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Abstract
We study the Many Visits TSP problem, where given a number k(v) for each of n cities and
pairwise (possibly asymmetric) integer distances, one has to find an optimal tour that visits each
city v exactly k(v) times. The currently fastest algorithm is due to Berger, Kozma, Mnich and
Vincze [SODA 2019, TALG 2020] and runs in time and space O∗(5n). They also show a polynomial
space algorithm running in time O(16n+o(n)). In this work, we show three main results:

A randomized polynomial space algorithm in time O∗(2nD), where D is the maximum distance
between two cities. By using standard methods, this results in a (1 + ε)-approximation in time
O∗(2nε−1). Improving the constant 2 in these results would be a major breakthrough, as it
would result in improving the O∗(2n)-time algorithm for Directed Hamiltonian Cycle, which
is a 50 years old open problem.
A tight analysis of Berger et al.’s exponential space algorithm, resulting in an O∗(4n) running
time bound.
A new polynomial space algorithm, running in time O(7.88n).
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1 Introduction

In the Many Visits TSP (MVTSP) we are given a set V of n vertices, with pairwise
distances (or costs) d : V 2 → Z≥0 ∪ {∞}. We are also given a function k : V → Z+. A
valid tour of length ` is a sequence of vertices (x1, . . . , x`), where ` =

∑
v∈V k(v), such

that each v ∈ V appears in the sequence exactly k(v) times. The cost of the tour is∑`−1
i=1 d(xi, xi+1) + d(x`, x1). Our goal is to find a valid tour with minimum cost.
Many Visits TSP is a natural generalization of the classical (asymmetric) Traveling

Salesman Problem (TSP), which corresponds to the case when k(v) = 1 for every
vertex v. Similarly as its special case, MVTSP arises with a variety of applications, including
scheduling [24, 17, 6, 27, 12], computational geometry [20] and parameterized complexity [21].

1.1 Related work
The standard dynamic programming for TSP of Bellman [1], Held and Karp [16] running
in time O∗(2n) can be easily generalized to MVTSP resulting in an algorithm with the
running time of O∗(

∏
v∈V (k(v) + 1)), as noted by Psaraftis [24]. A breakthrough came in

the work of Cosmadakis and Papadimitriou [7] who presented an algorithm running in time
2O(n logn) +O(n3 log `) and space 2O(n logn), thus essentially removing the dependence on
the function k from the bound (the log ` factor can be actually skipped if we support the
original algorithm with a today’s state-of-the-art minimum cost flow algorithm). This may
be surprising since the length of the output sequence is `. However, beginning from the work
of Cosmadakis and Papadimitriou we consider MVTSP with compressed output, namely the
output is a multiplicity function which encodes the number of times every edge is visited by
the tour. By using a standard Eulerian tour algorithm we can compute an explicit tour from
this output.

The crux of the approach of Cosmadakis and Papadimitriou [7] was an observation that
every solution can be decomposed to a minimal connected spanning Eulerian subgraph
(which enforces connectivity of the solution) and a subgraph satisfying appropriate degree
constraints (which completes the tour so that the numbers of visits agree). Moreover, once
we guess the degree sequence δ of the Eulerian subgraph, our task splits into two separate
tasks: finding a cheapest minimal connected Eulerian subgraph consistent with δ (which is
computationally hard) and finding a cheapest subgraph satisfying the degree constraints
(which can by solved in polynomial time by a reduction to minimum cost flow).

Yet another breakthrough came only recently, namely Berger, Kozma, Mnich and Vincze [3,
2] improved the running time to O∗(5n). Their main contribution is an idea that it is more
convenient to use outbranchings (i.e. spanning trees oriented out of the root) to force
connectivity of the solution. The result of Berger et al. is the first algorithm for MVTSP
which is optimal assuming Exponential Time Hypothesis (ETH) [18], i.e., there is no algorithm
in time 2o(n), unless ETH fails. Moreover, by applying the divide and conquer approach
of Gurevich and Shelah [15] they design a polynomial space algorithm, running in time
O(16n+o(n)).

1.2 Our results
In this work, we take the next step in exploration of the Many Visits TSP problem: we
aim at algorithms which are optimal at a more fine grained level, namely with running
times of the form O(cn), such that an improvement to O((c − ε)n) for any ε > 0 meets a
kind of natural barrier, for example contradicts the Strong Exponential Time Hypothesis
(SETH) [19] or the Set Cover Conjecture (SCC) [8]. Our main result is the following theorem.
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I Theorem 1.1. There is a randomized algorithm that solves Many Visits TSP in time
O∗(2nD) and polynomial space, where D = max{d(u, v) : u, v ∈ V, d(u, v) 6= ∞}. The
algorithm returns a minimum weight solution with constant probability.

The natural barrier in this case is connected with Directed Hamiltonicity, the
problem of determining if a directed graph contains a Hamiltonian cycle. Indeed, this is
a special case of Many Visits TSP with D = 1, so an improvement to O∗(1.99nD) in
Theorem 1.1 would result in an algorithm in time O∗(1.99n) for Directed Hamiltonicity.
While it is not known whether such an algorithm contradicts SETH or SCC, the question
about its existence is a major open problem which in the last 58 years has seen some progress
only for special graph classes, like bipartite graphs [4, 9].

At the technical level, Theorem 1.1 uses the so-called algebraic approach and relies on two
key insights. The first one is to enforce connectivity not by guessing a spanning connected
subgraph as in the previous works, but by applying the Cut and Count approach of Cygan et
al [10]. The second insight is to satisfy the degree constraints using the Tutte matrix [26, 22].

By using standard rounding techniques, we are able to make the algorithm from Theo-
rem 1.1 somewhat useful even if the maximum distance D is large. Namely, we prove the
following.

I Theorem 1.2. For any ε > 0 there is a randomized (1 + ε)-approximation algorithm that
solves Many Visits TSP in O∗(2nε−1) time and polynomial space.

In Theorems 1.1 and 1.2 the better exponential dependence in the running time was
achieved at the cost of sacrificing an O(D) factor in the running time, or the optimality of
the solution. What if we do not want to sacrifice anything? While we are not able to get a
O∗(2n) algorithm yet, we are able to report a progress compared to the algorithm of Berger
et al. in time O∗(5n). In fact we do not show a new algorithm but we provide a refined
analysis of the previous one. The new analysis is tight (up to a polynomial factor).

I Theorem 1.3. There is an algorithm that solves Many Visits TSP in time and space
O∗(4n).

In short, Berger et al.’s polyspace O∗(16n+o(n)) time algorithm iterates through all O(4n)
degree sequences of an outbranching, finds the cheapest outbranching for each sequence
in time O(4n+o(n)), and completes it to satisfy the degree constraints using a polynomial
time flow computation. Note that it is hard to speed up the cheapest outbranching routine,
because for the sequence of n− 1 ones and one zero we get essentially the TSP, for which
the best known polynomial space algorithm takes time O(4n+o(n)) [15]. However, we are
still able to get a significant speed up of their algorithm, roughly, by using a more powerful
minimum cost flow network, which allows for computing the cheapest outbranchings in
smaller subgraphs.

I Theorem 1.4. There is an algorithm that solves Many Visits TSP in time O∗(7.88n)
and polynomial space.

Organization of the paper. In Section 3 we show that, essentially, using a polynomial time
preprocessing step we can reduce an instance of Many Visits TSP to an equivalent one
but with demands k bounded by O(n2). This reduction is a crucial prerequisite for Section 4
where we prove Theorem 1.1. Next, in Section 5 we prove Theorem 1.3 and in Section 6 we
prove Theorem 1.4. We note that in these two sections we do not need the reduction from
Section 3, however, in practice, applying it should speed-up the flow computations used in
both algorithms described there. Finally, in Section 7 we show Theorem 1.2 and we discuss
further research in Section 8.

ESA 2020
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2 Preliminaries

We use Iverson bracket, i.e., if α is a logical proposition, then the expression [α] evaluates to
1 when α is true and 0 otherwise.

For two integer-valued functions f, g on the same domain D, we write f ≤ g when
f(x) ≤ g(x) for every x ∈ D. Similarly, f + g (resp. f − g) denote the pointwise sum
(difference) of f and g. This generalizes to functions on different domains Df , Dg by
extending the functions to Df ∪Dg so that the values outside the original domain are 0.

For a cost function d : V 2 → Z≥0 ∪ {∞}, and a multiplicity function m : V 2 → Z≥0 we
denote the cost of m as d(m) =

∑
u,v∈V 2 d(u, v)m(u, v).

