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Abstract
The libraries of proof assistants like Isabelle, Coq, HOL are notoriously difficult to interpret by
external tools: de facto, only the prover itself can parse and process them adequately. In the case of
Isabelle, an export of the library into a FAIR (Findable, Accessible, Interoperable, and Reusable)
knowledge exchange format was already envisioned by the authors in 1999 but had previously proved
too difficult.

After substantial improvements of the Isabelle Prover IDE (PIDE) and the OMDoc/Mmt
format since then, we are now able to deliver such an export. Concretely we present an integration
of PIDE and Mmt that allows exporting all Isabelle libraries in OMDoc format. Our export covers
the full Isabelle distribution and the Archive of Formal Proofs (AFP) – more than 12 thousand
theories and locales resulting in over 65GB of OMDoc/XML.

Such a systematic export of Isabelle content to a well-defined interchange format like OMDoc
enables many applications such as dependency management, independent proof checking, or library
search.
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1 Introduction and Related Work

Motivation. A critical bottleneck in the field of interactive theorem proving is the lack of
interoperability between proof assistants and related tools. This leads to a duplication of
efforts: both formalizations and auxiliary tool support (e.g., for automated proving, library
management, user interfaces) cannot be easily shared between systems. This situation is
well-understood by the community and has persisted for decades despite occasional attempts
to achieve interoperability by standardization or library translations.

The story of this article started in 1999, when one author (Kohlhase, who worked on the
OMDoc interchange format [27] for formal libraries) wrote an email to another one (Wenzel,
who worked on the Isabelle proof assistant [43, 44]) asking about the status of ongoing efforts
to export Isabelle theories in some format that could be further transformed into OMDoc.
Just 19 years later, Wenzel replied to the same email announcing that an Isabelle→OMDoc
export now works routinely. Critically, this export was enabled by the PIDE and Mmt
infrastructures developed for Isabelle by Wenzel resp. for OMDoc by Rabe in the interim.
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1:2 Making Isabelle Content Accessible in Knowledge Representation Formats

Despite this massive groundwork laid in the last two decades, the export itself still required
about 9 person-months to implement. This paper tells the story of how we achieved this
export after such a long time.

Isabelle99 (October 1999) was a rather small experimental proof assistant for multiple
object logics, with≈ 1MB source text the for Isabelle/ZF library and≈ 3MB for Isabelle/HOL.
The ZF library was particularly interesting for Kohlhase at that time and considered large. In
contrast, Isabelle2020 (April 2020) includes ≈ 2MB material for ZF and ≈ 30MB for HOL,
or rather ≈ 160MB if the Archive of Formal Proofs (AFP) is included. The PIDE/Mmt
work flow described in this paper requires a server-class machine to handle all this material:
80GB RAM, 8 CPU cores, and 22 h elapsed time (this includes theory and proof processing
by Isabelle). Thus, a major portion of publicly known Isabelle content1 becomes accessible
as XML in the OMDoc format: 65GB uncompressed or 300MB with XZ compression.

Related Work. In both formalizations and auxiliary tool support, previous work has shown
significant potential for knowledge sharing. Regarding sharing among proof assistants, library
translations such as [41, 23, 26, 34] have been used to transport theorems across systems.
An unusual approach is virtualization of HOL4 in Isabelle [18], where the ML environment
of Isabelle is carefully instrumented to load the HOL4 library sources (also in ML) and
reconstruct theories and proofs within the Isabelle/Pure inference kernel.

Most of these approaches produce an isolated image of the source library within the target
library. Alignments [21] have been used to match pragmatically corresponding concepts
defined in different libraries [10]. In contrast, [18] connects interesting results via lifting and
transfer, where only the signatures of the main conclusions need to be taken into account.

Regarding sharing among proof assistants and auxiliary tools, Isabelle/Sledgehammer
[35, 44] integrates different automation tools generically, and Dedukti [7] has been used
as independent checker for various proof assistant libraries. Premise selection tools use,
e.g., machine-learning [22], to reduce the search space when running automated provers on
subgoals. In all cases, a single tool could be used for every proof assistant – provided the
language and library are available in a universal format that can be plugged into it.

Unfortunately, the latter point – the universal format – is often prohibitively expensive for
many interesting applications. Firstly, it is extremely difficult to design a format that strikes
a good trade-off between simplicity and universality. And secondly, even in the presence of
such a format, it is difficult to implement the export of a library into it. Here it is important
to realize that any export attempt is doomed that uses a custom parser or type checker
for the library – only the internal data structures maintained by the proof assistant are
informative enough for most use cases. Consequently, only expert developers can perform
this step, and of these, each proof assistant community only has very few.

In previous work, the authors have developed such a universal format [27, 48, 29] for formal
knowledge: OMDoc is an XML language geared towards making formula structure and
context dependencies explicit while remaining independent of the underlying logical formalism.
We also built a strong implementation – the Mmt system – and a number of generic services,
e.g., [46, 30]. In the DFG-funded OAF Project (Open Archive of Formalization), we have
developed export for Mizar [17], HOL Light [24], IMPS [6], PVS [28], and Coq in [38]. In
what we now call the OAF approach, we systematically
(i) defined the logic of the proof assistant in a logical framework by hand,
(ii) instrumented the proof assistant to export its libraries, and
(iii) use the instrumented prover to export the libraries

1 In the Isabelle community, contributions are usually submitted to AFP for long-term maintenance, and
thus become centrally accessible. Only a few exceptional projects are maintained independently (e.g.
seL4 https://sel4.systems or IsaFoR http://cl-informatik.uibk.ac.at/isafor).

https://sel4.systems
http://cl-informatik.uibk.ac.at/isafor
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for all these exports. Mmt provides the semantics that ties together the three involved levels
(logical framework, logic, and library) and provides a uniform high-level API for further
processing. [32] gives on overview over the theoretical, technical, and social challenges of the
OAF exports.

In the work reported here, we follow this basic recipe with a few modifications. Firstly,
because Isabelle already includes a logical framework, we do not encode Isabelle in yet another
one. Instead, we extend the existing LF formalization in Mmt to obtain one for the Pure
framework of Isabelle. There are two reasons for this choice: it is conceptually appropriate
as it puts the logics defined in Isabelle on the same levels as those defined in other logical
frameworks (e.g., Mmt/LF/HOL Light and Mmt/Isabelle/HOL); it also improves scalability
by avoiding another layer of logical framework-encoding. Secondly, Isabelle is extremely
complex, and a large portion of our work went to streamlining Isabelle components to enable
step (ii) above, notably the Isabelle PIDE infrastructure for incremental processing of proof
documents. Thirdly, the resulting exports of the Isabelle libraries were significantly larger
than any exports we had handled previously. Therefore, we had to develop new optimizations
both on the Isabelle and on the Mmt side to be able to carry out step (iii) above.

