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Abstract
In most online problems with delay, clairvoyance (i.e. knowing the future delay of a request upon its
arrival) is required for polylogarithmic competitiveness. In this paper, we show that this is not the
case for set cover with delay (SCD) – specifically, we present the first non-clairvoyant algorithm,
which is O(log n log m)-competitive, where n is the number of elements and m is the number of sets.
This matches the best known result for the classic online set cover (a special case of non-clairvoyant
SCD). Moreover, clairvoyance does not allow for significant improvement – we present lower bounds
of Ω(

√
log n) and Ω(

√
log m) for SCD which apply for the clairvoyant case.

In addition, the competitiveness of our algorithm does not depend on the number of requests. Such
a guarantee on the size of the universe alone was not previously known even for the clairvoyant case
– the only previously-known algorithm (due to Carrasco et al.) is clairvoyant, with competitiveness
that grows with the number of requests.

For the special case of vertex cover with delay, we show a simpler, deterministic algorithm which
is 3-competitive (and also non-clairvoyant).
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1 Introduction

In problems with delay, requests are released over a timeline. The algorithm must serve these
requests by performing some action, which incurs a cost. While a request is pending (i.e.
has been released but not yet served), the request accumulates delay cost. The goal of the
algorithm is to minimize the sum of costs incurred in serving requests and the delay costs of
requests.
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There are two variants of such problems. In the clairvoyant variant, the delay function of
a request (which determines the delay accumulation of that request over time) is revealed to
the algorithm upon the release of the request. In the non-clairvoyant variant, at any point in
time the algorithm is only aware of delay accumulated up to that point.

Most online problems with delay do not admit competitive non-clairvoyant algorithms –
namely, there exist lower bounds for competitiveness which are polynomial in the size of the
input space (e.g. the number of points in the metric space upon which requests are released).
This is the case, for example, in the multilevel aggregation problem [10, 14], the facility
location problem [7] and the service with delay problem [6]. However, these problems do
admit clairvoyant algorithms which are polylog-competitive. An additional such problem is
that of matching with delay (presented in [20]), for which the only known algorithms are for
when all requests have an identical, linear delay function (and are in particular clairvoyant).
Rather surprisingly, we show in this paper that the online set cover with delay problem does
admit a competitive non-clairvoyant algorithm.

In the online set cover with delay problem (SCD), a universe of elements and a family of
sets are known in advance. Requests then arrive over time on the elements, and accumulate
delay cost until served by the algorithm. The algorithm may choose to buy a set at any
time, at a cost specific to that set (and known in advance to the algorithm). Buying a set
serves all pending requests (requests released but not yet served) on elements of that set;
future requests on those elements, that have yet to arrive when the set is bought, must
be served separately at a future point in time. For that reason, a set may be bought an
unbounded number of times over the course of the algorithm. The goal of an algorithm is to
minimize the sum of the total buying cost and the total delay cost. We note that one could
also consider the problem in which sets are bought permanently, and cover future requests;
however, it is easy to see that this problem is equivalent to the classic online set cover, and
is thus of no additional interest. In the full version of this paper, we show that this problem
is a special case of our problem.

As a variant of set cover, the SCD problem is very general, capturing many problems.
Nevertheless, we give two possible motivations for the problem.

Summoning experts. consider a company which occasionally requires the help of experts.
At any time, a problem may arise which requires external assistance in some field, and
negatively impacts the performance of the company while unresolved. At any time, the
company may hire any one of a set of experts to come to the company, solve all standing
problems in that expert’s fields of expertise, and then leave. The company aims to minimize
the total cost of hiring experts, as well as the negative impact of unresolved problems.

Cluster-covering with delay. suppose antennas generate data requests over time, which
must be satisfied by an external server, with a cost to leaving a request pending. To satisfy an
update request by an antenna, the server sends the data to a center antenna which transmits
it at a certain radius, at a certain cost (which depends on the center antenna and the radius).
All requests on antennas inside that radius are served by that transmission. This problem is
a covering problem with delay costs, which can be described in terms of SCD. As an SCD
instance, the elements are the antennas, and the sets are pairs of a center antenna and a
(reasonable) transmission radius (the number of sets is quadratic in the number of antennas).

Carrasco et al. [15] provided a clairvoyant algorithm for the SCD problem, which is
O(logN) competitive (where N is the number of the requests). However, as the number of
requests becomes large, the competitive ratio of this algorithm tends to infinity – even for a
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very small universe of elements and sets. Thus, this algorithm does not provide a guarantee
in terms of the underlying input space, as we would like. In addition, their algorithm has
exponential running time (through making oracle calls which compute optimal solutions for
NP-hard problems).

In this paper, we present the first algorithm for SCD which is polylog-competitive in
the size of the universe, which is also the first algorithm for the problem which runs in
polynomial time. Surprisingly, this algorithm is also non-clairvoyant, showing that the
SCD problem admits non-clairvoyant competitive algorithms. Our randomized algorithm is
O(logn logm)-competitive, where n is the number of elements and m is the number of sets.
In this paper, we show a reduction from the classic online set cover to SCD, which implies
(due to [27]) that our upper bound is tight for a polynomial-time, non-clairvoyant algorithm
for SCD.

While our algorithm is optimal for the non-clairvoyant setting, one could wonder if there
exists a clairvoyant algorithm which performs significantly better – especially considering the
aforementioned problems, in which the gap between the clairvoyant and non-clairvoyant cases
is huge. We answer this in the negative – namely, we show lower bounds of Ω(

√
logn) and

Ω(
√

logm) on the competitiveness of any randomized clairvoyant algorithm, showing that
there is no large gap which clairvoyant algorithms could bridge. Nevertheless, a quartic gap
still exists, e.g. in the case that m = Θ(n). We conjecture that the gap is in fact quadratic,
and leave this as an open problem.

In this paper, we also consider the problem of vertex cover with delay (denoted VCD).
In the VCD problem, vertices of graph are given, with a buying cost associated with each
vertex. Requests on the edges of the graph arrive over time, and accumulate delay until
served by buying a vertex touching the edge (at the cost of that vertex’s price). This problem
corresponds to SCD where every element is in exactly two sets.

1.1 Our Results

We denote as before the number of elements in an SCD instance by n, and the number of
sets by m. We also define k ≤ m to be the maximum number of sets to which a specific
element may belong. We consider arbitrary (nondecreasing) continuous delay functions (not
only linear functions).

