
Coresets for the Nearest-Neighbor Rule
Alejandro Flores-Velazco
Department of Computer Science, University of Maryland, College Park, MD, USA
afloresv@cs.umd.edu

David M. Mount
Department of Computer Science and Institute for Advanced Computer Studies,
University of Maryland, College Park, MD, USA
mount@umd.edu

Abstract
Given a training set P of labeled points, the nearest-neighbor rule predicts the class of an unlabeled
query point as the label of its closest point in the set. To improve the time and space complexity of
classification, a natural question is how to reduce the training set without significantly affecting the
accuracy of the nearest-neighbor rule. Nearest-neighbor condensation deals with finding a subset
R ⊆ P such that for every point p ∈ P , p’s nearest-neighbor in R has the same label as p. This
relates to the concept of coresets, which can be broadly defined as subsets of the set, such that an
exact result on the coreset corresponds to an approximate result on the original set. However, the
guarantees of a coreset hold for any query point, and not only for the points of the training set.

This paper introduces the concept of coresets for nearest-neighbor classification. We extend
existing criteria used for condensation, and prove sufficient conditions to correctly classify any
query point when using these subsets. Additionally, we prove that finding such subsets of minimum
cardinality is NP-hard, and propose quadratic-time approximation algorithms with provable upper-
bounds on the size of their selected subsets. Moreover, we show how to improve one of these
algorithms to have subquadratic runtime, being the first of this kind for condensation.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases coresets, nearest-neighbor rule, classification, nearest-neighbor condensation,
training-set reduction, approximate nearest-neighbor, approximation algorithms

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.47

Related Version A full version of the paper is available at https://arxiv.org/abs/2002.06650.

Supplementary Material Source code is available at https://github.com/afloresv/nnc.

Funding Research partially supported by NSF grant CCF-1618866.

Acknowledgements Thanks to Prof. Emely Arráiz for suggesting the problem of condensation while
the first author was a student at Universidad Simón Bolívar, Venezuela. Thanks to Ahmed Abdelkader
for the helpful discussions and valuable suggestions.

1 Introduction

In non-parametric classification, we are given a training set P consisting of n points in a
metric space (X , d), with domain X and distance function d : X 2 → R+. Additionally, P
is partitioned into a finite set of classes by associating each point p ∈ P with a label l(p),
indicating the class to which it belongs. Given an unlabeled query point q ∈ X , the goal of a
classifier is to predict q’s label using the training set P .

The nearest-neighbor rule is among the best-known classification techniques [19]. It assigns
a query point the label of its closest point in P , according to the metric d. The nearest-neighbor
rule exhibits good classification accuracy both experimentally and theoretically [14,15,36],
but it is often criticized due to its high space and time complexities. Clearly, the training set

© Alejandro Flores-Velazco and David M. Mount;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 47; pp. 47:1–47:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-0868-9802
mailto:afloresv@cs.umd.edu
https://orcid.org/0000-0002-3290-8932
mailto:mount@umd.edu
https://doi.org/10.4230/LIPIcs.ESA.2020.47
https://arxiv.org/abs/2002.06650
https://github.com/afloresv/nnc
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


47:2 Coresets for the Nearest-Neighbor Rule

P must be stored to answer nearest-neighbor queries, and the time required for such queries
depends to a large degree on the size and dimensionality of the data. These drawbacks
inspire the question of whether it is possible replace P with a significantly smaller subset,
without significantly reducing the classification accuracy under the nearest-neighbor rule.
This problem is called nearest-neighbor condensation [22, 25,34,37].

There are obvious parallels between condensation and the concept of coresets in geometric
approximation [1,17,23,33]. Intuitively, a coreset is small subset of the original data, that
well approximates some statistical properties of the original set. Coresets have also been
applied to many problems in machine learning, such as clustering and neural network
compression [8, 11, 18, 29]. This includes recent results on coresets for the SVM classifier [38].

This paper presents the first approach to compute coresets for the nearest-neighbor rule,
leveraging its resemblance to the problem of nearest-neighbor condensation. We also present
one of the first results on practical condensation algorithms with theoretical guarantees.

Preliminaries. Given any point q ∈ X in the metric space, its nearest-neighbor, denoted
nn(q), is the closest point of P according the the distance function d. The distance from q

to its nearest-neighbor is denoted by dnn(q, P ), or simply dnn(q) when P is clear. Given a
point p ∈ P from the training set, its nearest-neighbor in P is point p itself. Additionally,
any point of P whose label differs from p’s is called an enemy of p. The closest such point is
called p’s nearest-enemy, and the distance to this point is called p’s nearest-enemy distance.
These are denoted by ne(p) and dne(p, P ) (or simply dne(p)), respectively.

Clearly, the size of a coreset for nearest-neighbor classification depends on the spatial
characteristics of the classes in the training set. For example, it is much easier to find a small
coreset for two spatially well separated clusters than for two classes that have a high degree
of overlap. To model the intrinsic complexity of nearest-neighbor classification, we define κ
to be the number of nearest-enemy points of P , i.e., the cardinality of set {ne(p) | p ∈ P}.

Through a suitable uniform scaling, we may assume that the diameter of P (that is,
the maximum distance between any two points in the training set) is 1. The spread of P ,
denoted as ∆, is the ratio between the largest and smallest distances in P . Define the margin
of P , denoted γ, to be the smallest nearest-enemy distance in P . Clearly, 1/γ ≤ ∆.

A metric space (X , d) is said to be doubling [26] if there exist some bounded value λ
such that any metric ball of radius r can be covered with at most λ metric balls of radius
r/2. Its doubling dimension is the base-2 logarithm of λ, denoted as ddim(X ) = log λ.
Throughout, we assume that ddim(X ) is a constant, which means that multiplicative factors
depending on ddim(X ) may be hidden in our asymptotic notation. Many natural metric
spaces of interest are doubling, including d-dimensional Euclidean space whose doubling
dimension is Θ(d). It is well know that for any subset R ⊆ X with some spread ∆R, the size
of R is bounded by |R| ≤ d∆Reddim(X )+1.

Related Work. A subset R ⊆ P is said to be consistent [25] if and only if for every p ∈ P its
nearest-neighbor in R is of the same class as p. Intuitively, R is consistent if and only if all
points of P are correctly classified using the nearest-neighbor rule over R. Formally, the
problem of nearest-neighbor condensation consists of finding a consistent subset of P .

Another criterion used for condensation is known as selectiveness [34]. A subset R ⊆ P is
said to be selective if and only if for all p ∈ P its nearest-neighbor in R is closer to p than
its nearest-enemy in P . Clearly, any selective subset is also consistent. Observe that these
condensation criteria ensure that every point in the training set will be correctly classified
after condensation, but they do not imply the same for arbitrary points in the metric space.



A. Flores-Velazco and D.M. Mount 47:3

(a) Training set (104 pts).

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

(b) FCNN (222 pts).

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(c) VSS (233 pts).

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(d) RSS (233 pts).

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(e) 0.1-RSS (300 pts).

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

(f) 0.5-RSS (540 pts).

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(g) 1-RSS (846 pts).

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(h)
√

2-RSS (1066 pts).

Figure 1 An illustrative example of the subsets selected by different condensation algorithms from
an initial training set P in R2 of 104 points. FCNN, VSS, and RSS, are known algorithms for this
problem, while α-RSS is proposed in this paper, along with new condensation criteria. The subsets
selected by α-RSS depend on the parameter α ≥ 0, here assigned to the values α = {0.1, 0.5, 1,

√
2}.