Repeating such an advanced Mmt integration for other proof assistants must revisit
the particular technology found there. In particular, proof assistants can vary widely in
how the building of large projects and of dependencies between projects are handled. For
example, Coq uses a decentralized library with hundreds of repositories and consequently
uses sophisticated tools for repository management and continuous integration, e.g., the
piCoq tool [42] to manage build processes in a fine-grained manner. Thus, the corresponding
problem is more complex for Coq as it is for Isabelle, where the library is more centralized
and the build management is tightly integrated with the kernel. piCoq already involves some
Java-based components, which might help integrate it with the Mmt Scala API.

Contribution and Overview. We apply our approach to Isabelle [44]: we present a definition
of the Isabelle logical framework in Mmt and an export feature for Isabelle logics and
libraries. We exemplify the latter by exporting the standard Isabelle distribution [19]
and the Archive of Formal Proofs [1]. The translated libraries are available at https:
//gl.mathhub.info/Isabelle as compressed OMDoc files.

We present preliminaries about Isabelle and PIDE as well as OMDoc and Mmt in
Sections 2 and 3. Then we describe the logical and the technical aspects of the export in
Sections 4 and 5. We sketch some applications enabled by the export in Section 6.

It is difficult to estimate the total workload covered by this paper because it builds
on decades of implementation work in both Isabelle and Mmt, much of which was never
published in itself. But concretely for this particular export, we spent about 1 person-month
on the overall design of the translation and the implementation, 6 person-months on the
implementation on the Isabelle side, 1 on the Mmt side, and 1 on administrative parts and
dissemination of the results.

2 Isabelle and PIDE

The Isabelle Platform. Isabelle [43, 44] is a generic platform for formal logic tools. Its
foundation is the Pure logical framework by Paulson [43] based on a minimal intuitionistic
higher-order logic with declarative natural deduction proofs. Isabelle/Pure is used to represent
object-logics like Isabelle/FOL, Isabelle/ZF, and the most widely used Isabelle/HOL based
on Church’s simple type theory and Gordon’s HOL [11].

TYPES 2019
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1:4 Making Isabelle Content Accessible in Knowledge Representation Formats

Extra-logical tools are implemented in the Meta Language (ML) in LCF style [12].
Isabelle/ML has full access to the symbolic representation of the logic and provides many
add-ons such as concrete syntax and context management for proof tools. The ML compiler
and toplevel environment are managed within the same formal context as the logic, so ML
declarations follow the structure of theory specifications and proofs.

ML is mainly used for pure mathematical programming with limited access to the physical
world. Additionally, Scala (running on the Java platform) is used for external tooling: it
manages ML processes, formal sources, and the resulting content, and provides an outer shell
for Isabelle systems programming with access to GUI frameworks, TCP servers, database
engines, etc. The programming style of Isabelle/Scala resembles Isabelle/ML, and some
important modules are available on both sides (e.g. formatting of pretty-printed text).

Isabelle’s Prover IDE framework PIDE [49] integrates all development into the semantic
text editor Isabelle/jEdit [52]. While the user is composing text, PIDE provides real-time
markup about its meaning – rendered as, e.g., text color, squiggly underline, tooltips,
hyperlinks, icons in the border. The Prover IDE supports ML development as well: users
can edit theory sources with embedded ML modules directly, while the ML compiler does
static checking and dynamic evaluation on the spot. Thus Isabelle has no need for externally
compiled modules, in contrast to, e.g., Coq plugins.

More recently, Isabelle/PIDE has been refined to support headless mode, which lets
a function in Isabelle/Scala observe this markup while a formal library is processed in
Isabelle/ML. Compared to traditional batch-builds, headless PIDE provides more detailed
feedback from the prover and more flexibility in dynamic loading and unloading of theories.
In particular, it allows the processing of Isabelle content for other purposes than editing it in
a GUI. This is the central interface that we use in the work reported in this article.

Isabelle Libraries. The standard distribution of Isabelle includes the Isabelle/HOL library
with many examples, but the bulk of applications is in the Archive of Formal Proofs (AFP),
which is organized like a scientific online journal. In April 2020, AFP had 528 articles by 347
authors, comprising a total of 130MB of source text in 5343 theory files.

Formal processing of the Isabelle distribution plus AFP requires ≈ 46h CPU time or 13h
elapsed time, using standard hardware with 8 CPU cores and 16GB RAM. Such isabelle
build jobs [53] produce heap images for the internal state of Isabelle/ML and optional
HTML/PDF documents that resemble conventional mathematical texts.

Library Structure. Isabelle libraries consist of formal documents [50] structured according
to session definitions, theory imports, and commands within theories:

A session is a collection of theories with optional LATEX document preparation. It may
refer to a single parent session and multiple import sessions (to reuse some of their
theories by reloading their sources within the original session name space). For example,
the session HOL is the basis for most applications, and the session HOL-Analysis is a
substantial library of standard mathematics. In the AFP, each entry (or “article”) usually
corresponds to a single session with its own setup for the published PDF document.
A theory is a linear arrangement of commands corresponding to definition–statement–
proof in conventional mathematical texts. The theory header imports multiple parent
theories, taking a strictly monotonic merge of existing theories as basis for the new one.
For example, theories like HOL.Nat, HOL.List are stepping stones towards Main and
Complex_Main, which have global names and are the key entry-points for applications.
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A command is a functional update on the theory context (or proof state) using concrete
syntax within the source file. Command syntax may embed embed user-defined sublangua-
ges delimited as so-called “cartouches”, e.g. ML 〈val a = 1 〉. Theories may define new
commands at any time – even Isabelle/Pure itself is defined in user-space relying only on
theML command for bootstrapping. For example, the commands definition, inductive,
fun define constants and automatically prove characteristic theorems over them, while
lemma, proof, qed, by are for proofs written in the Isar proof language.

The overall graph of sessions and theories is managed by Isabelle to exploit parallel
processing within multithreaded ML (and Scala). For example, a theory could already be
finished on the surface but some of its proofs still pending in parallel forks. Isabelle/Scala
provides operations to explore sources down to command spans (keyword with argument
tokens), without requiring a prover process to interpret them in the formal context.

Library Processing. The library sources are processed by feeding them to the Isabelle/ML
session managed by Isabelle/Scala. This constructs formal meaning that is a-priori opaque,
i.e., a matter of the private context of the logic or user-defined sublanguage. In order to
expose some aspects of the meaning, Isabelle/ML supports several formal message channels:

Output of regular messages, warnings, errors, etc. with text that typically refers to logical
types and terms. Pretty-printing with blocks and breaks is supported by default: the
front-end usually does the formatting based on precise window and font sizes. For example,
the command term turns its source argument into an internal term and pretty-prints
the result with markup to link constants to their definitions.
Reports to assign markup to existing input sources (with precise positions). For example,
after reading a term from the source text its precise positions of free and bound variables
are reported as XML markup elements <free/> and <bound/>. The editor turns this
into the usual Isabelle color scheme of blue vs. green variables.
Exports to attach arbitrary blobs to a theory (with hierarchic names separated by
slash). For example, the command export_code turns Isabelle/HOL specifications into
program source (for SML, OCaml, Scala), and the result becomes an export artifact of
the enclosing theory. Thus the current version of input sources (e.g., an open buffer
in Isabelle/jEdit) is augmented by the result of export_code seen as a mathematical
function; the editor shows the result via the virtual file-system URL isabelle-export:
within its File Browser, independently of the accidental state of the physical file-system.

