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Abstract
This paper shows that the recent approach to quantitative typing systems for programming languages
can be extended to pattern matching features. Indeed, we define two resource-aware type systems,
named U and E , for a λ-calculus equipped with pairs for both patterns and terms. Our typing
systems borrow some basic ideas from [19], which characterises (head) normalisation in a qualitative
way, in the sense that typability and normalisation coincide. But, in contrast to [19], our systems
also provide quantitative information about the dynamics of the calculus. Indeed, system U provides
upper bounds for the length of (head) normalisation sequences plus the size of their corresponding
normal forms, while system E , which can be seen as a refinement of system U , produces exact
bounds for each of them. This is achieved by means of a non-idempotent intersection type system
equipped with different technical tools. First of all, we use product types to type pairs instead of
the disjoint unions in [19], which turn out to be an essential quantitative tool because they remove
the confusion between “being a pair” and “being duplicable”. Secondly, typing sequents in system E

are decorated with tuples of integers, which provide quantitative information about normalisation
sequences, notably time (cf. length) and space (cf. size). Moreover, the time resource information is
remarkably refined, because it discriminates between different kinds of reduction steps performed
during evaluation, so that beta, substitution and matching steps are counted separately. Another
key tool of system E is that the type system distinguishes between consuming (contributing to time)
and persistent (contributing to space) constructors.
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1 Introduction

Pattern matching mechanisms are used in several modern programming languages and proof
assistants as they provide an efficient way to process and decompose data. However, the
semantics of programming languages usually focus on λ-calculi –a much more basic formalism–
thus causing a conceptual gap between theory and practice, simply because some properties
of the λ-calculus do not translate directly to languages with matching primitives. Several
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3:2 A Quantitative Understanding of Pattern Matching

examples of this mismatch can be cited, e.g. solvability [19], standardisation for pattern
calculi [37], and neededness [15]. It is then crucial to study the semantics of programming
languages with pattern matching features by means of formal calculi equipped with built-in
patterns, referred to as pattern calculi (e.g. [21, 35, 32, 37, 6]).

The notion of λ-abstraction in pattern-calculi is generalised to functions of the form λp.t,
where p is a pattern specifying the expected structure of their arguments. For instance, in
calculi equipped with pair constructors for both patterns and terms, the term λ〈x, y〉.x
becomes a valid abstraction, to be only successfully evaluated against pairs, i.e. arguments
of the form 〈u, v〉, and yielding the first projection of this pair, i.e. the first component u of
the pair. In this work we focus on such a pattern calculus. This can be seen as a simplified
form of algebraic pattern matching, but still powerful enough to reason about the most
interesting features of existing syntactical matching mechanisms.

Type information, and in particular the size of arbitrary type derivations in some special
type disciplines, has been used as a powerful quantitative tool to reason about time ( length
of evaluation sequences) and space ( size of normal forms). More precisely, when t evaluates
to t′, then the size of the type derivation of t′ is smaller than that of t, thus the size of type
derivations provides an upper bound for the length of normalisation sequences as well as
for the size of their corresponding normal forms. This was first done for the (call-by-name)
notions of head and leftmost evaluation implemented by two variants of the Krivine’s abstract
machine (KAM) [22, 23, 44], and it was later appropriately extended to other formalisms,
e.g. [8, 20, 25, 38].

Now we discuss some interesting features of the underlying type system that we use
in this paper. While (idempotent) intersection types [11] allow terms to be typed with
distinct types by means of an intersection operator ∩, which verifies not only associativity
and commutativity but also idempotency given by σ ∩ σ = σ, non-idempotent intersection
types distinguishes between σ ∩ σ and σ, thus also discriminating quantitative information
in type derivations. For this reason, idempotent (resp. non-idempotent) types are often
represented by sets (resp. multisets). For example, the term λx.λy.xyy can be typed with
{{σ} → {σ} → τ} → {σ} → τ in the first model, while the non-idempotent version becomes
[[σ] → [σ] → τ ] → [σ, σ] → τ . As a consequence, a type derivation for (λx.λy.xyy)uv : τ
in the idempotent system only depends on one type derivation for u : {σ} → {σ} → τ and
another one for v : σ, while for its reduct uvv : τ , two derivations for v : σ are needed. In
contrast, a type derivation in the non-idempotent system already requires two derivations
for v : σ to correctly infer (λx.λy.xyy)uv : τ . Therefore, while type derivations may increase
after reductions in the former, they decrease in the latter.

Non-idempotent intersection (also called nowadays quantitative) type systems, have
been independently introduced in the framework of the λ-calculus by Gardner [27] and
Kfoury [43]. Although widely unnoticed, the quantitative power of such systems turned out
to be crucial in several resource aware consumption investigations. It was only after [16] that
this quantitative feature was highlighted, and since De Carvalho’s thesis in 2007 (see also [22])
its relation with linear logic [28] and quantitative relational models has been deeply explored.
As its idempotent counterpart, non-idempotent intersection type systems may characterise
different notions of normalisation (such as head, weak and strong) [23, 13, 20] but, instead of
using some semantical argument (e.g. reducibility) to prove such a characterisation, simple
combinatorial arguments are enough to guarantee normalisation of typable terms.

If instead of upper bounds one wants to obtain exact bounds, then the crucial point is to
measure only minimal typing derivations, which give the notion of all and only information
for typings (cf. [56] for an abstract definition). Syntactic notions of minimal typings were
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supplied for the head evaluation strategy implemented by the KAM [22], then for the
maximal evaluation strategy [13] for the λ-calculus. The technique was further developed
in [2] with the introduction of an appropriate notion of tightness capturing minimal typings,
thus systematically broadening the definition of exact bounds for different evaluation strategy
of the λ-calculus. In all these works, it is possible to extract from a (minimal) type derivation,
both the length of the reduction sequence to normal form as well as the size of this normal
form. The tightness technique was also applied for call-by-value [3], call-by-need [4], linear
head evaluation [3], as well as for several evaluation strategies in classical logic [42]. Our
paper extends these results to a λ-calculus with pair pattern matching by providing two
sound and complete typing systems, named U and E , that respectively provide upper bounds
an exact measures for the length of (head) normalisation sequences, as well as for the size of
the corresponding reached normal forms.

Contributions
The first contribution of this paper is to go beyond the qualitative characterisation of head
normalisation for pair pattern calculi [19] by providing a typing system U being able to
compute upper bounds for head evaluation. To achieve this, we have introduced different key
tools on the untyped side –the reduction calculus– as well as on the typed side –the type
system itself.

On the untyped side, one of the main reasons why the type system in [19] fails to provide
upper bounds or exact measures for head normalisation is because commuting conversions
are considered as independent rules of the reduction relation associated to the underlying
pattern calculus. A typical example is the commuting rule t[p\v]u 7→σ (tu)[p\v] pushing
out an explicit matching from an application when there is no capture of free variables.
Indeed, the size of type derivations is not strictly decreasing w.r.t. commuting conversions.
We solve this problem by integrating these (structural) commuting conversions into the
non-structural operational reduction rules, so that the resulting system, based on explicit
matchings, implements reduction at a distance [5]. Thus for example, the operational Beta-rule
(λp.t)u 7→ t[p\u] in [19] becomes here L[[λp.t]]u 7→ L[[t[p\u]]], which combines the commuting
conversion 7→σ with the (non-structural) Beta-reduction rule into a single rule. Even more
interesting cases are presented in Sec. 2. Moreover, our presentation provides a suitable
deterministic head evaluation strategy which is complete w.r.t. the (non-deterministic) notion
of head-normalisation defined in [19], in the sense that both notions turn out to be equivalent,
thus answering one of the open questions in [19].

On the typed side, we adopt standard product types specified by means of a pair
type. This stands in contrast to the disjoint unions used in [19], which have an important
undesirable consequence, because multisets of types in this model carry two completely
different meanings: being a pair (but not necessarily a duplicable pair), or being a duplicable
term (but not necessarily a pair). Our product types restore a crucial idea in non-idempotent
type theory: multisets of types are only assigned to terms that are going to be duplicated
during evaluation.

The new specification of the deterministic reduction system at a distance is now well-
behaved w.r.t. our first type system U : if t is well typed in U , then the size of its type
derivation gives an upper bound to the (deterministic) head-reduction sequence from t to its
(head) normal form. Our system U can then be seen as a form of quantitative (relational)
model for the pair pattern calculus (Sec. 4), following the lines of [17, 18, 48].

The second contribution of this paper is to go beyond upper bounds by providing a typing
system E being able to provide exact bounds for head evaluation. This is done by using
several key tools.
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3:4 A Quantitative Understanding of Pattern Matching

An important notion used in system E is the clear distinction between consuming and
persistent constructors. This has some intuition coming from the theory of residuals [10],
where any symbol occurring in a normal form can be traced back to the original term. A
constructor is consuming (resp. persistent) if it is consumed (resp. not consumed) during
head-reduction. For instance, in (λz.z)(λz.z) the first abstraction is consuming while the
second one is persistent. This dichotomy between consuming/persistent constructors has
already been highlighted in [41, 42] for the λµ-calculus, and it is adapted here for the
pattern calculus. Indeed, patterns and terms are consumed when the pair constructor is
destroyed during the execution of the pattern matching rule. Otherwise, patterns and pairs
are persistent, and they do appear in the normal form of the original term. For example,
in the term (λz.(λ〈x, y〉.I)zz)〈u, v〉, the pair 〈u, v〉 is going to be duplicated, but only one
of its copies is going to be consumed by the matching operations. The other copy will be
persistent and contribute to the normal form of the term.

Another major ingredient of our approach is the use of tight types, inspired by [2], and the
corresponding notion of tight (cf. minimal) derivations. This is combined with the introduction
of counters in the typing judgements, which are now of the form Γ `(b,e,m,f) t : σ. These
counters are used to discriminate between the different sorts of reduction steps performed
during evaluation, so that firing beta (b), computing substitution (e) or matching (m) steps are
exactly and independently counted for each tight type derivation. More precisely, soundness
of our system E guarantees that if a judgement Γ `(b,e,m,f) t : σ is tightly derivable, then b
(resp e and m) corresponds to the number of beta firing (resp. substitution and matching)
rules used to head evaluate the term t, while f is exactly the size of the corresponding normal
form. Moreover, completeness, given by the reverse implication of the previous statement,
also holds.

The following list summarises our contributions:
A deterministic head-strategy for the pattern calculus which is complete w.r.t. the notion
of head-normalisation.
A sound and complete type system U , which provides upper bounds for the length of
head-normalisation sequences plus the size of its corresponding normal forms.
Refinement of system U to a sound and complete system E , being able to provide
independent exact bounds for both the length of head-normalisation sequences and the
size of its corresponding normal forms.

Other Related Works
Non-idempotent intersection types have been applied to the λ-calculus for the characterisation
of termination with respect to a variety of evaluation strategies, such as call-by-value [25, 3],
call-by-need [36, 8, 4] and (linear) head reduction [27, 2]. They have been well-adapted
also to some explicit resource calculi [13, 38, 39], as well as to pattern calculi [12, 19, 9],
proof-nets [24], classical logic [40, 42] and call-by-push-value [26, 29].

Closer to our work, non-idempotent intersection types have been used to characterise
strong normalisation in a calculus with fix-point operators and pattern matching on con-
structors [12]. Similarly, a strong call-by-need strategy for a pattern matching language was
defined in [9], and completeness of the strategy was shown by means of non-idempotent
intersection types by extending the technique introduced in [36, 8]. In both cases, despite
the use of non-idempotent types, the result was qualitative, as no quantitative results were
obtained by means of the typing system.

Even closer to our work, [19] studied the solvability property in a pair pattern calculus,
the main result being that solvability is equivalent to typability plus inhabitation in a non-
idempotent intersection type system. One of the contributions of [19] is a characterisation of
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(non-deterministic) head-normalisation by means of typability, which is merely qualitative,
as it does not give any upper bound/exact measure for head-evaluation, as discussed in the
previous subsection.

More practical type-based approaches (i.e. mostly sound but not necessarily complete) to
quantitative analysis are sized-types [49, 54, 7, 45, 46] and (automatic) amortised resource
analysis [33, 53, 30, 34, 31, 51].

Sized Types. This line of work is based on the use of types indexed by sizes, which are
essentially ordinals. The approach is based on the fact that the compiler checks if the program
is typed with the correct size, so that resource usages of programs can be derived from the
sized types informations.

While space cost is determined in [54], upper bounds for both space and time costs are
obtained in [49, 7]. In particular, sized types are used in [7] to obtain space bounds, while
time bounds are computed by using a kind of clock, achieved by means of ticking monadic
transformations, originally introduced in [55] as ticking monads to get time complexity for lazy
languages. This is done for a call-by-value functional language with (a fixed set of) inductive
datatypes, enriched with index polymorphism: functions can be polymorphic in their size
annotations. In this respect, sized types enriched with intersection types have been used in
[52] to handle time costs for a call-by-value strategy in a more restricted language. Sized
types are also extended in [14] to guarantee termination of general higher-order rewriting.
Yet another approach based on (first-order) size indices is given by linear dependent types
[45, 46], where time and space bounds are obtained by establishing a relation with linear
logic, a key tool used to define quantitative types through non-idempotent intersection
types. Completeness depends on an oracle for the first order theory on indices describing the
semantical properties of the function symbols, so the approach cannot be fully turned into
an automatic tool.

Amortised resource analysis. This line of work is motivated by the fact that the worst-case
run time analysis per operation, rather than per algorithm, can lead to very pessimistic
complexity bounds. This is then replaced by an approach considering both the costly and less
costly operations together over the whole set of operations of the algorithm. Automatisation
of amortised resource analysis has been achieved in a series of works [33, 30, 53, 34, 31, 51],
including space usage [53] and more general usages [31], all regarding a lazy functional
language. The pioneer work in [30] has evolved to more sophisticated tools, leading today to
RAML [50], a language applied to an industrial strength compiler [31]. Lazy evaluation is
not handled in RAML, however, [51] proposes a practical tool to estimate resource usage for
Haskell expressions.
Road-map: Sec. 2 introduces the pattern calculus. Sec. 3 presents the typing system U ,
together with some of its quantitative properties, and Sec. 4 suggests a relational model
for our pattern calculus based on the type system. In Sec. 5, we refine U to extract exact
bounds, which leads to the definition of our second typing system E . The soundness (resp.
completeness) proof for E is given in Sec. 6 (resp. Sec. 7). Conclusions and future work are
discussed in Sec. 8. All proofs are presented in the Appendix.