Multisets. Recall that a multiset A can be identified by its multiplicity function mA : U →
Z≥0, where U is a set. We write e ∈ A when e ∈ U and mA(e) > 0. Consider two multisets
A and B. We write A ⊆ B when for every e ∈ A we have e ∈ B and mA(e) ≤ mB(e). Also,
A = B when A ⊆ B and B ⊆ A. Assume w.l.o.g. that mA and mB have the same domain
U . Operations on multisets are defined by the corresponding multiplicities as follows: for
every e ∈ U , we have mA∪B(e) = max{mA(e),mB(e)}, mA∩B(e) = min{mA(e),mB(e)},
mA\B(e) = max{mA(e) −mB(e), 0}, mA4B(e) = m(A\B)∪(B\A) = |mA(e) −mB(e)|. This
notation extends to the situation when A or B is a set, by using the indicator function
mA(e) = [e ∈ A].

Directed graphs. Directed graphs (also called digraphs) in this paper can have multiple
edges and multiple loops, so sets E(G) will in fact be multisets. We call a directed graph
simple if it has no multiple edges or loops. We call it weakly simple if it has no multiple
edges or multiple loops (but single loops are allowed). For a digraph G by G↓ we denote
the support of G, i.e., the weakly simple digraph on the vertex set V (G) such that E(G↓) =
{(u, v) | G has an edge from u to v}.

Given a digraph G = (V,E) we define its multiplicity function mG : V 2 → Z≥0 as the
multiplicity function of its edge multiset, i.e., for any pair u, v ∈ V , we put mG(u, v) =
mE((u, v)). Conversely, for a function m : V 2 → Z≥0 we define the thick graph Gm = (V,E)
so that mG = m. Abusing notation slightly, we will identify m and Gm, e.g., we can say that
m is strongly connected, contains a subgraph, etc.

We call a directed graph connected if the underlying undirected graph is connected.
Similarly, a connected component of a digraph G is a subgraph of G induced by a vertex set
of a connected component of the underlying undirected graph.

For a graph G (directed or undirected) and a subset X ⊆ V (G), by G[X] we denote the
subgraph induced by X.

Solutions. The following observation follows easily from known properties of Eulerian
digraphs.

I Observation 2.1. Many Visits TSP has a tour of cost c if and only if there is a
multiplicity function mG : V 2 → Z≥0 of cost c such that (i) for every v ∈ V ,

∑
w∈V m(v, w) =∑

w∈V m(w, v) = k(v) and (ii) m contains a spanning connected subgraph.

Thanks to Observation 2.1, in the remainder of this paper we refer to multiplicity functions
as solutions of MVTSP (and some related problems which we are going to define). By
standard arguments, the multiplicity function can be transformed to a tour in time O(`).
Moreover, Grigoriev and Van de Klundert [14] describe an algorithm which transforms it to
a compressed representation of the tour in time O(n4 log `).
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Out-trees. An out-tree is the digraph obtained from a rooted tree by orienting all edges away
from the root. If an out-tree T is a subgraph of a directed graph G and additionally T spans
the whole vertex set V (G) we call T an outbranching. The sequence {outdegT (v)}v∈V (T ) is
called the outdegree sequence of T . Consider a set of vertices X ⊆ V , |X| ≥ 2.

I Lemma 2.2 (Berger et al. [3], Lemma 2.4). A sequence of nonnegative integers {dv}v∈X
is an outdegree sequence of an out-tree spanning X and rooted at r ∈ X if and only if (i)
dr ≥ 1 and (ii)

∑
v∈X dv = |X| − 1.

A sequence {dv}v∈X that satisfies (i) and (ii) will be called an out-tree sequence rooted at
r, or outbranching sequence rooted at r when additionally X = V . A δ-out-tree means any
subtree spanning X with outdegree sequence δ.

3 Reduction to small demands

Consider the following problem, for a family of simple digraphs F .

Fixed Degree F-Subgraph
Input: d : V 2 → Z≥0 ∪ {∞}, in, out : V → Z≥0
Question: Find a function m : V 2 → Z≥0 such that
(i) Gm contains a member of F as a spanning subgraph,
(ii) for every v ∈ V we have in(v) = indegGm(v) and out(v) = outdegGm(v), and
so as to minimize the value of d(m) =

∑
v,w∈V d(v, w)m(v, w).

In this paper, we will consider two versions of the problem: when F is the family of all
oriented trees, called Fixed Degree Connected Subgraph, and when F is the family of
all out-trees with a fixed root r, called Fixed Degree Subgraph With Outbranching.
The role of F is to force connectivity of the instance. Other choices for F can also be
interesting, for example Cosmadakis and Papadimitriou [7] consider the family of minimal
Eulerian digraphs.

The goal of this section is to show that, essentially, using a polynomial time preprocessing
step we can reduce an instance of Fixed Degree F-Subgraph to an equivalent one but
with demands in, out bounded by O(n2).

When considering the instance of Fixed Degree F-Subgraph we will use the notation
n = |V | and ` =

∑
v∈V in(v). (Clearly, we can assume that also ` =

∑
v∈V out(v), for

otherwise there is no solution.)
Observe that if the image of d is {0,+∞} we get the natural unweighted version, where we

are given a graph with edge set d−1(0) and the goal is to decide if one can choose multiplicities
of the edges so that the resulting digraph contains a member of F and its in- and outdegrees
match the demands of in and out.

The following observation follows by standard properties of Eulerian cycles in digraphs
and the fact that every strongly connected graph contains an outbranching rooted at arbitrary
vertex.

I Observation 3.1. Many Visits TSP is a special case of both Fixed Degree Connected
Subgraph and Fixed Degree Subgraph With Outbranching with in(v) = out(v) =
k(v) for every vertex v ∈ V .

In the following lemma, we consider the relaxed problem Fixed Degree Subgraph,
defined exactly as Fixed Degree F-Subgraph, but dropping the constraint that solutions
must contain a member of F . In what follows, sn(F) = maxG∈F,|V (G)|=n |E(G)|. (Note
that in applications we consider in this work F is a family of oriented spanning trees, so
sn(F) = n− 1.)

ESA 2020
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I Lemma 3.2. Fix an input instance d : V 2 → Z≥0 ∪ {∞}, in, out : V 2 → Z≥0. For every
optimal solution r of Fixed Degree Subgraph there is an optimal solution c′ of Fixed
Degree F-Subgraph such that for every u, v ∈ V

|r(u, v)− c′(u, v)| ≤ s|V |(F).

Before we proceed to a formal proof of Lemma 3.2, let us sketch an intuition behind it.
We pick an optimal solution c of Fixed Degree F-Subgraph and let B ∈ F be a spanning
subgraph in Gc. The symmetric difference between E(Gr) and E(Gc) can be decomposed
into “alternating” cycles. It suffices to alternate |E(B) \E(Gr)| ≤ sn(F) of them to enforce
containing B. If we alternated all the cycles, we would get the cost of exactly d(c), but
because of the optimality of r, alternating any of the cycles does not decrease the cost of the
solution. Hence alternating a subset of them cannot make the cost bigger than d(c).

Proof. Let c be an arbitrary optimal solution of Fixed Degree F-Subgraph and let B
be an arbitrary graph from F which is a spanning subgraph of Gc. Our plan is to build an
optimal solution c′ of Fixed Degree F-Subgraph which contains B and does not differ
too much from r.

Define multisets Ac = E(Gc) \ E(Gr), Ar = E(Gr) \ E(Gc) and A = Ac ∪ Ar =
E(Gc)4E(Gr). In what follows, by an alternating cycle we mean an even cardinality set of
edges

{(v0, v1), (v2, v1), (v2, v3), (v4, v3) . . . , (v2`−2, v2`−1), (v0, v2`−1)},

where edges come alternately from Ac and Ar. Note that an alternating cycle is not really a
directed cycle, it is just an orientation of a simple undirected cycle.

Note that for every vertex v ∈ V , among the edges in A that enter (resp. leave) v
the number of edges from Ac is the same as the number of edges from Ar (counted with
corresponding multiplicities), since both c and r satisfy the degree constraints for the same
instance. It follows that A can be decomposed into a multiset C of alternating simple cycles,
i.e.,

mA =
∑
C∈C

mC ,

where mC : V 2 → Z≥0 and for each pair u, v ∈ V we have mC(u, v) = [(u, v) ∈ C] ·mC(C).
To clarify, we note that the sum above is over all cycles in C, and not over all copies of cycles.

