 Recall 32.90% 76.67% 80.47%
F1 score 48.36% 81.02% 86.49%
Precision 63.32% 77.83% 78.07%
Sharon-All 8 Recall 15.85% 37.62% 39.58%
F1 score 25.35% 50.73% 52.53%

Table 5 Comparison of binning results of SolidBin [36], GraphBin [19] and GraphBin2 (on top of
SolidBin results) using assembly graphs built by SGA [30]. The best values are highlighted in bold.

Dataset No. of bins Evaluation SolidBin GraphBin with GraphBin2 with
identified Criteria SolidBin results SolidBin results
Precision 93.37% 99.29% 99.62%
Sim-5G 5 Recall 2.71% 99.29% 99.54%
F1 score 5.27% 99.29% 99.58%
Precision 85.20% 77.82% 88.91%
Sim-10G 9 Recall 5.06% 75.38% 93.62%
F1 score 9.54% 76.58% 91.20%
Precision 86.25% 77.07% 83.28%
Sim-20G 19 Recall 3.86% 64.92% 77.31%
F1 score 7.39% 70.10% 80.18%
Precision 94.79% 97.19% 96.53%
Sharon-1 4 Recall 35.78% 90.83% 91.59%
F1 score 51.95% 93.90% 93.99%
Precision 60.85% 76.02% 75.90%
Sharon-All 5 Recall 22.33% 47.48% 47.84%
F1 score 32.67% 58.45% 58.69%

8:11

WABI 2020

8:12

GraphBin2

Table 2 and Table 4 denote the binning results of MaxBin2 [38] and the binning results of
GraphBin [19] and GraphBin2 on top of MaxBin2 results for the metaSPAdes [22] assemblies
and SGA [30] assemblies, respectively. Table 3 and Table 5 demonstrate the results of
SolidBin [36], GraphBin [19] and GraphBin2 on top of SolidBin results for metaSPAdes
assemblies and SGA assemblies, respectively. The results in these tables show that GraphBin2
achieves the best performance in most of the scenarios. Both GraphBin and GraphBin2 have
shown significant improvements on recall compared to MaxBin2 and SolidBin. While MaxBin2
and SolidBin filter contigs with length shorter than 1,000bp, GraphBin and GraphBin2 are
able to bin short contigs using assembly graphs built by either metaSPAdes or SGA. In a
few scenarios, GraphBin2 improved on the recall with a bit of a compromise on the precision
compared to the GraphBin because GraphBin removes ambiguous labels in the final step.
Furthermore, the existence of weak edges (i.e., edges that are not well supported from the
data) can form false connections between contigs and can mislead the label propagation
process.

4.2 Multi-Labelled Inference Results

One key novelty of GraphBin2 is the introduction of the multiple-labelled inference for contigs.
Tables 6, 7, 8 and 9 demonstrate the performance of the GraphBin2 with its multi-labelled
inference. It is evident that there is an increase in the number of multi-labelled contigs with
the increasing complexity of the dataset.

Table 6 Multi-labelled inference results using GraphBin2 on top of MaxBin2 [38] results for the
metaSPAdes assemblies.

Dataset Ground p pp PN BN Sensitivity Specificity Danoed

truth accuracy
Sim-5G 2 2 2 512 0 100.00% 99.61% 99.81%
Sim-10G 5 4 3 893 1 80.00% 99.67% 89.83%
Sim-20G 7 4 7 1393 3 57.14% 99.50% 78.32%
Sharon-1 2 2 1 368 0 100.00% 99.73% 99.86%
Sharon-All 8 4 34 2692 4 50.00% 98.75% 74.38%

Table 7 Multi-labelled inference results using GraphBin2 on top of SolidBin [36] results for the
metaSPAdes assemblies.

Dataset Ground p pp PN BN Sensitivity Specificity Danoed

truth accuracy
Sim-5G 2 2 3 511 0 100.00% 99.42% 99.71%
Sim-10G 5 4 3 893 1 80.00% 99.67% 89.83%
Sim-20G 7 4 7 1393 3 57.14% 99.50% 78.32%
Sharon-1 2 1 1 369 1 50.00% 99.73% 74.86%
Sharon-All 8 1 29 2700 7 12.50% 98.94% 55.72%

GraphBin2 has assigned correct labels for most of the multi-labelled and single-labelled
vertices (i.e., TP+TN). The relatively poor true-positive rate on Sharon-All dataset may
be due to the poor performance of the initial binning results of MaxBin2 and SolidBin.
Moreover, the sequencing noise or contamination in the real metagenomic dataset may also

V. G. Mallawaarachchi, A.S. Wickramarachchi, and Y. Lin

affect the identification of multi-labelled vertices in the assembly graph. Furthermore, the
Sharon-All dataset consisted of short reads of 100bp length compared to other datasets
and resulted in a very fragmented assembly graph with a large number of nodes and edges.