2 The Pattern Calculus

In this section we introduce the pattern calculus, an extension of the λ-calculus where
abstraction is extended to pair patterns and terms are extended to pairs. We start by
introducing the syntax of the calculus.

TYPES 2019



3:6 A Quantitative Understanding of Pattern Matching

Terms and contexts of the pattern calculus are defined by means of the following
grammars:

(Patterns) p, q ::= x | 〈p, q〉
(Terms) t, u, v ::= x | λp.t | 〈t, u〉 | tu | t[p\u]
(List Contexts) L ::= 2 | L[p\u]
(Contexts) C ::= 2 | λp.C | 〈C, t〉 | 〈t, C〉 | Ct | tC | C[p\t] | t[p\C]

where x, y, z, w . . . range over a countable set of variables, and every pattern p is assumed to
be linear, i.e. every variable appears at most once in p. The term x is called a variable, λp.t is
an abstraction, 〈t, u〉 is a pair, tu is an application and t[p\u] is a closure, where [p\u] is
an explicit matching operator. Special terms are I := λz.z, ∆ := λz.zz and Ω := ∆∆. As
usual we use the abbreviation λp1 . . . pn.t1 . . . tm for λp1(. . . (λpn.((t1t2) . . . tm)) . . .), n ≥ 0,
m ≥ 1.

We write var(p) to denote the variables in the pattern p. Free and bound variables
of terms and contexts are defined as expected, in particular fv(λp.t) := fv(t) \ var(p),
fv(t[p\u]) := (fv(t) \ var(p)) ∪ fv(u) and bv(λp.t) := bv(t) ∪ var(p), bv(t[p\u]) := bv(t) ∪
var(p) ∪ bv(u). We also define the domain of a list context as dlc(2) = ∅ and
dlc(L[p\u]) = dlc(L) ∪ var(p). We write p#q if var(p) and var(q) are disjoint. As usual,
terms are considered modulo α-conversion, so that for example λ〈x, y〉.xz =α λ〈x′, y′〉.x′z
and x[〈x, y〉\z] =α x

′[〈x′, y′〉\z]. Given a list context L and a term t, L[[t]] denotes the term
obtained by replacing the unique occurrence of � in L by t, possibly allowing the capture
of free variables of t. We use t{x\u} to denote the meta-level substitution operation which
replaces all the free occurrences of x in t by the term u. As usual, this operation is performed
modulo α-conversion so that capture of free variables is avoided. We use the predicate abs(t)
when t is of the form L[[λp.u]]. The reduction relation −→p on terms is given by the closure
over all contexts of the following rewriting rules.

L[[λp.t]]u 7→ L[[t[p\u]]] dlc(L) ∩ fv(u) = ∅
t[〈p1, p2〉\L[[〈u1, u2〉]]] 7→ L[[t[p1\u1][p2\u2]]] dlc(L) ∩ fv(t) = ∅
t[x\u] 7→ t{x\u}

The reduction relation −→p defined above is related to that in [19], called −→Λp
, in the

following sense: −→Λp
contains two subsystem relations, one to deal with clashes, which are

not handled by the reduction system in the present calculus since we consider typable terms
only (cf. Lem. 6), and another one containing the following five rules:

(λp.t)u 7→ t[p\u]
t[〈p1, p2〉\〈u1, u2〉] 7→ t[p1\u1][p2\u2]
t[x\u] 7→ t{x\u}
t[p\v]u 7→ (tu)[p\v] fv(u) ∩ var(p) = ∅
t[〈p1, p2〉\u[q\v]] 7→ t[〈p1, p2〉\u][q\v] fv(t) ∩ var(q) = ∅

The two last rules can be seen as commuting conversions, which are integrated in the
first (two) rules of our reduction system −→p by using the substitution at a distance
paradigm [5]. It is worth noticing that t −→p t

′ can be simulated by t→+
Λp
t′. For instance,

(λp.t)[p1\u1][p2\u2]u −→p t[p\u][p1\u1][p2\u2] can be simulated by:

(λp.t)[p1\u1][p2\u2]u −→Λp
((λp.t)[p1\u1]u)[p2\u2] −→Λp

((λp.t)u)[p1\u1][p2\u2]

−→Λp
t[p\u][p1\u1][p2\u2]
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Our formulation of the pattern calculus at a distance, given by the relation −→p , as well
as the corresponding head strategy that we present below, are one of the essential untyped
tools used in this paper to get quantitative results about head-normalisation (cf. Sec. 3 and
Sec. 5).

Although the reduction relation −→p is non-deterministic, it can easily been shown to be
confluent, for example using the same technique in [19]. However, in order to study exact
bounds of evaluation, we need to define a deterministic strategy for the pattern calculus,
i.e. a subrelation of −→p that is able to compute the same normal forms. Fig. 1 gives an
operational semantics for the pattern calculus, which turns out to be an extension of the
well-known notion of head-reduction for λ-calculus, then also named head-reduction, and
denoted by −→h. In the following inductive definition t −→h u means that t head-reduces to u,
and t 6−→h means that t is a head normal-form, i.e. there is no u such that t −→h u.

dlc(L) ∩ fv(u) = ∅
(b)

L[[λp.t]]u −→h L[[t[p\u]]]

t 6−→h dlc(L) ∩ fv(t) = ∅
(m)

t[〈p1, p2〉\L[[〈u1, u2〉]]] −→h L[[t[p1\u1][p2\u2]]]

t 6−→h
(e)

t[x\u] −→h t{x\u}

t −→h t
′

λp.t −→h λp.t
′

t −→h t
′ ¬abs(t)

tu −→h t
′u

t −→h t
′

t[p\u] −→h t
′[p\u]

t 6−→h p 6= x u −→h u
′

t[p\u] −→h t[p\u′]

Figure 1 The head-reduction strategy for the pattern calculus.

Rule b fires the computation of terms by transforming an application of a function
to an argument into a closure term. Decomposition of patterns and terms is performed
by means of rule m, when a pair pattern is matched against a pair term. Substitution is
performed by rule e, i.e. an explicit (simple) matching of the form [x\u] is executed. This
form of syntactic pattern matching is very simple, and does not consider any kind of failure
result, but is already expressive enough to specify the well-known mechanism of successful
matching. Context closure is similar to the call-by-name λ-calculus case, but not exactly
the same. Indeed, head-reduction is performed on the left-hand side of applications and
closures whenever possible. Otherwise, arguments of explicit matching operators must be
head-reduced in order to unblock these operators, i.e. in order to decompose [p\u] when p
is a pair pattern but u is still not a pair. Notice however that when u is already a pair,
no head-reduction inside u can take place, thus implementing a lazy strategy for pattern
matching. Standardisation of calculi as the one in this paper has been studied in [37].

Given any (one-step) reduction relation −→R , we use −→∗R , or more precisely→k
R (k ≥ 0)

to denote the reflexive-transitive closure of −→R, i.e. the composition of k R-steps. In the case
of head-reduction, we may use the alternative notation →(b,e,m)

h to emphasize the number of
reduction steps in a given reduction sequence, i.e. if ρ : t→(b,e,m)

h u, then there are exactly b
b-steps, e e-steps and m m-steps in the reduction sequence ρ. We will often use the notation
−→b to explicitly refer to a b-step (resp. −→e and −→m for e and m steps). The reduction
relation −→h is in fact a function:

I Proposition 1. The relation −→h is deterministic.
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3:8 A Quantitative Understanding of Pattern Matching

I Example 2. Let us consider the combinators I := λz.z and K := λx1.λy1.x1. Then we
have (λ〈x, y〉.x(Iy))[z\I](I〈K, w〉)→(4,6,1)

h λy1.w:

(λ〈x, y〉.x(Iy))[z\I](I〈K, w〉) −→b (x(Iy))[〈x, y〉\I〈K, w〉][z\I]
−→b (x(Iy))[〈x, y〉\z[z\〈K, w〉]][z\I] −→e (x(Iy))[〈x, y〉\〈K, w〉][z\I]
−→m (x(Iy))[x\K][y\w][z\I] −→e (K(Iy))[y\w][z\I]
−→b (λy1.x1)[x1\Iy][y\w][z\I] −→e (λy1.Iy)[y\w][z\I]
−→b (λy1.z[z\y])[y\w][z\I] −→e (λy1.y)[y\w][z\I]
−→e (λy1.w)[z\I] −→e λy1.w

Head normal-forms may contain ill-formed terms called (head) clashes not representing a
desired result for a computation, i.e. (head) terms not syntactically well-formed. For example,
a pair applied to another term 〈u1, u2〉v, or a matching between a pair pattern and a function
t[〈p1, p2〉\λp.u] are considered to be (head) normal clashes. Formally, a term is said to be a
(head) clash if it is generated by the following grammar:

(Head Clash) U ::= c | λp.U | Ut | U[p\t] | t[〈p1, p2〉\U]
(Clash) c ::= L[[〈u1, u2〉]]v | t[〈p1, p2〉\L[[λp.u]]]

Then, a term t is said to be (head) clash-free if t does not head-reduce to a (head) clash,
i.e. if there is no u ∈ U such that t −→∗h u. Remark in particular that every pair is (head)
clash-free. A rewriting system raising a warning (i.e. a failure) when detecting a (head) clash
has been defined in [19], allowing to restrict the attention to a smaller set of terms, called
canonical terms, that are intended to be the (head) clash-free terms that are not reducible
by the relation −→h . Canonical terms can be characterised inductively as follows:

(canonical forms) M ::= λp.M | 〈t, t〉 | M[〈p1, p2〉\N ] | N
(pure canonical forms) N ::= x | N t | N [〈p1, p2〉\N ]

In summary, canonical terms and irreducible terms are related as follows:

I Proposition 3. t ∈M if and only if t is (head) clash-free and t 6−→h .

Size of canonical terms is given by: |x| := 0, |〈t, u〉| := 1, |N t| := |N | + 1, |λp.M| :=
|M| + 1, and |M[〈p1, p2〉\N ]| := |M| + |N | + 1. As an example, the terms λ〈x, y〉.〈x, I〉
and λx.y(〈x, z〉I) are canonical forms of size 2 while xΩ and z[〈z, w〉\xΩ] are pure canonical
terms of size 1 and 2 respectively. The term 〈x, I〉w is none of them, and the term Ix can
head-reduce to the canonical term x.

Finally, we define a term t to be head-normalisable if there exists a canonical form
u ∈ M such that t −→∗p u. Moreover, t is said to be head-terminating if there exists a
canonical form u ∈ M and an integer k ≥ 0 such that t →k

h u. The relation between
the non-deterministic reduction relation −→p and the deterministic strategy −→h will be
established later, but we can already say that, while t head-terminating immediately implies
t head-normalisable, the completeness of the head-strategy w.r.t. head-normalisation is not
trivial (Thm. 7).

3 The U Typing System

In this section we introduce our first typing system U for the pattern calculus. We start by
defining the sets of types and multiset types, given by means of the following grammars:

(Product Types) P ::= ×(A1,A2)
(Types) σ ::= • | P | A → σ

(Multiset Types) A ::= [σk]k∈K
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where • is an atomic type, K is a (possibly empty) finite set of indexes, and a multiset type is
an unordered list of (not necessarily different) elements, where [ ] denotes the empty multiset.
We write |A| to denote the number of elements of the multiset A. For example [•, [ ]→ •, •]
is a multiset type of 3 elements, representing the intersection type (•∩ ([ ]→ •))∩•, where ∩
is an associative, commutative and non-idempotent intersection type constructor. We write
t to denote multiset union. Multiset types are used to specify how programs consume terms:
intuitively, the empty multiset is assigned to terms that are erased during (head) reduction,
while duplicable terms are necessarily typed with non-empty multisets. As usual the arrow
type is right-associative.

A product type, representing the type of a pair, is defined as the product of two (possibly
empty) multisets of types. This formulation of product types turns out to be a key tool in
our quantitative framework, and constitutes an essential difference with the product types
proposed in [19], which are modeled by disjoint unions, so that any pair 〈t, u〉 of typed terms
t and u has necessarily at least two types, one of the form ×1(σ) where σ is the type of t, and
one of the form ×2(τ), where τ is the type of u. Indeed, in op. cit., multiset types carry two
completely different meanings: being a pair (but not necessarily a pair to be duplicated), or
being a duplicable term (but not necessarily a pair). Our specification of products can then
be interpreted as the use of the exponential isomorphism !(AOB) ≡!A⊗!B of multiplicative
exponential linear logic [28].

A typing context Γ is a map from variables to multiset types, such that only finitely
many variables are not mapped to the empty multiset [ ]. We write dom(Γ) to denote the
domain of Γ, which is the set {x | Γ(x) 6= [ ]}. We may write Γ#∆ if and only if dom(Γ) and
dom(∆) are disjoint. Given typing contexts {Γi}i∈I we write ∧i∈IΓi for the context that
maps x to ti∈IΓi(x). One particular case is Γ ∧∆. We sometimes write Γ; ∆ instead of
Γ ∧∆, when Γ#∆, and we do not distinguish Γ;x : [ ] from Γ. The typing context Γ|p is
such that Γ|p(x) = Γ(x), if x ∈ var(p) and [ ] otherwise. The typing context Γ\\V is defined
by (Γ\\V)(x) = Γ(x) if x /∈ V and [ ] otherwise. Finally, Γ ⊆ ∆ means that dom(Γ) ⊆ dom(∆)
and Γ(x) v ∆(x) for every x ∈ dom(Γ), where v denotes multiset inclusion.