The exposed aspects of document meaning are stored within the session database. For
conventional batch-builds, that is an SQLite database file used like an archive with XZ-
compressed entries, and the command-line tool isabelle export lists and extracts its
content. For PIDE processing, the database consists of Scala values within the document
snapshot and may be explored via user-provided Scala functions, e.g., for GUI painting of
annotated document source. It is also possible to write out the data to another database
(e.g., PostgreSQL is supported routinely), or in a completely different application, which is
what we do in the OAF-style export reported on in this article.

To support the latter, Wenzel has modified the processing to allow for application-
specific ML functions for presentation. Whenever a theory node with all its imports is
fully consolidated (parallel proofs finished), user-defined ML functions can access its list of
commands paired with the internal theory context at each step.

Isabelle/Pure and Isabelle/HOL provide standard presentation functions to expose core
material from the logical context, guarded by option export_theory. Results are exported to
the session database, using a private XML representation, Isabelle YXML transfer syntax, and

TYPES 2019
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XZ compression of the resulting blob. This works both for batch sessions (isabelle build)
and for headless PIDE sessions (isabelle dump). Thus, with the current infrastructure, the
request by Kohlhase from 1999 could be fulfilled on the spot via isabelle dump -B ZF, but
instead of digesting raw XML/YXML data it is better to use typed APIs in Isabelle/Scala
(by using module Export_Theory as we do in Section 5.1).

3 OMDoc and MMT

Language. OMDoc [27] (short for Open Mathematical Documents) is a semantics-
oriented XML-based markup format for STEM-related documents. It conceptualizes mathe-
matical objects in three levels as seen in Table 1: the object level for mathematical formulas
and their presentations, the statement level for definitions, theorems, proofs, etc, and the
theory level for collections of statements. Each level comes in two dimensions for the formal
representations of the content addressed to mathematical software systems and the narrative
structure addressed to humans. Higher levels may contain expressions of lower ones, and
mixtures of dimensions are allowed, leading to a overall format that can handle flexible levels
of formality (see [31] for a discussion).

Table 1 Three level & two dimensions in OMDoc.

level formal narrative

object OpenMath presentation MathML
statement sequents paragraphs + cues
theory theories/views sections, etc.

Even at the early state in 1999, OMDoc already had this general architecture and was
therefore well-suited in principle for representing Isabelle content, in particular the Isar
proof language [54] that was new at the time. But the formal part of OMDoc was purely
descriptive and lacked a rigorous semantics. In particular, the role of the logical systems
needed for formally stating mathematical properties was almost fully unspecified beyond the
idea – inherited from OpenMath – that logics are theories as well.

Later Mmt (Meta Meta Theories) [48] re-conceptualized and refined the formal fragment
of OMDoc, greatly enhancing both rigor and expressivity. It models formal objects and
statements using logical frameworks, in particular the judgments-as-types paradigm, and
bases OMDoc’s theory level on the category of theories and theory morphisms following the
development graphs approach [2]. The former allows for fine-grained specifications of the
semantics of individual objects, and the latter allows for inducing and translating knowledge
across theories. A new meta-theory relation links a logical framework to the logics defined in
it, thus formalizing the “logics-as-theories” approach.

The Mmt System. The OMDoc/Mmt language is implemented in the Mmt system
(Meta Meta Toolset; see [47]), which provides an API for the language constructs at all levels
and provides both logical services such as type reconstruction and rewriting and knowledge
management services such as IDE and HTML presentation and browsing of libraries.

Because it avoids committing to a specific semantics or logical foundation, foundation-
dependent services and features (e.g., type reconstruction) are implemented by splitting
the algorithms into a foundation-independent kernel that is user-extensible with foundation-
specific rules. For example, the logical framework LF [15] is implemented using about 10
rules taking only a few lines of code each.
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Theory Graphs. Theory graphs are diagrams in the categories of theories and morphisms.
The possible morphisms in Mmt are inclusions, which import all declarations from the
domain to the co-domain, structures, which are like includes but copy and translate all
declarations, views, which are semantics-preserving translations from domain to codomain,
and the meta-theory-relation, which behaves like an include for most purposes.

LF LF + X

FOL HOL

Monoid CGroup Ring

ZFC

f2h

add

mult

folsem

mod

Figure 1 Meta-Levels in OMDoc/MMT.

Figure 1 shows an example of a typical setup of formalizations in Mmt: Dotted lines
represent the meta-theory-relation, hooked arrows are includes, squiggly arrows represent
views, and the normal arrows represent named structures. Here LF is used as a logical
framework to define some logics, which are then used as meta-theories for algebraic theories.
We see three pragmatic levels: the logical frameworks at the top, logics in the middle, and
the domain theories at the bottom. Meaning trickles down from the theories at the top (the
ones without meta-theories), which are implemented directly in Mmt/Scala as described
for LF above. This setup can even encode model theory theory morphisms into semantic
theories like ZFC set theory.

4 Logical Aspects of the Translation

The logical basis of our export is a definition of Pure in the Mmt system. Mmt allows defining
a wide variety of logical frameworks, and we use PLF as a starting point, a polymorphic
variant of LF [15] that already exists in the Mmt standard library [37].

4.1 Type System and Logic
Types, Terms, Propositions. We use a shallow embedding of Pure in PLF. Besides
simplicity, this has a critical scalability advantage: a deep embedding would lead to
substantially larger PLF-expressions when already our shallow embedding ended up yielding
the largest export size we had ever attempted (since then eclipsed only by our analogous
export for Coq [38]). Consequently, as Pure uses shallow polymorphism (type variables
bound at the outside of declarations), we cannot use LF itself but need to extend it with
shallow polymorphism. That is why we use PLF instead.

Using a shallow embedding, most Pure primitives are represented as their PLF-counterparts:
Pure-types and terms are represented as PLF-types and terms. This includes in particular
Pure’s simple function types, λ-abstractions, and application.

The remaining primitives can simply be declared as PLF-constants. That yields a
PLF-theory containing in particular the constants

prop : type for the type of propositions,
ded : prop→ type mapping each proposition ϕ to the type dedϕ of proofs of ϕ.