Table 8 Multi-labelled inference results using GraphBin2 on top of MaxBin2 [38] results for the
SGA assemblies.

Dataset Ground " 1p pp PN BN Sensitivity Specificity | Conoed

truth accuracy
Sim-5G 3 1 5 18,18 2 33.33% 99.97% 66.65%
Sim-10G 2 18 32380 1 50.00% 99.98% 74.99%
Sim-20G 3 1 14 72,776 2 33.33% 99.98% 66.66%
Sharon-1 3 11 764 2 33.33% 99.87% 66.60%
Sharon-All 9 1 36 20905 8 11.11% 99.83% 55.47%

Table 9 Multi-labelled inference results using GraphBin2 on top of SolidBin [36] results for the
SGA assemblies.

Dataset Ground " 1p ' pp PN BN Sensitivity Specificity | Conoed

truth accuracy
Sim-5G 3 2 6 18,184 1 66.67% 99.97% 83.32%
Sim-10G 2 10 32388 1 50.00% 100.00% 75.00%
Sim-20G 3 110 72,780 2 33.33% 99.99% 66.66%
Sharon-1 3 1 0 765 2 33.33% 100.00% 66.67%
Sharon-All 9 2 15 20925 7 22.22% 99.93% 61.08%

4.3 Visualisation of the Assembly Graph

Figure 2 denotes the labelling of the contigs in the metaSPAdes assembly graph of the Sim-
5G dataset at different stages as it undergoes the processing of GraphBin2. In Figure 2(a),
we can see that some mis-binned contigs are identified (circled in red) as differently coloured
contigs within components of a single colour. Figure 2(b) shows the refined assembly
graph where GraphBin2 has removed labels of unsupported vertices and corrected labels
of inconsistent vertices. After GraphBin2 propagates labels to the remaining unlabelled
vertices, the assembly graph will be as denoted in Figure 2(c). Finally, GraphBin2 will detect
multi-labelled vertices that correspond to contigs that may belong to multiple species as
shown by the black coloured vertices in Figure 2(d).

4.4 Implementation

The source code for the experiments was implemented using Python 3.7.3 and run on a
Darwin system with macOS Mojave 10.14.6, 16G memory and Intel Core i7 CPU @ 2.8 GHz
with 4 CPU cores. In our experiments, we restrict the depth of the breadth-first-search in
Steps 2-3 to be 5 to speed up GraphBin2. Moreover, we have set the parameter o = 1.5
by default for GraphBin2. Furthermore, the process of inferring multi-labelled vertices was
performed in parallel using multithreading (set to 8 threads by default in GraphBin2).

8:13

WABI 2020

8:14

GraphBin2

Figure 2 The labelling of the assembly graph of Sim-5G dataset based on (a) the initial MaxBin2
result (mis-binned contigs are circled in red), (b) after removing labels of unsupported vertices and
correcting labels of inconsistent vertices, (c) after propagating labels of unlabelled vertices (d) after
determining multi-labelled vertices (black coloured vertices) by GraphBin2.

4.5 Running Time and Memory Usage

Table 10 denotes the running times (wall time) and the peak memory used for the Sharon-1
and Sharon-All datasets. MaxBin2 and GraphBin2 executed with 8 threads and SolidBin
executed with a single thread. The running times for MaxBin2 and SolidBin only include the
times taken to run the main software, excluding the times taken to build the composition
and coverage profile files.

GraphBin2 took less than 12 minutes and less than 165 MB of memory to complete
executing the Sharon-All dataset with 8 threads.

V. G. Mallawaarachchi, A.S. Wickramarachchi, and Y. Lin

Table 10 Running times (wall time) and peak memory usage for binning using each tool. s
denotes seconds, m denotes minutes and MB denotes megabytes.