The type assignment system U is given in Fig. 2 and can be seen as a natural extension
of Gardner’s system [27] to explicit matching operators, pairs and product types. It assigns
types (resp. multiset types) to terms, using an auxiliary (sub)system that assigns multiset
types to patterns. We use Φ.Γ ` t : σ (resp. Φ.Γ ` t : A) to denote term type derivations
ending with the sequent Γ ` t : σ (resp. Γ ` t : A), and Π . Γ 
 p : A to denote pattern
type derivations ending with the sequent Γ 
 p : A. The size of a derivation Φ, denoted
by sz (Φ), is the number of all the typing rules used in Φ except many1 (this is particularly
appropriate in the proof of the substitution lemma).

Note that when assigning types (multiset types) to terms, we only allow the introduction
of multiset types on the right through the many rule.

Most of the rules for terms are straightforward. Rule match is used to type the explicit
matching operator t[p\u] and can be seen as a combination of rules app and abs. Rule patv

is used when the pattern is a variable x. Its multiset type is the type declared for x in the
typing context. Rule pat× is used when the pattern has a product type, which means that
the pattern will be matched with a pair. The condition p#q ensures linearity of patterns.
Note that any pair term can be typed, in particular, with ×([ ], [ ]).

The system enjoys the key property of relevance:

1 An equivalent type system can be presented without the many rule, for example [19]. However, the
inductive proofs in the current presentation turn to be more elegant.
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(patv)
x : A 
 x : A

Γ 
 p : A ∆ 
 q : B p#q
(pat×)

Γ ∧∆ 
 〈p, q〉 : [×(A,B)]

(ax)
x : [σ] ` x : σ

(Γk ` t : σk)k∈K
(many)

∧k∈KΓk ` t : [σk]k∈K

Γ ` t : σ Γ|p 
 p : A
(abs)

Γ\\ var(p) ` λp.t : A → σ

Γ ` t : A → σ ∆ ` u : A
(app)

Γ ∧∆ ` t u : σ

Γ ` t : A ∆ ` u : B
(pair)

Γ ∧∆ ` 〈t, u〉 : ×(A,B)
Γ ` t : σ Γ|p 
 p : A ∆ ` u : A

(match)
(Γ\\ var(p)) ∧∆ ` t[p\u] : σ

Figure 2 Typing System U .

I Lemma 4 (Relevance). Let Φ . Γ ` t : σ. Then, dom(Γ) ⊆ fv(t).

Proof. By induction on Φ (cf. App. A). J

Moreover, typing is stable by reduction and expansion, and the size of derivations is
decreasing (resp. strictly decreasing) for −→p reduction (resp. −→h reduction).

I Lemma 5. Let Φ . Γ ` t : σ. Then,
1. (Upper Subject Reduction). t −→p t

′ implies there is Φ′ . Γ ` t′ : σ s.t. sz (Φ) ≥ sz (Φ′),
and t −→h t

′ implies there is Φ′ . Γ ` t′ : σ s.t. sz (Φ) > sz (Φ′).
2. (Upper Subject Expansion). t′ −→p t implies there is Φ′.Γ ` t′ : σ such that sz (Φ′) ≥ sz (Φ)

and t′ −→h t implies there is Φ′ . Γ ` t′ : σ such that sz (Φ′) > sz (Φ).

Proof. By induction on Φ, item 1 (resp. item 2) uses a substitution (resp. anti-substitution)
lemma (see Lem.22 and Lem. 23 in App. A for details). J

Typed terms are (head) clash-free, i.e. they cannot head reduce to a clash.

I Lemma 6 (Clash-Free). Let Φ . Γ ` t : σ. Then t is (head) clash-free.

Proof. By induction on Φ (cf. App. A). J

Although the system in [19] already characterises head-normalisation in the pattern
calculus, it does not provide upper bounds for the length of the head strategy. This is mainly
due to the fact that the reduction system in [19] does not always decrease the measure of
the typed terms, even when reduction is performed in the so-called typed occurrences. We
can recover this situation, as witnessed by the following soundness and completeness result:

I Theorem 7 (Characterisation of Head-Normalisation and Upper Bounds). Let t be a term in
the pattern calculus. Then (1) t is typable in system U iff (2) t is head-normalisable iff (3) t
is head-terminating. Moreover, if Φ . Γ ` t : σ, then the head-strategy terminates on t in at
most sz (Φ) steps.
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Proof. The statement (1) ⇒ (3) holds by upper subject reduction (Lem. 5.1) for −→h . The
statement (3) ⇒ (2) is straightforward since −→h is included in −→p . Finally, the statement
(2) ⇒ (1) holds by the fact that canonical terms are typable (easy), and by using upper
subject expansion for −→p (Lem. 5.2). J

The previous upper bound result is especially possible thanks to the upper subject
reduction property, stating in particular that reduction −→h strictly decreases the size of
typing derivations. It is worth noticing that the reduction relation in [19] does not enjoy
this property, particularly in the case of the rule t[p\v]u −→ (tu)[p\v], which is a permuting
conversion rule, (slightly) changing the structure of the type derivation, but not its size.

4 Towards a Relational Model for the Pattern Calculus

Denotational and operational semantics have tended to abstract quantitative information
(e.g. time and space) as computational resource consumption. Since the invention of Girard’s
linear logic [28], where formulas are interpreted as resources, quantitative interpretation of
programs, such as relational models [17, 18, 22], have been naturally defined and studied by
following the simple idea that multisets are used to record the number of times a resource
is consumed. Thus, relational models for the λ-calculus use multisets to keep track of how
many times a resource is used during a computation.

In this brief section we emphasize a semantical result that is implicit in the previous
section. Since relational models are often presented by means of typing systems [48, 47], our
system U suggests a quantitative model for our pair pattern calculus in the following way.
Indeed, consider a term t such that fv(t) ⊆ {x1, . . . , xn}, in which case we say that the list
~x = (x1, . . . , xn) is suitable for t. Then, given ~x = (x1, . . . , xn) suitable for t, define the
interpretation of a term t for ~x as

[[t]]~x = {((A1, . . . ,An), σ) | there exists Φ . x1 : A1, . . . , xn : An ` t : σ}

A straightforward corollary of upper subject reduction and expansion properties (Lem. 5.1
and Lem. 5.2, respectively) is that t =p u implies [[t]]~x = [[u]]~x, where =p is the equational
theory generated by the reduction relation −→p . Thus, p-equivalent programs have the same
meaning.

5 The E Typing System

In this section we introduce our second typing system E for the pattern calculus, which is
obtained by refining the System U presented in Sec. 3.

(Product Types) P ::= ×(A1,A2)
(Tight Types) t ::= •N | •M
(Types) σ ::= t | P | A → σ

(Multiset Types) A ::= [σk]k∈K

Types in t, which can be seen as a refinement of the base type • of System U , denote the
so-called tight types. The constant •M denotes the type of any term head reducing to a
canonical form, while •N denotes the type of any term head reducing to a pure canonical form.
We write tight(σ), if σ is of the form •M or •N (we use • to denote either form). We extend
this notion to multisets of types and typing contexts as expected, that is, tight([σi]i∈I) if
tight(σi) for all i ∈ I, and tight(Γ) if tight(Γ(x)), for all x ∈ dom(Γ).
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The crucial idea behind the grammar of types is to distinguish between consuming
constructors typed with standard types, and persistent constructors typed with tight types,
as hinted in the introduction. A constructor is consuming (resp. persistent) if it is consumed
(resp. not consumed) during head-reduction. Indeed, the pair constructor is consumed (on
the pattern side as well as on the term side) during the execution of the pattern matching
rule m. Otherwise, patterns and pairs are persistent, and they do appear in the normal
form of the original term. This dichotomy between consuming and persistent constructors,
inspired from [41, 42], is reflected in the typing system by using different typing rules to type
them, notably for the abstraction, the application, the pair terms and the pair patterns.

The type assignment system E , given in Fig. 3, is based on sequents for terms
(resp. patterns) with counters having the form Γ `(b,e,m,f) t : σ or Γ `(b,e,m,f) t : A
(resp. Γ 
(e,m,f) p : A). Intuitively, if Γ `(b,e,m,f) t : σ is “tightly” derivable (defined
below), then t→(b,e,m)

h v, where b is the number of b-steps, e the number of e-steps, m the
number of m-steps and f is the size of the head normal-form v. Similarly, the derivability
of Γ 
(e,m,f) p : A means that the pattern p generates e substitution e-steps, m matching
m-steps and f symbols contributing to the normal form.

We write Φ . Γ `(b,e,m,f) t : σ (resp. Φ . Γ `(b,e,m,f) t : A) to denote term type
derivations ending with the sequent Γ `(b,e,m,f) t : σ (resp. Γ `(b,e,m,f) t : A), and
Π.Γ 
(e,m,f) p : A to denote pattern type derivations ending with the sequent Γ 
(e,m,f)

p : A. Often in examples, we will use the notation Φ(b,e,m,f) (resp. Π(e,m,f)) to refer to a
term derivation (resp. pattern derivation) ending with a sequent annotated with indexes
(b, e,m, f) (resp. (e,m, f)).

As mentioned in the introduction, exact bounds can only be extractable from minimal
derivations. In our framework this notion is implemented by means of tightness [2]. We
say that a derivation Φ . Γ `(b,e,m,f) t : σ (resp. Φ . Γ `(b,e,m,f) t : A) is tight, denoted by
tight(Φ), if and only if tight(Γ) and tight(σ) (resp. tight(A)). The size of derivations is
defined as in System U .

We now give some intuition behind the typing rules in Fig. 3, by addressing in particular
the consuming/persistent paradigm.

Rule ax: Since x is itself a head normal-form, it will not generate any b, e or m steps, and
its size is 0.
Rule abs: Used to type abstractions λp.t to be applied (i.e. consumed), therefore it has a
functional type A → σ. Final indexes of the abstraction are obtained from the ones of
the body and the pattern, and 1 is added to the first index since the abstraction will be
consumed by a b-reduction step.
Rule absp: Used to type abstractions λp.t that are not going to be applied/consumed
(they are persistent). Only the last index (size of the normal form) is incremented by one
since the abstraction remains in the normal form (the abstraction is persistent). Note
that both the body t and the variables in p should be typed with a tight type.
Rule app: Types applications tu where t will eventually become an abstraction, and thus
the application constructor will be consumed. Indexes for tu are exactly the sum of the
indexes for t and u. Note that we do not need to increment the counter for b steps, since
this was already taken into account in the abs rule.
Rule appp: Types applications tu where t is neutral, therefore will never become an
abstraction, and the application constructor becomes persistent. Indexes are the ones for
t, adding one to the (normal term) size to count for the (persistent) application.
Rule pair: Types pairs consumed during some matching step. We add the indexes for
the two components of the pair without incrementing the number of m steps, since it is
incremented when typing a consuming abstraction, with rule abs.
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(patv)
x : A 
(1,0,0) x : A

Γ 
(ep,mp,np) p : A ∆ 
(eq,mq,nq) q : B p#q
(pat×)

Γ ∧∆ 
(ep+eq,1+mp+mq,np+nq) 〈p, q〉 : [×(A,B)]

dom(Γ) ⊆ var(〈p, q〉) tight(Γ)
(patp)

Γ 
(0,0,1) 〈p, q〉 : [•N ]

(ax)
x : [σ] `(0,0,0,0) x : σ

Γ `(bt,et,mt,ft) t : σ Γ|p 
(ep,mp,fp) p : A
(abs)

Γ\\ var(p) `(bt+1,et+ep,mt+mp,ft+fp) λp.t : A → σ

Γ `(b,e,m,f) t : t tight(Γ|p)
(absp)

Γ\\ var(p) `(b,e,m,f+1) λp.t : •M

(Γk `(bk,ek,mk,fk) t : σk)k∈K
(many)

∧k∈KΓk `(+k∈Kbk,+k∈Kek,+k∈Kmk,+k∈Kfk) t : [σk]k∈K

Γ `(bt,et,mt,ft) t : A → σ ∆ `(bu,eu,mu,fu) u : A
(app)

Γ ∧∆ `(bt+bu,et+eu,mt+mu,ft+fu) t u : σ

Γ `(bt,et,mt,ft) t : •N
(appp)

Γ `(bt,et,mt,ft+1) t u : •N

Γ `(bt,et,mt,ft) t : A ∆ `(bu,eu,mu,fu) u : B
(pair)

Γ ∧∆ `(bt+bu,et+bu,mt+mu,ft+fu) 〈t, u〉 : ×(A,B)

(pairp)
`(0,0,0,1) 〈t, u〉 : •M

Γ `(bt,et,mt,ft) t : σ Γ|p 
(ep,mp,fp) p : A ∆ `(bu,eu,mu,fu) u : A
(match)

(Γ\\ var(p)) ∧∆ `(bt+bu,et+eu+ep,mt+mu+mp,ft+fu+fp) t[p\u] : σ

Figure 3 Typing System E .

Rule pairp: Used to type pairs that are not consumed in a matching step (they are
persistent), therefore appear in the head normal-form. Since the pair is already a head
normal-form its indexes are zero except for the size, which counts the pair itself.
Rule match: Note that we do not need separate cases for consuming and persistent explicit
matchings, since in both cases typable occurrences of u represent potential head reduction
steps for u, which need to be taken into account in the final counter of the term.
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Rule patv: Typed variables always generate one e and zero m steps, even when erased.
Rule pat×: Used when the pattern has a product type, which means that the pattern
will be matched with a pair. We add the counters for the two components of the pair
and increment the counter for the m steps.
Rule patp: Used when the pattern has a tight type, which means that it will not be
matched with a pair and therefore will be blocked (it is persistent). This kind of pairs
generate zero e and m steps, and will contribute with one blocked pattern to the size of
the normal form.

The system also enjoys the relevance and clash-free properties, easily proved by induction:

I Lemma 8 (Relevance). Let Φ . Γ `(b,e,m,f) t : σ. Then, dom(Γ) ⊆ fv(t).

I Lemma 9 (Clash-Free). Let Φ . Γ `(b,e,m,f) t : σ. Then, t is (head) clash-free.

We now discuss two examples.