It is known that the problems of computing consistent and selective subsets of minimum
cardinality are both NP-hard [28,39,40]. An approximation algorithm called NET [22] was
proposed for the problem of finding minimum cardinality consistent subsets, along with
almost matching hardness lower-bounds. The algorithm simply computes a γ-net of P , where
γ is the minimum nearest-enemy distance in P , which clearly results in a consistent subset of
P (also selective). In practice, γ tends to be small, which results in subsets of much higher
cardinality than needed. To overcome this issue, the authors proposed a post-processing
pruning technique to further reduce the selected subset. Even with the extra pruning, NET is
often outperformed on typical data sets by more practical heuristics with respect to runtime
and selection size. More recently, a subexponential-time algorithm was proposed [10] for
finding minimum cardinality consistent subsets of point sets P ⊂ R2 in the plane, along
with other case-specific algorithms for special instances of the problem in R2. On the other
hand, less is known about computing minimum cardinality selective subsets: there is only a
worst-case exponential time algorithm called SNN [34] for computing such optimal subsets.

Most research has focused on proposing practical heuristics to find either consistent or
selective subsets of P (for comprehensive surveys see [27, 37]). CNN (Condensed Nearest-
Neighbor) [25] was the first algorithm proposed to compute consistent subsets. Even though
it has been widely used in the literature, CNN suffers from several drawbacks: its running
time is cubic in the worst-case, and the resulting subset is order-dependent, meaning that
the result is determined by the order in which points are considered by the algorithm.
Alternatives include FCNN (Fast CNN) [3] and MSS (Modified Selective Subset) [7], which
compute consistent and selective subsets respectively. Both algorithms run in O(n2) worst-
case time, and are order-independent. While such heuristics have been extensively studied
experimentally [21], theoretical results are scarce. Recently, it was shown [20] that the size of
the subsets selected by MSS cannot be bounded, while for FCNN it is still unknown whether
is possible to establish any bound. The same paper [20] proposes two new algorithms, namely

ESA 2020



47:4 Coresets for the Nearest-Neighbor Rule

RSS (Relaxed Selective Subset) and VSS (Voronoi Selective Subset), to find selective subsets
of P in O(n2) worst-case time. Both algorithms provide some guarantees on its selection
size in Euclidean space.

Contributions. As mentioned in the previous section, consistency and selectivity imply
correct classification to points of the training set, but not to arbitrary points of the metric
space (This is striking since this is the fundamental purpose of classification!). In this
paper, we introduce the concept of a coreset for classification with the nearest-neighbor rule,
which provides approximate guarantees on correct classification for all query points. We
demonstrate their existence, analyze their size, and discuss their efficient computation.

We say that a subset R ⊆ P is an ε-coreset for the nearest-neighbor rule on P , if and
only if for every query point q ∈ X , the class of its exact nearest-neighbor in R is the same
as the class of some ε-approximate nearest-neighbor of q in P (see Section 2 for definitions).
Recalling the concepts of κ and γ introduced in the preliminaries, here is our main result:

I Theorem 1. Given a training set P in a doubling metric space (X , d), there exist an
ε-coreset for the nearest-neighbor rule of size O(κ log 1

γ (1/ε)ddim(X )+1), and this coreset can
be computed in subquadratic worst-case time.

Here is a summary of our principal results:
We extend the criteria used for nearest-neighbor condensation, and identify sufficient
conditions to guarantee the correct classification of any query point after condensation.
We prove that finding minimum-cardinality subsets with this new criteria is NP-hard.
We provide quadratic-time approximation algorithms with provable upper-bounds on the
sizes of their selected subsets, and we show that the running time of one such algorithm
can be improved to be subquadratic.

Our subquadratic-time algorithm is the first with such worst-case runtime for the problem
of nearest-neighbor condensation.

2 Coreset Characterization

In practice, nearest-neighbors are usually not computed exactly, but rather approximately.
Given an approximation parameter ε ≥ 0, an ε-approximate nearest-neighbor or ε-ANN
query returns any point whose distance from the query point is within a factor of (1 + ε)
times the true nearest-neighbor distance.

Intuitively, a query point should be easier to classify if its nearest-neighbor is significantly
closer than its nearest-enemy. This intuition can be formalized through the concept of the
chromatic density [31] of a query point q ∈ X with respect to a set R ⊆ P , defined as:

δ(q,R) = dne(q,R)
dnn(q,R) − 1. (1)

Clearly, if δ(q,R) > ε then q will be correctly classified1 by an ε-ANN query over R, as all
possible candidates for the approximate nearest-neighbor belong to the same class as q’s true
nearest-neighbor. However, as evidenced in Figures 2a and 2b, one side effect of existing
condensation algorithms is a significant reduction in the chromatic density of query points.
Consequently, we propose new criteria and algorithms that maintain high chromatic densities
after condensation, which are then leveraged to build coresets for the nearest-neighbor rule.

1 By correct classification, we mean that the classification is the same as the classification that results
from applying the nearest-neighbor rule exactly on the entire training set P .



A. Flores-Velazco and D.M. Mount 47:5

(a) FCNN. (b) RSS. (c) 0.1-RSS. (d) 0.5-RSS.

Figure 2 Heatmap of chromatic density values of points in R2 w.r.t. the subsets computed by
different condensation algorithms: FCNN, RSS, and α-RSS (see Figure 1). Yellow • corresponds to
chromatic density values ≥ 0.5, while blue • corresponds to 0. Evidently, α-RSS helps maintaining
high chromatic density values when compared to standard condensation algorithms.

2.1 Approximation-Sensitive Condensation
The decision boundaries of the nearest-neighbor rule (that is, points q such that dne(q, P ) =
dnn(q, P )) are naturally characterized by points that separate clusters of points of different
classes. As illustrated in Figures 1b-1d, condensation algorithms tend to select such points.
However, this behavior implies a significant reduction of the chromatic density of query
points that are far from such boundaries (see Figures 2a-2b).

A natural way to define an approximate notion of consistency is to ensure that all points in
P are correctly classified by ANN queries over the condensed subset R. Given a condensation
parameter α ≥ 0, we define a subset R ⊆ P to be:

α-consistent if ∀ p ∈ P, dnn(p,R) < dne(p,R)/(1 + α).

α-selective if ∀ p ∈ P, dnn(p,R) < dne(p, P )/(1 + α).

It is easy to see that the standard forms arise as special cases when α = 0. These new
condensation criteria imply that δ(p,R) > α for every p ∈ P , meaning that p is correctly
classified using an α-ANN query on R. Note that any α-selective subset is also α-consistent.
Such subsets always exist for any α ≥ 0 by taking R = P . Current condensation algorithms
cannot guarantee either α-consistency or α-selectiveness unless α is equal to zero. Therefore,
the central algorithmic challenge is how to efficiently compute such sets whose sizes are
significantly smaller than P . We propose new algorithms to compute such subsets, which
showcase how to maintain high chromatic density values after condensation, as evidenced
in Figures 2c and 2d. This empirical evidence is matched with theoretical guarantees for
α-consistent and α-selective subsets, described in the following section.

2.2 Guarantees on Classification Accuracy
These newly defined criteria for nearest-neighbor condensation enforce lower-bounds on the
chromatic density of any point of P after condensation. However, this doesn’t immediately
imply having similar lower-bounds for unlabeled query points of X . In this section, we prove
useful bounds on the chromatic density of query points, and characterize sufficient conditions
to correctly classify some of these query points after condensation.

Intuitively, the chromatic density determines how easy it is to correctly classify a query
point q ∈ X . We show that the “ease” of classification of q after condensation (i.e., δ(q,R))
depends on both the condensation parameter α, and the chromatic density of q before
condensation (i.e., δ(q, P )). This result is formalized in the following lemma:

ESA 2020



47:6 Coresets for the Nearest-Neighbor Rule

I Lemma 2. Let q ∈ X be a query point, and R an α-consistent subset of P , for α ≥ 0.
Then, q’s chromatic density with respect to R is:

δ(q,R) > αδ(q, P )− 2
δ(q, P ) + α+ 3 .