In this paper, we present:

1. An O(log k · logn)-competitive, randomized, non-clairvoyant algorithm for SCD, based on
rounding of a newly-designed O(log k)-competitive algorithm for the fractional version of
SCD. The competitive ratio of this algorithm is tight – we show a reduction from (classic)
online set cover to non-clairvoyant SCD.

2. Lower bounds of Ω(
√

log k) and Ω(
√

logn) on competitiveness for clairvoyant SCD,
showing that clairvoyance cannot improve competitiveness beyond a quadratic factor.

3. A simple, deterministic, non-clairvoyant algorithm for vertex cover with delay (VCD)
which is 3-competitive.

Our randomized algorithm for SCD is the first (sub-polynomial competitive) non-
clairvoyant algorithm for this problem. Moreover, this is the first algorithm which is
polylog-competitive in the size of the universe (even among clairvoyant algorithms).

ESA 2020
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In the process of obtaining our Ω(
√

log k) and Ω(
√

logn) lower bounds, we in fact obtain
an Ω(

√
logm) lower bound (which immediately implies Ω(

√
log k) since k ≤ m). The lower

bounds also apply for the unweighted setting. These lower bounds improve over the lower
bound of Ω(log logn) given in [15]1.

For VCD, while our algorithm is 3-competitive, note that there is a lower bound of 2.
The lower bound uses a graph with a single edge which is requested multiple times; this
graph corresponds to the TCP acknowledgment problem, analyzed in [19].

I Remark 1. While our O(log k · logn)-competitive algorithm is presented for the case in
which the sets and elements are known in advance, it can easily be modified for the case in
which each element, as well as which of the sets contain it, becomes known to the algorithm
only after the arrival of a request on that element. Moreover, the algorithm can in fact
operate in the original setting of Carrasco et al. [15], as it does not need to know the family
of sets itself, but rather the family of restrictions of the sets to the elements that have already
arrived. This can be done through standard doubling techniques applied to logn and log k
(i.e. squaring of n and k).

1.2 Our Techniques
In the course of designing a non-clairvoyant algorithm for the SCD problem, we also consider
a fractional version of SCD. In this version, an algorithm may choose to buy a fraction of a
set at any moment. Buying a fraction of a set partially serves requests present on an element
of that set, which causes them to accumulate less future delay. As with the original version,
a request is only served by fractions bought after its arrival. Hence, the sum of fractions
bought for a single set over time is unbounded (i.e. a set may be bought many times).

In the fractional O(log k)-competitive algorithm, each request that can be served by
a set contributes some amount to the buying of that set. This amount depends exponentially
on the delay accumulated by that request, as well as the delay of previous requests. Typically
in algorithms with exponential contributions, these contributions are summed. Interestingly,
our algorithm instead chooses the maximum of the contributions of the requests as the
buying function of the set. The choice of maximum over sum is crucial to the proof (using
sum instead of maximum would lead to a linear competitive ratio).

The analysis of this algorithm is based on dual fitting: we first present a linear program-
ming representation of the fractional SCD problem, then use a feasible solution to the dual
problem to charge the delay of the algorithm to the optimum. This is the reason for using
the maximum in the buying function; each quantity satisfies a different constraint in the
dual, and choosing the maximum satisfies all constraints. We then charge the buying cost of
the algorithm to O(log k) times its delay, which concludes the analysis.

Next, we design a randomized competitive algorithm for the integer version of SCD using
2-level randomized rounding of the fractional algorithm. At the top level, we construct a
randomized O(log k · logN)-competitive algorithm for the integer version, with
N the number of requests. The top-level rounding consists of maintaining for each set a
random threshold, and buying the set when the total buying of that set in the fractional
algorithm exceeds the threshold. In addition, special service of a request is performed in
the probabilistically unlikely event that the request is half-served in the fractional algorithm

1 The lower bound of [15] shows Ω(log N)-competitiveness, but relies on a universe which is exponentially
larger than the number of requests. As they mention in their paper, this therefore translates to an
Ω(log log n) lower bound on competitiveness.
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but is still pending in the rounding. Since in our problem we may buy a set an unbounded
number of times, we require use of multiple subsequent thresholds. To analyze this, we make
use of Wald’s equation for stopping time.

We add the bottom level to improve the O(log k · logN)-competitive algorithm to a
randomized O(log k · logn)-competitive algorithm for the integer version. The
bottom level partitions time into phases for each element separately, and aggregates requests
on that element that are released in the same phase. The competitive ratio of the resulting
algorithm is asymptotically optimal for solving non-clairvoyant SCD in polynomial time, as
shown by the reduction from the classic online set cover to non-clairvoyant SCD given in the
full version of this paper.

Perhaps the most novel techniques in this paper are used for the lower bounds of
Ω(
√

log k) and Ω(
√

logn) for the clairvoyant case. The lower bounds are obtained by a
recursive construction. Given a recursive instance for which any algorithm has a lower bound
on the competitive ratio, we amplify that bound by duplicating every set in the recursive
instance into two sets, one slightly more expensive than the other. Both sets perform the
same function with respect to the recursive instance, but the algorithm also has an incentive
to choose the expensive family of sets, since they serve some additional requests. If the
algorithm chooses to buy a lot of expensive sets, the optimum releases another copy of the
recursive instance, serviceable only by expensive sets. This forces the algorithm to buy the
expensive sets twice; the optimum only buys them once. If, on the other hand, the algorithm
chooses the inexpensive sets, it misses the opportunity to serve the additional requests and
the recursive instance simultaneously, and must serve them separately.

The recursive description of our construction for the lower bounds is significantly more
natural than its iterative description. Few lower bounds in online algorithms have this
property – another such lower bound is found in [8].

The 3-competitive deterministic algorithm for VCD is simple and based on coun-
ters. This algorithm is only k + 1 competitive for general SCD, and is thus significantly
worse than the previous randomized algorithm that we have shown for general SCD.

1.3 Other Related Work
A different problem called online set cover is considered in [3], in which the algorithm
accumulates value for every element that arrives on a bought set, and aims to maximize
total value. This problem appears to be fundamentally different from the online set cover in
which we minimize cost, in both techniques and results.