Denote B+ = E(B) \E(Gr). Since B+ ⊆ Ac, for each e ∈ B+, there is at least one cycle
in C that contains e. We choose an arbitrary such cycle and we denote it by Ce. (Note that
it may happen that Ce = Ce′ for two different edges e, e′ ∈ B+.) Let C+ = {Ce | e ∈ B+}.
Then we define c′, by putting for every u, v ∈ V

c′(u, v) = r(u, v) + (−1)[(u,v)∈Ar]
∑
C∈C+

[(u, v) ∈ C]. (1)

In other words, c′ is obtained from r by iterating over all cycles in C ∈ C+, and adding
one copy of each edge of C ∩Ac and removing one copy of each edge of C ∩Ar.

Let us show that Gc′ contains B. This is trivial for every e ∈ B+. When e ∈ E(B)∩E(Gr),
consider two cases. If e 6∈ Ar, then c′(e) ≥ r(e), so e ∈ Gc′ . If e ∈ Ar, mA(e) = r(e)− c(e).
Then c′(e) = r(e)−

∑
C∈C+ [(u, v) ∈ C] ≥ r(e)−mA(e) = c(e) ≥ 1, where the last inequality

follows since B ⊆ Gc.
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To see that c′ satisfies the degree constraints, recall that r does so, and note that if in (1)
we consider only the summands corresponding to a single cycle C ∈ C+, then for every vertex
we either add one outgoing edge and remove one outgoing edge, or add one ingoing edge and
remove one ingoing edge, or we do not change the set of edges incident to it.

For a cycle C ∈ C let δ(C) = d(Ac ∩ C)− d(Ar ∩ C). Observe that for every cycle C ∈ C
we have δ(C) ≥ 0, for otherwise E(Gr) \ (C ∩Ar) ∪ (C ∩Ac) contradicts the optimality of r.
It follows that

d(c′) = d(r) +
∑
C∈C+

δ(C) ≤ d(r) +
∑
C∈C

δ(C) = d(c). (2)

Hence, since c is optimal solution of Fixed Degree F-Subgraph, we get that c′ is optimal
solution of Fixed Degree F-Subgraph as well. Moreover, by (1), for every u, v ∈ V ,

|c′(u, v)− r(u, v)| ≤ |C+| ≤ |B| ≤ s|V |(F). (3)

This ends the proof. J

As noted in [7, 2], Fixed Degree Subgraph can be solved by a reduction to minimum
cost flow. By applying Orlin’s algorithm [23] we get the following.
I Observation 3.3 (Folklore, [7, 2]). Fixed Degree Subgraph can be solved in time
O(n3 logn).
I Theorem 3.4 (Kernelization). There is a polynomial time algorithm which, given an instance
I = (d, in, out) of Fixed Degree F-Subgraph, outputs an instance I ′ = (d, in′, out′) of the
same problem and a function f : V 2 → Z≥0 such that
(i) in′(v), out′(v) = O(n · sn(F)) for every vertex v,
(ii) if m∗ is an optimal solution for I ′, then f +m∗ is an optimal solution for I.

The algorithm does not need to know F , just the value of sn(F).
Proof. Our algorithm begins by finding an optimal solution r of Fixed Degree Subgraph
using Observation 3.3.

Define f0 : V 2 → Z≥0, where for every v, w ∈ V we put f0(v, w) = max{r(v, w) −
sn(F), 0}. By Lemma 3.2, there exists an optimal solution c′ for instance I such that c′ ≥ f0.
Now define f : V 2 → Z≥0, where for every v, w ∈ V we put f(v, w) = max{f0(v, w)− 1, 0}.
Finally, we put in′(v) = in(v) −

∑
w∈V f(w, v) and out′(v) = out(v) −

∑
w∈V f(v, w). The

algorithm outputs I ′ = (d, in′, out′) and f . In what follows, we show that the output has the
desired properties.

For the property (i), consider any vertex v ∈ V and observe that
∑
w∈V f(v, w) ≥∑

w∈V (f0(v, w)−1) ≥
∑
w∈V (r(v, w)−sn(F)−1). Since r is a feasible solution of I, we have

out(v) =
∑
w∈V r(v, w). It follows that out′(v) ≤ n(1 + sn(F)) = O(n · sn(F)) as required.

The argument for in′(v) is symmetric.
Now we focus on (ii). Let m∗ be an optimal solution for I ′. It is easy to check that

f +m∗ satisfies the degree constraints for the instance I. Also, since m∗ contains a subgraph
from F , then f +m∗ contains the same subgraph. It follows that f +m∗ is a feasible solution
of I. It suffices to show that f +m∗ is an optimal solution for I.

Denote r = c′ − f . Consider any pair v, w ∈ V such that c′(v, w) ≥ 1. We claim that
f(v, w) ≤ c′(v, w) − 1. Indeed, if f0(v, w) = 0 then f(v, w) = 0 ≤ c′(v, w) − 1, and if
f0(v, w) ≥ 1 then f(v, w) = f0(v, w) − 1 ≤ c′(v, w) − 1. It follows that r(v, w) ≥ 1. In
particular, since c′ contains a subgraph from F , then also r contains the same subgraph. It
follows that r is a feasible solution for I ′ (the degree constraints are easy to check). Hence,
d(m∗) ≤ d(r). It follows that d(f +m∗) ≤ d(r + f) = d(c′), so f +m∗ is indeed an optimal
solution for I. J

ESA 2020
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4 The small costs case in time O∗(2nD)

In this section we establish Theorem 1.1. We do it in a bottom-up fashion, starting with a
simplified core problem, and next generalizing the solution in a few steps.

4.1 Unweighted decision version with small degree demands
Consider the following problem.

Decision Unweighted Fixed Degree Connected Subgraph
Input: a digraph G = (V,E), in, out : V → Z≥0
Question: Is there a function m : V 2 → Z≥0 such that G↓m is a connected subgraph of
G and for every v ∈ V we have in(v) = indegGm(v) and out(v) = outdegGm(v)?

Note that Decision Unweighted Fixed Degree Connected Subgraph generalizes
the directed Hamiltonian cycle problem, which is known to be solvable in O∗(2n) time and
polynomial space. In this section we show that this running time can be obtained for the
more general problem as well, though we need to allow some randomization.

I Theorem 4.1. There is a randomized algorithm which solves an instance I = (in, out) of
Decision Unweighted Fixed Degree Connected Subgraph in time O∗(2n poly(M))
and polynomial space, where M = maxv max{in(v), out(v)}. The algorithm is Monte Carlo
with one-sided error, i.e., the positive answer is always correct and the negative answer is
correct with probability at least p, for any constant p < 1.

Our strategy will be to reduce our problem to detecting a perfect matching in a bipartite
graph with an additional connectivity constraint.

We define a bipartite graph BG = (O, I,E(BG)) as follows. Let I = {vI1 , . . . , vIin(v) | v ∈
V (H)}, O = {vO1 , . . . , vOout(v) | v ∈ V (H)}, and E(BG) = {uOi vIj | (u, v) ∈ E(G)}.

I Observation 4.2. |I| = |O| = O(nM) and |E(BG)| ≤ E(G)M2 = O(n2M2).

For an undirected graph H by PM(H) we denote the set of perfect matchings in H. We
say that a matching M in BG is connected when for every cut (X,V \X) with ∅ 6= X ( V

the matching M contains an edge uOi vIj such that u ∈ X and v ∈ V \ X or v ∈ X and
u ∈ V \X.

For a matching M in BG we define a contraction of M as function m : V 2 → Z≥0
such that m(u, v) = |{uOi vIj ∈ M | i ∈ [out(u)], j ∈ [in(v)]}|. In other words Gm is
obtained from M by (1) orienting every edge from O to I and (2) identifying all vertices in
{vI1 , . . . , vIin(v)} ∪ {v

O
1 , . . . , v

O
out(v)} for every v ∈ V , and keeping the multiple edges and loops.

I Lemma 4.3. (G, in, out) is a yes-instance of Decision Unweighted Fixed Degree
Connected Subgraph iff graph BG contains a connected perfect matching.

Proof. Let M be a connected perfect matching in BG and let m be its contraction. We
claim that m is a solution of (G, in, out). By the definition of BG, G↓m is a subgraph of G.
Since M is connected, Gm is connected as well, and so is G↓m. Moreover, since M is a perfect
matching in(v) = indegGm(v) and out(v) = outdegGm(v) for every vertex v.