I Example 10. Let us consider t0 = (λ〈x, y〉.(λ〈w, z〉.wyz)x)〈〈K, a〉, b〉, with the following
head-reduction sequence:

(λ〈x, y〉.(λ〈w, z〉.wyz)x)〈〈K, a〉, b〉 −→b ((λ〈w, z〉.wyz)x)[〈x, y〉\〈〈K, a〉, b〉]
−→b (wyz)[〈w, z〉\x][〈x, y〉\〈〈K, a〉, b〉] −→m (wyz)[〈w, z〉\x][x\〈K, a〉][y\b]
−→e (wyz)[〈w, z〉\〈K, a〉][y\b] −→m (wyz)[w\K][z\a][y\b]
−→e (Kyz)[z\a][y\b] −→b ((λy1.x1)[x1\y]z)[z\a][y\b]
−→b x1[y1\z][x1\y][z\a][y\b] −→e x1[x1\y][z\a][y\b]
−→e y[z\a][y\b] −→e y[y\b]
−→e b

Note that, there are two matching steps in the head-reduction sequence, but the second step
is only created after the substitution of x by 〈K, a〉. Our method allows us to extract this
information from the typing derivations because of the corresponding types for 〈x, y〉 and
〈w, z〉. Indeed, both patterns are typed with a product type (cf. the forthcoming tight typing
derivations), and therefore the corresponding pairs are consumed and not persistent.

Since t0 = (λ〈x, y〉.(λ〈w, z〉.wyz)x)〈〈K, a〉, b〉 →(4,6,2)
h b, the term t0 should be tightly

typable with counter (4, 6, 2, 0), where 0 is the size of b. In the construction of such tight
derivation we proceed by pieces. Let TK = [•N ]→ [ ]→ •N . We first construct the following
pattern derivation for 〈w, z〉:

Π〈w,z〉 .
w : [TK] 
(1,0,0) w : [TK] 
(1,0,0) z : [ ]
w : [TK] 
(2,1,0) 〈w, z〉 : [×([TK], [ ])]

In the following T〈w,z〉 = [×([TK], [ ])]. We construct a similar pattern derivation for 〈x, y〉:

Π〈x,y〉 .
x : T〈w,z〉 
(1,0,0) x : T〈w,z〉 y : [•N ] 
(1,0,0) y : [•N ]
x : T〈w,z〉; y : [•N ] 
(2,1,0) 〈x, y〉 : [×(T〈w,z〉, [•N ])]

In the rest of the example T〈x,y〉 = [×(T〈w,z〉, [•N ])]. We build a type derivation for
λ〈x, y〉.(λ〈w, z〉.wyz)x, where Γw = w : [TK], Γy = y : [•N ], Γ = Γw; Γy, and Γx = x : T〈w,z〉.
Furthermore, in this example and throughout the paper, we will use (0) to denote the tuple
(0, 0, 0, 0).
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Φ1 .

Γw `(0) w : TK Γy `(0) y : [•N ]

Γ `(0) wy : [ ]→ •N `(0) z : [ ]

Γ `(0) wyz : •N Π(2,1,0)
〈w,z〉

Γy `(1,2,1,0) λ〈w, z〉.wyz : T〈w,z〉 → •N Γx `(0) x : T〈w,z〉
Γy; Γx `(1,2,1,0) (λ〈w, z〉.wyz)x : •N Π(2,1,0)

〈x,y〉

`(2,4,2,0) λ〈x, y〉.(λ〈w, z〉.wyz)x : T〈x,y〉 → •N

ΦK .

x1 : [•N ] `(0) x1 : •N 
(1,0,0) y1 : [ ]
x1 : [•N ] `(1,1,0,0) λy1.x1 : [ ]→ •N x1 : [•N ] 
(1,0,0) x1 : [•N ]

`(2,2,0,0) K : TK

From Φ1 and ΦK we build the final tight derivation for t0 =(λ〈x, y〉.(λ〈w, z〉.wyz)x)〈〈K, a〉, b〉:

Φ .
Φ(2,4,2,0)

1

Φ(2,2,0,0)
K

`(2,2,0,0) K : [TK] `(0) a : [ ]
`(2,2,0,0) 〈K, a〉 : ×([TK], [ ])
`(2,2,0,0) 〈K, a〉 : T〈w,z〉 b : [•N ] `(0) b : [•N ]
b : [•N ] `(2,2,0,0) 〈〈K, a〉, b〉 : ×(T〈w,z〉, [•N ])
b : [•N ] `(2,2,0,0) 〈〈K, a〉, b〉 : [×(T〈w,z〉, [•N ])]

b : [•N ] `(4,6,2,0) (λ〈x, y〉.(λ〈w, z〉.wyz)x)〈〈K, a〉, b〉 : •N

Therefore, Φ(4,6,2,0) gives the expected exact bounds. It is worth noticing that the pair
〈〈K, a〉, b〉 is typed here with a singleton multiset, while it would be typable with a multiset
having at least two elements in the typing system proposed in [19], even if the term is not
going to be duplicated.

I Example 11. We now consider the term t1 = (λz.(λ〈x, y〉.I)zz)〈u, v〉, having the following
head-reduction sequence to head normal-form:

(λz.(λ〈x, y〉.I)zz)〈u, v〉 −→b ((λ〈x, y〉.I)zz)[z\〈u, v〉]
−→b (I[〈x, y〉\z]z)[z\〈u, v〉] −→b w[w\z][〈x, y〉\z][z\〈u, v〉]
−→e z[〈x, y〉\z][z\〈u, v〉] −→e 〈u, v〉[〈x, y〉\〈u, v〉]
−→m 〈u, v〉[x\u][y\v] −→e 〈u, v〉[y\v]
−→e 〈u, v〉

We have 3 b-steps, 4 e-steps, and 1 m-step to the normal form 〈u, v〉 of size 1. Note that
the pair 〈u, v〉 is copied twice during the reduction, but only one of the copies is consumed
by a matching. The copy of the pair that is not consumed will persist in the term, therefore
it will be typed with •M. The other copy will be consumed in a matching step, however
its components are not going to be used, therefore we will type it with [o], where o denotes
×([ ], [ ]).

Since t1 = (λz.(λ〈x, y〉.I)zz)〈u, v〉 →(3,4,1)
h 〈u, v〉, we need to derive a tight derivation for

t1 decorated with counter (3, 4, 1, 1). We first consider the following derivation:

Φ1 .

w : [•M] `(0) w : •M w : [•M] 
(1,0,0) w : [•M]
`(1,1,0,0) I : [•M]→ •M


(1,0,0) x : [ ] 
(1,0,0) y : [ ]

(2,0,0) 〈x, y〉 : [o]

`(2,3,1,0) λ〈x, y〉.I : [o]→ [•M]→ •M
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From Φ1 we obtain the following derivation Φ2, where A0 = [o, •M]:

Φ2 .

Φ(2,3,1,0)
1 z : [o] `(0) z : [o]

z : [o] `(2,3,1,0) (λ〈x, y〉.I)z : [•M]→ •M z : [•M] `(0) z : [•M]
z : A0 `(2,3,1,0) (λ〈x, y〉.I)zz : •M z : A0 


(1,0,0) z : A0

`(3,4,1,0) λz.(λ〈x, y〉.I)zz : A0 → •M

Using Φ2 we obtain the final tight derivation, and its expected counter:

Φ(3,4,1,0)
2

...

`(0) 〈u, v〉 : o `(0,0,0,1) 〈u, v〉 : •M
`(0,0,0,1) 〈u, v〉 : A0

`(3,4,1,1) (λz.(λ〈x, y〉.I)zz)〈u, v〉 : •M

6 Soundness of System E

This section studies the implication “tight typability implies head-normalisable”. The two key
properties used to show this implication are minimal counters for canonical forms (Lem. 13)
and the exact subject reduction property (Lem. 15). Indeed, Lem. 13 guarantees that a tight
derivation for a canonical form t holds the right counter of the form (0, 0, 0, |t|). Lem. 15
gives in fact an (exact) weighted subject reduction property, weighted because head-reduction
strictly decreases the counters of typed terms, and exact because only one counter is decreased
by 1 for each head-reduction step. Subject reduction is based on a substitution property
(Lem. 14). We start with a key auxiliary lemma.

I Lemma 12 (Tight Spreading). Let t ∈ N . Let Φ � Γ `(b,e,m,f) t : σ be a typing
derivation such that tight(Γ). Then σ is tight and the last rule of Φ does not belong
to {app, abs, absp, pair, pairp}.

Proof. By induction on t ∈ N , taking into account the fact that t is not an abstraction nor
a pair (cf. App. B). J

I Lemma 13 (Canonical Forms and Minimal Counters). Let Φ � Γ `(b,e,m,f) t : σ be a tight
derivation. Then t ∈M if and only if b = e = m = 0.

Proof. The left-to-right implication is by induction on the definition of the setM, using the
tight spreading property (Lem. 12) for the cases of application and explicit matching. The
right-to-left implication is by induction on Φ and also uses Lem. 12 (cf. App. B). J

I Lemma 14 (Substitution for System E ). If Φt . Γ;x : A `(bt,et,mt,ft) t : σ, and Φu .

∆ `(bu,eu,mu,fu) u : A, then there exists Φt{x\u} .Γ∧∆ `(bt+bu,et+eu,mt+mu,ft+fu) t{x\u} : σ.

Proof. By induction on Φt (cf. App. B). J

I Lemma 15 (Exact Subject Reduction). If Φ . Γ `(b,e,m,f) t : σ, and t −→h t
′ is an s-step,

with s ∈ {b, e, m}, then Φ′ . Γ `(b′,e′,m′,f) t′ : σ, where
s = b implies b′ = b− 1, e′ = e, m′ = m.
s = e implies b′ = b, e′ = e− 1, m′ = m.
s = m implies b′ = b, e′ = e, m′ = m− 1.

Proof. By induction on −→h , using the substitution property (Lem. 14) (cf. App. B). J
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The exact subject reduction property provides a simple argument to obtain the implication
“tightly typable implies head-normalisable”: if t is tightly typable, and reduction decreases
the counters, then head-reduction necessarily terminates. But the soundness implication is
in fact more precise than that. Indeed:

I Theorem 16 (Soundness). Let Φ .Γ `(b,e,m,f) t : σ be a tight derivation. Then there exists
u ∈M and a head reduction sequence ρ such that ρ : t→(b,e,m)

h u and |u| = f .

Proof. By induction on b+ e+m.
If b+ e+m = 0 (i.e. b = e = m = 0), then canonical forms and minimal counters property

(Lem. 13) gives t ∈M, so that t 6−→h holds by Prop. 3. We let u := t and thus t→(0,0,0)
h t. It

is easy to show that tight derivations Φ . Γ `(0,0,0,f) t : σ for terms inM verify |t| = f .
If b+ e+m > 0, we know by Lem. 13 that t /∈M, and we know by the clash-free property

(Lem. 9) that t is (head) clash-free. Then, t turns to be head-reducible by Prop. 3, i.e. there
exists t′ such that t −→h t

′. By the exact subject reduction property (Lem. 15) there is a
derivation Φ′ .Γ `(b′,e′,m′,f) t′ : σ such that b′+e′+m′+1 = b+e+m. The i.h. applied to Φ′
then gives t′ →(b′,e′,m′)

h u and |u| = f . We conclude with the sequence t→h t
′ →(b′,e′,m′)

h u,
with the counters as expected. J

7 Completeness for System E

In this section we study the reverse implication “head-normalisable implies tight typability”.
In this case the key properties are the existence of tight derivations for canonical forms
(Lem. 17) and the subject expansion property (Lem. 19). As in the previous section these
properties are (exact) weighted in the sense that Lem. 17 guarantees that a canonical form
t has a tight derivation with the right counter, and Lem. 19 shows that each step of head-
expansion strictly increases exactly one of the counters of tightly typed terms. Subject
expansion relies on an anti-substitution property (Lem. 18).

I Lemma 17 (Canonical Forms and Tight Derivations). Let t ∈ M. There exists a tight
derivation Φ � Γ `(0,0,0,|t|) t : t.

Proof. We generalise the property to the two following statements:
If t ∈ N , then there exists a tight derivation Φ � Γ `(0,0,0,|t|) t : •N .
If t ∈M, then there exists a tight derivation Φ � Γ `(0,0,0,|t|) t : t.

The proof then proceeds by induction on N ,M, using relevance (Lem. 8). J

I Lemma 18 (Anti-Substitution for System E ). Let Φ . Γ `(b,e,m,f) t{x\u} : σ. Then, there
exist derivations Φt, Φu, integers bt, bu, et, eu,mt,mu, ft, fu, contexts Γt,Γu, and multitype A
such that Φt .Γt;x : A `(bt,et,mt,ft) t : σ, Φu .Γu `(bu,eu,mu,fu) u : A, b = bt+ bu, e = et+eu,
m = mt +mu, f = ft + fu, and Γ = Γt ∧ Γu.

Proof. By induction on Φ (cf. App. C). J

I Lemma 19 (Exact Subject Expansion). If Φ′ .Γ `(b′,e′,m′,f ′) t′ : σ, and t −→h t
′ is an s-step,

with s ∈ {b, e, m}, then Φ . Γ `(b,e,m,f) t : σ, where
s = b implies b = b′ + 1, e′ = e, m′ = m.
s = e implies b′ = b, e = e′ + 1, m′ = m.
s = m implies b′ = b, e′ = e, m = m′ + 1.

Proof. By induction on −→h, using the anti-substitution property (Lem. 18) (cf. App. C). J
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The previous lemma provides a simple argument to obtain the implication “head-
normalisable implies tightly typable”, which can in fact be stated in a more precise way:

I Theorem 20 (Completeness). Let t be a head-normalising term such that t →(b,e,m)
h u,

u ∈M. Then there exists a tight derivation Φ . Γ `(b,e,m,|u|) t : t.

Proof. By induction on b+ e+m.
If (b + e + m) = 0 then t = u ∈ M, therefore Γ `(0,0,0,|t|) t : t, by the canonical forms
and tight derivations property (Lem. 17).
If (b+ e+m) > 0, then t −→h t

′ →(b′,e′,m′)
h u, where b′ + e′ +m′ + 1 = b+ e+m. By the

i.h. Γ `(b′,e′,m′,|u|) t′ : t. Then from the exact subject expansion property (Lem. 19), it
follows that Γ `(b,e,m,|u|) t : t. J

In summary, soundness and completeness do not only establish an equivalence between
tight typability and head-normalisation, but they provide a much refined equivalence property
stated as follows:

I Corollary 21. Given a term t, the following statements are equivalent
There is a tight derivation Φ . Γ `(b,e,m,f) t : t.
There exists a canonical form u ∈M such that t→(b,e,m)

h u and |u| = f .