The problem of set cover in the online setting has seen much additional work, e.g. in
[22, 9, 18, 29, 1]. The set cover problem has also been studied in the streaming model (e.g.
[21, 16]), stochastic model (e.g. [24]), dynamic model (e.g. [23]), and in the context of
universal algorithms (e.g. [25, 22]) and communication complexity (e.g. [28]).

There are known inapproximability results for the (offline) set cover and vertex cover
problems. In [17] it is shown that the offline set cover problem is unlikely to be approximable
in polynomial time to within a factor better than lnn. For the offline vertex cover, it is shown
in [26] that it is NP hard to approximate within a factor better than 2, assuming the Unique
Games Conjecture. These results apply to our SCD and VCD problems, as an instance of
offline set cover (or vertex cover) can be released at time 0. Of course, these inapproximability
results do not constitute lower bounds for the online model, in which unbounded computation
is allowed – unlike the information-theoretic lower bound of Ω(

√
logn) for SCD which is

given in this paper.

ESA 2020
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The field of online problems with delay over time has been of interest recently. This
includes the problems of min-cost perfect matching with delays [20, 5, 2, 12, 11, 4], online
service with delay [6, 13, 7] and multilevel aggregation [10, 14, 7].

Paper Organization
In Section 3, we present and analyze a fractional non-clairvoyant algorithm for SCD. In
Section 4, we show how to round the previous algorithm in a non-clairvoyant manner to
obtain our algorithm for the original (integral) SCD. In Section 5, we show lower bounds for
clairvoyant SCD. In the full version of this paper, we show that the algorithm obtained in
Section 4 is optimal for the non-clairvoyant case. In Section 6, we give a simple, deterministic,
non-clairvoyant algorithm for vertex cover with delay.

2 Preliminaries

We denote the sets by {Si}mi=1, with m the number of sets. We denote by n the number
of elements. We define k to be the minimal number for which every element belongs to at
most k sets. Requests qj arrive on the elements. We denote the arrival time of request qj by
rj , and write (with a slight abuse of notation) qj ∈ Si if the element on which qj has been
released belongs to the set Si.

Each request qj has an arbitrary momentary delay function dj(t), defined for t ≥ rj . The
accumulated delay of the request at time t ≥ rj is defined to be

∫ t
rj
dj(t) dt. At any time in

which a request is pending, its momentary delay is added to the cost of the algorithm; that
is, the algorithm incurs a cost of

∫ τj

rj
dj(t) dt (the accumulated delay of qj at time τj) for

every request qj , where τj is the time in which qj is served. Each set Si has a price c(Si) ≥ 1
which the algorithm must pay when it decides to buy the set. Buying a set serves all pending
requests which belong to the set (but does not affect future requests). The buying cost of an
online algorithm ON is CostpON =

∑
i ni · c(Si), where ni is the number of times Si has been

bought by the algorithm. The delay cost of ON is CostdON =
∑
j

∫ τj

rj
dj(t) dt, where τj is the

time in which qj is served by the algorithm (τj is ∞ if qj is never served by the algorithm)2.
Overall, the cost of ON for the problem is CostON = CostpON + CostdON

3 The Non-Clairvoyant Algorithm for Fractional SCD

We first describe a fractional relaxation of the (integer) set cover with delay problem. In
this fractional relaxation, a set can be bought in parts. A fractional algorithm determines
for each set Si a nonnegative momentary buying function xi(t). The total buying cost a
fractional online algorithm F incurs is CostpF =

∑
i c(Si) ·

∫∞
0 xi(t) dt.

In the fractional version, a request can be partially served. Under a fractional algorithm
F , for any request qj , and any set Si such that qj ∈ Si, the set Si covers qj at a time t ≥ rj
by the amount

∫ t
rj
xi(t′) dt′ (which is obviously nondecreasing as a function of t). The total

amount by which qj is covered at time t is

γj(t) =
∑

i|qj∈Si

∫ t

rj

xi(t′) dt′.

2 We solve the more general problem in which the algorithm doesn’t have to serve all requests (observe
that the adversary can still force the algorithm to serve all requests by adding infinite delay at time
infinity). This allows the problem to capture additional problems (e.g. prize-collecting problems, in
which a penalty could be paid to avoid serving a specific request)
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If at time t we have γj(t) ≥ 1, then qj is considered served, and the algorithm does not incur
delay. However, if γj(t) < 1, the algorithm F incurs delay proportional to the uncovered
fraction of qj . Formally, at time t the request qj incurs dFj (t) delay in F , where

dFj (t) =
{
dj(t) · (1− γj(t)) if γj(t) < 1
0 otherwise

(3.1)

The delay cost of the algorithm is CostdF =
∑
j

∫∞
rj
dFj (t) dt. The total cost of the

fractional algorithm is thus CostF = CostpF + CostdF .

Description of the algorithm. We now describe an online algorithm called ONF for the
fractional problem.

We define a total order � on requests, such that for any two requests qj1 , qj2 if rj1 < rj2

we have qj1 ≺ qj2 (we break ties arbitrarily between requests with equal arrival time).
At any time t, the algorithm does the following.

1. For every request qj , evaluate dONF
j (t) by its definition in Equation 3.1.

2. For every set Si and request qj ∈ Si, define

Dj
i (t) =

∑
j′|qj′∈Si∧qj′�qj

dONF
j′ (t).

3. For every set Si and request qj ∈ Si, define

xji (t) = 1
k
·
(

ln(1 + k)
c(Si)

·Dj
i (t)

)
· e

ln(1+k)
c(Si)

∫ t

rj
Dj

i
(t′) dt′

.

4. Buy every set Si according to xi(t), such that

xi(t) = max
j
xji (t).

This completes the description of the algorithm.
The intuition for the algorithm is that at any time t, the amount

∫ t
rj
Dj
i (t′) dt′ is delay

incurred by the algorithm until time t that the optimum possibly avoided by buying Si at
time rj , and thus the algorithm wishes to minimize this amount. Thus, the request qj places
some “demand” on the algorithm to buy Si. Since this is true for any qj ∈ Si, the algorithm
chooses the maximum of the demands as the buying function of Si.