For the other direction, let m be a solution for (G, in, out). For every v ∈ V , there are
exactly out(v) edges leaving v in Gm. Let us denote them eOv,1, . . . , e

O
v,out(v). Similarly, let us

denote all the edges entering v by eIv,1, . . . , eIv,in(v). Then we define M as the set of edges of
the form uOi v

I
j such that Gm contains an edge e = eOu,i = eIv,j . The fact that M is a perfect

matching is clear from the construction. Also, M is connected, for otherwise Gm is not
connected. J



Ł. Kowalik, S. Li, W. Nadara, M. Smulewicz, and M. Wahlström 66:9

From now on, let B = (O, I,E(B)) be an arbitrary subgraph of BG. Define the following
multivariate polynomial over GF(2t), for an integer t to be specified later.

R =
∑

M∈PM(B)
M is connected

∏
e∈M

xe (4)

I Lemma 4.4. R is not the zero polynomial if and only if B contains a connected perfect
matching.

Proof. It is clear that if R is non-zero then B contains a connected perfect matching. For
the reverse implication it suffices to notice that every summand in R has a different set of
variables, so it does not cancel out with other summands over GF(2t). J

Our strategy is to test whether R is non-zero by means of DeMillo–Lipton–Schwartz–Zippel
Lemma, which we recall below.

I Lemma 4.5 (DeMillo and Lipton [11], Schwartz [25], Zippel [28]). Let P (x1, x2, . . . , xm) be
a nonzero polynomial of degree at most d over a field F and let S be a finite subset of F.
Then, the probability that P evaluates to zero on a random element (a1, a2, . . . , am) ∈ Sm is
bounded by d/|S|.

By Lemmas 4.4 and 4.5, the task reduces to evaluating R fast. To this end, we will define
a different polynomial P which is easier to evaluate and turns out to be equal to R over
GF(2t).

Consider a subset X ⊆ V . Let IX = {vIi ∈ I | v ∈ X, i = 1, . . . , in(v)} and OX =
{vOi ∈ O | v ∈ X, i = 1, . . . , out(v)}. Abusing the notation slightly, we will denote B[X] =
B[IX ∪OX ]. Define the following polynomial.

PX =
∑

M∈PM(B[X])

∏
e∈M

xe (5)

In what follows, v∗ is an arbitrary but fixed vertex of V . Define yet another polynomial.

P =
∑
X⊆V
v∗∈X

PXPV \X . (6)

I Lemma 4.6. P = R.

Proof. For a matching M in B we say that a set X ⊆ V is consistent with M when M does
not contain an edge uOi vIj such that u ∈ X and v ∈ V \X or v ∈ X and u ∈ V \X. The
family of all subsets of V that are consistent with M will be denoted by C(M). Then we can
rewrite P as follows.

P =
∑
X⊆V
v∗∈X

∑
M1∈PM(B[X])

∑
M2∈PM(B[V \X])

∏
e∈M1∪M2

xe [definition]

=
∑

M∈PM(B)

∑
X∈C(M)
v∗∈X

∏
e∈M

xe [group by M = M1 ]M2]

=
∑

M∈PM(B)

|{X ∈ C(M) | v∗ ∈ X}|
∏
e∈M

xe [trivial]
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Let us consider a perfect matching M ∈ PM(B) and the corresponding contraction m.
Observe that the number of sets that are consistent with M and contain a vertex v∗ is equal
to 2cc(M)−1, where cc(M) is the number of connected components of Gm. Indeed, when
X is consistent with M , then for every connected component Q of Gm, either V (Q) ⊆ X

or V (Q) ⊆ V \ X. For the component that contains v∗ the choice is fixed, while every
choice for the remaining components defines a set consistent with M . It follows that when
M is not connected cc(M) ≥ 2, and the value of 2cc(M)−1 is equal to 0 in GF(2t), so the
corresponding summand vanishes. On the other hand, if M is connected, the corresponding
summand equals just

∏
e∈M xe and it does not cancel out with another summand because

the monomial has a unique set of variables. It follows that P = R. J

I Lemma 4.7 (Tutte, Lovász [26, 22]). For an arbitrary set X ⊆ V , the polynomial PX can
be evaluated using poly(n+M) field operations.

Proof. Compute the determinant of the corresponding Tutte matrix of dimension |O|×|I|. J

Let us now fix our field, namely t = d1 + logn + logMe. Since arithmetic operations
in GF(2t) can be performed in time O(t log2 t) = O(log(n + M) log2 log(n + m)), by the
definition of P and Lemma 4.7 we get the following corollary.

I Corollary 4.8. P can be evaluated in time 2n poly(n+M).

I Lemma 4.9. There is a randomized algorithm which decides if B contains a connected per-
fect matching in time O∗(2n poly(M)) and polynomial space, where M =
maxv max{in(v), out(v)}. The algorithm is Monte Carlo with one-sided error, i.e., the
positive answer is always correct and the negative answer is correct with probability at least
p, for any constant p < 1.

Proof. The algorithm evaluates polynomial P using Corollary 4.8 substituting a random
element of GF(2t) for each variable, and reports “yes” when the evaluation is nonzero and
“no” otherwise. If it reported “yes”, then P was a non-zero polynomial and by Lemma 4.4 the
answer is correct. Assume it reported ’no’ for a yes-instance. By Lemma 4.4 P is non-zero.
Since degP = |I| ≤ nM , by Lemma 4.5 the probability that P evaluated to 0 is bounded by
degP/2t ≤ 1/2 and we can make this probability arbitrarily small by repeating the whole
algorithm a number of times, and reporting “yes” if at least one evaluation was nonzero. The
claim follows. J

Theorem 4.1 follows immediately from Lemma 4.3 and Lemma 4.9 applied to BG.

4.2 Finding the solution
I Lemma 4.10. There is a randomized algorithm which, given a yes-instance of Decision
Unweighted Fixed Degree Connected Subgraph, always returns the corresponding
solution m in expected time O∗(2n poly(M)). The time can be made deterministic at the cost
of introducing arbitrarily small probability of failure.

In order to prove Lemma 4.10 we cast the problem in the setting of inclusion oracles from
the work of Björklund et al. [5]. Consider a universe U and an (unknown) family of witnesses
F ⊆ 2U . An inclusion oracle is a procedure which, given a query set Y ⊆ U , answers (either
YES or NO) whether there exists at least one witness W ∈ F such that W ⊆ Y . Björklund
et al. prove the following.
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I Theorem 4.11 ([5]). There exists an algorithm that extracts a witness of size k in F using
in expectation at most O(k log |U |) queries to a randomized inclusion oracle that has no false
positives but may output a false negative with probability at most p ≤ 1

4 .

Proof of Lemma 4.10. Let U = E(BG) and let F be the family of all connected perfect
matchings in BG. Note that |U | = O(n2M2) and witnesses in F have all size |I| = O(nM).
Then, Lemma 4.9 provides a randomized inclusion oracle and we can apply Theorem 4.11. (If
one insists on deterministic, and not expected, running time, it suffices to chose a sufficiently
large constant r and stop the algorithm if it exceeds the expected running time at least r
times – by Markov’s inequality, this happens with probability at most 1/r.) J

4.3 Proof of Theorem 1.1
In the lemma below we will adapt the construction from Section 4.1 to the weighted case in
a standard way, by introducing a new variable tracking the weight.

I Lemma 4.12. There is a randomized algorithm which solves an instance I = (d, in, out, w)
of Fixed Degree Connected Subgraph in time O∗(2nD poly(M)) and polynomial space,
whereM = maxv max{in(v), out(v)} and D is the maximum integer value of d. The algorithm
returns a minimum weight solution with probability at least p, for any constant p < 1.

Proof. Define G = (V,E) where E = {(u, v) ∈ V 2 | d(u, v) ∈ Z≥0}. Let R′ be the
polynomial obtained from R by replacing every variable xe for e = uOi v

I
j ∈ E(BG) by

the product xe · yd(u,v), where y is a new variable. Proceed similarly with P , obtaining
P ′. By Lemma 4.4, P ′ = R′. Decompose R′ as R′ =

∑|I|·D
i=0 R′iy

i, where R′i, for every
i = 0, . . . , |I| ·D, is a polynomial in variables {xe}e∈E(BG). The monomials in R′i enumerate
all matchings M such that the contraction m of M has weight d(m) = i. By the construction
in the proof of Lemma 4.3 R′i is non-zero if and only if instance I has a solution of weight i.
Using Lagrange interpolation, we can recover the value of each R′i for random values of the
variables {xe}e∈E(BG) (the values are the same for all the polynomials). The interpolation
algorithm requires |I| ·D = O(nMD) evaluations of R′. Since R′ = P ′, by Lemma 4.8 each
of them takes 2n poly(n+M)) time. Our algorithm reports the minimum w such that R′w
evaluated to a non-zero element of GF(2t), or +∞ if no such w exists. The solution of weight
w is then found using Lemma 4.10. The event that the optimum value w∗ is not reported
means that R′w∗ is a non-zero polynomial that evaluated to 0 at the randomly chosen values.
By Lemma 4.5 this happens with probability at most degP/2t ≤ 1/2, and one can make
this probability arbitrarily small by standard methods. J

Theorem 1.1 follows now immediately by applying Theorem 3.4 which reduces the
general problem to the M = O(n2) case and solving the resulting instance by Lemma 4.12.
Theorem 1.1 says in particular that if finite weights are bounded by a polynomial in n then
we can solve Many Visits TSP in time O∗(2n) and polynomial space by a randomized
algorithm with no false positives and with false negatives with arbitrarily small constant
probability.