Proof. The proof follows by analyzing q’s nearest-enemy distance in R. To this end, consider
the point p ∈ P that is q’s nearest-neighbor in P . There are two possible cases:

Case 1: If p ∈ R, clearly dnn(q,R) = dnn(q, P ). Additionally, it is easy to show that after
condensation, q’s nearest-enemy distance can only increase: i.e., dne(q, P ) ≤ dne(q,R).
This implies that δ(q,R) ≥ δ(q, P ).

Case 2: If p 6∈ R, we can upper-bound q’s nearest-neighbor distance in R as follows:

Since R is an α-consistent subset of P , we know that there exists a point r ∈ R such that
d(p, r) < dne(p,R)/(1 + α). By the triangle inequality and the definition of nearest-enemy,
dne(p,R) ≤ d(p, ne(q,R)) ≤ d(q, p) + dne(q,R). Additionally, applying the definition of
chromatic density on q and knowing that dne(q, P ) ≤ dne(q,R), we have d(q, p) = dnn(q, P ) ≤
dnn(q,R) = dne(q,R)/(1 + δ(q, P )). Therefore:

dnn(q,R) ≤ d(q, r) ≤ d(q, p) + d(p, r)

< d(q, p) + d(q, p) + dne(q,R)
1 + α

≤
(

δ(q, P ) + α+ 3
(1 + α)(1 + δ(q, P ))

)
dne(q,R).

Finally, from the definition of δ(q,R), we have:

δ(q,R) = dne(q,R)
dnn(q,R) − 1 > (1 + α)(1 + δ(q, P ))

δ(q, P ) + α+ 3 − 1 = α δ(q, P )− 2
δ(q, P ) + α+ 3 . J

The above result can be leveraged to define a coreset, in the sense that an exact result on
the coreset corresponds to an approximate result on the original set. As previously defined,
we say that a set R ⊆ P is an ε-coreset for the nearest-neighbor rule on P , if and only if for
every query point q ∈ X , the class of q’s exact nearest-neighbor in R is the same as the class
of any of its ε-approximate nearest-neighbors in P .

I Lemma 3. Any ε-coreset for the nearest-neighbor rule is an α-consistent subset, for α ≥ 0.

Proof. Consider any ε-coreset C ⊆ P for the nearest-neighbor rule on P . Since the ap-
proximation guarantee holds for any point in X , it holds for any p ∈ P \ C. We know p’s
nearest-neighbor in the original set P is p itself, thus making dnn(p, P ) zero. This implies that
p must be correctly classified by a nearest-neighbor query on C, that is, dnn(p, C) < dne(p, C),
which is the definition of α-consistency for any α ≥ 0. J

I Theorem 4. Any 2/ε-selective subset is an ε-coreset for the nearest-neighbor rule.

Proof. Let R be an α-selective subset of P , where α = 2/ε. Consider any query point q ∈ X
in the metric space. It suffices to show that its nearest-neighbor in R is of the same class as
any ε-approximate nearest-neighbor in P . To this end, consider q’s chromatic density with
respect to both P and R, denoted as δ(q, P ) and δ(q,R), respectively. We identify two cases:

Case 1 (Correct-Classification guarantee): If δ(q, P ) ≥ ε.
Consider the bound derived in Lemma 2. Since α ≥ 0, and by our assumption that
δ(q, P ) ≥ ε > 0, setting α = 2/ε implies that δ(q,R) > 0. This means that the nearest-
neighbor of q in R belongs to the same class as the nearest-neighbor of q in P . Intuitively,
this guarantees that q is correctly classified by the nearest-neighbor rule in R.



A. Flores-Velazco and D.M. Mount 47:7

Case 2 (ε-Approximation guarantee): If δ(q, P ) < ε.
Let p ∈ P be q’s nearest-neighbor in P , thus d(q, p) = dnn(q, P ). Since R is α-selective,
there exists a point r ∈ R such that d(p, r) = dnn(p,R) < dne(p, P )/(1 +α). Additionally,
by the triangle inequality and the definition of nearest-enemies, we have

dne(p, P ) ≤ d(p,ne(q, P )) ≤ d(p, q) + d(q,ne(q, P )) = dnn(q, P ) + dne(q, P ).

From the definition of chromatic density, dne(q, P ) = (1 + δ(q, P )) dnn(q, P ). Together,
these inequalities imply that (1 + α) d(p, r) ≤ (2 + δ(q, P )) dnn(q, P ). Therefore:

dnn(q,R) ≤ d(q, r) ≤ d(q, p) + d(p, r) ≤
(

1 + 2 + δ(q, P )
1 + α

)
dnn(q, P ).

Now, assuming δ(q, P ) < ε and setting α = 2/ε, imply that dnn(q,R) < (1 + ε) dnn(q, P ).
Therefore, the nearest-neighbor of q in R is an ε-approximate nearest-neighbor of q in P .

Cases 1 and 2 imply that setting α = 2/ε is sufficient to ensure that the nearest-neighbor rule
classifies any query point q ∈ X with the class of one of its ε-approximate nearest-neighbors
in P . Therefore, R is an ε-coreset for the nearest-neighbor rule on P . J

So far, we have assumed that nearest-neighbor queries over R are computed exactly, as
this is the standard notion of coresets. However, it is reasonable to compute nearest-neighbors
approximately even for R. How should the two approximations be combined to achieve
a desired final degree of accuracy? Consider another approximation parameter ξ, where
0 ≤ ξ < ε. We say that a set R ⊆ P is an (ξ, ε)-coreset for the approximate nearest-neighbor
rule on P , if and only if for every query point q ∈ X , the class of any of q’s ξ-approximate
nearest-neighbor in R is the same as the class of any of its ε-approximate nearest-neighbors
in P . The following result generalizes Theorem 4 to accommodate for ξ-ANN queries after
condensation.

I Theorem 5. Any α-selective subset is an (ξ, ε)-coreset for the approximate nearest-neighbor
rule when α = Ω(1/(ε− ξ)).

Proof. This follows from similar arguments to the ones described in the proof of Theorem 4.
Instead, here we set α = (εξ + 3ξ + 2)/(ε − ξ). Let R be an α-selective subset of P , and
q ∈ X any query point in the metric space, consider the same two cases:

Case 1 (Correct-Classification guarantee): If δ(q, P ) ≥ ε.
Consider the bound derived in Lemma 2. By our assumption that δ(q, P ) ≥ ε > 0, and
since α ≥ 0, the following inequality holds true:

δ(q,R) > αδ(q, P )− 2
δ(q, P ) + α+ 3 ≥

αε− 2
ε+ α+ 3

Based on this, it is easy to see that the assignment of α = (εξ + 3ξ + 2)/(ε− ξ) implies
that δ(q,R) > ξ, meaning that any of q’s ξ-approximate nearest-neighbors in R belong to
the same class as q’s nearest-neighbor in P . Intuitively, this guarantees that q is correctly
classified by the ξ-ANN rule in R.

Case 2 (ε-Approximation guarantee): If δ(q, P ) < ε.
The assignment of α implies that dnn(q,R) < 1+ε

1+ξ dnn(q, P ). This means that an ξ-ANN
query for q in R, will return one of q’s ε-approximate nearest-neighbors in P .