This demand xji (t) placed on the algorithm by qj to buy Si is related to
∫ t
rj
Dj
i (t′) dt′. If

we wanted to make the total buying proportional to
∫ t
rj
Dj
i (t′) dt′, it would sound reasonable

to set xji (t) to be its derivative, namely Dj
i (t). However, this would only be Ω(k)-competitive,

as demonstrated in Figure 3.1. We thus want the total buying to be proportional to
an expression exponential in

∫ t
rj
Dj
i (t′) dt′, which underlies the definition of xji (t) in our

algorithm.
Denoting Xj

i (t) =
∫ t
rj
xji (t′) dt′, note that

Xj
i (t) = 1

k
·

[
e

ln(1+k)
c(Si)

∫ t

rj
Dj

i
(t′) dt′

− 1
]
. (3.2)

In the rest of this section, we prove the following theorem.

I Theorem 2. The algorithm for fractional SCD described above is O(log k)-competitive.

We now analyze the algorithm for fractional SCD and prove Theorem 2.

ESA 2020
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In this figure, there are k − 1 elements, where each element is contained in k sets of cost 1,
one central set (which contains all elements) and k − 1 peripheral sets (each contains exactly
one element). Consider k − 1 requests, one on each element, all arriving at time 0. Their
delay functions are identical, and go to infinity as time progresses.
Consider an algorithm which buys sets linearly to the delay - that is,
xi(t) = maxj Dj

i (t) =
∑
j|qj∈Si

dONF
j (t). The momentary delay of every request contributes

equally to the buying functions of the k containing sets. Thus, the total fraction bought of
peripheral sets is exactly k − 1 times the total fraction bought of the central set. Consider
the point in time in which all requests are half-covered (through symmetry, this happens for
all requests at the same time, and must happen since the requests gather infinite delay). We
have that the central set was bought for a fraction of exactly 1

4 (which can again be seen
through symmetry of the requests and their delay). Thus, the peripheral sets were bought
for a fraction of k−1

4 , for a total of k4 . Consider that the optimal solution costs 1, as the
optimum buys the central set at time 0.

Figure 3.1 Linear Buying Ω(k) Example.

3.1 Charging Buying Cost to Delay
In this subsection we prove the following lemma.

I Lemma 3. CostpONF ≤ 2 ln(1 + k) · CostdONF.

Proof. The proof is by charging the momentary buying cost at any time t to the 2 ln(1 + k)
times the momentary delay incurred by ONF at t. Let qj be some request released by time t.
For every i such that qj ∈ Si, we charge some amount zji (t) to dONF

j (t). Denote by ji the
request in Si such that

xi(t) = xji

i (t).

If qj � qji , we choose

zji (t) = ln(1 + k)
k

· dONF
j (t) · e

ln(1+k)
c(Si)

∫ t

rji

D
ji
i

(t′) dt′
.

Otherwise, we choose zji (t) = 0. Note that for every set Si we have
∑
j|qj∈Si

zji (t) =
c(Si) · xi(t), and thus the entire buying cost is charged.
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The total buying cost charged to a request qj at time t is
∑
i|qj∈Si

zji (t). We show that
for any j we have∑

i|qj∈Si

zji (t) ≤ 2 ln(1 + k) · dONF
j (t).

Summing the previous equation over requests qj and integrating over time yields the
lemma.

If dONF
j (t) = 0 we have zji (t) = 0 for every i, as required. From now on, we assume that

dONF
j (t) > 0.
Denote by Tj = {i|qj ∈ Si and zji > 0}. We have∑
i|qj∈Si

zji (t) =
∑
i∈Tj

zji (t)

= ln(1 + k) · dONF
j (t) ·

∑
i∈Tj

1
k
· e

ln(1+k)
c(Si)

∫ t

rji

D
ji
i

(t′) dt′
.

Now note that

1
k
· e

ln(1+k)
c(Si)

∫ t

rji

D
ji
i

(t′) dt′
= 1
k

+Xji

i (t)

≤ 1
k

+
∫ t

rji

xi(t′) dt′

≤ 1
k

+
∫ t

rj

xi(t′) dt′

where the equality is due to equation 3.2, the first inequality is due to the definition of Xji

i (t)
and since xi(t) ≥ xji

i (t), and the last inequality is due to qj � qji
.

Thus∑
i|qj∈Si

zji (t) ≤ ln(1 + k) · dONF
j (t) ·

∑
i∈Tj

(
1
k

+
∫ t

rj

xi(t′) dt′
)
≤ 2 ln(1 + k) · dONF

j (t)

where the last inequality follows from |Tj | ≤ k, and from
∑
i|qj∈Si

∫ t
rj
xi(t′) dt′ ≤ 1 (due

to the assumption that dONF
j (t) > 0). J

3.2 Charging Delay to Optimum
In this subsection, we charge the delay of the algorithm to the optimum via dual fitting.

3.2.1 Linear Programming Formulation
We formulate a linear programming instance for the fractional problem, and observe its dual
instance.

Primal. In the primal instance, the variables are:
xi(t) for a set Si and time t, which is the fraction by which the algorithm buys Si at time
t.
pj(t) for a request qj and time t ≥ rj , which is the fraction of qj not covered by bought
sets at time t.

ESA 2020
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The LP instance is therefore:
Minimize:∑
i

∫ ∞
0

c(Si) · xi(t) dt+
∑
j

∫ ∞
rj

pj(t) · dj(t) dt

under the constraints:

∀j, t ≥ rj : pj(t) +
∑

i|qj∈Si

∫ t

rj

xi(t′) dt′ ≥ 1

pj(t) ≥ 0 , xi(t) ≥ 0.

Dual. Maximize:∑
j

∫ ∞
rj

yj(t) dt

under the constraints:

∀i, t :
∑

j|qj∈Si∧rj≤t

∫ ∞
t

yj(t′) dt′ ≤ c(Si) (C1)

∀j, t ≥ rj : yj(t) ≤ dj(t) (C2)

yj(t) ≥ 0.

I Remark 4. As we chose to consider time as continuous, the linear program described here
has an infinite number of variables and constraints. This is merely a choice of presentation,
as discretizing time would yield a standard, finite LP. Nevertheless, weak duality for this
infinite LP (the only duality property used in this paper) holds (see e.g. [30]).

3.2.2 Charging Delay to Optimum via Dual Fitting
We now charge the delay of the fractional algorithm to the cost of the optimum.

I Lemma 5. CostdONF ≤ CostOPT .

Proof. The proof is by finding a solution to the dual problem, such that the goal function
value of the solution is equal to the delay of the algorithm.