5 The general case

In this section we prove Theorem 1.3, i.e., we show an algorithm solving Many Visits
TSP in time O∗(4n). In fact, we do not introduce a new algorithm, but we consider an
algorithm by Berger et al. (Algorithm 5 in [3]) and we provide a refined analysis, resulting in
an improved running time bound O∗(4n), which is tight up to a polynomial factor.
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Let us recall the algorithm of Berger et al., in a slightly changed notation. In fact,
they solve a slightly more general problem, namely Fixed Degree Subgraph With
Outbranching. Let I = (d, in, out, r) be an instance of this problem, i.e., we want to find
a solution m : V 2 → Z≥0 that satisfies the degree constraints specified by in and out and
contains an outbranching rooted at r. In what follows we assume V = {1, . . . , n} and r = 1.

Consider an outbranching sequence {δv}v∈V rooted at r = 1. In what follows, all
outbranching sequences will be rooted at 1, so we skip specifying the root. Let Tδ be a
minimum cost outbranching among all outbranchings with outdegree sequence δ and let
rδ be an optimum solution of Fixed Degree Subgraph for instance (d, in′, out′) where
out′ = out − outdegT and in′ = in − indegT . Berger et al. note that then mδ = mTδ + rδ
is a feasible solution for instance I of Fixed Degree Subgraph With Outbranching,
and moreover it has minimum cost among all solutions that contain an outbranching with
outdegree sequence δ. Since rδ can be found in polynomial time by Observation 3.3, in order
to solve instance I it suffices to find outbranchings Tδ for all outbranching sequences δ and
return the solution mδ of minimum cost. Hence, Theorem 1.3 boils down to proving the
following lemma.

I Lemma 5.1. There is an algorithm which, for every outbranching sequence δ, finds a
minimum cost outbranching among all outbranchings with outdegree sequence δ and runs in
time O∗(4n).

We prove Lemma 5.1 by using dynamic programming (DP). However, it will be conve-
nient to present the DP as a recursive function BestOutbranching with two parameters,
S ⊆ V and {δv}v∈S (see Algorithm 1). It is assumed that 1 ∈ S. We will show that
BestOutbranching(S, δ) returns a minimum cost out-tree among all out-trees with outde-
gree sequence δ that are rooted at 1 and span S. Our algorithm runs BestOutbranching
for S = V and all outbranching sequences δ : V → Z≥0. Whenever BestOutbranching
returns a solution for an input (S, δ), it is memoized (say, in an efficient dictionary), so
that when BestOutbranching is called with parameters (S, δ) again, the output can be
retrieved in polynomial time.

Algorithm 1 A pseudocode of the algorithm from Lemma 5.1.

function BestOutbranching(S, δ)
vfirst ← min{v ∈ S | δv = 0}
if |S| = 2 then return {(1, vfirst)}.
else

minCost←∞
for w ∈ S do

if (δw ≥ 1 ∧ w 6= 1) ∨ (δw ≥ 2 ∧ w = 1) then
S′ ← S \ {vfirst}
δ′ ← δ|S′
δ′w ← δ′w − 1
Rw ← BestOutbranching(S′, δ′) ∪ {(w, vfirst)}
if d(Rw) < minCost then

minCost← d(Rw)
best← Rwreturn best

Let us define lastRmvd(S) := max({0, 1, 2, . . . , n} \ S) and bad(S, δ) := {v ∈ S | v <
lastRmvd(S)∧ δv = 0}. Let us call (S, δ) a reachable state if it meets the following conditions:
(i) δ1 ≥ 1
(ii)

∑
v∈S δv = |S| − 1

(iii) |bad(S, δ)| ≤ 1
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I Lemma 5.2. If function BestOutbranching is given a reachable state as input then all
recursively called BestOutbranching will also be given only reachable states.

Proof. Let us fix a reachable state (S, δ) for |S| > 2 and consider the associated value vfirst
from the algorithm. Denote S′ = S \ {vfirst}. Clearly, it suffices to show that all pairs (S′, δ′)
created in the for loop are reachable states. First, let us argue that bad(S′, δ) = ∅. There
are two cases:

Assume |bad(S, δ)| = 0. In this case vfirst > lastRmvd(S) so lastRmvd(S′) = vfirst. Then,
bad(S′, δ) = {v ∈ S′ | v < lastRmvd(S′) ∧ δv = 0} = {v ∈ S | v < vfirst ∧ δv = 0} = ∅.
Assume |bad(S, δ)| = 1. Then, (1) lastRmvd(S′) = lastRmvd(S) because lastRmvd(S) >
vfirst and (2) bad(S, δ) = {vfirst}. It follows that bad(S′, δ) (1)= {v ∈ S′ | v < lastRmvd(S) ∧
δv = 0} = bad(S, δ) \ {vfirst}

(2)= ∅.
Let us consider the recursive call of BestOutbranching for a particular w. The sequence
δ′|S′ differs from δ only at w, so bad(S′, δ′) ⊆ {w} ∪ bad(S′, δ) = {w}. This means that
condition (iii) from the definition of a reachable state holds for (S′, δ′). Since (S, δ) is
reachable, δ1 ≥ 1. Then either w 6= 1 and δ′1 = δ1 ≥ 1 or w = 1 and δ′1 = δ1 − 1 ≥ 1, where
the last inequality holds thanks to the condition in the if statement in Algorithm 1. In both
cases, (i) holds for (S′, δ′). Finally, (ii) is immediate by the definition of δ′. It follows that
(S′, δ′) is a reachable state, as required. J

I Lemma 5.3. If the function BestOutbranching is given a reachable state (S, δ), it
returns a cheapest out-tree T rooted at vertex 1, spanning S and with outdegree sequence δ.

Proof. We will use induction on |S|.
In the base case |S| = 2, there is only one outbranching spanning S rooted at 1, namely

{(1, vfirst)} and it is indeed returned by the algorithm.
In the inductive step assume |S| > 2. By conditions (i) and (ii) in the definition of

a reachable state and Lemma 2.2, there is at least one out-tree rooted at 1, spanning S,
and with outdegree sequence δ. Let T be a cheapest out-tree among all such out-trees.
Vertex vfirst is a leaf of T , since δvfirst = 0. At some point w in the for loop in Algorithm 1
is equal to the parent w∗ of vfirst in T . Then, T \ {(w∗, vfirst)} is an out-tree rooted at 1,
spanning S′, and with outdegree sequence δ′. Since (S′, δ′) is a reachable state by Lemma 5.2,
by the inductive hypothesis we know that a cheapest such out-tree T ′ will be returned
by BestOutbranching(S′, δ′). In particular, it means that d(T ′) ≤ d(T \ {(w∗, vfirst)}).
Denote Rw∗ = T ′ ∪ {(w∗, vfirst)}. Then, d(Rw∗) = d(T ′) + d(w∗, vfirst) ≤ d(T \ {(w∗, vfirst)}) +
d(w∗, vfirst) = d(T ). It follows that BestOutbranching returns a set of edges best of cost
at most d(T ). However best = Rw for a vertex w and by applying the induction hypothesis
it is easy to see that Rw is an out-tree rooted at 1, spanning S with outdegree sequence δ.
The claim follows. J

I Lemma 5.4. There are O∗(4n) reachable states.

Proof. Any sequence of n nonnegative integers that sums up to at most n− 1 will be called
an extended sequence. It is well known that there are exactly

(2n−1
n

)
< 22n−1 = O(4n) such

sequences. To see this consider sequences of n− 1 balls and n barriers and bijectively map
them to the sequences of n numbers by counting balls between barriers and discarding the
balls after the last barrier.