That is the bare minimum to connect Isabelle/Pure to PLF: the remaining connectives are
produced from the regular export of the Pure theory itself, yielding further constants:

TYPES 2019
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Pure.eq : Πa:type a→ a→ prop polymorphic equality (with implicit αβη-conversion),
Pure.all : Πa:type (a→ prop)→ prop for the polymorphic binder for local parameters,
Pure.imp : prop→ prop→ prop for the constructor for logical entailment.

Relative to these declarations, it is straightforward to translate all Isabelle types, terms, and
propositions.

Proof Terms. Like LF but unlike Pure, PLF offers dependent types. These are not needed
for representing the simply-typed Pure language but are helpful to concisely represent
Pure-proofs as PLF-terms in Curry-Howard style. Thus, Pure proof terms can be exported
analogously to types, terms, and propositions. However, in practice, we only export proof
terms for small examples because proof terms for actual Isabelle/HOL are far too big. After
our work on Isabelle, we conducted a similar export for Coq in [38]. Here we included proof
terms, and the sizes, while large, remained manageable. But due to the lack of Coq-style
implicit computation, we expect Pure proof terms to be even larger.

However, there is a separate, deeper reason to defer proof exports: it is still unclear what
the best way to export proofs is. The export of low-level proof terms is straightforward, but
the proof objects are huge and have only limited value (independent proof checking being
the main one). The high-level proofs seen by the user are much more interesting but lack
the information inferred by the prover.

Therefore, we opted for exporting all proofs as dummy terms that carry only the
information that the theorem was checked by Isabelle and which dependencies were used.
Additionally, we include, as an informal narrative text, the command-source of the Isar text:
this treats the whole proof as one unit, without the hierarchical structure of Isar proofs (see
also the discussion in 4.4 and 6.5 below).

4.2 Declarations

Foundational Declarations. It is straightforward to represent the foundational declarations
of Pure theories as PLF-declarations as follows:

Pure-type operators a of arity n as n-ary PLF-constants

a : type→ . . .→ type→ type

Polymorphic Pure-terms c of type A using type variables a1, . . . , an as PLF-constants

c : Πa1:type . . .Πan:type A

Polymorphic Pure-axioms s with type parameters a1, . . . , an asserting proposition F as
PLF-constants

s : Πa1:type . . .Πan:type dedF

All three kinds of declarations may carry definitions, which can be represented by giving
the PLF-constant a definiens. This is used only for type operators and term abbreviations.
HOL type definitions are a special case of high-level declarations as described below, and
Pure term definitions are mapped to definition-less constants with defining axioms (multiple
ones in case of overloading). Additionally, theorems are represented using the proof as the
definiens (as described above).
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Identifiers. Isabelle assigns to each foundational declaration a unique identifier. It uses
separate namespaces for types, terms, and theorems and usually qualifies their names by
the base name of the enclosing theory. Every theory exists within an Isabelle session, whose
name usually qualifies the theory’s base name. Both qualification schemes are optional –
there is no strict enforcement.

For reusability, it is preferable to use a single namespace (to ensure globally unique
identifiers for all declarations) and to use a uniform naming schema for all identifiers.
Moreover, Mmt requires all names to be globally unique by qualifying them with an
ownership-defining URI. So we have chosen the following naming scheme for all declarations:

https://isabelle.in.tum.de?long-theory-name?entity-name|entity-kind

where long-theory-name is the session-qualified theory name, entity-name the declaration
name within the theory context, and entity-kind its name space: notably type, const, thm,
or other name spaces of user-defined concepts. For example,

https://isabelle.in.tum.de?HOL.Nat?Nat.nat|type

refers to the type nat of natural numbers in the theory Nat in the session HOL of the main
Isabelle library. The seemingly redundant repetition of Nat is needed to cover corner cases,
including some unqualified names in Isabelle/Pure.

High-Level Declarations. Isabelle provides a user-extensible set of high-level specification
elements, whose semantics is defined by elaboration into foundational ones. Examples
include HOL-type definitions or the definition of inductive data types and recursive functions.
Similarly, the high-level specification contexts of locales and type-classes (see below) are
elaborated into primitive concepts of the logic. Both are already covered by exporting their
elaboration, but that results in representations without the high-level structure seen by users.

Mmt provides a similar extensible declaration pattern mechanism [16, 39] so that we
can use them to represent Isabelle’s high-level declarations in a structure-preserving way.
We have so far carried out this effort only for locales and leave other elements to future
work: it could be done by a generic Isabelle/ML interface for such specification elements
such that the export works uniformly for all its instances. Then a manageable separate
implementation effort would be needed for each specification element. However, because
the individual specification elements were implemented by different authors and can be very
complex, no single person could retrofit them to implement this interface, and a long-term
community effort is required.

4.3 Module System
Theories. The Mmt module system subsumes the expressivity of Isabelle theories and
is available for every language defined in Mmt such as PLF. Thus, all Isabelle theories
(including those for logics like HOL) are represented straightforwardly as PLF-theories.

Locales. As the Isabelle logical framework lacks primitive support for “little theories”, a
locale definition is elaborated into a constant definition (predicate) for the logical specification,
together with extra-logical management of the resulting context and conclusions produced
within it [25]; similar techniques are used for Isabelle type classes [13] on top of locales.

TYPES 2019
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Without any special care, the export of locales merely shows these predicate definitions
with theorems depending on additional parameters and premises. But this low-level
elaboration is not what Isabelle users users expect. Instead we refer to exported information
about the original structure of locale specifications and map that to first-class theories in
Mmt. Subsequently, we illustrate this approach by a representative example.

Semigroups. Consider the following locale for semigroups. It declares (fixes) the binary
operation (where we write x*y for op x y), assumes the associativity axiom, defines the
squaring function, and states a simple theorem:

locale sg =
fixes op :: ’a → ’a → ’a ( infixl * 70)
assumes assoc: ∀ x y z. (x * y) * z = x * (y * z)

begin
definition sq :: ’a → ’a where sq x = x * x
theorem sqsq: sq (sq x) = x * sq x * x <proof >

end

Note that the universe of the semigroup is not declared explicitly. Instead, Isabelle locales
treat any type variable that remains uninstantiated after type-checking as a type fixed in the
locale. In our PLF representation, this convention is made explicit by declaring the universe
a as a type and then treating all fixed types and operations uniformly. In the sequel, we use
the words structure to refer to a tuple of values interpreting the fixed types and operations,
and instance for a structure that satisfies the assumed axioms.

Translation by Elaboration. The locale’s elaboration is represented as the following set of
PLF-constants (where we again write x ∗ y for op x y but op is now always a bound variable):

one membership predicate that ranges over structures and a defining axiom for it that
makes it true for instances:

sg : Πa:type Πop:a→a→a prop

sg_def : Πa:type Πop:a→a→a ded (sg a op)⇔ ∀x, y, z.(x ∗ y) ∗ z = x ∗ (y ∗ z)

for every definition, a global constant and a defining axiom for it, both abstracting over
structures:

sg.sq : Πa:type Πop:a→a→a a→ a

sg.sg_def : Πa:type Πop:a→a→a ded d = λx:a x ∗ x

for every theorem, a global theorem abstracting over structures and relativized to instances:

sg.sqsq : Πa:type Πop:a→a→a ded (sg a op)⇒ ∀x.SQ (SQx) = x ∗ (SQx) ∗ x
:= (proof omitted)

(abbreviating sq.sq a op as SQ).