GraphBin2 GraphBin2
Assembly L . with . with
Dataset type Criteria MaxBin2 MaxBin2 SolidBin SolidBin
result result
Ti
metaSPAdes ime 9s 5s 6s 5
Memory 1,389 MB 45 MB 290 MB 45 MB
Sharon-1 -
SGA Time 12s 3s 15s 3s
Memory 203 MB 33 MB 654 MB 33 MB
metaSPAdes Time 30s 10m 50s 2m Ts 11m 12s
Memory 1,378 MB 163 MB 1,416 MB 163 MB
Sharon-All
SGA Time 28s 1m 21s 2m 51s 1m 15s
Memory 241 MB 50 MB 2,612 MB 50 MB

5 Conclusion

In this paper we presented a novel algorithm, GraphBin2, that incorporates the coverage
information into the assembly graph as an improvement of GraphBin [19]. While GraphBin
uses only the topology of the assembly graph to remove and propagate labels, GraphBin2
makes use of the coverage information on vertices to perform label propagation. Furthermore,
GraphBin2 enables the detection of contigs that may belong to multiple species. The
performance of GraphBin2 was evaluated against its predecessor and two other binning tools
on top of contigs obtained from short-reads assembled using metaSPAdes [22] and SGA [30]
which represent the two assembly paradigms; de Bruijn graphs and overlap-layout-consensus
(string graphs). The results showed that GraphBin2 achieves the best binning performance in
both simulated and real datasets. Moreover, GraphBin2 shows the potential to infer contigs
shared by multiple species. Note that GraphBin2 could be in principle applied to long-read
assemblies. In the future, we intend to extend the capabilities of GraphBin2 to explore the
avenues at improving the detection of contigs shared by multiple species and further extend
towards binning long reads directly using read-overlap graphs.

—— References

1 Jarno Alanko, Fabio Cunial, Djamal Belazzougui, and Veli Mékinen. A framework for space-
efficient read clustering in metagenomic samples. BMC' Bioinformatics, 18(3):59, March 2017.
doi:10.1186/s12859-017-1466-6.

2 Johannes Alneberg, Brynjar Sméri Bjarnason, Ino de Bruijn, Melanie Schirmer, Joshua Quick,
Umer Z. Ijaz, Leo Lahti, Nicholas J. Loman, Anders F. Andersson, and Christopher Quince.
Binning metagenomic contigs by coverage and composition. Nature Methods, 11:1144-1146,
September 2014. doi:10.1038/nmeth.3103.

3 Sasha K. Ames, David A. Hysom, Shea N. Gardner, et al.
onomy classification using a reference genome database. Bioinformatics, 29(18):2253-2260,
July 2013. arXiv:http://oup.prod.sis.lan/bioinformatics/article-pdf/29/18/2253/
17128159/btt389.pdf.

4 Anton Bankevich, Sergey Nurk, Dmitry Antipov, Alexey A. Gurevich, Mikhail Dvorkin,
Alexander S. Kulikov, Valery M. Lesin, Sergey I. Nikolenko, Son Pham, Andrey D. Prjibelski,
Alexey V. Pyshkin, Alexander V. Sirotkin, Nikolay Vyahhi, Glenn Tesler, Max A. Alekseyev,

Scalable metagenomic tax-

8:15

WABI 2020

https://doi.org/10.1186/s12859-017-1466-6
https://doi.org/10.1038/nmeth.3103
http://arxiv.org/abs/http://oup.prod.sis.lan/bioinformatics/article-pdf/29/18/2253/17128159/btt389.pdf
http://arxiv.org/abs/http://oup.prod.sis.lan/bioinformatics/article-pdf/29/18/2253/17128159/btt389.pdf

8:16

GraphBin2

10

11

12

13

14

15

16

17

18

19

20

and Pavel A. Pevzner. SPAdes: A New Genome Assembly Algorithm and Its Applications
to Single-Cell Sequencing. Journal of Computational Biology, 19(5):455-477, 2012. PMID:
22506599. doi:10.1089/cmb.2012.0021.

Tyler P. Barnum, Israel A. Figueroa, Charlotte I. Carlstrom, Lauren N. Lucas, Anna L.
Engelbrektson, and John D. Coates. Genome-resolved metagenomics identifies genetic mobility,
metabolic interactions, and unexpected diversity in perchlorate-reducing communities. The
ISME Journal, 12(6):1568-1581, 2018. doi:10.1038/s41396-018-0081-5.

Joshua N. Burton, Ivan Liachko, Maitreya J. Dunham, and Jay Shendure. Species-level
deconvolution of metagenome assemblies with hi-c-based contact probability maps. G3:
Genes, Genomes, Genetics, 4(7):1339-1346, 2014. doi:10.1534/g3.114.011825.