Let us fix an extended sequence δ̄ = {δ̄v}v∈V , and denote s̄ := n − (1 +
∑n
i=1 δ̄i). We

claim that there are only O(n) reachable states (S, δ) such that δ̄|S = δ and δ̄|V \S = 0.
Consider any such pair (S, δ). Let (v1, v2, . . . , vk) be the vertices of {v ∈ V | δ̄v = 0} sorted
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in increasing order. By the definition of a reachable state we know that |S| = 1 +
∑n
i=1 δ̄i, so

s̄ = |{1, 2, . . . , n}\S|. By (ii), for at least one vertex v ∈ S we have δ̄v = δv = 0, so k ≥ s̄+ 1.
Let us assume that k ≥ s̄ + 2 and lastRmvd(S) ≥ vs̄+2. Then, {v1, v2, . . . , vs̄+1} ∩ S ⊆
bad(S, δ). Since vs̄+2 ≤ lastRmvd(S) 6∈ S, at most s̄ − 1 elements from {v1, v2, . . . , vs̄+1}
are outside S, so |bad(S, δ)| ≥ (s̄ + 1) − (s̄ − 1) = 2. This is a contradiction with (S, δ)
being a reachable state, which proves that k ≤ s̄ + 1 or lastRmvd(S) < vs̄+2. In any case,
{1, 2, . . . , n} \ S ⊆ {v1, . . . , vs̄+1}. There are s̄+ 1 = O(n) ways to choose s̄ elements to the
set {1, 2, . . . , n}\S from {v1, . . . , vs̄+1}, so equivalently there are O(n) sets S such that (S, δ)
is a reachable state, δ̄|S = δ and δ̄|V \S = 0.

Every reachable state (S, δ) has the corresponding extended sequence {δ̄}v∈V defined by
δ̄|S = δ and δ̄|V \S = 0. Since there are O(4n) extended sequences, and each of them has
O(n) corresponding reachable states there are O(4n) · O(n) = O∗(4n) reachable states in
total. J

We are ready to prove Lemma 5.1. Recall that our algorithm runs
BestOutbranching(V, δ) for all outbranching sequences δ and uses memoization to avoid
repeated computation. We claim that for any outbranching sequence δ, the pair (V, δ) is a
reachable state. Indeed, conditions (i) and (ii) hold since δ is an outbranching sequence. By
definition, lastRmvd(V ) = 0, so bad(V, δ) = ∅ which implies (iii). Hence by Lemma 5.3 the
algorithm is correct. By Lemma 5.2 the running time can be bounded by the number of
reachable states times a polynomial, which is O∗(4n) by Lemma 5.4. This ends the proof of
Lemma 5.1 and hence also Theorem 1.3, as discussed in the beginning of this section.

6 Polynomial space

In this section we show Theorem 1.4, that is, we solve Many Visits TSP in O∗(7.88n)
time and polynomial space. Berger et al. [2] solved this problem in O(16n+o(n)) time and
polynomial space, with the key ingredient being the following.

I Lemma 6.1 (Berger et al. [2]). There is a polynomial space algorithm running in time
O(4n+o(n)) which, given an outdegree sequence {δv}v∈V , a cost function d : V 2 → Z≥0, and
a root r ∈ V computes the cheapest outbranching rooted at r with the required outdegrees.

More precisely, the O(16n+o(n))-time algorithm consists of the following steps:
(i) Enumerate all O(4n) outbranching sequences
(ii) For each outbranching sequence compute the cheapest outbranching with required

degrees using Lemma 6.1 in time O(4n+o(n))
(iii) For each of these outbranchings complete it to a solution of the original Many Visits

TSP instance with an optimal solution of Fixed Degree Subgraph on the residual
degree sequences (in polynomial time, by Observation 3.3).

The intuition behind our approach is as follows. We iterate over all subsets of vertices R.
Here, R represents our guess of the set of inner vertices of an outbranching in an optimal
solution. Then we perform (i) and (ii) in the smaller subgraph induced by R. Finally, we
replace (iii) by a more powerful flow-based algorithm which connects the vertices in V \R to
R, and at the same time computes a feasible solution of Fixed Degree Subgraph on the
residual degree sequences, so that the total cost is minimized. Let r = |R|. Clearly, when r
is a small fraction of n, we get significant savings in the running time. The closer r/n is to 1
the smaller are the savings, but also the smaller is the number

(
n
r

)
of sets R to examine.



Ł. Kowalik, S. Li, W. Nadara, M. Smulewicz, and M. Wahlström 66:15

In fact, the real algorithm is slightly more complicated. Namely, we fix an integer
parameter K, and then R corresponds to the set of vertices left from an outbranching in an
optimal solution after K iterations of removing all leaves. The running time of our algorithm
depends on K, because the algorithm actually guesses the layers of leaves in each iteration.
The space complexity is polynomial and does not depend on K. In the end of this section,
we show that our running time bound is minimized when K = 4.

6.1 Our algorithm

Similarly as in Section 5, we solve the more general Fixed Degree Subgraph With
Outbranching: for a given instance I = (d, in, out, root) we want to find a solution
m : V 2 → Z≥0 that satisfies the degree constraints specified by in and out and contains an
outbranching rooted at root.

Let T be an arbitrary outbranching. We define a sequence L1(T ), L2(T ), . . . of subsets of
V (T ) as follows. For i ≥ 1 let Li(T ) be the set of leaves of T \ (L1(T )∪L2(T )∪ . . .∪Li−1(T ))
if |V (T ) \ (L1(T ) ∪ . . . ∪ Li−1(T ))| > 1, and otherwise Li = ∅. The sets Li(T ) will be called
leaf layers. Denote Ri(T ) = V \ (L1(T ) ∪ · · · ∪ Li(T )) for any i ≥ 1.

I Lemma 6.2. For every i ≥ 1 we have root ∈ Ri(T ) \ Li+1(T ), |Li(T )| ≥ |Li+1(T )| and
|Li+1| ≤ n−|Ri(T )|

i .

Proof. In this proof we skip the “(T )” in Li and Ri because there is no ambiguity. Assume
root ∈ Li for some i ≥ 1. It means that root is a leaf in T \ (L1 ∪ L2 ∪ . . . ∪ Li−1). Then
V \ (L1 ∪ L2 ∪ . . . ∪ Li−1) = {root} and Li = ∅, a contradiction. Hence root 6∈ Li for all
i ≥ 1, and in consequence root ∈ Ri for all i ≥ 1. However, root ∈ Ri+1(T ) implies that
root 6∈ Li+1(T ), hence root ∈ Ri \ Li+1.

If |V \ (L1 ∪ . . .∪Li)| > 1, then Li+1 is the set of leaves of the out-tree T \ (L1 ∪ . . .∪Li),
which is contained in the set of parents of vertices in Li. Since every vertex in Li has
exactly one parent, |Li| ≥ |Li+1|. If |V \ (L1 ∪ . . . ∪ Li)| ≤ 1 then Li+1 = ∅ and clearly
|Li| ≥ |Li+1| = 0.

Finally, since for every j < i we have |Lj | ≥ |Li| we get n−|Ri| = |L1|+ . . .+ |Li| ≥ i|Li|.
It follows that |Li+1| ≤ |Li| ≤ n−|Ri|

i , as required. J

Pseudocode of our algorithm is presented as Algorithm 2.

Algorithm 2 A pseudocode of the algorithm from Section 6.1.

1: function Solve(G, out, in, d, root)
2: best←∞
3: for R,LK+1, δ do
4: TR ← cheapest δ-out-tree spanning R rooted at root (Lemma 6.1)
5: out′ ← out− outdegTR

6: in′ ← in− indegTR

7: for L1, . . . , LK do
8: F ← CreateNetwork(G,R, out′, in′, d, L1, . . . , LK)
9: f ←MinCostMaxFlow(F )

10: if |f | =
∑

v∈V (G) out′(v) and cost(f) + d(TR) < best then
11: best← cost(f) + d(TR)

return best
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For clarity, in the pseudocode we skipped some constraints that we enforce on the sets Li
and sequence δ. We state them below.
(C1) LK+1 ⊆ R ⊆ V, root ∈ R \ LK+1, |LK+1| ≤ n−|R|

K

(C2) {δv}v∈R is a rooted out-tree sequence, i.e., for all v ∈ R we have δv ∈ Z≥0,
∑
v∈R δ(v) =

|R| − 1; also δroot ≥ 1 if |R| ≥ 2 and δroot = 0 if |R| = 1.
(C3) for every v ∈ LK+1 we have δv = 0 and for every v ∈ R \ (LK+1 ∪ {root}) we have

δv ≥ 1
(C4) L1 ] L2 ] · · · ] LK = V \R
(C5) |Li| ≥ |Li+1| for i = 1, . . . ,K.
It is clear that all these possibilities can be enumerated in time proportional to their total
number times O(n).