Note that Isabelle’s elaboration introduces the function sg.sq for all structures even
though it is only defined for instances. This is sound in the special case of Isabelle because
function types are simple and all types are non-empty (which makes adding unspecified
operations conservative) and because all locale theorems are relativized to instances.
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Reconstruction of Isabelle Locales s MMT Theories. By elaborating locales into global
declarations, some information about the modular structure is lost. To allow for preserving
that structure, we additionally and redundantly export every locale as a PLF-theory with
the following local declarations:

a primitive constant for all fixed types and operations and assumed axioms:

a : type

op : a→ a→ a

assoc : ded ∀x, y, z.(x ∗ y) ∗ z = x ∗ (y ∗ z)

(writing x ∗ y for op x y),
a defined constant for each definition and theorem:

sq : a→ a := λx:a x ∗ x

sqsq : ded ∀x.sq (sq x) = x ∗ (sq x) ∗ x := [proof omitted]

This nicely conforms to the intention of Isabelle locales as extra-logical add-ons to the Pure
logic. We represent sublocale relations and locale interpretations as PLF theory morphisms
accordingly (by re-using exported information from Isabelle locale management).

Type Classes. Type classes are a special case of locales with some add-on infrastructure,
notably for type inference. A locale may become a type class if it has exactly one free type
variable ’a.

If sg is instead declared as a type class, the following additional declarations are present:
for every fixed operation, a global constant abstracting only over the single fixed type:

sg_class.op : Πa:type a→ a→ a

for every assumed axiom, a corresponding global axiom relativized by the membership
predicate sg of the locale (instantiating the fixed operation op with sg_class.op a):

sg_class.assoc : Πa:type ded sg a (sg_class.op a)⇒ ∀x, y, z.(x ∗ y) ∗ z = x ∗ (y ∗ z)

(writing x ∗ y for sg_class.op a x y)
for every definition, a corresponding global constant with a defining axiom,
for every theorem, a corresponding global theorem.

4.4 Ontology
The description above covers the translation of all logical content. But it is useful to
additionally export a high-level abstraction of the library ontology in semantic web style.
This includes all named entities (locales, theorems, etc.) and their interrelations but excludes
all complex objects (types, terms, proofs).

Such an ontology export is easier to maintain efficiently, e.g., using RDF triple stores.
And it is sufficient for many important applications such as querying the dependency relation
between declarations. Additionally, it can easily include metadata such as check times.

Isabelle/MMT performs such an RDF/XML export as well, see also 5.3 for the amount
of relational information. We originally presented this RDF export in [9] together with an
Upper Library Ontology (ULO) that describes and provides a uniform vocabulary of classes
and relations for all proof assistants; therefore, we mention only a few recent improvements
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here. The relational ontology also captures some aspects of inductive and primitive recursive
definitions (via the binary relation ulo:inductive-on). Most importantly, our export now
fully covers dependencies, spanning a large dependency graph over the source text: it relates
via the binary relation ulo:uses every theorem statement with every used constant and
every proofs with every used theorem.

5 Technical Aspects of the Translation

The majority of the export is not OMDoc-specific and carried out on the Isabelle side;
this appeared first in the official release Isabelle2019 (June 2019), but the present paper
uses the reworked and simplified version of Isabelle2020 (April 2020). Being integrated into
Isabelle has the advantage that most of our work can be immediately reused for exports into
other formats than OMDoc. Only little OMDoc-specific code is necessary for building and
serializing the XML objects in OMDoc format. For this, we use the Mmt API for OMDoc,
which is also written in Scala and therefore directly callable from PIDE. This code is now
part of the Mmt distribution (first in release 14 from November 2018).

The resulting inter-dependency between the code bases is handled as follows: if the Mmt
directory is registered to Isabelle as component, it provides a tool isabelle mmt_build (shell
script) to build MMT with Isabelle support enabled. The resulting mmt.jar will provide
further tools isabelle mmt_import and isabelle mmt_server (in Scala) to perform the
import and view its results. Users merely need to invoke, e.g., isabelle mmt_import -B ZF.

5.1 Export from Isabelle
Isabelle/Scala provides a standard module Export_Theory to expose theory content to other
tools via a statically typed API that imitates Isabelle/ML datatypes for types and terms.
The communication between Isabelle/ML and Isabelle/Scala works via untyped XML trees,
without any special tricks about meta-programming. Instead, sources in both languages
reside next to each other in the official Isabelle repository, are manually updated accordingly.

A first version of the Isabelle export facility appeared in Isabelle2018 (August 2018). It was
originally motivated by early versions of Isabelle/MMT, and has grown into an independent
Isabelle service. It is supported by command-line tools like isabelle export and isabelle
dump [53]; isabelle build with option export_theory exposes logical content as follows.

Foundational theory content of the Isabelle/Pure logical framework: types (base types
and type constructors), term constants (including functions, binders, quantifiers as
higher-order constants), axioms (including equational axioms that count as primitive
definitions), and theorems (propositions with a proof). Actual proofs are not exported
by default – they are prohibitively large. The option export_standard_proofs provides
proof terms in a standardized format that facilitates import in other tools, but this only
works for small examples so far.
Constant definitions of Isabelle/Pure, as a relation between a single constant with multiple
axioms. Overloading in Isabelle means that a polymorphic entity is characterized on
multiple (non-overlapping) type instances. The majority of constants are non-overloaded,
with exactly one equational axiom to express its definition. This relation of constants to
their defining axioms is exported, too.
Type definitions of Isabelle/HOL in the sense of Gordon and Pitts [45]. This axiomatization
scheme can be interpreted definitionally within the standard semantics of the HOL logic.
Isabelle/HOL provides a separate module to create new types via that mechanism. Some
key information is exported: the old representing type, the new abstract type, the name
of the morphisms between the two with the axiom stating the relation.
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This allows recovering HOL typedefs faithfully, where Pure theory content would only
show the individual particles. It also serves as an example to “query” derived specification
mechanisms in Isabelle/ML, to expose its own level of abstraction to the exporter.
Term constants with indication of derived specifications mechanisms, e.g. primrec
functions, inductive or coinductive relations. This works by querying generic informa-
tion in Isabelle/Pure about functional or relation specifications (also known as “Spec
Rules”). The Isabelle/HOL implementations provide this data on their own account.
This merely provides a rough classification of term constants at a very abstract level.
The full complexity of Isabelle/HOL specification mechanisms is more difficult to capture:
it would mean to follow many implementation details, including ones that have changed
fundamentally over the years of ongoing Isabelle development.
Dependencies of proven theorems wrt. types, consts, theorems, as recorded by the Isabelle
inference kernel: This spans a large dependency graph over the document in terms of the
primitive logic – extra-logical aspects are missing (e.g., dependency on notation). Partial
support for these proof constants had been part of the Isabelle codebase over many years,
but we had to rework this substantially to make it suitable for our application.
Locales in the sense of Ballarin [3] and type classes as special locale interpretations in
the sense of Haftmann and Wenzel [13, 14]: The export of locales preserves some of its
internal structure, notably the locale dependency relation stemming from the construction
of locales and sub-locales (by definition), as well as later locale interpretations (by proof).
These are then exported as Mmt theory morphisms. For type classes, the export shows
the canonical locale interpretation but without an explicit connection to the type class.
This would have to be a type-indexed family of Mmt theory morphisms.
The order-sorted algebra of type classes (subclass relation) and type arities (image
behavior of type constructors wrt. type class domains and ranges) in the sense of [40]:
This allows reconstructing Isabelle’s built-in type class reasoning by an external program
(for example, an application could give it to a separate process running Isabelle/Pure
and reuse the original implementation in module Sorts Isabelle/ML). An alternative is
to imitate these operations in a different programming language.2