Chon-Kit Kenneth Chan, Arthur L. Hsu, Saman K. Halgamuge, and Sen-Lin Tang. Binning
sequences using very sparse labels within a metagenome. BMC Bioinformatics, 9(1):215, April
2008. doi:10.1186/1471-2105-9-215.

Brian Cleary, Ilana Lauren Brito, Katherine Huang, Dirk Gevers, Terrance Shea, Sarah
Young, and Eric J. Alm. Detection of low-abundance bacterial strains in metagenomic
datasets by eigengenome partitioning. Nature Biotechnology, 33:1053, September 2015. doi:
10.1038/nbt . 3329.

Garey, Michael R. and Johnson, David S. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., USA, 1979.

Samuele Girotto, Cinzia Pizzi, and Matteo Comin. MetaProb: accurate metagenomic reads
binning based on probabilistic sequence signatures. Bioinformatics, 32(17):1567-1575, August
2016. doi:10.1093/bioinformatics/btw466.

Hadrien Gourlé, Oskar Karlsson-Lindsjo, Juliette Hayer, and Erik Bongcam-Rudloff. Simulating
Nlumina metagenomic data with InSilicoSeq. Bioinformatics, 35(3):521-522, July 2018.
doi:10.1093/bioinformatics/bty630.

Damayanthi Herath, Sen-Lin Tang, Kshitij Tandon, David Ackland, and Saman Kumara
Halgamuge. Comet: a workflow using contig coverage and composition for binning a meta-
genomic sample with high precision. BMC Bioinformatics, 18(16):571, December 2017.
doi:10.1186/512859-017-1967-3.

Dongwan Kang, Feng Li, Edward S Kirton, Ashleigh Thomas, Rob S Egan, Hong An,
and Zhong Wang. MetaBAT 2: an adaptive binning algorithm for robust and efficient
genome reconstruction from metagenome assemblies. PeerJ, 7:e27522v1, February 2019.
doi:10.7287/peerj.preprints.27522v1.

David Kelley and Steven Salzberg. Clustering metagenomic sequences with interpolated
Markov models. BMC' Bioinformatics, 11(1):544, 2010. doi:10.1186/1471-2105-11-544.
Daehwan Kim, Li Song, Florian P. Breitwieser, and Steven L. Salzberg. Centrifuge: rapid and
sensitive classification of metagenomic sequences. Genome Research, 26(12):1721-1729, 2016.
arXiv:http://genome.cshlp.org/content/26/12/1721.full.pdf+html.

Cedric C. Laczny, Christina Kiefer, Valentina Galata, Tobias Fehlmann, Christina Backes,
and Andreas Keller. BusyBee Web: metagenomic data analysis by bootstrapped supervised
binning and annotation. Nucleic Acids Research, 45(W1):W171-W179, May 2017. doi:
10.1093/nar/gkx348.

Heng Li. Aligning sequence reads, clone sequences and assembly contigs with bwa-mem, 2013.
arXiv:1303.3997.

Yunan Luo, Yun William Yu, Jianyang Zeng, Bonnie Berger, and Jian Peng. Metagenomic
binning through low-density hashing. Bioinformatics, 35(2):219-226, July 2018. doi:10.1093/
bioinformatics/bty611.

Vijini Mallawaarachchi, Anuradha Wickramarachchi, and Yu Lin. GraphBin: Refined binning
of metagenomic contigs using assembly graphs. Bioinformatics, March 2020. btaal80. doi:
10.1093/bioinformatics/btaal80.

Peter Menzel, Kim Lee Ng, and Anders Krogh. Fast and sensitive taxonomic classification for
metagenomics with Kaiju. Nature Communications, 7:11257, April 2016. Article.

https://doi.org/10.1089/cmb.2012.0021
https://doi.org/10.1038/s41396-018-0081-5
https://doi.org/10.1534/g3.114.011825
https://doi.org/10.1186/1471-2105-9-215
https://doi.org/10.1038/nbt.3329
https://doi.org/10.1038/nbt.3329
https://doi.org/10.1093/bioinformatics/btw466
https://doi.org/10.1093/bioinformatics/bty630
https://doi.org/10.1186/s12859-017-1967-3
https://doi.org/10.7287/peerj.preprints.27522v1
https://doi.org/10.1186/1471-2105-11-544
http://arxiv.org/abs/http://genome.cshlp.org/content/26/12/1721.full.pdf+html
https://doi.org/10.1093/nar/gkx348
https://doi.org/10.1093/nar/gkx348
http://arxiv.org/abs/1303.3997
https://doi.org/10.1093/bioinformatics/bty611
https://doi.org/10.1093/bioinformatics/bty611
https://doi.org/10.1093/bioinformatics/btaa180
https://doi.org/10.1093/bioinformatics/btaa180