All together, this implies that R is an (ξ, ε)-coreset for the nearest-neighbor rule on P . J

ESA 2020



47:8 Coresets for the Nearest-Neighbor Rule

In contrast with standard condensation criteria, these new results provide guarantees on
either approximation or the correct classification, of any query point in the metric space.
This is true even for query points that were “hard” to classify with the entire training set,
formally defined as query points with low chromatic density. Consequently, Theorems 4 and 5
show that α must be set to large values if we hope to provide any sort of guarantees for
these query points. However, better results can be achieved by restricting the set of points
that are guaranteed to be correctly classified. This relates to the notion of weak coresets,
which provide approximation guarantees only for a subset of the possible queries. Given
β ≥ 0, we define Qβ as the set of query points in X whose chromatic density with respect
to P is at least β (i.e., Qβ = {q ∈ X | δ(q, P ) ≥ β}). The following result describes the
trade-off between α and β to guarantee the correct classification of query points in Qβ after
condensation.

I Theorem 6. Any α-consistent subset is a weak ε-coreset for the nearest-neighbor rule for
queries in Qβ, for β = 2/α. Moreover, all query points in Qβ are correctly classified.

The proof of this theorem is rather simple, and follows the same arguments outlined in
Case 1 of the proof of Theorem 4. Basically, we use Lemma 2 to show that for any query point
q ∈ Qβ , q’s chromatic density after condensation is greater than zero if αβ ≥ 2. Note that ε
plays no role in this result, as the guarantee on query points of Qβ is of correct classification
(i.e., the class of its exact nearest-neighbor in P ), rather than an approximation.

The trade-off between α and β is illustrated in Figure 3. From an initial training set
P ⊂ R2 (Figure 3a), we show the regions of R2 that comprise the sets Qβ for β = 2/α,
using α = {0.1, 0.2,

√
2} (Figures 3b-3d). While evidently, increasing α guarantees that

more query points will be correctly classified after condensation, this example demonstrates
a phenomenon commonly observed experimentally: most query points lie far from enemy
points, and thus have high chromatic density with respect to P . Therefore, while Theorem 4
states that α must be set to 2/ε to provide approximation guarantees on all query points,
Theorem 6 shows that much smaller values of α are sufficient to provide guarantees on some
query points, as evidenced in the example in Figure 3.

(a) Training set (200 pts). (b) Q2/α for α = 0.1. (c) Q2/α for α = 0.2. (d) Q2/α for α =
√

2.

Figure 3 Depiction of the Qβ sets for which any α-consistent subset is weak coreset (β = 2/α).
Query points in the yellow • areas are inside Qβ , and thus correctly classified after condensation.
Query points in the blue • areas are not in Qβ , and have no guarantee of correct classification.

These results establish a clear connection between the problem of condensation and that
of finding coresets for the nearest-neighbor rule, and provides a roadmap to prove Theorem 1.
This is the first characterization of sufficient conditions to correctly classify any query point
in X after condensation, and not just the points in P (as the original consistency criteria
implies). In the following section, these existential results are matched with algorithms to
compute α-selective subsets of P of bounded cardinality.



A. Flores-Velazco and D.M. Mount 47:9

3 Coreset Computation

3.1 Hardness Results
Define Min-α-CS to be the problem of computing an α-consistent subset of minimum
cardinality for a given training set P . Similarly, let Min-α-SS be the corresponding opti-
mization problem for α-selective subsets. Following known results from standard conden-
sation [28,39, 40], when α is set to zero, the Min-0-CS and Min-0-SS problems are both
known to be NP-hard. Being special cases of the general problems just defined, this implies
that both Min-α-CS and Min-α-SS are NP-hard.

In this section, we present results related to the hardness of approximation of both
problems, along with simple algorithmic approaches with tight approximation factors.

I Theorem 7. The Min-α-CS problem is NP-hard to approximate in polynomial time within
a factor of 2(ddim(X ) log ((1+α)/γ))1−o(1) .

The full proof is omitted, as it follows from a modification of the hardness bounds proof for
the Min-0-CS problem described in [22], which is based on a reduction from the Label Cover
problem. Proving Theorem 7 involves a careful adjustment of the distances in this reduction,
so that all the points in the construction have chromatic density at least α. Consequently,
this implies that the minimum nearest-enemy distance is reduced by a factor of 1/(1 + α),
explaining the resulting bound for Min-α-CS.

The NET algorithm [22] can also be generalized to compute α-consistent subsets of P as
follows. We define α-NET as the algorithm that computes a γ/(1 + α)-net of P , where γ is
the smallest nearest-enemy distance in P . The covering property of nets [24] implies that
the resulting subset is α-consistent, while the packing property suggests that its cardinality
is O

(
((1 + α)/γ)ddim(X )+1), implying a tight approximation to the Min-α-CS problem.

I Theorem 8. The Min-α-SS problem is NP-hard to approximate in polynomial time within
a factor of (1− o(1)) lnn unless NP ⊆ DTIME(nlog logn).

Proof. The result follows from the hardness of another related covering problem: the mi-
nimum dominating set [16,30,32]. We describe a simple L-reduction from any instance of
this problem to an instance of Min-α-SS, which preserves the approximation ratio.

1. Consider any instance of minimum dominating set, consisting of the graph G = (V,E).
2. Generate a new edge-weighted graph G′ as follows:

Create two copies of G, namely Gr = (Vr, Er) and Gb = (Vb, Eb), of red and blue nodes
respectively. Set all edge-weights of Gr and Gb to be 1. Finally, connect each red node vr to
its corresponding blue node vb by an edge {vr, vb} of weight 1+α+ξ for a sufficienly small
constant ξ > 0. Formally, G′ is defined as the edge-weighted graph G′ = (V ′, E′) where
the set of nodes is V ′ = Vr ∪ Vb, the set of edges is E′ = Er ∪Er ∪ {{vr, vb} | v ∈ V }, and
an edge-weight function w : E′ → R+ where w(e) = 1 iff e ∈ Er∪Eb, and w(e) = 1+α+ξ
otherwise.

3. A labeling function l where l(v) = red iff v ∈ Vr, and l(v) = blue iff v ∈ Vb.
4. Compute the shortest-path metric of G′, denoted as dG′ .
5. Solve the Min-α-SS problem for the set V ′, on metric dG′ , and the labels defined by l.

A dominating set of G consists of a subset of nodes D ⊆ V , such that every node
v ∈ V \D is adjacent to a node in D. Given any dominating set D ⊆ V of G, it is easy to
see that the subset R = {vr, vb | v ∈ D} is an α-selective subset of V ′, where |R| = 2|D|.

ESA 2020



47:10 Coresets for the Nearest-Neighbor Rule

Similarly, given an α-selective subset R ⊆ V ′, there is a corresponding dominating set D of
G, where |D| ≤ |R|/2, as D can be either R ∩ Vr or R ∩ Vb. Therefore, Min-α-SS is as hard
to approximate as the minimum dominating set problem. J

There is a clear connection between the Min-α-SS problem and covering problems, in
particular that of finding an optimal hitting set. Given a set of elements U and a family
C of subsets of U , a hitting set of (U,C) is a subset H ⊆ U such that every set in C

contains at least one element of H. Therefore, let Np,α be the set of points of P whose
distance to p is less than dne(p)/(1 + α), then any hitting set of (P, {Np,α | p ∈ P}) is also
an α-selective subset of P , and vice versa. This simple reduction implies a O(n3) worst-case
time O(logn)-approximation algorithm for Min-α-SS, based on the classic greedy algorithm
for set cover [12, 35]. Call this approach α-HSS or α-Hitting Selective Subset. It follows from
Theorem 8 that for training sets in general metric spaces, this is the best approximation
possible under standard complexity assumptions.

While both α-NET and α-HSS compute tight approximations of their corresponding
problems, their performance in practice does not compare to heuristic approaches for standard
condensation (see Section 4 for experimental results). Therefore, in the next section, we
consider one such heuristic and extend it to compute subsets with the newly defined criteria.