8 Conclusion

This paper provides a quantitative insight of pattern matching by using type systems to
study some of its dynamical properties. Indeed, our typing system U (resp. E ) provides
upper bounds (resp. exact measures) about time and space properties related to (dynamic)
computation. More precisely, the tuple of integers in the conclusion of a tight E -derivation
for a term t provides the exact length of the head-normalisation sequence of t and the size
of its normal form. Moreover, the length of the normalisation sequence is discriminated
according to different kind of steps performed to evaluate t.

Future work includes generalisations to more powerful notions of (dynamic) patterns, and
to other reduction strategies for pattern calculi, as well to programs with recursive schemes.
Inhabitation for our typing system is conjectured to be decidable, as the one in [19], but this
still needs to be formally proved, in which case the result “solvability = typing+ inhabitation”
in opt. cit. would be restated in a simpler framework. The quest of a general notion of
model for pattern calculi also remains open, particularly for dynamic pattern calculi [32, 6].

Last, but not least, time cost analysis of a language with constructors and pattern
matching is studied in [1], where it is shown that evaluation matching rules other than
β-reduction may be negligible, depending on the reduction strategy and the specific notion
of value. We expect the type-based quantitative technical tools we provide in this paper to
be helpful in such a kind of quantitative analysis.
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A The U Typing System

I Lemma 4 (Relevance). Let Φ . Γ ` t : σ. Then, dom(Γ) ⊆ fv(t).

Proof. Let Φ . Γ ` t : σ. By straightforward induction on Φ. Note that Γ = (Γ\\ var(p)); Γ|p
in both (abs) and (match) rules. J

I Lemma 22 (Substitution for System U ). If Φt . Γ;x : A ` t : σ, and Φu .∆ ` u : A, then
there exists Φt{x\u} . Γ ∧∆ ` t{x\u} : σ such that sz

(
Φt{x\u}

)
= sz (Φt) + sz (Φu)− |A|.

Proof. We generalise the statement as follows: Let Φu .∆ ` u : A.
If Φt . Γ;x : A ` t : σ, then there exists Φt{x\u} . Γ ∧∆ ` t{x\u} : σ.
If Φt . Γ;x : A ` t : B, then there exists Φt{x\u} . Γ ∧∆ ` t{x\u} : B.

In both cases sz
(
Φt{x\u}

)
= sz (Φt) + sz (Φu)− |A|.

The proof then follows by induction on Φt.
If Φt is (ax), then we consider two cases:
t = x: then Φx . x : [σ] ` x : σ and Φu . ∆ ` u : [σ], which is a consequence of
∆ ` u : σ. Then x{x\u} = u, and we trivially obtain Φt{x\u} . ∆ ` u : σ. We have
sz

(
Φt{x\u}

)
= 1 + sz (Φu)− 1 as expected.

t = y: then Φy . y : [σ];x : [ ] ` y : σ and Φu . ∅ ` u : [ ] by the (many) rule.
Then y{x\u} = y, and we trivially obtain Φt{x\u} . y : [σ] ` y : σ. We have
sz

(
Φt{x\u}

)
= 1 + 0− 0 as expected.

If Φt ends with (many), then it has premises of the form (Φi
t . Γi;x : Ai ` t : σi)i∈I ,

where Γ = ∧i∈IΓi, A = ∧i∈IAi and B = [σi]i∈I . The derivation Φu can also be
decomposed into subderivations (Φiu .∆i ` u : Ai)i∈I where ∆ = ∧i∈I∆i. The i.h. gives
the derivations (Φi

t{x\u} . Γi ∧∆i ` t{x\u} : σi)i∈I . Then we apply rule (many) to get
Φt{x\u} . Γ ∧∆ ` t{x\u} : B. The statement about sz (_) works as expected by the i.h.
If Φt ends with (abs), so that t = λp.t′ then, without loss of generality, one can always
assume that (fv(u) ∪ {x}) ∩ var(p) = ∅. The result will follow easily by induction and
relevance of the typing system. The statement about sz (_) works as expected by the i.h.

If Φt ends with (app), so that t = t′u′, then Φt′u′ is of the form

Φt′ . Γt′ ;x : At′ ` t′ : B → σ Φu′ . Γu′ ;x : Au′ ` u′ : B
Γt′ ∧ Γu′ ;x : At′ ∧ Au′ ` t′u′ : σ

Also, Φu . ∆ ` u : A is a consequence of (∆k ` u : σk)k∈K , with A = [σk]k∈K and
∆ = ∧k∈K∆k. Note that A = At′ ∧Au′ = [σi]i∈Kt′ ∧ [σi]i∈Ku′ , with K = Kt′ ]Ku′ , from
which one can obtain both ∆t′ ` u : At′ and ∆u′ ` u : Au′ , through the (many) rule. By
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the i.h. we then have Γt′ ∧∆t′ ` t′{x\u} : B → σ and Γu′ ∧∆u′ ` u′{x\u} : B. Finally,
Γt′ ∧ Γu′ ∧ ∆t′ ∧ ∆u′ ` (t′{x\u})(u′{x\u}) : σ by the app rule. The statement about
sz (_) works as expected by the i.h.
If Φt ends with (pair) or (pairp), so that t = 〈t′, u′〉, then the result is obtained by
induction following the same reasoning used in rule app. The statement about sz (_)
works as expected by the i.h.
If Φt ends with (match), so that t = t′[p\u′], then the proof is similar to the application
case since t′[p\u′]{x\u} = (t′{x\u})[p\u′{x\u}] and we can assume that (fv(u) ∪ {x}) ∩
var(p) = ∅. The statement about sz (_) works as expected by the i.h. J

I Lemma 23 (Anti-Substitution for System U ). Let Φ . Γ ` t{x\u} : σ. Then, there
exist derivations Φt, Φu, contexts Γt,Γu, and multitype A such that Φt . Γt;x : A ` t : σ,
Φu . Γu ` u : A and Γ = Γt ∧ Γu. Moreover, sz (Φ) = sz (Φt) + sz (Φu)− |A|.

Proof. As in the case of the substitution lemma, the proof follows by generalising the
property for the two cases where the type derivation Φ assigns a type or a multiset type:

Let Φ . Γ ` t{x\u} : σ. Then, there exist derivations Φt, Φu, contexts Γt,Γu, and
multitype A such that Φt . Γt;x : A ` t : σ, Φu . Γu ` u : A and Γ = Γt ∧ Γu.
Let Φ . Γ ` t{x\u} : B. Then, there exist derivations Φt, Φu, contexts Γt,Γu, and
multitype A such that Φt . Γt;x : A ` t : B, Φu . Γu ` u : A and Γ = Γt ∧ Γu.

In both cases sz (Φ) = sz (Φt) + sz (Φu)− |A| holds.
We will reason by induction on Φ and cases analysis on t. For all the rules (except many),

we will have the trivial case t{x\u}, where t = x, in which case t{x\u} = u, for which we
have a derivation Φ . Γ ` u : σ. Therefore Φt . x : [σ] ` x : σ and Φu . Γ ` u : [σ] is obtained
from Φ using the (many) rule. We conclude since sz (Φ) = 1 + sz (Φu)− 1. We now reason
on the different cases assuming that t 6= x.

If Φ is (ax) then Φ . y : [σ] ` y : σ and, since t 6= x, t = y 6= x. Then we take A = [ ],
Φt . y : [σ];x : [ ] ` y : σ, and Φu . ∅ ` u : [ ] from rule (many). We conclude since
sz (Φ) = 1 + 0− 0.
If Φ ends with (many), then Φ . ∧k∈KΓk ` t{x\u} : [σk]k∈K follows from the derivation
Φk . Γk ` t{x\u} : σk, for each k ∈ K. By the i.h. there exist Φk

t , Φk
u, contexts Γkt , Γku

and multitype Ak, such that Φk
t . Γkt ;x : Ak ` t : σk, Φk

u . Γku ` u : Ak, Γk = Γkt ∧ Γku.
Taking A = ∧k∈KAk and using rule many we get ∧k∈KΓkt ;x : A ` t : [σk]k∈K . From the
premises of Φk

u for k ∈ K, applying the many rule, we get ∧k∈KΓku ` u : A. Note that
Γ = ∧k∈KΓk = (∧k∈KΓkt ) ∧ (∧k∈KΓku). The statement about sz (_) works as expected
by the i.h.
If Φ ends with (abs), then t = λp.t′, therefore Φ . Γ\\ var(p) ` λp.(t′{x\u}) : B → σ

follows from Φ′ . Γ ` t′{x\u} : σ and Πp . Γ|p 
 p : B. Note that, one can always assume
that var(p)∩fv(u) = ∅ and x /∈ var(p). By the i.h., Φt′ .Γt′ ;x : A ` t′ : σ, Φu.Γu ` u : A,
with Γ = Γt′ ∧ Γu. Then using abs we get Φt . Γt′\\ var(p);x : A ` λp.t′ : B → σ. Note
that (Γt′ ;x : A)\\ var(p) = Γt′\\ var(p);x : A and Γ\\ var(p) = (Γt′\\ var(p)) ∧ Γu. The
statement about sz (_) works as expected by the i.h.
The remaining cases for (app), (pair) and (match) also hold by the i.h. and do not
present any special difficulty. J

I Lemma 5. Let Φ . Γ ` t : σ. Then,
1. (Upper Subject Reduction). t −→p t

′ implies there is Φ′ . Γ ` t′ : σ s.t. sz (Φ) ≥ sz (Φ′),
and t −→h t

′ implies there is Φ′ . Γ ` t′ : σ s.t. sz (Φ) > sz (Φ′).
2. (Upper Subject Expansion). t′ −→p t implies there is Φ′.Γ ` t′ : σ such that sz (Φ′) ≥ sz (Φ)

and t′ −→h t implies there is Φ′ . Γ ` t′ : σ such that sz (Φ′) > sz (Φ).
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Proof. Let Φ . Γ ` t : σ.
1. By induction on −→p (resp. −→h ) and the substitution property (Lem. 22). The first

three cases represent the base cases for both reductions, where the size relation is strict.
t = L[[λp.v]]u −→p/h L[[v[p\u]]] = t′. The proof is by induction on the list L. We only show
the case of the empty list as the other one is straightforward. The typing derivation Φ
is necessarily of the form

Γv ` v : σ Γv|p 
 p : A
Γv\\ var(p) ` λp.v : A → σ Γu ` u : A

Γv\\ var(p) ∧ Γu ` (λp.v)u : σ

We then construct the following derivation Φ′:
Γv ` v : σ Γv|p 
 p : A Γu ` u : A

Γv\\ var(p) ∧ Γu ` v[p\u] : σ

Moreover, sz (Φ) = sz (Φ′) + 1.
t = v[x\u] −→p v{x\u} = t′. Then Φ has two term premises Φv . Γv;x : A ` v : σ,
Φu . Γu ` u : A, and one pattern premise Πx . x : A 
 x : A, where Γ = Γv ∧ Γu and
sz (Φ) = sz (Φv) + sz (Φu) + sz (Πx) + 1. Lem. 22 then gives a derivation Φ′ ending
with Γv ∧ Γu ` v{x\u} : σ, where |A| ≥ 0 and sz (Πx) = 1 imply

sz (Φ′) = sz (Φv) + sz (Φu)− |A| < sz (Φv) + sz (Φu) + sz (Πx) < sz (Φ)

When t = v[x\u] −→h v{x\u} = t′, where v 6−→h , the same results hold.
t = v[〈p1, p2〉\L[[〈u1, u2〉]]] −→p L[[v[p1\u1][p2\u2]]] = t′. Let us write p = 〈p1, p2〉 and
u = 〈u1, u2〉. The typing derivation Φ is necessarily of the form

Φv . Γv ` v : σ Πp . Γv|p 
 〈p1, p2〉 : A Φu . Γu ` L[[〈u1, u2〉]] : A
Γv\\ var(〈p1, p2〉) ∧ Γu ` v[〈p1, p2〉\L[[〈u1, u2〉]]] : σ

Moreover, A = [×(A1,A2)] and sz (Φ) = sz (Φv) + sz (Πp) + sz (Φu) + 1.
Then Πp is of the form:

Πp1 . Γv|p1 
 p1 : A1 Πp2 . Γv|p2 
 p2 : A2 p1#p2

Γv|p 
 〈p1, p2〉 : [×(A1,A2)]

and sz (Πp) = sz (Πp1) + sz (Πp2) + 1
The proof is then by induction on the list L.