Formal entities have two name components: kind (to distinguish the namespace) and
full name (usually with the theory base name as qualifier). In addition, there is an external
name for printing (partially qualified according to standard namespace policies), a source
position, and a command span identifier. The latter allows in particular arranging the content
according to the order in which it occurs in the source text so that exported types, constants,
theorems appear as a digest for each specification element in the text (e.g. for definition).

Moreover, if the target format of the export supports references to the original source,
this can be used to attach such a reference or even the entire source fragment to each formal
entity. We do that for our OMDoc export.

5.2 Import into Mmt
The entities listed in Section 5.1 can be serialized almost directly as Mmt constants relative
to the PLF framework as described in Section 4. That is not surprising as much of that
work motivated by the present export in the first place. Figure 2 shows the Mmt browser
displaying an example that is very small and thus includes proof terms. Note how every
formal declaration is preceded with an informal narrative fragment containing the original
source text, this is for the orientation for Isabelle users.

2 Isabelle/Scala does not provide any type-class reasoning on its own, because it is meant to be for
external system management only. Logical operations are done properly in Isabelle/ML.
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In the sequel, we describe a few specific adaptations of the term language that were
required to reconcile traditional Isabelle/ML representations with the more conventional
λ-calculus of PLF in Mmt.

Type arguments for constants. The traditional representation of polymorphic constants
in Isabelle and the HOL family [45] is to give the full type instance at each occurrence in
a term, instead of the type arguments that produce the instantiation of the general type
schema. For example, constant id :: ’a => ’a occurs in particular terms as the pair (id,
τ => τ) for the respective type τ . This is both redundant (because the type instances are
usually bigger than the type arguments) and inconvenient (because it is more difficult to
obtain the type arguments from the instantiations than the other way around). In contrast,
PLF treats id as a function with dependent type Πa:type a → a and occurrences are just
applications (id τ).

Isabelle/ML provides operations to switch between the two representations within a given
context of constant declarations. Our theory export always uses the second form with type
arguments: this reduces the size of exported material and allows importing terms into PLF
without again referring to the environment of constant declarations.

Variable names. Isabelle variables come in various flavors: free variables (e.g., x), schematic
variables with index (e.g., ?x10), and bound variables (e.g., x in λx::τ. x) which is notation
for the de-Bruijn index abstraction Abs (x, τ, B.0) where x is retained as a comment).

To fit smoothly into the λ-calculus of PLF, schematic variables are renamed to fresh
free variables. Since schematic variables are morally like a universal quantifier prefix, this
preserves the logical meaning of a statement. And bound variable comments in abstractions
are renamed locally to avoid clashes with free variables in the same scope. Thus the Abs
comment can be used literally in PLF as a named abstraction ignoring the unnamed de-Bruijn
index representation of Isabelle.

Type class constraints. Isabelle type variables are decorated with type class constraints,
e.g., ’a::order for types that belong to the class order defined in the Isabelle/HOL library
(e.g., nat with its standard order): this links certain operations to overloaded term constants
(e.g., less :: ’a => ’a => bool) and ensures logical premises on these operations (e.g.,
stating that less is a strict order on the type).

Isabelle type class operations are managed by extra-logical means to eliminate the implicit
overloading. In PLF this merely results in multiple constant definitions for different type
arguments. Class premises become logical constraints in a straight-forward manner: a type
class is a predicate over types in PLF. So ’a::c means that the predicate c applied to
type ’a holds. Statements with class constraints ϕ(’a::c) are augmented by a prefix of
preconditions ’a::c =⇒ ϕ(’a), effectively eliminating the constraint within the logic.

5.3 Statistics for Isabelle/AFP
Our test hardware for the Mmt export of Isabelle/AFP is a server machine with 40 CPU cores
(80 hardware threads), 128GB RAM (2 NUMA nodes), and fast SSD storage. Below, we give
an overview of the material for Isabelle2020 (April 2020) with MMT/52adb5e338811e [20]
and AFP/91f1cdbeefc0 [1]: These sources consist of 680 sessions distributed over 7,027 files
comprising 160MB of theory text (30MB XZ-compressed). The exported content comprises

7,027 theories and 5,291 locales (“little theories”), including 1,236 type classes,
2,116,638 individuals (11,724 type, 204,404 const, 236,186 axiom, 1,497,689 thm).
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400,996,957 relations, including 386,325,246 ulo:uses (i.e. the overall dependency graph
of type, const and thm items)
65GB OMDoc/XML (310MB XZ-compressed)3

The entire process of Isabelle/PIDE document checking, export to Mmt, and serialization as
XZ-compressed XML requires 80GB RAM, 8 CPU cores, and 22h30 elapsed time. Thus,
compared to an elementary batch-build, our export requires around 2 times the memory
and 2–5 times the elapsed time (mainly because Isabelle/Mmt uses less parallelization than
isabelle build). We emphasize that these resource figures are for the entire AFP, including
the special sessions tagged as slow or large which are often omitted because they take a lot
of resources to process.

The size of the exported OMDoc data structures is linear in the size of the original
sources, increased by about factor 10 in XZ-compressed form. This increase in size is a
gain, not a deficiency – it stems from the fact that the exported XML contains substantial
additional information that is implicit in the sources but extremely difficult to infer: all
occurrences of symbols are disambiguated and exported with their unique URIs; the exported
XML elements carry source references, i.e., URIs that link to the corresponding location
in the source; all type arguments of occurrences of polymorphic constants and all types of
bound variables are included in the XML even if omitted in the sources; and all theorems
automatically generated by Isabelle are included in the export. We could suppress some of
this information, but that would defeat the purpose of our export: only Isabelle can infer all
details, and handing it to other tools is our export’s main value. The uncompressed XML
files are much larger because they are very verbose and optimized for context-free processing.
But we never write the XML directly to the file-system: all reading and writing of XML is
filtered through XZ compression.