3.2 A Practical Algorithm

For standard condensation, the RSS algorithm was recently proposed [20] to compute selective
subsets. It runs in quadratic worst-case time and exhibits good performance in practice.
The selection process of this algorithm is heuristic in nature and can be described as follows:
beginning with an empty set, the points in p ∈ P are examined in increasing order with
respect to their nearest-enemy distance dne(p). The point p is added to the subset R if
dnn(p,R) ≥ dne(p). It is easy to see that the resulting subset is selective.

We define a generalization, called α-RSS, to compute α-selective subsets of P . The
condition to add a point p ∈ P to the selected subset checks if any previously selected
point is closer to p than dne(p)/(1 + α), instead of just dne(p). See Algorithm 1 for a formal
description, and Figure 4 for an illustration. It is easy to see that this algorithm computes an
α-selective subset, while keeping the quadratic time complexity of the original RSS algorithm.

Algorithm 1 α-RSS.

Input: Initial training set P and parameter α ≥ 0
Output: α-selective subset R ⊆ P

1 R← φ

2 Let {pi}ni=1 be the points of P sorted increasingly w.r.t. dne(pi)
3 foreach pi ∈ P , where i = 1 . . . n do
4 if dnn(pi, R) ≥ dne(pi)/(1 + α) then
5 R← R ∪ {pi}

6 return R

Naturally, we want to analyze the number of points this algorithm selects. The remainder
of this section establishes upper-bounds and approximation guarantees of the α-RSS algorithm
for any doubling metric space, with improved results in the Euclidean space. This resolves
the open problem posed in [20] of whether RSS computes an approximation of the Min-0-CS
and Min-0-SS problems.



A. Flores-Velazco and D.M. Mount 47:11

●● ●● ●
● ●● ●

●●

●

●
●

●
● ●

●●
● ●

●
● ●

●
●

●

●
● ●●

●

●●

●

●
●

●

●
●

● ●

●
●

●

●

●

●

●

●●

●

●● ● ●●

● ●
●

●●

●

●

●

●

● ● ●
●

●

●

●

●
●●

● ●
●

●

●

●

●

●

Figure 4 Selection of α-RSS for α=0.5. Faded points are not selected, while selected points are
drawn along with a ball of radius dne(p) (dotted outline) and a ball of radius dne(p)/(1 + α) (solid
outline). A point p is selected if no previously selected point is closer to p than dne(p)/(1 + α).

Size in Doubling spaces. First, we consider the case where the underlying metric space
(X , d) of P is doubling. The following results depend on the doubling dimension ddim(X ) of
the metric space (which is assumed to be constant), the margin γ (the smallest nearest-enemy
distance of any point in P ), and κ (the number of nearest-enemy points in P ).

I Theorem 9. α-RSS computes a tight approximation for the Min-α-CS problem.

Proof. This follows from a direct comparison to the resulting subset of the α-NET algorithm
from the previous section. For any point p selected by α-NET, let Bp,α be the set of points
of P “covered” by p, that is, whose distance to p is at most γ/(1 + α). By the covering
property of ε-nets, this defines a partition on P when considering every point p selected by
α-NET.

Let R be the set of points selected by α-RSS, we analyze the size of Bp,α ∩ R, that is,
for any given Bp,α how many points could have been selected by the α-RSS algorithm. Let
a, b ∈ Bp,α ∩R be any two such points, where without loss of generality, dne(a) ≤ dne(b). By
the selection process of the algorithm, we know that d(a, b) ≥ dne(b)/(1 + α) ≥ γ/(1 + α). A
simple packing argument in doubling metrics implies that |Bp,α∩R| ≤ 2ddim(X )+1. Altogether,
we have that the size of the subset selected by α-RSS is O

(
(2(1 + α)/γ)ddim(X )+1). J

I Theorem 10. α-RSS computes an O (log (min (1 + 2/α, 1/γ)))-factor approximation for
the Min-α-SS problem. For α = Ω(1), this is a constant-factor approximation.

Proof. Let OPTα be the optimum solution to the Min-α-SS problem, i.e., the minimum
cardinality α-selective subset of P . For every point p ∈ OPTα in such solution, define Sp,α to
be the set of points in P “covered” by p, or simply Sp,α = {r ∈ P | d(r, p) < dne(r)/(1 + α)}.
Additionally, let R be the set of points selected by α-RSS, define Rp,σ to be the points selected
by α-RSS which also belong to Sp,α and whose nearest-enemy distance is between σ and 2σ,
for σ ∈ [γ, 1]. That is, Rp,σ = {r ∈ R ∩ Sp,α | dne(r) ∈ [σ, 2σ)}. Clearly, these subsets define
a partitioning of R for all p ∈ OPTα and values of σ = γ 2i for i = {0, 1, 2, . . . , dlog 1

γ e}.

ESA 2020



47:12 Coresets for the Nearest-Neighbor Rule

However, depending on α, some values of σ would yield empty Rp,σ sets. Consider some
point q ∈ Sp,α, we can bound its nearest-enemy distance with respect to the nearest-enemy
distance of point p. In particular, by leveraging simple triangle-inequality arguments, it is
possible to prove that 1+α

2+α dne(p) ≤ dne(q) ≤ 1+α
α dne(p). Therefore, the values of σ for which

Rp,σ sets are not empty, are σ = 2j 1+α
2+α dne(p) for j = {0, . . . , dlog (1 + 2/α)e}.

The proof now follows by bounding the size of Rp,σ which can be achieved by bounding
its spread. Thus, lets consider the smallest and largest pairwise distances among points
in Rp,σ. Take any two points a, b ∈ Rp,σ where without loss of generality, dne(a) ≤ dne(b).
Note that points selected by α-RSS cannot be “too close” to each other; that is, as a and
b were selected by the algorithm, we know that (1 + α) d(a, b) ≥ dne(b) ≥ σ. Therefore,
the smallest pairwise distance in Rp,σ is at least σ/(1 + α). Additionally, by the triangle
inequality, we can bound the maximum pairwise distance using their distance to p as
d(a, b) ≤ d(a, p) + d(p, b) ≤ 4σ/(1 + α). Then, by the packing properties of doubling spaces,
the size of Rp,σ is at most 4ddim(X )+1.

Altogether, for every p ∈ OPTα there are up to dlog (min (1 + 2/α, 1/γ))e non-empty
Rp,σ subsets, each containing at most 4ddim(X )+1 points. In doubling spaces with constant
doubling dimension, the size of these subsets is also constant. J

While these results are meaningful from a theoretical perspective, it is also useful to
establishing bounds in terms of the geometry of the learning space, which is characterized by
the boundaries between points of different classes. Thus, using similar packing arguments as
above, we bound the selection size of the algorithm with respect to κ.

I Theorem 11. α-RSS selects O
(
κ log 1

γ (1 + α)ddim(X )+1
)
points.

Proof. This follows from similar arguments to the ones used to prove Theorem 10, using
an alternative charging scheme for each nearest-enemy point in the training set. Consider
one such point p ∈ {ne(r) | r ∈ P} and a value σ ∈ [γ, 1], we define R′p,σ to be the subset of
points from α-RSS whose nearest-enemy is p, and their nearest-enemy distance is between σ
and 2σ. That is, R′p,σ = {r ∈ R | ne(r) = p ∧ dne(r) ∈ [σ, 2σ)}. These subsets partition R
for all nearest-enemy points of P , and values of σ = γ 2i for i = {0, 1, 2, . . . , dlog 1

γ e}.
For any two points a, b ∈ R′p,σ, the selection criteria of α-RSS implies some separation

between selected points, which can be used to prove that d(a, b) ≥ σ/(1 + α). Additionally,
we know that d(a, b) ≤ d(a, p) + d(p, b) = dne(a) + dne(b) ≤ 4σ. Using a simple packing
argument, we have that |R′p,σ| ≤ d4(1 + α)eddim(X )+1.