For L = 2 we have Φu of the form:
Φu1 . Γu1 ` u1 : A1 Φu2 . Γu2 ` u2 : A2

Γu ` 〈u1, u2〉 : ×(A1,A2)
Γu ` 〈u1, u2〉 : A

where Γu = Γu1 ∧ Γu2 and sz (Φu) = sz (Φu1) + sz (Φu2) + 1. We first construct
the following derivation:

Φv . Γv ` v : σ Πp1 . Γv|p1 
 p1 : A1 Φu1 . Γu1 ` u1 : A1

Γv\\ var(p1) ∧ Γu1 ` v[p1\u1] : σ

By using Lem. 4 and α-conversion, we construct a derivation Φ′ with conclusion
Γv\\ var(p1)\\ var(p2) ∧ Γu1 ∧ Γu2 ` v[p1\u1][p2\u2] : σ. Note that p1#p2 im-
plies Γv\\ var(〈p1, p2〉) = Γv\\ var(p1)\\ var(p2). Thus, we finally obtain sz (Φ′) =
sz (Φv) + sz (Πp) + sz (Φu) < sz (Φ).
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Let L = L′[q\s]. Then Φu is necessarily of the following form:

ΦL′ .∆u ` L′[[〈u1, u2〉]] : ×(A1,A2) Πq .∆u|q 
 q : B Φs .∆s ` s : B
Γu ` L′[[〈u1, u2〉]][q\s] : ×(A1,A2)

Γu ` L′[[〈u1, u2〉]][q\s] : A

where Γu = ∆u\\ var(q) ∧∆s.
We will apply the i.h. on the reduction step v[p\L′[[u]]] −→p L′[[v[p1\u1][p2\u2]]], in
particular we type the left-hand side term with the following derivation Ψ1:

Φv Πp

ΦL′ .∆u ` L′[[〈u1, u2〉]] : ×(A1,A2)
∆u ` L′[[〈u1, u2〉]] : A

Γv\\ var(p) ∧∆u ` v[〈p1, p2〉\L′[[〈u1, u2〉]]] : σ

The i.h. gives a derivation Ψ2 . Γv\\ var(p) ∧∆u ` L′[[v[p1\u1][p2\u2]]] : σ verifying
sz (Ψ2) < sz (Ψ1). Let Λ = Γv\\ var(p) ∧ ∆u. We conclude with the following
derivation Φ′:

Ψ2 Πq .∆u|q 
 q : B Φs .∆s ` s : B
Λ\\ var(q) ∧∆s ` L′[[v[p1\u1][p2\u2]]][q\s] : σ

Indeed, we first remark that Λ|q = ∆u|q holds by relevance and α-conversion.
Secondly, Γv\\ var(p)∧Γu = Γv\\ var(p)∧ (∆u\\ var(q))∧∆s = Λ\\ var(q)∧∆s also
holds by Lem. 4 and α-conversion. Last, we have

sz (Φ′) = sz (Ψ2) + sz (Πq) + sz (Φs) + 1 <

sz (Ψ1) + sz (Πq) + sz (Φs) + 1 =
sz (Φv) + sz (Πp) + sz (ΦL′) + 1 + sz (Πq) + sz (Φs) + 1 =
sz (Φv) + sz (Πp) + sz (Φu) + 1 = sz (Φ)

When t = v[〈p1, p2〉\L[[〈u1, u2〉]]] −→h L[[v[p1\u1][p2\u2]]] = t′, where v 6−→h , the same
results hold.
Most of the inductive cases are straightforward. We only detail here two interesting
cases.
t = v[p\u] −→p v[p\u′] = t′, where u −→p u

′. The proof holds here by the i.h. In
particular, when p = x and x /∈ fv(v), then by relevance we have x of type [ ] as
well as u of type [ ]. This means that both u and u′ are typed by a (many) rule with
no premise, and in that case we get sz (Φ) = sz (Φ′).
t = v[p\u] −→h v[p\u′] = t′, where v 6−→h and p 6= x and u −→h u

′. By construction
there are typing subderivations Φv .Γv ` v : σ, Πp .Γv|p 
 p : A and Φu .Γu ` u : A
such that Γ = Γv\\ var(p) ∧ Γu. Since p is not a variable then Πp ends with rule
pat×. In which case A contains exactly one type, let us say A = [σu]. Then Φu has
the following form

Γu ` u : σu
Φu . Γu ` u : [σu]

The i.h. applied to the premise of Φu gives a derivation Γu ` u′ : σu and having the
expected size relation. To conclude we build a type derivation Φ′ for v[p\u′] having
the expected size relation.
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2. By induction on −→p (resp. −→h ) and the anti-substitution property (Lem. 23).
t′ = L[[λp.v]]u −→p/h L[[v[p\u]]] = t. The proof is by induction on the list L. We consider
the case L = 2, since the other case follows straightforward by i.h. The typing derivation
Φ is necessarily of the form:

Γv ` v : σ Γv|p 
 p : A Γu ` u : A
Γv\\ var(p) ∧ Γu ` v[p\u] : σ

We then construct the following derivation Φ′:

Γv ` v : σ Γv|p 
 p : A
Γv\\ var(p) ` λp.v : A → σ Γu ` u : A

Γv\\ var(p) ∧ Γu ` (λp.v)u : σ

Moreover, sz (Φ′) = sz (Φ) + 1.
t′ = v[x\u] −→p v{x\u} = t. Then by Lem. 23, there exist derivations Φv,Φu, contexts
Γv,Γu and a multitype A, such that Φv .Γv;x : A ` v : σ, Φu .Γu ` u : A, Γ = Γv∧Γu,
and sz (Φ) = sz (Φv) + sz (Φu)− |A|. Furthermore, one has Πx . x : A 
 x : A Then
one can construct the following derivation Φ′.

Γv;x : A ` v : σ x : A 
 x : A Γu ` u : A
Γv ∧ Γu ` v[x\u] : σ

Furthermore, sz (Φ′) = sz (Φv) + sz (Πx) + sz (Φu) > sz (Φv) + sz (Φu)− |A|, since
|A| ≥ 0 and sz (Πx) = 1. The same result holds for t = v[x\u] −→h v{x\u} = t′, where
v 6−→h .
t′ = v[〈p1, p2〉\L[[〈u1, u2〉]]] −→p L[[v[p1\u1][p2\u2]]] = t. Let us write p = 〈p1, p2〉 and
u = 〈u1, u2〉. The proof is by induction on the list L.

L = 2, then the typing derivation Φ is necessarily of the form:

Γv ` v : σ Γv|p1 
 p1 : A1 Γ1 ` u1 : A1

(Γv\\ var(p1)) ∧ Γ1 ` v[p1\u1] : σ ((Γv\\ var(p1)) ∧ Γ1)|p2 
 p2 : A2 Γ2 ` u2 : A2

(((Γv\\ var(p1)) ∧ Γ1)\\ var(p2)) ∧ Γ2 ` v[p1\u1][p2\u2] : σ

where Γ = (((Γv\\ var(p1)) ∧ Γ1)\\ var(p2)) ∧ Γ2. Moreover, the following equality
holds (((Γv\\ var(p1)) ∧ Γ1)\\ var(p2)) = ((Γv\\ var(p1))\\ var(p2) ∧ Γ1\\ var(p2)),
since (Γv\\ var(p1))\\ var(p2) = Γv\\ var(p) and Γ1\\ var(p2) =L.4 Γ1. Similarly,
((Γv\\ var(p1)) ∧ Γ1)|p2 =L.4 (Γv\\ var(p1))|p2 and, by linearity of patterns, we have
(Γv\\ var(p1))|p2 = Γv|p2 . Hence, we conclude with the following derivation Φ′:

Γv ` v : σ
Γv|p1 
 p1 : A1 Γv|p2 
 p2 : A2

Γv|p 
 p : [×(A1,A2)]

Γ1 ` u1 : A1 Γ2 ` u2 : A2

Γ1 ∧ Γ2 ` u : ×(A1,A2)
Γ1 ∧ Γ2 ` u : [×(A1,A2)]

(Γv\\ var(p)) ∧ (Γ1 ∧ Γ2) ` v[p\u] : σ

Furthermore,

sz (Φ) = sz (Φv) + sz (Πp1) + sz (Φu1) + 1 + sz (Πp2) + sz (Φu2) + 1 =
sz (Φv) + sz (Πp1) + sz (Πp2) + 1 + sz (Φu1) + sz (Φu2) + 1 <

sz (Φv) + sz (Πp) + sz (Φu) + 1 = sz (Φ′)
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If L = L′[q\s], then t′ = v[〈p1, p2〉\L′[q\s][[〈u1, u2〉]]] −→p L′[q\s][[v[p1\u1][p2\u2]]] =
L′[[v[p1\u1][p2\u2]]][q\s] = t, and Φ is of the form:

ΦL′ . ΓL′ ` L′[[v[p1\u1][p2\u2]]] : σ Πq . ΓL′ |q 
 q : A Φs . Γs ` s : A
ΓL′\\ var(q) ∧ Γs ` L′[[v[p1\u1][p2\u2]]][q\s] : σ

From v[〈p1, p2〉\L′[[〈u1, u2〉]]] −→p L′[[v[p1\u1][p2\u2]]] and ΦL′ by the i.h. one gets
Φ′L′ . ΓL′ ` v[〈p1, p2〉\L′[[〈u1, u2〉]]] : σ with sz (Φ′L′) > sz (ΦL′). Furthermore Φ′L′ is
necessarily of the form:

Φv . Γv ` v : σ Πp . Γv|p 
 p : [×(A1,A2)]
Φu . Γu ` L′[[u]] : ×(A1,A2)

Γu ` L′[[u]] : [×(A1,A2)]
Γv\\ var(p) ∧ Γu ` v[p\L′[[u]]] : σ

Then one can construct the following derivation Φ′u:

Γu ` L′[[u]] : ×(A1,A2) Γu|q 
 q : A Φs
Γu\\ var(q) ∧ Γs ` L′[q\s][[u]] : ×(A1,A2)

Γu\\ var(q) ∧ Γs ` L′[q\s][[u]] : [×(A1,A2)]

From which we build Φ′:

Γv ` v : σ Γv|p 
 p : [×(A1,A2)] Γu\\ var(q) ∧ Γs ` L′[q\s][[u]] : [×(A1,A2)]
Γv\\ var(p) ∧ Γu\\ var(q) ∧ Γs ` v[p\L′[q\s][[u]]] : σ

With Γv\\ var(p)∧ Γu\\ var(q)∧ Γs = (Γv\\ var(p)∧ Γu)\\ var(q)∧ Γs = Γ. Further-
more

sz (Φ) = sz (ΦL′) + sz (Πq) + sz (Φs) + 1 <i.h.
sz (Φ′L′) + sz (Πq) + sz (Φs) + 1 =
sz (Φv) + sz (Πp) + sz (Φu) + sz (Πq) + sz (Φs) + 1 + 1 =
sz (Φv) + sz (Πp) + sz (Φ′u) + 1 = sz (Φ′)

The same result holds for t′ = v[〈p1, p2〉\L[[〈u1, u2〉]]] −→p L[[v[p1\u1][p2\u2]]] = t, where
v 6−→h .
Most of the inductive cases are straightforward. We only detail here two interesting
cases.
t′ = v[p\u′] −→p v[p\u] = t, where u′ −→p u. The proof holds by the i.h. In particular,
when p = x and x /∈ fv(v), then by relevance we have x of type [ ] as well as u of
type [ ]. This means that u, u′ are typed by a (many) rule with no premise, and in
that case we get sz (Φ) = sz (Φ′).
t′ = v[p\u′] −→h v[p\u] = t, where v 6−→h and p 6= x and u′ −→h u. By construction
there are subderivations Φv . Γv ` v : σ, Πp . Γv|p 
 p : A and Φu . Γu ` u : A for
some multiset A and Γ = (Γv\\ var(p)) ∧ Γu. Since p is not a variable then Πp ends
with rule (pat×), in which case A contains only one type, let us say A = [σu]. Then
Φu has the following form:

Φu .
Γu ` u : σu

Γu ` u′ : [σu]
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The i.h. applied to the premise of Φu gives a derivation Γu ` u′ : σu. Therefore, we
construct the following derivation Φ′:

Γv ` v : σ Γv|p 
 p : [σu] Γu ` u′ : σu
Γv\\ var(p) ∧ Γu ` v[p\u′] : σ

Furthermore,

sz (Φ) = sz (Φv) + sz (Πp) + sz (Φu) + 1 <i.h.
sz (Φv) + sz (Πp) + sz (Φu′) + 1 = sz (Φ′) J

I Lemma 6 (Clash-Free). Let Φ . Γ ` t : σ. Then t is (head) clash-free.

Proof. Let Φ . Γ ` t : σ. By induction on sz (Φ), using the syntax-directed aspect of
system U .

The base case for rule (ax) is trivial.
The cases for rules (many) and (abs) are straightforward from the i.h.
The case for (pair) is also straightforward since every pair is (head) clash-free.
Let us consider the case for (match), where Φ has the following form:

Γt ` t : σ Γt|p 
 p : A ∆ ` u : A
(match)

(Γt\\ var(p)) ∧∆ ` t[p\u] : σ

If t −→h t
′ for some t′, so that t[p\u] −→h t

′[p\u], then the size of the typing derivation
of t′[p\u] is smaller than that of Φ by Upper Subject Reduction. The i.h. then gives
t′[p\u] (head) clash-free and thus t[p\u] is (head) clash-free.
If t 6−→h then there are two cases.
∗ If p is a variable x, then t[x\u] −→h t{x\u} and by Upper Subject Reduction t{x\u}

has a type derivation strictly smaller than that of Φ, thus by the i.h. t{x\u} is
(head) clash-free and so is t[x\u].

∗ Otherwise p is a pair, so that A 6= [ ] (i.e. A = [×(A1,A2)]).
· If u −→h u

′ then t[p\u] −→h t[p\u′], so that the size of the typing derivation of
t[p\u′] is smaller than that of Φ by Upper Subject Reduction. The i.h. then gives
t[p\u′] (head) clash-free and thus t[p\u] is (head) clash-free.

· If u6−→h then t[p\u] is a head-normal form. In order to guarantee that t[p\u] is
(head) clash-free note that u cannot be of the form L[[λq.v]], which can only be
typed with a multiset of functional types.

Let us consider the case for rule (app), where Φ has the following form

Φu . Γu ` u : A → σ Φv . Γv ` v : A
Γu ∧ Γv ` u v : σ

Note that u cannot be of the form L[[〈u1, u2〉]] because it is typed with a functional type,
thus it is either L[[x]] or L[[λp.u′]].
If u is L[[x]], then u is (head) clash-free by the i.h. and thus uv is necessarily (head)
clash-free.
If u is L[[λp.u′]] then t = L[[λp.u′]]v −→h L[[u′[p\v]]] = t′ and the size of the type derivation
of t′ is strictly smaller than the size of Φ by Upper Subject Reduction. The i.h. gives t′
(head) clash-free, and thus t is also (head) clash-free. J
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B Soundness of System E

I Lemma 12 (Tight Spreading). Let t ∈ N . Let Φ � Γ `(b,e,m,f) t : σ be a typing
derivation such that tight(Γ). Then σ is tight and the last rule of Φ does not belong
to {app, abs, absp, pair, pairp}.