For every request qj and time t, we assign yj(t) = dONF
j (t). This assignment satisfies that

the goal function is the total delay incurred by the algorithm.
Note that the C2 constraints trivially hold, since dONF

j (t) ≤ dj(t) for any j, t. Now
observe the C1 constraints. For any time t and a set Si, the resulting C1 constraint is implied
by the C1 constraint of time rj and the set Si, with qj being the last request released by
time t. We thus restrict ourselves to C1 constraints of time rj for some j.

For a request qj and a set Si, we need to show:

∑
j′|qj′∈Si∧qj′�qj

∫ ∞
rj

dONF
j′ (t′) dt′ ≤ c(Si).
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Using the definition of Dj
i (t), we need to show:∫ ∞

rj

Dj
i (t) dt ≤ c(Si).

Define t0 to be the minimal time (possibly ∞) such that for all t ≥ t0 we have Dj
i (t) = 0.

We must have that
∫ t0
rj
xi(t) dt ≤ 1; otherwise, all requests qj′ ∈ Si such that qj′ � qj will be

completed before t0, in contradiction to t0’s minimality. Thus we have

1 ≥
∫ t0

rj

xi(t) dt ≥
∫ t0

rj

xji (t) dt

= 1
k

[
e

ln(1+k)
c(Si)

∫ t0
rj
Dj

i
(t) dt

− 1
]

where the second inequality is due to the definition of xi(t), and the equality is due to
equation 3.2. This yields

(1 + k)
1

c(Si)

∫ t0
rj
Dj

i
(t) dt

≤ 1 + k

and thus∫ ∞
rj

Dj
i (t) dt =

∫ t0

rj

Dj
i (t) dt ≤ c(Si)

as required. J

We can now prove the main theorem.

Proof of Theorem 2. Using Lemmas 3 and 5, we have

CostONF = CostpONF + CostdONF

≤ (2 ln(1 + k) + 1) · CostdONF

≤ (2 ln(1 + k) + 1) · CostOPT

as required. J

I Remark 6. For the more difficult delay model in which a partially served request qj incurs
delay dONF

j (t) = dj(t) instead of dONF
j (t) = dj(t) · (1− γj(t)) in ONF, this algorithm is still

O(log k) competitive against the fractional optimum in the easier delay model. The proof is
identical.

4 Randomized Algorithm for SCD by Rounding

In this section, we describe a non-clairvoyant, polynomial-time randomized algorithm which
is O(log k · logn)-competitive for integral SCD. Our randomized algorithm uses randomized
rounding of the fractional algorithm of Section 3. We describe the rounding in two steps.
First, we show a somewhat simpler algorithm which is O(log k · logN)-competitive. We then
modify this algorithm to obtain a O(log k · logn)-competitive algorithm.

The rounding of the fractional algorithm of section 3 costs the randomized integral
algorithm of this section a multiplicative factor of logn over that fractional algorithm.
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Denote by xi(t) the fractional buying function in the algorithm ONF of Section 3.
For a request qj , we denote by Sij the least expensive set containing qj ; that is, ij =
arg mini|qj∈Si

c(Si).
For every request qj , we denote the total covering of qj at time t in ONF by γj(t), where

γj(t) =
∑

i|qj∈Si

∫ t

rj

xi(t′) dt′.

We denote by tj the first time in which γj(t) = 1
2 .

O(log k · logN)-Competitive Rounding
We now describe a randomized integral algorithm, called ONR, which is O(log k · logN)
competitive with respect to the fractional optimum, with N the total number of requests.
We assume a-priori knowledge of N for the algorithm.

The randomized integral algorithm runs the fractional algorithm of Section 3 in the
background, and thus has knowledge of the function xi(t) for every i. The algorithm does
the following.

1. At time 0:
a. For every set Si, choose Λi from the range [0, 1

2 lnN ] uniformly and independently,
and set τi = 0.

2. At time t:
a. For every i, if

∫ t
τi
xi(t′) dt′ ≥ Λi then:

i. Buy Si.
ii. Assign to Λi a new value drawn independently and uniformly from [0, 1

2 lnN ].
iii. Assign τi = t.

b. If there exists a pending request qj such that t ≥ tj , buy Sij .

We refer to the buying of sets at Step 2a as “type a”, and to the buying of sets at Step
2b as “type b”.

The intuition for the randomized rounding scheme is that we would like the probability
of buying a set in a certain interval of time to be proportional to the fraction of that set
bought by the fractional algorithm in that interval, independently of the other sets. This is
achieved by the “type a” buying. However, using “type a” alone is problematic. Consider,
for example, a request on an element in k sets, such that the fractional algorithm buys 1

k of
each of the sets to cover the request. Since the probability of buying a set is independent
of other sets, there exists a probability that the randomized algorithm would not buy any
of the k sets, leaving the request unserved. This bears possibly infinite delay cost for the
rounding algorithm, which is not incurred by the underlying fractional algorithm.

The “type b” buying solves this problem, by serving a pending request deterministically
when it is covered in the underlying fractional algorithm, through buying the cheapest set
containing that request. This special service for the request might be expensive, but its
probability is low, yielding low expected cost. This is ensured by the 2 logN “speedup” given
to the “type a” buying, through choosing the thresholds Λi from [0, 1

2 lnN ] (rather than [0, 1]).

I Theorem 7. The randomized algorithm for SCD described above is O(log k · logN)-
competitive.

The proof of Theorem 7 is given in the full version of this paper.
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Improved O(log k · logn)-Competitive Rounding
By modifying the O(log k · logN)-competitive randomized rounding, we prove the following
theorem.

I Theorem 8. There exists a non-clairvoyant, randomized O(log k · logn)-competitive algo-
rithm for SCD.

The modified rounding algorithm and its analysis appear in the full version of this paper.

5 Lower Bounds for Clairvoyant SCD

In this section, we show Ω(
√

log k) and Ω(
√

logn) lower bounds on competitiveness for any
randomized, clairvoyant algorithm for SCD or fractional SCD. While the lower bounds use
instances in which different sets can have different costs, these instances can be modified to
obtain instances with identical set costs. This implies that the lower bounds also apply to
the unweighted setting. This modification is shown in Subsection 5.2.

This section shows the following theorem.

I Theorem 9. Any randomized algorithm for SCD or fractional SCD is both Ω(
√

log k)-
competitive and Ω(

√
logn)-competitive.