V. G. Mallawaarachchi, A.S. Wickramarachchi, and Y. Lin

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Eugene W. Myers. The fragment assembly string graph. Bioinformatics, 21(suppl_ 2):1179-ii85,
September 2005. doi:10.1093/bioinformatics/btil114.

Sergey Nurk, Dmitry Meleshko, Anton Korobeynikov, and Pavel A. Pevzner. metaSPAdes: a
new versatile metagenomic assembler. Genome Research, 27(5):824-834, 2017. doi:10.1101/
gr.213959.116.

Rachid Ounit, Steve Wanamaker, Timothy J. Close, and Stefano Lonardi. CLARK: fast and
accurate classification of metagenomic and genomic sequences using discriminative k-mers.
BMC Genomics, 16(1):236, March 2015. doi:10.1186/s12864-015-1419-2.

Pavel A. Pevzner, Haixu Tang, and Michael S. Waterman. An Eulerian path approach to
DNA fragment assembly. Proceedings of the National Academy of Sciences, 98(17):9748-9753,
2001. doi:10.1073/pnas.171285098.

Christopher Quince, Alan W. Walker, Jared T. Simpson, Nicholas J. Loman, and Nicola Segata.
Shotgun metagenomics, from sampling to analysis. Nature Biotechnology, 35(9):833-844, 2017.
doi:10.1038/nbt.3935.

Christian S. Riesenfeld, Patrick D. Schloss, and Jo Handelsman. Metagenomics: Genomic
analysis of microbial communities. Annual Review of Genetics, 38(1):525-552, 2004. PMID:
15568985. doi:10.1146/annurev.genet.38.072902.091216.

L Schaeffer, H Pimentel, N Bray, P Melsted, and L Pachter. Pseudoalignment for metage-
nomic read assignment. Bioinformatics, 33(14):2082—2088, February 2017. doi:10.1093/
bioinformatics/btx106.

Karel Sedlar, Kristyna Kupkova, and Ivo Provaznik. Bioinformatics strategies for taxonomy
independent binning and visualization of sequences in shotgun metagenomics. Computational
and Structural Biotechnology Journal, 15:48-55, 2017. doi:10.1016/j.csbj.2016.11.005.

Ttai Sharon, Michael J. Morowitz, Brian C. Thomas, Elizabeth K. Costello, David A. Relman,
and Jillian F. Banfield. Time series community genomics analysis reveals rapid shifts in bacterial
species, strains, and phage during infant gut colonization. Genome Research, 23(1):111-120,
2013. doi:10.1101/gr.142315.112.

Jared T. Simpson and Richard Durbin. Efficient de novo assembly of large genomes using
compressed data structures. Genome Research, 22(3):549-556, 2012. doi:10.1101/gr.126953.
111.

Marc Strous, Beate Kraft, Regina Bisdorf, and Halina Tegetmeyer. The Binning of Metagenomic
Contigs for Microbial Physiology of Mixed Cultures. Frontiers in Microbiology, 3:410, 2012.
d0i:10.3389/fmicb.2012.00410.

Torsten Thomas, Jack Gilbert, and Folker Meyer. Metagenomics - a guide from sampling
to data analysis. Microbial Informatics and Ezperimentation, 2(1):3, 2012. doi:10.1186/
2042-5783-2-3.

Le Van Vinh, Tran Van Lang, Le Thanh Binh, and Tran Van Hoai. A two-phase binning
algorithm using l-mer frequency on groups of non-overlapping reads. Algorithms for Molecular
Biology, 10(1):2, January 2015. doi:10.1186/s13015-014-0030-4.

Jun Wang, Yuan Jiang, Guoxian Yu, Hao Zhang, and Haiwei Luo. BMC3C: binning metage-
nomic contigs using codon usage, sequence composition and read coverage. Bioinformatics,
34(24):4172-4179, June 2018. doi:10.1093/bioinformatics/bty519.