Proof. First note that, since t ∈ N , then t is not an abstraction nor a pair, therefore one
cannot apply any of the rules {abs, absp, pair, pairp, emptypair}. We now examine the
remaining rules.

t = x. Then Φ is an axiom x : [t] `(0,0,0,0) x : t so the property trivially holds.
t = uv, with u ∈ N . Then Φ has a (left) subderivation Φu � Γu `(b,e,m,f) u : σu, and
since Γu ⊆ Γ, then Γu is necessarily tight. Therefore, by the i.h., σu = •N , from which
follows that σ = •N by applying rule (appp). Note that one cannot apply rule (app) to
type uv, since t would have to be an arrow type, which contradicts the i.h.
t = u[p\v], with u ∈ N , v ∈ N . Then Φ follows from Φu . Γu `(bu,eu,mu,fu) u : σ,
Φp . Γu|p 
(ep,mp,fp) p : A and Φv .∆ `(bv,ev,mv,fv) v : A, where Γ = (Γu\\ var(p)) ∧∆.
Since (Γu\\ var(p)) ∧∆ is tight, then ∆ is tight. By the i.h. on v one gets a derivation
∆ `(bv,ev,mv,fv) v : •N so that ∆ `(bv,ev,mv,fv) v : [•N ] follows from many and Γu|p 
(0,0,1)

p : [•N ] necessarily follows from rule (patp). This implies Γu|p is tight, therefore Γu is
tight. Since u ∈ N the i.h. gives σ ∈ t as expected. J

I Lemma 13 (Canonical Forms and Minimal Counters). Let Φ � Γ `(b,e,m,f) t : σ be a tight
derivation. Then t ∈M if and only if b = e = m = 0.

Proof. By induction on Φ � Γ `(b,e,m,f) t : σ, where Φ is tight (right-to-left implication),
and by induction on t ∈M (left-to-right implication). The latter is presented below.

t = λp.u, with u ∈ M. Then Φ cannot end with rule (abs) because σ is tight. The
last rule of Φ is necessarily (absp). The i.h. then applies and gives b = e = m = 0 and
f − 1 = |u|. We conclude since f = |u|+ 1 = |t|.
t = 〈t1, t2〉. Then Φ necessarily ends with rule (pairp) and the counters are as required.
t = u[p\v], with u ∈ M, v ∈ N . Then Φ ends with rule (match), so that u (resp. v) is
typable with some context Γu (resp. Γv), where Γ = (Γu\\ var(p)) ∧ Γv. Let us consider
the type A of u in the premise of rule (match). Since Γv is tight and v ∈ N , then Lem. 12
guarantees that every type of v in A is tight, and every counter typing v is of the form
(0, 0, 0, |v|). This same multitype A types the pattern p, so that there are in principle
two cases:

Either p is a variable typable with rule (patv), but then t /∈M since t is still reducible.
Contradiction.
Or p is typable with rule (patp), so that its counter is (0, 0, 1), its type is [•N ] and its
context is Γu|p necessarily tight by definition of rule (patp).

Since Γu\\ var(p) is tight by hypothesis, then the whole context Γu is tight. We can then
apply the i.h. to u and obtain counters for u of the form bu = eu = mu = 0 and fu = |u|.
On the other side, since the type of p is [•N ] (rule patp), there is only one premise to
type v, which is necessarily of the form ∆ `(0,0,0,|v|) v : •N . We then conclude that the
counters typing u[p\v] are b = e = m = 0 and f = fu + fv + 1 = |u|+ |v|+ 1 = |t|, as
required.
t ∈ N . We have three different cases.
t = x. This case is straightforward.
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t = uv, with u ∈ N . Since Φ is tight, then Γ is tight and we can apply Lem. 12. Then
Φ necessarily ends with rule (appp). The i.h. then applies to the premise typing u, thus
giving counters b = e = m = 0 and f − 1 = |u|. We conclude since f = |u|+ 1 = |t|.
t = u[p\v], with u ∈ N , v ∈ N . This case is similar to the third case. J

I Lemma 14 (Substitution for System E ). If Φt . Γ;x : A `(bt,et,mt,ft) t : σ, and Φu .

∆ `(bu,eu,mu,fu) u : A, then there exists Φt{x\u} .Γ∧∆ `(bt+bu,et+eu,mt+mu,ft+fu) t{x\u} : σ.

Proof. We generalise the statement as follows: Let Φu .∆ `(bu,eu,mu,fu) u : A.
If Φt . Γ;x : A `(bt,et,mt,ft) t : σ, then there exists
Φt{x\u} . Γ ∧∆ `(bt+bu,et+eu,mt+mu,ft+fu) t{x\u} : σ.
If Φt . Γ;x : A `(bt,et,mt,ft) t : B, then there exists
Φt{x\u} . Γ ∧∆ `(bt+bu,et+eu,mt+mu,ft+fu) t{x\u} : B.

The proof then follows by induction on Φt.
If Φt is (ax), then we consider two cases:
t = x: then Φx . x : [σ′] `(0,0,0,0) x : σ′ and Φu . ∆ `(bu,eu,mu,fu) u : [σ′], which is
a consequence of ∆ `(bu,eu,mu,fu) u : σ′. Then x{x\u} = u, and we trivially obtain
Φt{x\u} .∆ `(0+bu,0+eu,0+mu,0+fu) u : σ′.
t = y: then Φy . y : [σ];x : [ ] `(0,0,0,0) y : σ and Φu . ∅ `(0,0,0,0) u : [ ]. Then
y{x\u} = y, and we trivially obtain Φt{x\u} . y : [σ] `(0+0,0+0,0+0,0+0) y : σ.

If Φt ends with (many), then it has premises (Φit . Γi;x : Ai `(bi
t,e

i
t,m

i
t,f

i
t ) t : σi)i∈I , where

Γ = ∧i∈IΓi, A = ∧i∈IAi, bt = +i∈Ib
i
t, et = +i∈Ie

i
t, mt = +i∈Im

i
t, ft = +i∈If

i
t and

B = [σi]i∈I . The derivation Φu can also be decomposed into several subderivations
(Φi

u . ∆i `(bi
u,e

i
u,m

i
u,f

i
u) u : Ai)i∈I , where bu = +i∈Ib

i
u, eu = +i∈Ie

i
u, mu = +i∈Im

i
u,

fu = +i∈If
i
u, ∆ = ∧i∈I∆i. We can apply the i.h. and we thus obtain derivations

(Φit{x\u} . Γi ∧∆i `(bi
t+bi

u,e
i
t+ei

u,m
i
t+mi

u,f
i
t +fi

u) t{x\u} : σi)i∈I . Then we apply rule (many)
to get Φt{x\u} . Γ ∧∆ `(bt+bu,et+eu,mt+mu,ft+fu) t{x\u} : B.
If Φt ends with (app), so that t = t′u′, then

Φt′u′ . Γt′ ∧ Γu′ ;x : At′ ∧ Au′ `(bt′ +bu′ ,et′ +eu′ ,mt′ +mu′ ,ft′ +fu′ ) t′u′ : σ,

which follows from the two term premises Γt′ ;x : At′ `(bt′ ,et′ ,mt′ ,ft′ ) t′ : B → σ and
Γu′ ;x : Au′ `(bu′ ,eu′ ,mu′ ,fu′ ) u′ : B. Also, Φu . ∆ `(bu,eu,mu,fu) u : A is a consequence
of (∆k `(bk

u,e
k
u,m

k
u,f

k
u ) u : σk)k∈K , with A = [σk]k∈K , ∆ = ∧k∈K∆k and bu = +k∈Kb

k
u,

eu = +k∈Ke
k
u, mu = +k∈Km

k
u and fu = +k∈Kf

k
u . Note on the other hand that

A = At′ ∧ Au′ = [σi]i∈Kt′ ∧ [σi]i∈Ku′ , with K = Kt′ ]Ku′ , from which one can obtain
(using the many rule):

∆t′ `(Bt′ ,Et′ ,Mt′ ,Ft′ ) u : At′
∆u′ `(Bu′ ,Eu′ ,Mu′ ,Fu′ ) u : Au′

where bu = Bt′ +Bu′ = (+i∈Kt′ b
i
u)+(+i∈Ku′ b

i
u), eu = Et′ +Eu′ = (+i∈Kt′ e

i
u)+(+i∈Ku′ e

i
u),

mu = Mt′ +Mu′ = (+i∈Kt′m
i
u) + (+i∈Ku′m

i
u), fu = Ft′ +Fu′ = (+i∈Kt′ f

i
u) + (+i∈Ku′ f

i
u).

By the i.h. we have:

Γt′ ∧∆t′ `(bt′ +Bt′ ,et′ +Et′ ,mt′ +Mt′ ,ft′ +Ft′ ) t′{x\u} : B → σ

Γu′ ∧∆u′ `(bu′ +Bu′ ,eu′ +Eu′ ,mu′ +Mu′ ,fu′ +Fu′ ) u′{x\u} : B
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Finally, applying the app rule we obtain:

Γt′ ∧ Γu′ ∧∆t′ ∧∆u′ `(b,e,m,f) (t′{x\u})(u′{x\u}) : σ

with b = bt′ + bu′ + bu, e = et′ + eu′ + eu, m = mt′ +mu′ +mu and f = ft′ + fu′ + fu, as
expected.
If Φt ends with (abs), (absp), (appp) or (match) the result follows from the i.h. by
assuming α-conversion whenever necessary.
If Φt ends with (pair) or (pairp), so that t = 〈t′, u′〉, then we have two cases. The case
for pairp, follows from Φt being of the form x : [ ] `(0,0,0,1) 〈t′, u′〉 : •M, which implies
Φu. `(0,0,0,0) u : [ ]. Therefore ∅ `(0+0,0+0,0+0,1+0) 〈t′{x\u}, u′{x\u}〉 : •M holds. The
case for pair follows by induction following the same reasoning used in rule app. J

I Lemma 15 (Exact Subject Reduction). If Φ . Γ `(b,e,m,f) t : σ, and t −→h t
′ is an s-step,

with s ∈ {b, e, m}, then Φ′ . Γ `(b′,e′,m′,f) t′ : σ, where
s = b implies b′ = b− 1, e′ = e, m′ = m.
s = e implies b′ = b, e′ = e− 1, m′ = m.
s = m implies b′ = b, e′ = e, m′ = m− 1.

Proof. By induction on −→h .
t = L[[λp.v]]u −→h L[[v[p\u]]] = t′. The proof is by induction on the list context L. We only
show the case of the empty list as the other one is straightforward. The typing derivation
Φ is necessarily of the form

Γv `(bv,ev,mv,fv) v : σ Γv|p 
(ep,mp,fp) p : A
Γv\\ var(p) `(bv+1,ev+ep,mv+mp,fv+fp) λp.v : A → σ Γu `(bu,eu,mu,fu) u : A

Γv\\ var(p) ∧ Γu `(bv+1+bu,ev+ep+eu,mv+mp+mu,fv+fp+fu) (λp.v)u : σ

We then construct the following derivation Φ′:

Γv `(bv,ev,mv,fv) v : σ Γv|p 
(ep,mp,fp) p : A Γu `(bu,eu,mu,fu) u : A
Γv\\ var(p) ∧ Γu `(bv+bu,ev+ep+eu,mv+mu+mp,fv+fp+fu) v[p\u] : σ

The counters are as expected because the first one has decremented by 1.
t = v[x\u] −→h v{x\u} = t′, where v 6−→h . Then Φ has two premises Γv;x : A `(bv,ev,mv,fv)

v : σ and Γu `(bu,eu,mu,fu) u : A, where Γ = Γv ∧ Γu, b = bv + bu, e = ev + eu + 1,
m = mv +mu + 0, and f = fv + fu + 0.
Lem. 14 then gives a derivation ending with Γv∧Γu `(bv+bu,ev+eu,mv+mu,fv+fu) v{x\u} : σ.
The context, type, and counters are as expected.
t = v[〈p1, p2〉\L[[〈u1, u2〉]]] −→h L[[v[p1\u1][p2\u2]]] = t′, where v 6−→h .
Let p = 〈p1, p2〉 and u = 〈u1, u2〉. The typing derivation Φ is necessarily of the form

Γv `(bv,ev,mv,fv) v : σ Γv|p 
(ep,mp,fp) p : A Γu `(bu,eu,mu,fu) L[[u]] : A
Γv\\ var(p) ∧ Γu `(bv+bu,ev+eu+ep,mv+mu+mp,fv+fu+fp) v[〈p1, p2〉\L[[u]]] : σ

Then A = [×(A1,A2)], for some multitypes A1 and A2, and so the pattern 〈p1, p2〉 is
typable as follows:

Γv|p1 

(e1,m1,f1) p1 : A1 Γv|p2 


(e2,m2,f2) p2 : A2

Γv|p 
(e1+e2,1+m1+m2,f1+f2) 〈p1, p2〉 : [×(A1,A2)]

where ep = e1 + e2, mp = 1 + m1 + m2 and fp = f1 + f2. The proof then follows by
induction on list L:
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For L = 2 we have term u typable as follows:

Γ1 `(b′
1,e

′
1,m

′
1,f

′
1) u1 : A1 Γ2 `(b′

2,e
′
2,m

′
2,f

′
2) u2 : A2

Γu `(bu,eu,mu,fu) 〈u1, u2〉 : ×(A1,A2)
Γu `(bu,eu,mu,fu) 〈u1, u2〉 : A

where Γu = Γ1 ∧ Γ2 and (bu, eu,mu, fu) = (b′1 + b′2, e
′
1 + e′2,m

′
1 +m′2, f

′
1 + f ′2).