Altogether, by counting all sets R′p,σ for each nearest-enemy in the training set and values
of σ, the size of R is upper-bounded by |R| ≤ κ dlog 1/γe d4(1 + α)eddim(X )+1. Based on the
assumption that ddim(X ) is constant, this completes the proof. J

As a corollary, this result implies that when α = 2/ε, the α-selective subset computed by
α-RSS contains O

(
κ log 1/γ (1/ε)ddim(X )+1) points. This establishes the size bound on the

ε-coreset given in Theorem 1, which can be computed using the α-RSS algorithm.

Size in Euclidean space. In the case where P ⊂ Rd lies in d-dimensional Euclidean space,
the analysis of α-RSS can be further improved, leading to a constant-factor approximation
of Min-α-SS for any value of α ≥ 0, and reduced dependency on the dimensionality of P .

I Theorem 12. α-RSS computes an O(1)-approximation for the Min-α-SS problem in Rd.



A. Flores-Velazco and D.M. Mount 47:13

Proof. Similar to the proof of Theorem 10, define Rp = Sp,α ∩R as the points selected by
α-RSS that are “covered” by p in the optimum solution OPTα. Consider two such points
a, b ∈ Rp where without loss of generality, dne(a) ≤ dne(b). By the definition of Sp,α we know
that d(a, p) < dne(a)/(1 + α), and similarly with b. Additionally, from the selection of the
algorithm we know that d(a, b) ≥ dne(b)/(1 + α). Overall, these inequalities imply that the
angle ∠apb ≥ π/3. By a simple packing argument, the size of Rp is bounded by the kissing
number in d-dimensional Euclidean space, or simply O((3/π)d−1). Therefore, we have that
|R| ≤

∑
p |Rp| = |OPTα| O((3/π)d−1). Assuming d is constant, this completes the proof. J

Furthermore, a similar constant-factor approximation can be achieved for any training
set P in `p space for p ≥ 3. This follows analogously to the proof of Theorem 12, exploiting
the bounds between `p and `2 metrics, where 1/

√
d ‖v‖p ≤ ‖v‖2 ≤

√
d ‖v‖p. This would

imply that the angle between any two points in α-RSSp is Ω(1/d). Therefore, it shows that
α-RSS achieves an approximation factor of O(dd−1), or simply O(1) for constant dimension.

Similarly to the case of doubling spaces, we also establish upper-bounds in terms of κ
for the selection size of the algorithm in Euclidean space. The following result improves the
exponential dependence on the dimensionality of P (from ddim(Rd) = Θ(d) to d− 1), while
keeping the dependency on the margin γ, which contrast with the approximation factor results.

I Theorem 13. In Euclidean space Rd, α-RSS selects O
(
κ log 1

γ (1 + α)d−1
)
points.

Proof. Let p be any nearest-enemy point of P and σ ∈ [γ, 1], similarly define R′p,σ to be the
set of points selected by α-RSS whose nearest-enemy is p and their nearest-enemy distance
is between σ and bσ, for b = (1+α)2

α(2+α) . Equivalently, these subsets define a partitioning of R
for all nearest-enemy points p and values of σ = γ bk for k = {0, 1, 2, . . . , dlogb 1

γ e}. Thus,
the proof follows from bounding the minimum angle between points in these subsets. For
any two such points pi, pj ∈ R′p,σ, we lower bound the angle ∠pippj . Assume without loss
of generality that dne(pi) ≤ dne(pj). By definition of the partitioning, we also know that
dne(pj) ≤ bσ ≤ b dne(pi). Therefore, altogether we have that dne(pi) ≤ dne(pj) ≤ b dne(pi).

First, consider the set of points whose distance to pi is (1 + α) times their distance to p,
which defines a multiplicative weighted bisector [6] between points p and pi, with weights
equal to 1 and 1/(1 + α) respectively. This is characterized as a d-dimensional ball (see
Figure 5a) with center ci = (pi − p) b + p and radius dne(pi) b/(1 + α). Thus p, pi and ci
are collinear, and the distance between p and ci is d(p, ci) = b dne(pi). In particular, let’s
consider the relation between pj and such bisector. As pj was selected by the algorithm after
pi, we know that (1 + α) d(pj , pi) ≥ dne(pj) where dne(pj) = d(pj , p). Therefore, clearly pj
lies either outside or in the surface of the weighted bisector between p and pi (see Figure 5b).

For angle ∠pippj , we can frame the analysis to the plane defined by p, pi and pj . Let x
and y be two points in this plane, such that they are the intersection points between the
weighted bisector and the balls centered at p of radii dne(pi) and b dne(pi) respectively (see
Figure 5c). By the convexity of the weighted bisector between p and pi, we can say that
∠pippj ≥ min(∠xppi,∠ypcj). Now, consider the triangles 4pxpi and 4pyci. By the careful
selection of b, these triangles are both isosceles and similar. In particular, for 4pxpi the two
sides incident to p have length equal to dne(pi), and the side opposite to p has length equal
to dne(pi)/(1 +α). For 4pyci, the side lengths are b dne(pi) and dne(pi) b/(1 +α). Therefore,
the angle ∠pippj ≥ ∠xppi ≥ 1/(1 + α).

By a simple packing argument based on this minimum angle, we have that the size of
R′p,σ is O((1 + α)d−1). All together, following the defined partitioning, we have that:

|R| =
∑
p

dlogb 1
γ e∑

k=0
|R′p,bk | ≤ κ

⌈
logb

1
γ

⌉
O
(
(1 + α)d−1)

ESA 2020



47:14 Coresets for the Nearest-Neighbor Rule

(a) Multiplicatively
weighted bisectors for
different weights.

(b) Position of point pj w.r.t.
the weighted bisector between
points p and pi.

(c) The intersection points x and y
between the weighted bisector and the
limit balls of Rp,σ.

Figure 5 Construction for the analysis of the minimum angle between two points in R′
p,σ w.r.t.

some nearest-enemy point p ∈ P . Let points pi, pj ∈ R′
p,σ, we analyze the angle ∠pippj .

For constant α and d, the size of α-RSS is O(κ log 1
γ ). Moreover, when α is zero α-RSS

selects O(κ cd−1), matching the previously known bound for RSS in Euclidean space. J

3.3 Subquadratic Algorithm
In this section we present a subquadratic implementation for the α-RSS algorithm, which
completes the proof of our main result, Theorem 1. Among algorithms for nearest-neighbor
condensation, FCNN achieves the best worst-case time complexity, running in O(nm) time,
where m = |R| is the size of the selected subset.

The α-RSS algorithm consists of two main stages: computing the nearest-enemy distances
of all points in P (and sorting the points based on these), and the selection process itself.
The first stage requires a total of n nearest-enemy queries, plus additional O(n logn) time for
sorting. The second stage performs n nearest-neighbor queries on the current selected subset
R, which needs to be updated m times. In both cases, using exact nearest-neighbor search
would degenerate into linear search due to the curse of dimensionality. Thus, the first and
second stage of the algorithm would need O(n2) and O(nm) worst-case time respectively.

These bottlenecks can be overcome by leveraging approximate nearest-neighbor techniques.
Clearly, the first stage of the algorithm can be improved by computing nearest-enemy distances
approximately, using as many ANN structures as classes there are in P , which is considered
to be a small constant. Therefore, by also applying a simple brute-force search for nearest-
neighbors in the second stage, result (i) of the next theorem follows immediately. Moreover,
by combining this with standard techniques for static-to-dynamic conversions [9], we have
result (ii) below. Denote this variant of α-RSS as (α, ξ)-RSS, for a parameter ξ ≥ 0.