Ying Wang, Kun Wang, Yang Young Lu, and Fengzhu Sun. Improving contig binning of
metagenomic data using d2S oligonucleotide frequency dissimilarity. BMC' Bioinformatics,
18(1):425, September 2017. doi:10.1186/s12859-017-1835-1.

Ziye Wang, Zhengyang Wang, Yang Young Lu, Fengzhu Sun, and Shanfeng Zhu. Solid-
Bin: improving metagenome binning with semi-supervised normalized cut. Bioinformatics,
35(21):4229-4238, April 2019. doi:10.1093/bioinformatics/btz253.

Derrick E. Wood and Steven L. Salzberg. Kraken: ultrafast metagenomic sequence classification
using exact alignments. Genome Biology, 15(3):R46, 2014.

8:17

WABI 2020

https://doi.org/10.1093/bioinformatics/bti1114
https://doi.org/10.1101/gr.213959.116
https://doi.org/10.1101/gr.213959.116
https://doi.org/10.1186/s12864-015-1419-2
https://doi.org/10.1073/pnas.171285098
https://doi.org/10.1038/nbt.3935
https://doi.org/10.1146/annurev.genet.38.072902.091216
https://doi.org/10.1093/bioinformatics/btx106
https://doi.org/10.1093/bioinformatics/btx106
https://doi.org/10.1016/j.csbj.2016.11.005
https://doi.org/10.1101/gr.142315.112
https://doi.org/10.1101/gr.126953.111
https://doi.org/10.1101/gr.126953.111
https://doi.org/10.3389/fmicb.2012.00410
https://doi.org/10.1186/2042-5783-2-3
https://doi.org/10.1186/2042-5783-2-3
https://doi.org/10.1186/s13015-014-0030-4
https://doi.org/10.1093/bioinformatics/bty519
https://doi.org/10.1186/s12859-017-1835-1
https://doi.org/10.1093/bioinformatics/btz253

8:18

GraphBin2

38

39

A

Yu-Wei Wu, Blake A. Simmons, and Steven W. Singer. MaxBin 2.0: an automated bin-
ning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics,
32(4):605-607, October 2015. doi:10.1093/bioinformatics/btv638.

Yu-Wei Wu, Yung-Hsu Tang, Susannah G. Tringe, Blake A. Simmons, and Steven W. Singer.
Maxbin: an automated binning method to recover individual genomes from metagenomes
using an expectation-maximization algorithm. Microbiome, 2(1):26, August 2014. doi:
10.1186/2049-2618-2-26.

Step-By-Step Example of Label Propagation in GraphBin2

Figure 3 shows how GraphBin2 propagates labels from Step 2 to Step 3 on the example
assembly graph denoted in Figure 1. Figure 3(a) denotes the assembly graph after correcting
labels of inconsistent vertices (after Step 2). In our example assembly graph that we have
considered in Figure 1(a), the following candidate propagation actions will be executed in
the given order.

(1)
(2)
(3)
4)
(5)
(6)
(7

The candidate propagation action (1,0, 6, 1) is executed. Vertex 1 receives the red label
from vertex 6 as shown in Figure 3(b).

The candidate propagation action (1,0, 13,14) is executed. Vertex 14 receives the red
label from vertex 13 as shown in Figure 3(c).

The candidate propagation action (1,1,22,21) is executed. Vertex 21 receives the green
label from vertex 22 as shown in Figure 3(d).

The candidate propagation action (1,2,14,7) is executed. Vertex 7 receives the red label
from vertex 14 as shown in Figure 3(e).

The candidate propagation action (1,3, 18,19) is executed. Vertex 19 receives the blue
label from vertex 18 as shown in Figure 3(f).

The candidate propagation action (1,16, 8, 3) is executed. Vertex 3 receives the green
label from vertex 8 as shown in Figure 3(g).

The candidate propagation action (1,53,21,25) is executed. Vertex 25 receives the green
label from vertex 21 as shown in Figure 3(h).

https://doi.org/10.1093/bioinformatics/btv638
https://doi.org/10.1186/2049-2618-2-26
https://doi.org/10.1186/2049-2618-2-26

V. G. Mallawaarachchi, A.S. Wickramarachchi, and Y. Lin 8:19

Figure 3 Step-by-step illustration of how labels are propagated in Step 3 of the GraphBin2
Workflow on the example assembly graph.

WABI 2020

8:20 GraphBin2

B Details on the Datasets

Table 11 Information on the datasets used for the experiments.