In proving Theorem 9, we show a lower bound on competitiveness of a deterministic
fractional algorithm against an integral optimum. Showing this is enough to prove the
theorem, since any randomized online algorithm (fractional or integral) can be converted to
a deterministic fractional online algorithm with identical (or lesser) cost. This follows from
setting the momentary buying function of a set at a given time to be the expectation of that
value in the randomized algorithm. Since the optimum is integral, the bound also holds for
integral SCD, as the theorem states. Therefore, we only consider deterministic fractional
online algorithms henceforth.

We show our lower bounds by constructing a set of SCD instances, {Ii}∞i=0. For each
i ≥ 0, the SCD instance Ii contains 2i sets and 3i elements. We show that any algorithm
must be Ω(

√
i)-competitive for Ii, which is both Ω(

√
logm) and Ω(

√
logn). Noting that

k ≤ m, we also have Ω(
√

log k) as required.
The instance Ii exists within the time interval [0, 3i). That is, no request of Ii is released

before time 0, and at time 3i the optimum has served all requests in Ii, and the algorithm
has incurred a high enough cost.

We define the sequence (ci)∞i=0, which is used in the construction of Ii. The sequence is
defined recursively, such that c0 = 1 and for any i ≥ 1, we have that

ci = ci−1 + 1
12ci−1

.

We now describe the recursive construction of the instance Ii. We first describe the
universe of Ii, which consists of its sets and elements. We then describe the requests of Ii.

Universe of Ii
For the base instance I0, the universe consists of a single element e and a single set S = {e}.
We have that c(S) = 1.

For i ≥ 1, the recursive construction of Ii using Ii−1 is as follows. Denote by Ei−1 the
elements in the universe of Ii−1, and by Hi−1 the family of sets in the universe of Ii−1. For
the construction of Ii, consider three disjoint copies of Ei−1 and Hi−1. For l ∈ {1, 2, 3}, we
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This figure shows the universes of I0, I1 and I2. In the figure, each element is a point and the
sets are the bodies containing them, where each set has a distinct color. The costs of the sets
are also shown in the figure. The figure shows how three copies of the set of elements Ei−1
(of the instance Ii−1) appear in Ii – the copy E1

i−1 appears at the top of Ii’s visualization,
the copy E2

i−1 appears at the bottom-left, and the copy E3
i−1 appears at the bottom-right.

c(S) = 1

c(S) = 1

c(S) = 1 + α1

c(S) = 1 c(S) = (1 + α1) · (1 + α2)

c(S) = 1 + α1 c(S) = 1 + α2

I0 I1 I2

Figure 5.1 The Universes of I0, I1 and I2.

denote by Eli−1 and H l
i−1 the l’th copy of Ei−1 and Hi−1, respectively. We denote by Sl

the copy of the set S ∈ Hi−1 in H l
i−1. Similarly, we denote by el the copy of an element

e ∈ Ei−1 in Eli−1.
The universe of Ii consists of:
The elements Ei = E1

i−1 ∪ E2
i−1 ∪ E3

i−1.
The family of sets Hi = T1 ∪ T2, where T1 and T2 are defined below.

We define:
The family of sets T1 = {S1 ∪ S2|S ∈ Hi−1}. A set T ∈ T1 formed from S ∈ Hi−1 has
cost c(T ) = c(S).
The family of sets T2 = {S1 ∪ S3|S ∈ Hi−1}. A set T ∈ T2 formed from S ∈ Hi−1 has
cost c(T ) = (1 + αi) · c(S), with αi = 1

2ci−1
.

Requests of Ii
We first describe a type of request used in our construction. Let S be a set such that there
exists an element e ∈ S such that e is in no other set besides S (we call e unique to S). For
times a, b such that a < b, we define a request qba(S) that can be released at any time r ≤ a
on an element unique to S, and satisfies:
1.
∫ a
r
dj(t) dt = 0

2.
∫ b
r
dj(t) dt ≥ c(S).

I Remark 10. For the degenerate case of set cover with deadlines, when observing a request
with deadline at time b, it can be said to accumulate 0 delay until any time before b, and
infinite delay until time b. Therefore, deadline requests can function as qba(S) requests. Since
all requests used in our construction are qba(S) requests for some a, b, S, our lower bound
applies for set cover with deadlines as well.
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To use those qba(S) requests, we require the following proposition, which states that a
qba(S) request can be released on every S.

I Proposition 11. For every set T ∈ Hi, there exists an element e ∈ Ei unique to T .

Proof. By induction on i. For the base case, this holds since there is only a single set with
a single element. Assuming the proposition holds for Ii−1, we show that it holds for Ii by
observing that there exists S ∈ Hi−1 such that T = S1 ∪ Sl for l ∈ {2, 3}. Via induction,
there exists an element e ∈ Ei−1 such that e ∈ S and e /∈ S′ for every S′ ∈ Hi−1 such that
S′ 6= S. Choosing the element el yields the proposition. J

Base case of I0 – at time 0, the request q1
0(S) is released on the single element e.

Recursive construction of Ii using Ii−1 – we define C(Ii) to be
∑
S∈Hi

c(S). We
now define the instance Ii:

1. At time 0:
a. Release q3i

2·3i−1(T ) for every T ∈ T2.
b. Release Ii−1 on the elements E1

i−1 (see Remark (a)).
2. At time 3i−1:

a. If the algorithm has bought sets of T2 at a total cost of at least 1
2 · (1 + αi) ·C(Ii−1),

release (1 + αi)Ii−1 on the elements E3
i−1 (see Remark (c)).

b. Otherwise, release Ii−1 on the elements of E2
i−1 (see Remark (b)).

The construction of Ii includes releasing copies of Ii−1 on the elements Eli−1, for l ∈
{1, 2, 3}. The following remarks make this well-defined.

I Remark (a). The Ii−1 on E1
i−1: every set S ∈ Hi−1 forms two sets in Hi, which are

T1 = S1 ∪ S2 ∈ T1 and T2 = S1 ∪ S3 ∈ T2. The Ii−1 construction on E1
i−1 treats buying

either of these sets as buying the set S. That is, it treats the sum of the momentary buying
of T1 and of T2 as the momentary buying of S.

I Remark (b). The Ii−1 on E2
i−1: in this instance, for every set S ∈ Hi−1, the Ii−1

construction treats buying T1 = S1 ∪ S2 ∈ T1 as buying S.