5.4 Maintainability
When developing proof assistant library exports, the challenge of maintainability is often
overlooked or underestimated. This is partly caused by the incentives of the academic system
that rewards quickly published results rather than long-term sustainable ones. We have
consciously taken several steps to ensure maintainability.

Firstly, we use statically-typed Scala APIs as much as possible, both in the export from
Isabelle and in the import into Mmt. Almost all the new code we wrote for the occasion
was immediately integrated with the existing abstract interfaces. The remaining glue code
that connects Isabelle’s abstract export with Mmt’s abstract import comprises only a few
thousand straightforward lines of code.

Secondly, wherever possible we wrote new code in the Isabelle repository rather than
the Mmt repository. This forces future Isabelle development to maintain our abstract code,
in particular when PIDE data structures change. Concretely, we pushed only the parts of
the code that actually depend on the Mmt data structures to the Mmt repository. That
portion consists of only about 2000 lines of code, mostly straightforward code for creating
instances of the Mmt data structures. The rest of the export code is generally reusable
for other Isabelle exports and pushed to the Isabelle repository and already released as an
official Isabelle feature. In fact, this design has already proved beneficial as Wenzel was able
to reuse the Isabelle part of our code in a recent export to Dedukti (still unpublished).

3 https://gl.mathhub.info/Isabelle/Distribution/commit/db1009a326c8 and https://gl.mathhub.
info/Isabelle/AFP/commit/346f28873c9f

https://gl.mathhub.info/Isabelle/Distribution/commit/db1009a326c8
https://gl.mathhub.info/Isabelle/AFP/commit/346f28873c9f
https://gl.mathhub.info/Isabelle/AFP/commit/346f28873c9f
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Finally, the fact that Isabelle and Mmt can communicate via the Java VM has proved a
huge advantage for maintainability. We were able to design the code in such a way that Mmt
is an optional plugin component for Isabelle and vice versa. Thus, users running Isabelle can
simply register Mmt as a plugin with Isabelle and then run isabelle mmt_import on the
command-line.

Whenever a new Isabelle release is published, it will be a matter to update some statically-
typed Scala functions for Isabelle/MMT. Informed by our experience of multiple similar
exports, we judge this one to be the most maintainable export of a proof assistant library so
far, in fact by a wide margin.

6 Enabled Applications

Our work now allows exporting entire Isabelle libraries into a format that can be easily read
by third-party applications in a robustly maintainable way. A major motivation for this
work was enabling applications that use this exported data. However, it remains open which
applications should be better realized directly in Isabelle and which should be based on Mmt.
Critically, our export abstracts from most idiosyncrasies of Isabelle’s logic, implementation,
and library structure. That has advantages and disadvantages.

On the positive side, any application that does not significantly depend on Isabelle’s
code base (e.g., search or dependency management) or explicitly rejects using it (e.g.,
representations in a logical framework or external proof checking) benefits from the uniform
representation in the relatively simple language of Mmt. On the negative side, any application
that should be tightly integrated with Isabelle may be better realized natively in Isabelle.
This includes in particular applications that offer proof advice or rewrites/generates Isabelle
data structures or Isabelle sources.

In some cases combined approaches may be indicated such as a small native addition
to Isabelle that connects to a service implemented on top of the Mmt representation (and
possibly running on a high-performance remote server). For example, search services could
be realized well in this way. However, even when a native implementation that ignores the
import into Mmt is indicated, our work can provide substantial benefits. Any such native
implementation will likely benefit from our streamlining and scaling up of Isabelle’s export
capabilities that allow integrating such applications with Isabelle.

Ultimately, the assessment which of these effects dominate must be made on a case-by-case
basis for every application. In the sequel, we sketch some applications enabled by our work
where we expect the advantages to dominate.

6.1 Clarification of Isabelle/Pure in Terms of MMT/PLF
The Isabelle/Pure framework [43] is historically connected to Edinburgh LF, but it has
its own distinctive style that can obscure important aspects. The documentation [51, §2]
refers to related formulations of λHOL within the setting of Pure Type Systems (PTS) due
to Barendregt and Geuvers [4] and gives informal explanations (in LATEX) about how to
understand Isabelle-specific concepts like schematic variables or type-classes.

Instead of Isabelle folklore and informal explanations in the documentation, our translation
to PLF within Mmt elucidates many concepts of Pure more formally. In particular:

The three levels of λ-calculus for function spaces (higher-order abstract syntax), universal
binding of local parameters (quantification), logical entailment of rule statements (implica-
tion) become just one dependently-typed λ-calculus.
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Implicit polymorphism becomes explicit as abstraction and quantification over types.
Up to scalability issues, proof terms – which are an optional add-on to the Pure logic –
become plain λ-terms as definiens for theorems.
Type class constraints become explicit as predicates applied to types. Concretely, there
are two possible representations for extra-logical constraints: ’a::c and intra-logical
predication OFCLASS(’a, c_class). Both are turned into the obvious term c a for
c :: type => prop in PLF).

Still lacking in our export is the explicit treatment of type class parameters: as in
Isabelle/Pure, the PLF theory treats instance-specific definitions as a collection of axioms
that are associated with a generically typed constant. A more sophisticated translation could
try to make a dictionary construction, to turn type class parameters into explicit function
parameters everywhere.

6.2 External Proof Checking
An often asked-for application of an Isabelle export is independent re-verification. It may
appear straightforward to use our export as the input of a separate application that specializes
on re-checking proofs. However, while this is certainly one of the intended uses, it would
be naive to assume that our work is more than the first of multiple steps towards this goal.
In the sequel, we describe the remaining two obstacles: scalability and adequacy. These
obstacles are not inherent to our approach. We expect any future solution to external proof
checking to build on our approach or to recreate something comparable.

Regarding scalability, it is indeed straightforward to write a proof-checker for the Pure
logic underlying Isabelle. In fact, the Mmt formalization of Pure induces a proof-checker
for Isabelle out of the box. Similar framework-induced checkers can be built easily in
implementations of LF-like frameworks such as Dedukti. Moreover, the complexity of these
checkers would typically be linear in the size of the proofs and thus very feasible. It is even
possible that checking the proofs could be faster than the file-system access needed to read
the proofs in the first place.

But we do not expect such straightforward checkers to be able to handle the size of
the proofs in the library: the size of individual proofs, if naively encoded, may very well
exceed the memory capacity of typical checkers.4 Thus, additional investments are needed for
handling large proofs, such as structure sharing, inferring omitted trivial steps, or streamed
processing that can check a proof without loading it in its entirety. These technologies are
known in principle, but applying them to Isabelle/AFP remains substantial future work.