I Theorem 14. Given a data structure for ξ-ANN searching with construction time tc
and query time tq (which potentially depend on n and ξ), the (α, ξ)-RSS variant can be
implemented with the following worst-case time complexities, where m is the size of the se-
lected subset.
(i) O (tc + n (tq +m+ logn))
(ii) O ((tc + n tq) logn)

More generally, if we are given an additional data structure for dynamic ξ-ANN searching
with construction time t′c, query time t′q, and insertion time t′i, the overall running time
will be O

(
tc + t′c + n (tq + t′q + logn) +mt′i

)
. Indeed, this can be used to obtain (ii) from

the static-to-dynamic conversions [9], which propose an approach to convert static search



A. Flores-Velazco and D.M. Mount 47:15

structures into dynamic ones. These results directly imply implementations of (α, ξ)-RSS
with subquadratic worst-case time complexities, based on ANN techniques [4, 5] for low-
dimensional Euclidean space, and using techniques like LSH [2] that are suitable for ANN in
high-dimensional Hamming and Euclidean spaces. More generally, subquadratic runtimes
can be achieved by leveraging techniques [13] for dynamic ANN search in doubling spaces.

Dealing with uncertainty. Such implementation schemes for α-RSS would incur an approxi-
mation error (of up to 1+ξ) on the computed distances: either only during the first stage if (i)
is implemented, or during both stages if (ii) or the dynamic-structure scheme are implemented.
The uncertainty introduced by these approximate queries, imply that in order to guarantee
finding α-selective subsets, we must modify the condition for adding point during the second
stage of the algorithm. Let dne(p, ξ) denote the ξ-approximate nearest-enemy distance of p
computed in the first stage, and let dnn(p,R, ξ) denote the ξ-approximate nearest-neighbor
distance of p over points of the current subset (computed in the second stage). Then,
(α, ξ)-RSS adds a point p into the subset if (1 + ξ)(1 + α) dnn(p,R, ξ) ≥ dne(p, ξ).

By similar arguments to the ones described in Section 3.2, size guarantees can be extended
to (α, ξ)-RSS. First, the size of the subset selected by (α, ξ)-RSS, in terms of the number of
nearest-enemy points in the set, would be bounded by the size of the subset selected by α̂-RSS
with α̂ = (1 + α)(1 + ξ)2 − 1. Additionally, the approximation factor of (α, ξ)-RSS in both
doubling and Euclidean metric spaces would increase by a factor of O((1 + ξ)2(ddim(X )+1)).

This completes the proof of Theorem 1.

4 Experimental Evaluation

In order to get a clearer impression of the relevance of these results in practice, we performed
experimental trials on several training sets, both synthetically generated and widely used
benchmarks. First, we consider 21 training sets from the UCI Machine Learning Repository2
which are commonly used in the literature to evaluate condensation algorithms [21]. These
consist of a number of points ranging from 150 to 58000, in d-dimensional Euclidean space
with d between 2 and 64, and 2 to 26 classes. We also generated some synthetic training sets,
containing 105 uniformly distributed points, in 2 to 3 dimensions, and 3 classes. All training
sets used in these experimental trials are summarized in Table 1. The implementation of the
algorithms, training sets used, and raw results, are publicly available3.

These experimental trials compare the performance of different condensation algorithms
when applied to vastly different training sets. We use two measures of comparison on these
algorithms: their runtime in the different training sets, and the size of the subset selected.
Clearly, these values might differ greatly on training sets whose size are too distinct. Therefore,
before comparing the raw results, these are normalized. The runtime of an algorithm for a
given training set is normalized by dividing it by n, the size of the training set. The size of
the selected subset is normalized by dividing it by κ, the number of nearest-enemy points in
the training set, which characterizes the complexity of the boundaries between classes.

Algorithm Comparison. The first experiment evaluates the performance of the three algo-
rithms proposed in this paper: α-RSS, α-HSS, and α-NET. The evaluation is carried out by
varying the value of the α parameter from 0 to 1, to understand the impact of increasing

2 https://archive.ics.uci.edu/ml/index.php
3 https://github.com/afloresv/nnc/

ESA 2020

https://archive.ics.uci.edu/ml/index.php
https://github.com/afloresv/nnc/


47:16 Coresets for the Nearest-Neighbor Rule

this parameter. The implementation of α-HSS uses the well-known greedy algorithm for
set cover [12], and solves the problem using the reduction described in Section 3.1. In
the other hand, recall that the original NET algorithm (for α = 0) implements an extra
pruning technique to further reduce the training set after computing the γ-net. To do a fair
comparison between the techniques, we implemented the α-NET algorithm with a modified
version of this pruning techinque that guarantees that the selected subset is still α-selective.

The results show that α-RSS outperforms the other algorithms in terms of running time
by a big margin, and irrespective of the value of α (see Figure 6a). Additionally, the number
of points selected by α-RSS is comparable to α-HSS, which guarantees the best possible
approximation factor in general metrics, while α-NET is significantly outperformed.

(a) Running time. (b) Size of the selected subsets.

Figure 6 Comparison α-RSS, α-NET, and α-HSS, for different values of α.

Subquadratic Approach. Using the same experimental framework, we evaluate performance
of the subquadratic implementation (α, ξ)-RSS described in Section 3.3. In this case, we
change the value of parameter ξ to assess its effect on the running time and selection size
over the algorithm, for two different values of α (see Figure 7). The results show an expected
increase of the number of selected points, while significantly improving its running time.

(a) Running time. (b) Size of the selected subsets.

Figure 7 Evaluating the effect of increasing the parameter ξ on (α, ξ)-RSS for α = {0, 0.2}.



A. Flores-Velazco and D.M. Mount 47:17

Table 1 Training sets used to evaluate the performance of condensation algorithms. Indicates the
number of points n, dimensions d, classes c, nearest-enemy points κ (also in percentage w.r.t. n).

Training set n d c κ (%)
banana 5300 2 2 811 (15.30%)
cleveland 297 13 5 125 (42.09%)
glass 214 9 6 87 (40.65%)
iris 150 4 3 20 (13.33%)

iris2d 150 2 3 13 (8.67%)
letter 20000 16 26 6100 (30.50%)
magic 19020 10 2 5191 (27.29%)
monk 432 6 2 300 (69.44%)

optdigits 5620 64 10 1245 (22.15%)
pageblocks 5472 10 5 429 (7.84%)
penbased 10992 16 10 1352 (12.30%)
pima 768 8 2 293 (38.15%)
ring 7400 20 2 2369 (32.01%)

satimage 6435 36 6 1167 (18.14%)
segmentation 2100 19 7 398 (18.95%)

shuttle 58000 9 7 920 (1.59%)
thyroid 7200 21 3 779 (10.82%)
twonorm 7400 20 2 1298 (17.54%)
wdbc 569 30 2 123 (21.62%)
wine 178 13 3 37 (20.79%)

wisconsin 683 9 2 35 (5.12%)
v-100000-2-3-15 100000 2 3 1909 (1.90%)
v-100000-2-3-5 100000 2 3 788 (0.78%)
v-100000-3-3-15 100000 3 3 7043 (7.04%)
v-100000-3-3-5 100000 3 3 3738 (3.73%)
v-100000-4-3-15 100000 4 3 13027 (13.02%)
v-100000-4-3-5 100000 4 3 10826 (10.82%)
v-100000-5-3-15 100000 5 3 22255 (22.25%)
v-100000-5-3-5 100000 5 3 17705 (17.70%)

References
1 Pankaj K Agarwal, Sariel Har-Peled, and Kasturi R Varadarajan. Geometric approximation

via coresets. Combinatorial and computational geometry, 52:1–30, 2005.
2 Alexandr Andoni, Piotr Indyk, and Ilya Razenshteyn. Approximate nearest neighbor search

in high dimensions. arXiv preprint, 2018. arXiv:1806.09823.
3 Fabrizio Angiulli. Fast nearest neighbor condensation for large data sets classification. IEEE

Transactions on Knowledge and Data Engineering, 19(11):1450–1464, 2007.
4 Sunil Arya, Guilherme D Da Fonseca, and David M Mount. Approximate polytope membership

queries. SIAM Journal on Computing, 47(1):1–51, 2018.
5 Sunil Arya, Theocharis Malamatos, and David M Mount. Space-time tradeoffs for approximate

nearest neighbor searching. Journal of the ACM (JACM), 57(1):1, 2009.
6 Franz Aurenhammer and Herbert Edelsbrunner. An optimal algorithm for constructing the

weighted voronoi diagram in the plane. Pattern Recognition, 17(2):251–257, 1984.
7 Ricardo Barandela, Francesc J Ferri, and J Salvador Sánchez. Decision boundary preserving

prototype selection for nearest neighbor classification. International Journal of Pattern
Recognition and Artificial Intelligence, 19(06):787–806, 2005.