I Remark (c). The scaled (1 +αi)Ii−1 on E3
i−1: similarly to Remark 5, in this instance,

for every set S ∈ Hi−1, the Ii−1 construction treats buying T2 = S1 ∪ S3 ∈ T2 as buying S.
In addition, since the sets of T2 are (1 + αi)-times more expensive than the original sets of
Hi−1, the delays of the jobs in Ii−1 are also scaled by 1 + αi in order to maintain the Ii−1
instance. We denote this scaled instance by (1 + αi)Ii−1.

5.1 Analysis of Lower Bounds
We show that any online fractional algorithm is at least ci competitive on Ii with respect to
the integral optimum.

I Lemma 12. The optimal integral algorithm can serve Ii by time 3i with no delay cost by
buying every set in Hi exactly once, for a total cost of C(Ii).

Proof. Via induction on i. For the base case of i = 0, the optimal algorithm buys the single
set S at time 0 and pays c(S) = C(I0). Now, for i ≥ 1, suppose the optimum can serve the
instance Ii−1 according to the lemma. We observe the optimum in Ii according to the cases
in the release of Ii:
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Case 2a: In this case, the optimum could have served Ii−1 on E1
i−1 by time 3i−1 by buying

each set of T1 exactly once, with no delay cost. It could then serve (1 + αi)Ii−1 on E3
i−1

by time 2 · 3i−1 by buying each set of T2 exactly once, with no delay cost. Since the
optimum has bought all of T2, the requests released on step 1a have also been served
before incurring delay. The lemma thus holds for this case.

Case 2b: In this case, the optimum could have served Ii−1 on E1
i−1 by time 3i−1 by buying

each set of T2 exactly once, with no delay cost. It could then serve Ii−1 on E2
i−1 by time

2 · 3i−1 by buying each set of T1 exactly once, with no delay cost. Since the optimum has
bought all of T2, the requests released on step 1a have again been served before incurring
delay. The lemma thus holds for this case as well. J

We now analyze the cost of the algorithm.

I Lemma 13. Any online algorithm has a cost of at least ci · C(Ii) on Ii by time 3i.

Proof. By induction on i.
For i = 0, observe the algorithm at time 1. Denoting by ΓS the total buying of the single

set S by the algorithm by time 1, the algorithm has a cost of at least

c(S) · ΓS + (1− ΓS) ·
∫ 1

0
dq1

0(S)(t) dt ≥ c(S) = C(I0)

where the inequality is due to the definition of q1
0(S). This finishes the base case of the

induction.
For the case that i ≥ 1, assume that the lemma holds for i− 1. We show that it holds

for i.
Fix any algorithm for Ii. We denote by Γ the total buying cost of the algorithm in the

time interval [0, 3i−1) for sets of T2. We again split into cases according to the chosen branch
in the construction of Ii.
Case 2a: In this case we have Γ ≥ 1

2 · (1 + αi) · C(Ii−1). From the definition of the first
Ii−1 released, the adversary is oblivious to whether a copy of S ∈ Hi−1 came from T1
or T2. Using the induction hypothesis, any online algorithm for this instance incurs a
cost of at least ci−1 · C(Ii−1) by time 3i−1, including the algorithm in which buying sets
from T2 are replaced with buying the equivalent sets from T1. Such a modified online
algorithm would cost αi

1+αi
Γ less than the current algorithm, which is at least αi

2 ·C(Ii−1).
Therefore, the algorithm pays at least (ci−1 + αi

2 ) · C(Ii−1) in the interval [0, 3i−1).
As for the second instance (1+αi)Ii−1, the algorithm must pay at least (1+αi)·ci−1·C(Ii−1)
by time 2 · 3i−1 via induction.
Overall, the algorithm pays by time 3i at least((

ci−1 + αi
2

)
· C(Ii−1)

)
+ ((1 + αi) · ci−1 · C(Ii−1))

=
(

(2 + αi)ci−1 + αi
2

)
· C(Ii−1)

= ci−1 · C(Ii) + αi
2 · C(Ii−1)

≥
(
ci−1 + αi

6

)
· C(Ii)

=
(
ci−1 + 1

12ci−1

)
· C(Ii)

where the inequality is due to C(Ii) = (2 + αi)C(Ii−1) ≤ 3C(Ii−1).
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Case 2b: In this case we have Γ < 1
2 · (1 + αi) · C(Ii−1). For the first Ii−1 instance, the

algorithm pays at least ci−1 ·C(Ii−1) + Γ · αi

1+αi
by time 3i−1, similar to the previous case.

For the second Ii−1 instance, released on E2
i−1, the algorithm must pay via induction

at least ci−1 · C(Ii−1) by time 2 · 3i−1. Since sets of T2 do not satisfy requests in this
instance, this cost is either in buying sets of T1 or in delay of requests from that Ii−1
instance.
In addition to the two Ii−1 instances, due to the q3i

2·3i−1(S) requests released in step 1a,
the algorithm has a cost of at least

(∑
T∈T2

c(T )
)
− Γ = (1 + αi)C(Ii−1)− Γ during the

interval [1, 3) in either buying sets of T2 in order to finish these requests, or in delay by
those requests (using a similar argument to that in the base case). Overall, the algorithm
has a cost of at least(

ci−1 · C(Ii−1) + Γ · αi
1 + αi

)
+ (ci−1 · C(Ii−1)) + ((1 + αi)C(Ii−1)− Γ)

= (2ci−1 + 1 + αi) · C(Ii−1)− 1
1 + αi

Γ

≥ (2ci−1 + 1 + αi) · C(Ii−1)− 1
2C(Ii−1)

=
(

2ci−1 + 1
2 + αi

)
· C(Ii−1)

=
(

(2 + αi)ci−1 + 1
2 + (1− ci−1)αi

)
· C(Ii−1)

= ci−1 · C(Ii) +
(

1
2 + 1

2ci−1
− 1

2

)
· C(Ii−1)

≥
(
ci−1 + 1

6ci−1

)
· C(Ii) ≥ ci · C(Ii)

where the fourth equality and the second inequality are due to C(Ii) = (2 +αi)C(Ii−1) ≤
3C(Ii−1), and the fourth equality uses the definition of αi. J

Proof of Theorem 9. Lemmas 12 and 13 immediately imply that any deterministic fractional
algorithm is at least ci-competitive on Ii with respect to the integral optimum. Solving
the recurrence in the definition of ci, we have that ci = Ω(

√
i). To observe this, note that

for every i, the first index i′ ≥ i such that ci′ ≥ ci + 1 is at most O(ci) larger than i.
Since k ≤ m = 2i and n = 3i, this provides lower bounds of Ω(

√
log k) and Ω(

√
logn) for

deterministic algorithms for fractional SCD. As stated before, this implies the same lower
bound for randomized algorithms for both SCD and fractional SCD. J

5.2 Reduction to Unweighted
The lower bound above uses weighted instances, in which sets may have different costs. In
this subsection, we describe how to convert a weighted instance to an unweighted instance,
in which all set costs are equal. This conversion maintains both the Ω(

√
log k) and Ω(

√
logn)

lower bounds on competitiveness. The conversion consists of creating multiple copies of each
element, and converting each original set to multiple sets of cost 1. The cost of the original
set affects the cardinality of the new sets, such that a set with higher cost turns into smaller
sets of cost 1.