Let us provide some further intuition about Algorithm 2. Consider an optimum solution
m of I and any outbranching B in m rooted at root. In Algorithm 2, for any i = 1, . . .K + 1,
the set Li is a guess of the leaf layer Li(B), while R is a guess of V \ (L1(B) ∪ · · · ∪ LK(B)).
Finally, δ is a guess of the outdegree sequence of the out-tree B[R].

In Line 8 we create a flow network, and in line 9 a minimum cost maximum flow is found
in polynomial time. In the next section we discuss the flow network and properties of the
flow.

6.2 The flow
In this section we consider a run of Algorithm 2, and in particular we assume that the variables
R, δ, L1, . . . , LK+1 have been assigned accordingly. The function CreateNetwork in our
algorithm builds a flow network F = (V (F ), E(F ), cap, cost), where E(F ) is a set of directed
edges and cap and cost are functions from edges to integers denoting capacities and costs of
corresponding edges. As usual, the function cost extends to flow functions in a natural way, i.e.,
cost(f) =

∑
e∈E(F ) f(e)cost(e). We let V (F ) = {s, t}∪{vI , vO | v ∈ V (G)}∪{vC | v ∈ V \R},

where s and t denote the source and the sink of F .
We put following edges into E(F ):
(s, vO), where cap(s, vO) = out′(v), cost(s, vO) = 0 for every v ∈ V (G)
(vI , t), where cap(vI , t) = in′(v), cost(vI , t) = 0 for every v ∈ R
(vI , t), where cap(vI , t) = in′(v)− 1, cost(vI , t) = 0 for every v /∈ R
(vC , t), where cap(vC , t) = 1, cost(vC , t) = 0 for every v /∈ R
(uO, vI), where cap(uO, vI) =∞, cost(uO, vI) = d(u, v) for every (u, v) ∈ E(G)
(uO, vC), where cap(uO, vC) =∞, cost(uO, vC) = d(u, v) for every v ∈ Li, u ∈ R∪Li+1 ∪
. . . ∪ LK , (u, v) ∈ E(G).

We will say that F has a full flow if it has a flow f with value |f | =
∑
v∈V out′(v). By the

construction of F , then all edges leaving source are saturated, i.e., carry flow equal to their
capacity. Since

∑
v∈V out′(v) =

∑
v∈V in′(v), also all edges that enter the sink are saturated.

Essentially, the network above results from extending the standard network used to get
Observation 3.3 by vertices vC . The flow between {vO | v ∈ V } and {vI | v ∈ V } ∪ {vC | v ∈
V \R} represents the resulting solution. In a full flow the edges leaving vC are saturated,
so a unit of flow enters every vertex vC , which results in connecting v in the solution to a
higher layer or to R. Thanks to that the solution resulting from adding the out-tree TR to
the solution extracted from f contains an outbranching.

I Lemma 6.3. If f is a full flow of minimum cost in F then there exists a solution of I with
cost cost(f) + d(TR). Moreover, the solution can be extracted from f in polynomial time.
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Proof. By standard arguments, since all capacities in F are integer, we infer that there is
an integral flow of minimum cost (and it can be found in polynomial time), so we assume
w.l.o.g. that f is integral.

Let b : V 2 → {0, 1} denote a function such that b(u, v) = [(u, v) ∈ TR]. Now we construct
a solution m : V 2 → Z≥0 of I.

m(u, v) =
{
f(uO, vI) + b(u, v) if v ∈ R
f(uO, vI) + f(uO, vC) if v 6∈ R.

In other words, m describes how many times edge (u, v) was used by the out-tree TR and
flow f in total. Let us verify that m is a feasible solution for I. The degree constraints are
easy to verify, so we are left with showing that m contains an outbranching rooted at root.
To this end it suffices to show that every vertex v is reachable from root in Gm. Clearly,
this holds for vertices in R, thanks to the out-tree TR. Pick an arbitrary vertex v 6∈ R.
Then v ∈ Li for some i = 1, . . . ,K. We know that f(vC , t) = 1, so there exists u such that
f(uO, vC) = 1. Therefore, v is connected in Gm to a vertex from R ∪ Li+1 ∪ . . . LK . Since v
in Gm has an in-neighbor either in R or in a layer with a higher index, we can conclude that
there is a path in Gm from R to v. Hence m indeed contains the required outbranching.

Finally, it can be easily checked that d(m) = cost(f) + d(TR), what concludes this
proof. J

Let m be a feasible solution for I. Let R, Li for i = 1, . . . ,K + 1 be sets of vertices
and δ an out-tree sequence on R, as in Algorithm 2. We say that m is compliant with R,
L1, . . . , LK+1 and δ whenm contains an outbranching T rooted at root such that RK(T ) = R,
Li(T ) = Li for i = 1, . . . ,K + 1 and δ is equal to the outdegree sequence of T [R].

I Lemma 6.4. Assume that there exists a solution m of I that is compliant with R,
L1, . . . , LK+1 and δ. Then F has a full flow f such that cost(f) + d(TR) ≤ d(m).

Proof. Let T be an outbranching inm which certifies thatm is compliant with R,L1,. . . ,LK+1
and δ. Let p : V 2 → {0, 1} be a function such that for every u, v ∈ V we have p(u, v) =
[(u, v) ∈ T ].

We set f(s, u) = cap(s, u) for all edges (s, u) ∈ E(F ) and f(u, t) = cap(u, t) for all edges
(u, t) ∈ E(F ). If v ∈ V \ R then we set f(uO, vC) = p(u, v). For all u, v ∈ V (G) we set
f(uO, vI) = m(u, v) − p(u, v). It can be easily checked that such function f is a full flow
and cost(f) = d(m) − d(T [R]). However, since T [R] is a δ-out-tree rooted at root and TR
is a cheapest such out-tree, d(TR) ≤ d(T [R]). It follows that cost(f) ≤ d(m) − d(TR), so
cost(f) + d(TR) ≤ d(m) as required. J

Consider a minimum cost full flow f ′ in F that is found by Algorithm 2 for a choice of
R,L1, . . . , LK+1, δ. The claim above implies that cost(f ′) + d(TR) ≤ d(m). However, notice
that we do not claim that cost(f ′) is the cost of optimal completion of TR consistent with all
guesses, as the intuitions we described earlier might suggest. It could be the case that in the
solution resulting from f ′, a vertex which was guessed to belong to Li does not have any
out-neighbor that was guessed to belong to Li−1, which would mean that this vertex should
be in an earlier layer. However, that is not an issue for the extraction of the global optimum
solution of I, because we may get only better solutions than the optimum completion for
that particular guess.
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6.3 Correctness
I Lemma 6.5. Function Solve returns the cost of an optimal solution of I.

Proof. From Lemma 6.3 we infer that Solve returns the cost of a feasible solution of I. It
remains to show that it returns a value that is smaller or equal to the cost of an optimal
solution of I. To this end, letm be an arbitrary optimal solution of I and let T be an arbitrary
outbranching rooted at root in Gm. Let R = RK(T ), Li = Li(T ) for i = 1, . . . ,K + 1 and
let δ be the outdegree sequence of T [R].

Let us verify that R,L1, . . . , LK+1 and δ satisfy constraints (C1)–(C5). We get (C1) and
(C5) by Lemma 6.2. (C2) follows from the definition of δ. For (C3), consider two cases.
If |R| > 1, then LK+1 is the set of leaves in R and hence indeed for every v ∈ LK+1 we
have δv = 0 and for every v ∈ R \ (LK+1 ∪ {root}) we have δv ≥ 1. When |R| ≤ 1, we
have LK+1 = ∅ and since root ∈ R by Lemma 6.2, R = {root}. Then both sets LK+1 and
R \ (LK+1 ∪ {root}) are empty, so (C3) trivially holds. Finally, (C4) follows by the definition
of leaf layers.

Since R,L1, . . . , LK+1 and δ satisfy constraints (C1)–(C5), then Solve reaches this
particular evaluation of the variables R,L1, . . . , LK+1 and δ. Then, based on Lemma 6.4,
the network F has a full flow f such that cost(f) + d(TR) ≤ d(m), and it follows that Solve
returns a value best ≤ cost(f) + d(TR) ≤ d(m), as required. J

Obviously, Solve can be easily adapted to return a solution of I with the cost it returns,
but we have not taken this into account in Algorithm 2 for the sake of its readability.

6.4 Running time
Having a correct algorithm solving Fixed Degree Subgraph With Outbranching in
polynomial space, let us analyze its complexity depending on K.