Regarding adequacy, note that our export is foundational in the sense that it exports the
representation relative to the Pure logic in Isabelle’s kernel, which arises from the original user
input through a series of highly non-trivial transformations (elaboration). Fully re-checking
the proofs that result from elaboration is only one of two necessary conditions. The other one
is conservativity of elaboration, i.e., the requirement that elaboration does not translate an
unprovable statement to a provable one. Depending on how many advanced Isabelle features
are used in a problem statement, trusting the conservativity of elaboration may be a bigger
leap than trusting the correctness of the proofs.

But conservativity is extremely difficult to establish. The most direct way would be
to specify the semantics of Isabelle’s surface syntax and then prove Isabelle’s elaboration
algorithms correct relative to it. Given the complexity of elaboration, this remains out of
reach in the foreseeable future.

4 Early experiments conducted with parts of the Main theory context of Isabelle/HOL produce hundreds
of megabytes of proof terms in textual representation.
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6.3 Dependency Management
The classic model of Isabelle/PIDE [49] document markup merely provides a record of formal
entities that are explicitly visible in the source text. Due to some reworking of the inference
kernel by Wenzel, there is now a detailed record of all type / const / thm entities that are
implicitly used. This spans a rather large dependency graph over the original source: for
Isabelle/AFP there are 400 million edges for 130MB of theory text.

In the past, users have occasionally attempted to approximate this information for their
own purposes, e.g. in the Levity tool [8], which exploits dependencies to move lemmas to
adequate locations in the theory hierarchy.

Our ontological export (see Section 4.4) now includes a detailed record of both explicit
source dependencies and implicit logical dependencies. With this information available in
a standard format, more ambitious (and more robust) refactoring tools can be realized for
Isabelle. Optionally, such refactoring tools can even be built in OMDoc/Mmt to work
uniformly for all systems that have exports similar to the one reported in this article.

6.4 Search
Because our export includes all logical information of the Isabelle content, it enables multiple
search applications. For example, this would allow searching for expressions or names that
are not explicitly part of the sources and only occur in inferred information. It also enables
applying generic search systems to the Isabelle libraries.

As an example, we sketch a unification-based search service for the entire AFP based
on MathWebSearch [33]. MathWebSearch maintains a substitution tree index that allows
efficient unification queries over large collections of terms. Because it can index Mmt terms,
it can be directly applied to our export. Thus, users can explore the full background library
without having it loaded into the prover process (which might require too much memory), or
even without installing the prover at all (e.g., by using a web service for the AFP).

Concretely, the queries would be terms with free variables over some AFP theory, and
the search results would be terms in the AFP that unify with the query. Because our export
includes source references for all entities, these results can be linked to other resources (e.g.,
the location in the official AFP web site) or directly imported into PIDE.

The main remaining technical hurdle is the processing of the user’s query. In order to
match anything in the library, formal objects in the query must be processed and exported in
the same way as the library. This includes the use of special forms for pattern matching, lists
enumeration and comprehension etc. as well as type inference and type matching (with type
classes). Moreover, the user must provide the right context in which to interpret the query.

An intermediate solution could run a prover session of reasonable size that contains the
most relevant notation (e.g., HOL-Analysis) and process queries relative to it. These queries
could then be exported and matched against the entire AFP.

We estimate that such a system is within reach of an ambitious Master’s thesis.

6.5 Enabling Cross-Library Knowledge Management
Isabelle/MMT is one of multiple large exports of proof assistant libraries that we have
conducted over the last few years. One of the original motivations of these efforts was to
obtain multiple libraries in a uniform format in order to then develop develop cross-library
and cross-prover knowledge management solutions.

These efforts are still at an experimental stage, and we only cite a few early results that
could be extended to the Isabelle export:
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We have used alignments [21] to relate corresponding concepts in different libraries.
These can be annotated manually or found by machine learning techniques [10]. Given a
sufficient alignment coverage, we can then translate terms between libraries and use this
to make systems interoperable.
With the relational RDF/XML export of Section 4.4, we can use SPARQL queries using
the Upper Library Ontology (see [9] for details) that return results from multiple libraries.
[5] presents an architecture for multi-aspect search based on these ideas.
In [36] we have presented first steps towards finding views between different theorem
prover libraries automatically.

7 Conclusion and Future Work

Summary. In this article, we report on the conclusion of a research objective that seemed
quite immediate two decades ago, but was not: the export of a theorem prover library
(Isabelle) into a FAIR [55] knowledge exchange format (OMDoc). To make this undertaking
feasible at all, both the source and target system had to evolve considerably: Isabelle had to
add its Scala and PIDE infrastructure to manage and expose document-oriented information
in an instrumentable way, and the OMDoc format had to be re-engineered, extended, and
implemented in the Mmt system. Of course, the growth of the Isabelle library during this
time induced further scalability problems, which we had to solve for our export.

Exports of theorem prover libraries have received substantial attention for the last 10–20
years. Our work is the first comprehensive export for Isabelle: we demonstrate current
Isabelle/Scala export technology and explore remaining theoretical and practical challenges.

Even ignoring the potential applications of this particular export, our infrastructure for
exporting Isabelle libraries in general will prove beneficial to future improvements to Isabelle
itself and to the reuse of Isabelle content in other systems. In fact, the improvements of
Isabelle that were needed for our export have already shown benefits for the wider Isabelle
community. The headless PIDE session and isabelle dump tool have become particularly
important: we are in personal contact with two different projects to build content-oriented
search engines on top of these systems. Another emerging application of this technology is
a similar export of Isabelle to Dedukti [7]: this aims at re-checking the Isabelle/AFP and
therefore includes proof terms but excludes PIDE document markup.

The current export facility is mostly based on code that is maintained within the Isabelle
repository, and thus updated by the core developers. We have already published Isabelle/Mmt
for Isabelle2019 and Isabelle2020 based on a straight-forward process that users can easily
recreate themselves: build Mmt within the Isabelle system environment, turn it into an
Isabelle component, and use the standard Isabelle release tool to build a stand-alone variant
of Isabelle that includes Mmt. Users can then rerun our export themselves on the spot (via
the isabelle mmt_import command). We judge that this makes our Isabelle export the
most easily reproducible and maintainable among all existing prover library exports.

Future Work. Besides realizing and scaling up the applications described in Section 6, we
want to mention two important avenues for future work:

The current export does not include proof objects as these would increase its size by an
order of magnitude. Instead, we restrict ourselves to the dependency relation induced
by the proofs, which already enables many applications, but not, e.g., re-verification of
proofs. To obtain scalable proof exports, we must investigate how to shrink the size of
the proofs, e.g., by developing a new language for high-level proofs.
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In a similar vein we want to preserve the structure of more high-level declarations – e.g.
HOL-type definitions, inductive types. As discussed in Section 4.2, this is supported by
Mmt and would allow a structurally more similar and thus more understandable export.
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