8 Cenk Baykal, Lucas Liebenwein, Igor Gilitschenski, Dan Feldman, and Daniela Rus. Data-
dependent coresets for compressing neural networks with applications to generalization bounds.
arXiv preprint, 2018. arXiv:1804.05345.

9 Jon Louis Bentley and James B Saxe. Decomposable searching problems I. Static-to-dynamic
transformation. Journal of Algorithms, 1(4):301–358, 1980.

10 Ahmad Biniaz, Sergio Cabello, Paz Carmi, Jean-Lou De Carufel, Anil Maheshwari, Saeed
Mehrabi, and Michiel Smid. On the minimum consistent subset problem. In WADS, 2019.

ESA 2020

http://arxiv.org/abs/1806.09823
http://arxiv.org/abs/1804.05345


47:18 Coresets for the Nearest-Neighbor Rule

11 Vladimir Braverman, Dan Feldman, and Harry Lang. New frameworks for offline and streaming
coreset constructions. arXiv preprint, 2016. arXiv:1612.00889.

12 Václav Chvatal. A greedy heuristic for the set-covering problem. Math. Oper. Res., 1979.
13 Richard Cole and Lee-Ad Gottlieb. Searching dynamic point sets in spaces with bounded

doubling dimension. In Proceedings of the thirty-eighth annual ACM symposium on Theory of
computing, pages 574–583, 2006.

14 Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE Trans. Inf.
Theor., 1967.

15 Luc Devroye. On the inequality of cover and hart in nearest neighbor discrimination. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 1:75–78, 1981.

16 Uriel Feige. A threshold of ln n for approximating set cover. JACM, 1998.
17 Dan Feldman. Core-sets: Updated survey. In Sampling Techniques for Supervised or Unsuper-

vised Tasks, pages 23–44. Springer, 2020.
18 Dan Feldman and Michael Langberg. A unified framework for approximating and clustering

data. In Proceedings of the forty-third annual ACM symposium on Theory of computing, pages
569–578, 2011.

19 Evelyn Fix and Joseph L. Hodges. Discriminatory analysis, nonparametric discrimination:
Consistency properties. US Air Force School of Aviation Medicine, Technical Report 4(3):477+,
January 1951.

20 Alejandro Flores-Velazco and David M. Mount. Guarantees on nearest-neighbor condensation
heuristics. In Zachary Friggstad and Jean-Lou De Carufel, editors, Proceedings of the 31st
Canadian Conference on Computational Geometry, CCCG 2019, August 8-10, 2019, University
of Alberta, Edmonton, Alberta, Canada, pages 87–93, 2019.

21 Salvador Garcia, Joaquin Derrac, Jose Cano, and Francisco Herrera. Prototype selection for
nearest neighbor classification: Taxonomy and empirical study. IEEE TPAMI, 2012.

22 Lee-Ad Gottlieb, Aryeh Kontorovich, and Pinhas Nisnevitch. Near-optimal sample compression
for nearest neighbors. In Advances in Neural Information Processing Systems, 2014.

23 Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clustering.
In Proceedings of the thirty-sixth annual ACM symposium on Theory of computing, pages
291–300, 2004.

24 Sariel Har-Peled and Manor Mendel. Fast construction of nets in low-dimensional metrics and
their applications. SIAM Journal on Computing, 35(5):1148–1184, 2006.

25 Peter Hart. The condensed nearest neighbor rule (corresp.). IEEE Trans. Inf. Theor., 1968.
26 Juha Heinonen. Lectures on analysis on metric spaces. Springer Science & Business Media,

2012.
27 Norbert Jankowski and Marek Grochowski. Comparison of instances selection algorithms I.

Algorithms survey. In Artificial Intelligence and Soft Computing-ICAISC. Springer, 2004.
28 Kamyar Khodamoradi, Ramesh Krishnamurti, and Bodhayan Roy. Consistent subset problem

with two labels. In Conference on Algorithms and Discrete Applied Mathematics, 2018.
29 Lucas Liebenwein, Cenk Baykal, Harry Lang, Dan Feldman, and Daniela Rus. Provable filter

pruning for efficient neural networks. arXiv preprint, 2019. arXiv:1911.07412.
30 Carsten Lund and Mihalis Yannakakis. On the hardness of approximating minimization

problems. Journal of the ACM (JACM), 41(5):960–981, 1994.
31 David M. Mount, Nathan S. Netanyahu, Ruth Silverman, and Angela Y. Wu. Chromatic

nearest neighbor searching: A query sensitive approach. Computational Geometry, 2000.
32 Azaria Paz and Shlomo Moran. Non deterministic polynomial optimization problems and

their approximations. Theoretical Computer Science, 15(3):251–277, 1981.
33 Jeff M. Phillips. Coresets and sketches, 2016. arXiv:1601.00617.
34 G. L. Ritter, H. B. Woodruff, S. R. Lowry, and T. L. Isenhour. An algorithm for a selective

nearest neighbor decision rule. IEEE Transactions on Information Theory, 1975.
35 Petr Slavík. A tight analysis of the greedy algorithm for set cover. In Proceedings of the

twenty-eighth annual ACM symposium on Theory of Computing, STOC, 1996.

http://arxiv.org/abs/1612.00889
http://arxiv.org/abs/1911.07412
http://arxiv.org/abs/1601.00617


A. Flores-Velazco and D.M. Mount 47:19

36 Charles J Stone. Consistent nonparametric regression. The annals of statistics, pages 595–620,
1977.

37 Godfried Toussaint. Open problems in geometric methods for instance-based learning. In
JCDCG, volume 2866 of Lecture Notes in Computer Science. Springer, 2002. doi:10.1007/
978-3-540-44400-8_29.

38 Murad Tukan, Cenk Baykal, Dan Feldman, and Daniela Rus. On coresets for support vector
machines. arXiv preprint, 2020. arXiv:2002.06469.

39 Gordon Wilfong. Nearest neighbor problems. In Proceedings of the Seventh Annual Symposium
on Computational Geometry, SoCG, pages 224–233, New York, NY, USA, 1991. ACM.

40 Anastasiya V. Zukhba. NP-completeness of the problem of prototype selection in the nearest
neighbor method. Pattern Recog. Image Anal., 20(4):484–494, 2010.

ESA 2020

https://doi.org/10.1007/978-3-540-44400-8_29
https://doi.org/10.1007/978-3-540-44400-8_29
http://arxiv.org/abs/2002.06469

	Introduction
	Coreset Characterization
	Approximation-Sensitive Condensation
	Guarantees on Classification Accuracy

	Coreset Computation
	Hardness Results
	A Practical Algorithm
	Subquadratic Algorithm

	Experimental Evaluation