Let us denote r = |R| and c = |LK+1|. Recall that 1 ≤ r ≤ n and 0 ≤ c ≤ bn−rK c.
If we fix r and c, then there are

(
n−1
r−1
)
guesses for R (it has to contain root) and at most(

r−1
c

)
guesses for LK+1. Let us bound the number of guesses for δ. By (C2) and (C3),∑

v∈R δv = r − 1, and δv = 0 iff v ∈ LK+1 so essentially we put r − 1 balls into r − c bins
that must be nonempty, which is

(
r−2
c−1
)
by standard combinatorics. In the special case c = 0

there is one choice for δ, where δroot = 0.
In total, there are at most

(
n
r

)(
r
c

)2 guesses for all R,LK+1, δ simultaneously. For each of
these guesses, using Lemma 6.1 function Solve calculates an optimal δ-out-tree spanning R,
which takes time O(4n+o(n)). It follows that that part takes time O∗(

∑
r

(
n
r

)
4r+o(r)

∑
c

(
r
c

)2).
Then, Solve guesses a partition of V \R into L1, . . . , LK in at most Kn−r ways. For each
such guess, Solve spends polynomial time, so that part takes O∗(

∑
r

(
n
r

)
Kn−r∑

c

(
r
c

)2)
time. Hence the total running time can be bounded by

O∗
(

2o(n)
n∑
r=1

bn−rK c∑
c=0

(
n

r

)
(Kn−r + 4r)

(
r

c

)2

︸ ︷︷ ︸
ξ(r,c)

)
.

Since there are polynomially many guesses for r and c, we can actually replace sums with
maxima in the expression above and focus on the expression ξ(r, c) =

(
n
r

)
(Kn−r + 4r)

(
r
c

)2.
We will heavily use the well-known bound

(
n
αn

)
< 2h(α)n, where h(α) = −α log2 α− (1−

α) log2(1 − α) is the binary entropy function (see e.g. [13]). For readability, let us denote
f(α) = 2h(α) and let us point out that f is increasing on the interval [0, 1

2 ] and decreasing on
the interval [ 1

2 , 1]. Let us denote β := r
n . We are going to distinguish two cases here.
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1. n−r
K ≥ r

2
This inequality can be rephrased as r ≤ 2

K+2n, which is equivalent to β ≤ 2
K+2 . We

will use here a trivial bound
(
r
c

)
≤ 2r. Then, ξ(r, c) ≤ f(β)n((K1−β)n + 4βn)4βn =

(f(β)K1−β4β)n + (f(β)42β)n

2. n−r
K < r

2

In that case we know that maxb
n−r
K c

c=0
(
r
c

)2 is attained when c = bn−rK c and for that
particular value of c we can use the following bound.(

r

c

)2
=
(

r
bn−rK c
r · r

)2
= O∗

(
f

(bn−rK c
r

)2r)
= O∗

(
f

( n−r
K

r

)2r)
=

= O∗
(
f

(
1− β
Kβ

)2βn
)

In the third equality above we used fact that f is increasing on the interval [0, 1
2 ]. To

sum up, in this case,

ξ(r, c) = O∗
((

f(β)K1−βf

(
1− β
Kβ

)2β
)n

+
(
f(β)4βf

(
1− β
Kβ

)2β
)n)

.

Our numerical analysis shows that it is optimal to choose K = 4. For that particular
value of K, the first case applies if and only if β ≤ 1

3 . Then,

ξ(r, c) = (4f(β))n + (42βf(β))n = O((4f(β))n) = O((4f( 1
3 ))n) = O(7.56n).

Let us now investigate the second case, when β > 1
3 . For 1

3 < β < 1
2 the summand(

f(β)41−βf
(

1−β
4β

)2β
)n

dominates, and for β ≥ 1
2 the summand

(
f(β)4βf

(
1−β
4β

)2β
)n

dominates. We have numerically verified that

f(β)41−βf

(
1− β

4β

)2β
≤ 7.68 for β ∈ ( 1

3 ,
1
2 )

and

f(β)4βf
(

1− β
4β

)2β
≤ 7.871 for β ∈ [ 1

2 , 1].

Hence, we can conclude that for K = 4 and our algorithm runs in time O∗(7.871n+o(n)) =
O(7.88n) and in polynomial space. This concludes the proof of Theorem 1.4.

7 (1 + ε)-approximation

In this section we show theorem 1.2, i.e. we present an algorithm for Many Visits TSP
which finds a (1 + ε)-approximation in O∗

( 2n
ε

)
time and polynomial space.

To achieve this we consider a more general problem, namely Fixed Degree Connected
Subgraph. The main idea is to round weights of edges of the given instance, so that we can
use the algorithm for polynomially bounded weights from Lemma 4.12 which is an analog of
theorem 1.1 for Fixed Degree Connected Subgraph.

Let us first consider the case with degrees bounded by a polynomial.
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I Lemma 7.1. For given ε > 0 and an instance I = (d, in, out) of Fixed Degree Con-
nected Subgraph such that in(v), out(v) ≤ O(n2) for every vertex v there exists an
algorithm finding a (1 + ε)-approximate solution in O∗

( 2n
ε

)
time and polynomial space.

Proof. Let us denote the optimal solution for I by OPT. First, our algorithm guesses the
most expensive edge used by OPT. Let us denote its cost by E, in particular

E ≤ d(OPT). (1)

Let us denote by C the universal constant such that in(v), out(v) ≤ Cn2 for every vertex
v and let us round d in the following way

d′(u, v) :=
{ ⌈

Cn3

εE d(u, v)
⌉

if d(u, v) ≤ E
∞ if d(u, v) > E

(2)

If d′(u, v) is finite then it is bounded by
⌈
Cn3

εE E
⌉

=
⌈
Cn3

ε

⌉
. Our algorithm simply returns

the optimal solution for instance I ′ = (d′, in, out) which can be found in O∗
( 2n
ε

)
time using

the algorithm from Lemma 4.12 with D =
⌈
Cn3

ε

⌉
. Let us denote this solution by ALG. Now

we only need to prove that ALG is a (1 + ε)-approximation for the original instance I. We
know that ALG is an optimal solution for I ′, in particular

d′(ALG) ≤ d′(OPT). (3)

For every v we have out(v) ≤ Cn2, so∑
(u,v)∈V 2

OPT(u, v) =
∑
u∈V

out(u) ≤ n · Cn2. (4)

The following chain of inequalities finishes the proof.

d(ALG)
(2)
≤ εE

Cn3 d
′(ALG)

(3)
≤ εE

Cn3 d
′(OPT)

(2)
≤ εE

Cn3

∑
(u,v)∈V 2

OPT(u, v)
(
d(u, v)Cn3

εE
+ 1
)

=

= d(OPT) + εE

Cn3

∑
(u,v)∈V 2

OPT(u, v)
(4)
≤ d(OPT) + εE

Cn3Cn
3

(1)
≤ (1 + ε)d(OPT) J

Now we can generalize the algorithm from Lemma 7.1 by using it as a black box for the
general case.

I Lemma 7.2. For a given ε > 0 and an instance I = (d, in, out) of Fixed Degree
Connected Subgraph there exists an algorithm finding a (1 + ε)-approximate solution in
O∗
( 2n
ε

)
time and polynomial space.

Proof. First let us use the algorithm from Theorem 3.4 which outputs an instance I ′ =
(d, in′, out′) of Fixed Degree Connected Subgraph and a function f : V 2 → Z≥0. Let
us denote the optimal solution for I ′ by OPT′. By Theorem 3.4 the optimal solution for
I equals OPT′ + f . Moreover, we know that in′, out′(v) ≤ O(n2) for every vertex v. In
particular we can use algorithm from Lemma 7.1 to get a solution ALG′ for instance I ′ such
that d(ALG′) ≤ (1 + ε)d(OPT′). Our algorithm simply returns solution ALG′ + f , which
is a solution for I because ALG is connected and f increases degrees exactly by difference
between I and I ′. To prove ALG′ + f is (1 + ε)-approximation we just need to observe that

d(ALG′ + f) ≤ (1 + ε)d(OPT′) + d(f) ≤ (1 + ε)d(OPT′ + f). J

Fixed Degree Connected Subgraph is a generalization of Many Visits TSP so
the algorithm from Lemma 7.2 proves Theorem 1.2.
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8 Further Research

Since TSP is solvable in time O∗(2n) and exponential space [1, 16] and time O(4n+o(n))
and polynomial space [15], the main remaining question is whether these bounds can be
achieved for Many Visits TSP avoiding in the running time bound the linear dependence
on maximum distance D. Another interesting goal is a deterministic version of Theorem 4.1.
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