We suppose that the costs of all sets are integer powers of 2. This can easily be achieved
by rounding the costs to powers of 2 (losing a factor of 2 in the lower bound), and then
scaling the instance (both delays and buying costs) by the inverse of the lowest cost.
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Denote by C = 2M the largest cost in the instance. The universe of the unweighted
instance is the following:

For each element e in the original instance, we have C elements in the unweighted instance,
denoted by e0, ..., eC−1.
For each set S, we have c(S) sets in the unweighted instance, labeled S0, ..., Sc(S)−1.
We have that ei ∈ Sj if and only if both e ∈ S and i ≡ j mod c(S).

Whenever a request qj arrives in the original instance on an element e with delay function
dj(t), C requests qj,0, ..., qj,C−1 arrive in the unweighted instance on the elements e0, ..., eC−1

respectively. For each 0 ≤ l ≤ C − 1, the request qj,l has the delay function dj,l(t) = dj(t)
C .

For the instance Ii described above, we consider its unweighted conversion, denoted by
I ′i. Any fractional online algorithm for I ′i can be converted to a fractional online algorithm
for Ii with a cost which is at most that of the original algorithm. This is done by setting the
buying function of a set S in Ii to the average of the buying functions of S0, ..., Sc(S)−1.

In addition, the integral optimum described in the analysis of Ii can be modified to an
integral optimum for I ′i with identical cost. This is by converting each buying of the set S in
Ii to buying the sets S0, ..., Sc(S)−1 in I ′i.

The aforementioned facts imply that any fractional algorithm is Ω(
√
i) competitive on I ′i.

Note that the parameter k is the same for Ii and I ′i, implying Ω(
√

log k)-competitiveness
on I ′i. In addition, denoting by n′ the number of elements in I ′i, we have that n′ = C · n.
Observing the construction of Ii, we have that n = 3i and C ≤ 2i (Using the fact that
(1 + αj) ≤ 2 for any j). Therefore, logn′ ≤ log(6i), yielding that i = Ω(logn′), and a
Ω(
√

logn′) lower bound on competitiveness for I ′i.

6 Vertex Cover with Delay

In this section, we show a 3-competitive deterministic algorithm for VCD. Recall that VCD
is a special case of SCD with k = 2, where k is the maximum number of sets to which
an element can belong. In fact, we show a (k + 1)-competitive deterministic algorithm for
SCD, which is therefore 3-competitive for VCD. Recall that since the TCP acknowledgment
problem is a special case of VCD with a single edge, the lower bound of 2-competitiveness
for any deterministic algorithm on the TCP acknowledgment problem (shown in [19]) applies
to VCD as well.

The (k + 1)-competitive algorithm for SCD, ON, is as follows.
1. For every set S, maintain a counter z(S) of the total delay incurred by ON over requests

on elements in S (all z(S) are initialized to 0).
2. If for any S, we have that z(S) = c(S):

a. Buy S.
b. Zero the counter z(S).

We denote by z(S, t) the value of z(S) at time t. We prove the following theorem.

I Theorem 14. The algorithm ON for SCD has a competitive ratio of k + 1. In particular,
ON is 3-competitive for VCD.

I Lemma 15. The cost of the algorithm is at most k + 1 times its delay cost.

Proof. It is sufficient to bound the buying cost in terms of the delay cost. For each purchase
of a set S, z(S) must increase from 0 to c(S). A delay for a request contributes to the
increase of at most k counters. Thus, the buying cost is at most k times the delay cost. J

We are left to bound the delay cost of the algorithm by the adversary’s cost.

I Lemma 16. For any set S, let T be a subset of the requests on elements of S such that
all requests of T are unserved at time t. Then we have

∑
j|qj∈T

∫∞
t
dON
j (t′) dt′ ≤ c(S).
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Proof. Denote by t̂ the first time in which all requests in T are served. We have that

∑
j|qj∈T

∫ ∞
t

dON
j (t′) dt′ =

∑
j|qj∈T

∫ t̂

t

dON
j (t′) dt′.

At time t, we have z(S, t) ≥ 0. Observe that the algorithm never bought S in the time
interval [t, t̂). Thus, at any time t′′ ∈ [t, t̂) we have that

z(S, t′′) = z(S) +
∑
j|qj∈T

∫ t′′

t

dON
j (t′) dt′.

Observe that z(S, t′′) < c(S), otherwise the algorithm would have bought S at t′, serving all
requests in T , in contradiction to the definition of t̂. Therefore

∑
j|qj∈T

∫ t′′
t
dON
j (t′) dt′ < c(S).

The claim follows as t′′ approaches t̂. J

I Lemma 17. The delay cost of the algorithm is at most the adversary’s cost.

Proof. We construct a solution to the dual LP from section 3, with a goal function which is
the delay cost of the algorithm. This charges the delay cost of the algorithm to the fractional
optimum, and thus to the integer optimum as well.

Specifically, we set yj(t) = dON
j (t) for every j, t. Obviously, the C2 constraints hold. In

order to show that the C1 constraint for a set Si and a time t holds, observe that any request
qj ∈ Si served in ON before time t has dON

j (t′) = 0 for all t′ ≥ t. Using Lemma 16 for the
requests unserved at t concludes the proof. J

Proof of theorem 14. The proof of the theorem results directly from lemmas 16 and 17. J

Note that this algorithm’s competitive ratio is indeed as bad as k+ 1. Consider, for example,
a single request in k sets with unit costs, which the optimum solves with cost 1 and the
algorithm has cost k + 1.
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