Read Number Total number M . Number of
Dataset Assembler length of paired of non-isolated) (Ielar;hcc()g 1)g species in
(bp) end reads contigs ene P ground truth
Sim-5G metaSPAdes 300 2,000,000 516 51,723 5
SGA 300 2,000,000 18,192 1,675 5
. metaSPAdes 300 6,999,998 900 47,279 10
Sim-10G
SGA 300 6,999,998 32,389 1,300 10
. metaSPAdes 300 15,000,001 1,404 48,021 20
Sim-20G
SGA 300 15,000,001 72,791 873 20
metaSPAdes 100 14,869,863 371 17,144 12
Sharon-1
SGA 100 14,869,863 766 3,034 12
metaSPAdes 100 135,493,567 2,730 7,689 12
Sharon-All
SGA 100 135,493,567 20,942 1,547 12

C Commands Used

C.1 Assembly Tools

metaSPAdes
spades --meta -1 Reads_1.fastq -2 Reads_2.fastq -o /path/output_folder -t 20
SGA

sga preprocess -o reads.fastq --pe-mode 1 Reads_1.fastq Reads_2.fastq
sga index -a ropebwt -t 16 --no-reverse reads.fastq

sga correct -k 41 --learn -t 16 -o reads.k41l.fastq reads.fastq

sga index -a ropebwt -t 16 reads.k41l.fastq

sga filter -x 2 -t 16 reads.k41l.fastq

sga fm-merge -m 45 -t 16 reads.k41l.filter.pass.fa

sga index -t 16 reads.k41l.filter.pass.merged.fa

sga overlap -m 55 -t 16 reads.k41.filter.pass.merged.fa

sga assemble -m 95 reads.k41l.filter.pass.merged.asqg.gz

C.2 Binning Tools
MaxBin2

perl MaxBin-2.2.5/run_MaxBin.pl -contig contigs.fasta -abund abundance.abund -thread
8 -out /path/output_folder

Note: abundance.abund is a tab separated file with contig ID and the coverage for each
contig in the assembly. metaSPAdes provides the coverage of each contig in the contig identi-
fier of the final assembly. We can directly extract these values to create the abundance.abund
file. However, no such information is provided for contigs produced by SGA. Hence, reads
should be mapped back to contigs in order to determine the coverage of SGA contigs.

SolidBin
python scripts/gen_kmer.py /path/to/data/contig.fasta 1000 4

sh gen_cov.sh

V. G. Mallawaarachchi, A.S. Wickramarachchi, and Y. Lin 8:21

python SolidBin.py --contig_file /path/to/contigs.fasta --composition_profiles
/path/to/kmer_4.csv --coverage_profiles /path/to/cov_inputtableR.tsv --output
/output/result.tsv --log /output/log.txt --use_sfs

GraphBin

metaSPAdes version

python graphbin.py --assembler spades --graph /path/to/graph_file.gfa --paths
/path/to/paths_file.paths --binned /path/to/binning_result.csv --output
/path/to/output_folder

SGA version
python graphbin.py --assembler sga --graph /path/to/graph_file.asqg --binned
/path/to/binning_result.csv —--output /path/to/output_folder

GraphBin2

metaSPAdes version

python graphbin2.py --assembler spades --graph /path/to/graph_file.gfa --contigs
/path/to/contigs.fasta —--paths /path/to/paths_file.paths --binned
/path/to/binning_result.csv --output /path/to/output_folder

SGA version

python graphbin2.py --assembler sga --graph /path/to/graph_file.asqg --contigs
/path/to/contigs.fasta --abundance /path/to/abundance.abund --binned
/path/to/binning_result.csv --output /path/to/output_folder

WABI 2020

	Introduction
	Methods
	Preprocessing
	Step 1: Remove Labels of Unsupported Vertices
	Step 2: Correct Labels of Inconsistent Vertices
	Step 3: Propagate Labels to Unlabelled Vertices
	Step 4: Infer Multi-Labelled Vertices

	Experimental Setup
	Datasets
	Simulated Datasets
	Real Datasets

	Tools Used
	Evaluation Criteria

	Results and Discussion
	Binning Results
	Multi-Labelled Inference Results
	Visualisation of the Assembly Graph
	Implementation
	Running Time and Memory Usage

	Conclusion
	Step-By-Step Example of Label Propagation in GraphBin2
	Details on the Datasets
	Commands Used
	Assembly Tools
	Binning Tools