We first construct the following derivation:

Γv `(bv,ev,mv,fv) v : σ Γv|p1 

(e1,m1,f1) p1 : A1 Γ1 `(b′

1,e
′
1,m

′
1,f

′
1) u1 : A1

Γv\\ var(p1) ∧ Γ1 `(bv+b′
1,ev+e′

1+e1,mv+m′
1+m1,fv+f ′

1+f1) v[p1\u1] : σ

By using relevance and α-conversion to assume freshness of bound variables, we can
construct a derivation with conclusion

Γv\\ var(p1)\\ var(p2) ∧ Γu `(b′,e′,m′,f) v[p1\u1][p2\u2] : σ

where (b′, e′,m′, f) = (bv + bu, ev + eu + e1 + e2,mv +mu +m1 +m2, fv + fu + f1 + f2).
In order to conclude we remark the following facts:
∗ Γv\\ var(〈p1, p2〉) = Γv\\ var(p1)\\ var(p2)
∗ bv + bu = bv + b′1 + b′2
∗ ev + eu + ep = ev + e′1 + e′2 + e1 + e2
∗ mv +mu +mp = mv +m′1 +m′2 + 1 +m1 +m2
∗ fv + fu + fp = fv + f ′1 + f ′2 + f1 + f2
Then the context, type and counters are as expected.
Let L = L′[q\s]. Then Φu is necessarily of the following form:

∆u `(b′
u,e

′
u,m

′
u,f

′
u) L′[[u]] : ×(A1,A2) ∆u|q 
(eq,mq,fq) q : B ∆s `(bs,es,ms,fs) s : B

Γu `(b′
u+bs,e

′
u+es+eq,m

′
u+ms+mq,f

′
u+fs+fq) L′[[u]][q\s] : ×(A1,A2)

Γu `(b′
u+bs,e

′
u+es+eq,m

′
u+ms+mq,f

′
u+fs+fq) L′[[u]][q\s] : A

where Γu = ∆u\\ var(q) ∧∆s, bu = b′u + bs, eu = e′u + es + eq, mu = m′u +ms +mq

and fu = f ′u + fs + fq.
We will apply the i.h. on the reduction step v[p\L′[[u]]] −→p L′[[v[p1\u1][p2\u2]]], in
particular we type the left-hand side term with the following derivation Ψ1:

Γv `(bv,ev,mv,fv) v : σ Γv|p 
(ep,mp,fp) p : A
∆u `(b′

u,e
′
u,m

′
u,f

′
u) L′[[u]] : ×(A1,A2)

∆u `(b′
u,e

′
u,m

′
u,f

′
u) L′[[u]] : A

Γv\\ var(p) ∧∆u `(bv+b′
u,ev+e′

u+ep,mv+m′
u+mp,fv+f ′

u+fp) v[p\L′[[u]]] : σ

where b1 = bv + b′u, e1 = ev + e′u + ep, m1 = mv +m′u +mp and f1 = fv + f ′u + fp. The
i.h. gives a derivation Ψ2 . Γv\\ var(p)∧∆u `(b2,e2,m2,f2) L′[[v[p1\u1][p2\u2]]] : σ where
b2 = b1, e2 = e1, m2 = m1 − 1 and f2 = f1. Let Λ = Γv\\ var(p) ∧∆u. We conclude
with the following derivation Φ′:

Ψ2 ∆u|q 
(eq,mq,fq) q : B ∆s `(bs,es,ms,fs) s : B
Λ\\ var(q) ∧∆s `(b2+bs,e2+es+eq,m2+ms+mq,f2+fs+fq) L′[[v[p1\u1][p2\u2]]][q\s] : σ

Indeed, we first remark that Λ|q = ∆u|q holds by relevance and α-conversion. Secondly,
Γv\\ var(p) ∧ Γu = Γv\\ var(p) ∧ (∆u\\ var(q)) ∧∆s = Λ\\ var(q) ∧∆s also holds by
relevance and α-conversion. Last, we conclude with the following remarks:
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∗ b′ = b2 + bs = b1 + bs = bv + bu = b

∗ e′ = e2 + es + eq = e1 + es + eq = ev + eu + ep = e

∗ m′ = m2 +ms +mq = m1 − 1 +ms +mq = mv +mu +mp − 1 = m− 1
∗ f ′ = f2 + fs + fq = f1 + fs + fq = fv + fu + fp = f

Most of the inductive cases are straightforward, so we only show the interesting one. Let
t = v[p\u] −→h v[p\u′] = t′, where v 6−→h and p 6= x and u −→h u

′. By construction there
are typing subderivations Φv . Γv `(bv,ev,mv,fv) v : σ, Φp . Γv|p 
(ep,mp,fp) p : A and
Φu . Γu `(bu,eu,mu,fu) u : A. Since p is not a variable then Φp ends with rule patp or
pat×. In both cases A contains only one type, let us say A = [σu]. Then Φu has the
following form

Γu `(bu,eu,mu,fu) u : σu
Φu . Γu `(bu,eu,mu,fu) u : [σu]

The i.h. applied to the premise of Φu gives a derivation Γu `(b′
u,e

′
u,m

′
u,fu) u′ : σu and

having the expected counters. To conclude we build a type derivation Φ′ for v[p\u′]
having the expected counters. J

C Completeness for System E

I Lemma 17 (Canonical Forms and Tight Derivations). Let t ∈ M. There exists a tight
derivation Φ � Γ `(0,0,0,|t|) t : t.

Proof. We generalise the property to the two following statements, proved by structural
induction on t ∈ N , t ∈M, respectively, using relevance (Lem. 8).

If t ∈ N , then there exists a tight derivation Φ � Γ `(0,0,0,|t|) t : •N :
If t = x, then x:[•N ] `(0,0,0,0) x : •N by (ax), where |x| = 0.
If t = u v where u ∈ N , then |t| = |u| + 1 and by i.h. there is a tight derivation
Φu � Γu `(0,0,0,|u|) u : •N . Then

Γu `(0,0,0,|u|) u : •N
Γu `(0,0,0,|u|+1) u v : •N

The result then holds for Γ := Γu.
If t = u[〈p1, p2〉\v] where u, v ∈ N , then |t| = |u| + |v| + 1 and by i.h. there
are tight derivations Φu � Γu `(0,0,0,|u|) u : •N , Φv � Γv `(0,0,0,|v|) v : •N . Then,
Φ′v � Γv `(0,0,0,|v|) v : [•N ] and

Φu Γu|〈p1,p2〉 

(0,0,1) 〈p1, p2〉 : [•N ] Φ′v

(Γu\\ var(〈p1, p2〉)) ∧ Γv `(0,0,0,|u|+|v|+1) u[〈p1, p2〉\v] : •N

The result then holds for Γ := (Γu\\ var(〈p1, p2〉)) ∧ Γv, since by i.h. tight(Γu) and
tight(Γv) thus tight(Γ).

If t ∈M, then there exists a tight derivation Φ � Γ `(0,0,0,|t|) t : t.
If t ∈ N then by the previous item the result holds for t := •N .
If t = 〈u, v〉 then |t| = 1 and `(0,0,0,1) 〈u, v〉 : •M by (pairp). The result then holds
for Γ := ∅.
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If t = λp.u where u ∈ M then |t| = |u| + 1 and, by i.h., there is a tight derivation
Φu � Γu `(0,0,0,|u|) u : t. Then

Φu � Γu `(0,0,0,|u|) u : t

Γu\\ var(p) `(0,0,0,|u|+1) λp.u : •M

The result then holds for Γ := Γu\\ var(p). Observe that, since by i.h. tight(Γu) holds,
and Γu\\ var(p) ⊆ Γu then tight(Γu\\ var(p)) trivially holds.
If t = u[〈p1, p2〉\v] where u ∈M and v ∈ N then |t| = |u|+ |v|+ 1. Moreover, by the
previous item there is a tight Φv�Γv `(0,0,0,|v|) v : •N (so that tight(Γv)) and, by i.h.,
there is a tight derivation Φu � Γu `(0,0,0,|u|) u : t. Then, Φ′v � Γv `(0,0,0,|v|) v : [•N ]
and

Φu (Γu)|〈p,q〉 
(0,0,1) 〈p, q〉 : [•N ] Φ′v
(Γu\\ var(〈p1, p2〉)) ∧ Γv `(0,0,0,|u|+|v|+1) u[〈p1, p2〉\v] : t

The result then holds for Γ := (Γu\\ var(〈p1, p2〉)) ∧ Γv, since tight(Γv) as remarked,
and by i.h. tight(Γu), thus tight(Γ). J

I Lemma 18 (Anti-Substitution for System E ). Let Φ . Γ `(b,e,m,f) t{x\u} : σ. Then, there
exist derivations Φt, Φu, integers bt, bu, et, eu,mt,mu, ft, fu, contexts Γt,Γu, and multitype A
such that Φt .Γt;x : A `(bt,et,mt,ft) t : σ, Φu .Γu `(bu,eu,mu,fu) u : A, b = bt+ bu, e = et+eu,
m = mt +mu, f = ft + fu, and Γ = Γt ∧ Γu.

Proof. As in the case of the substitution lemma, the proof follows by generalising the
property for the two cases where the type derivation Φ assigns a type or a multiset type.

Let Φ.Γ `(b,e,m,f) t{x\u} : σ. Then, there exist derivations Φt, Φu, integers bt, bu, et, eu,
mt, mu, ft, fu, contexts Γt,Γu, and multitype A such that Φt .Γt;x : A `(bt,et,mt,ft) t : σ,
Φu . Γu `(bu,eu,mu,fu) u : A, b = bt + bu, e = et + eu, m = mt + mu, f = ft + fu, and
Γ = Γt ∧ Γu.
Let Φ.Γ `(b,e,m,f) t{x\u} : B. Then, there exist derivations Φt, Φu, integers bt, bu, et, eu,
mt, mu, ft, fu, contexts Γt,Γu, and multitype A such that Φt .Γt;x : A `(bt,et,mt,ft) t : B,
Φu . Γu `(bu,eu,mu,fu) u : A, b = bt + bu, e = et + eu, m = mt + mu, f = ft + fu, and
Γ = Γt ∧ Γu.

We will reason by induction on Φ. For all the rules (except many), we will have the trivial
case t{x\u}, where t = x, in which case t{x\u} = u, for which we have a derivation
Φ . Γ `(b,e,m,f) u : σ. Therefore Φt . x : [σ] `(0,0,0,0) x : σ and Φu . Γ `(b,e,m,f) u : [σ] is
obtained from Φ using the (many) rule. The conditions on the counters hold trivially. We
now reason on the different cases assuming that t 6= x.

If Φ is (ax), therefore Φ . y : [σ] `(0,0,0,0) y : σ. We only consider the case where t = y

and y 6= x. Then we take A = [ ], Φt . y : [σ];x : [ ] `(0,0,0,0) y : σ and Φu. `(0,0,0,0) u : [ ],
using rule (many). The conditions on the counters follow trivially.
If Φ ends with (many), then Φ.∧k∈KΓk `(+k∈Kbk,+k∈Kek,+k∈Kmk,+k∈Kfk) t{x\u} : [σk]k∈K
follows from Φk . Γk `(bk,ek,mk,fk) t{x\u} : σk, for each k ∈ K. By the i.h. there exist
Φk
t , Φk

u, bkt , bku, ekt , eku, mk
t , mk

u, fkt , fku , contexts Γkt , Γku and multitype Ak, such that
Φk
t . Γkt ;x : Ak `(bk

t ,e
k
t ,m

k
t ,f

k
t ) t : σk, Φk

u . Γku `(bk
u,e

k
u,m

k
u,f

k
u ) u : Ak, Γk = Γkt ∧ Γku,

bk = bkt + bku, ek = ekt + eku, mk = mk
t +mk

u, fk = fkt + fku .
Taking A = ∧k∈KAk and using the (many) rule on the derivations (Φkt )k∈K we get now
∧k∈KΓkt ;x : A `(+k∈Kb

k
t ,+k∈Ke

k
t ,+k∈Km

k
t ,+k∈Kf

k
t ) t : [σk]k∈K . From the premises (Φku)k∈K ,

by applying again the (many) rule, we get ∧k∈KΓku `(+k∈Kb
k
u,+k∈Ke

k
u,+k∈Km

k
u,+k∈Kf

k
u ) u : A.
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Note that Γ = ∧k∈KΓk = (∧k∈KΓkt ) ∧ (∧k∈KΓku), b = +k∈Kbk = (+k∈Kb
k
t ) + (+k∈Kb

k
u),

e = +k∈Kek = (+k∈Ke
k
t ) + (+k∈Ke

k
u), m = +k∈Kmk = (+k∈Km

k
t ) + (+k∈Km

k
u) and

f = +k∈Kfk = (+k∈Kf
k
t ) + (+k∈Kf

k
u ), as expected.

If Φ ends with (abs), then t = λp.t′, therefore

Φ . Γ\\ var(p) `(bt+1,et+ep,mt+mp,ft+fp) λp.(t′{x\u}) : B → σ

follows from Γ `(bt,et,mt,ft) t′{x\u} : σ and Γ|p 
(ep,mp,fp) p : B. On the other side
one can always assume that var(p) ∩ fv(u) = ∅ and x /∈ var(p). We can then apply
the i.h. to obtain Φt′ . Γt′ ;x : A `(b′

t,e
′
t,m

′
t,f

′
t) t′ : σ, Φu . Γu `(bu,eu,mu,fu) u : A, with

Γ = Γt′ ∧ Γu, bt = bt′ + bu, et = et′ + eu, mt = mt′ + mu, ft = ft′ + fu. Then using
rule (abs) we get Φt . Γt′\\ var(p);x : A `(bt′ +1,et′ +ep,mt′ +mp,ft′ +fp) λp.t′ : B → σ. And
Γ\\ var(p) = (Γt′\\ var(p)) ∧ Γu, bt + 1 = b′t + 1 + bu, et = et′ + eu, mt = mt′ +mu and
ft = ft′ + fu, as expected.
If Φ ends with (app) then t = t′u′, and the derivation

Φ . Γ ∧∆ `(bt′ +bu′ ,et′ +eu′ ,mt′ +mu′ ,ft′ +fu′ ) t′{x\u}u′{x\u} : σ

follows from Γ `(bt′ ,et′ ,mt′ ,ft′ ) t′{x\u} : B → σ and ∆ `(bu′ ,eu′ ,mu′ ,fu′ ) u′{x\u} : B. By
the i.h. there exist Φt′ ,Φu

t′ , bt′′ , but′ , et′′ , eut′ , mt′′ , mu
t′ , ft′′ , fut′ , contexts Γt′ , Γut′ and

multitype At′ , such that

Φt′ . Γt′ ;x : At′ `(bt′′ ,et′′ ,mt′′ ,ft′′ ) t′ : B → σ Φut′ . Γut′ `(bu
t′ ,e

u
t′ ,m

u
t′ ,f

u
t′ ) u : At′

where bt′ = bt′′ + but′ , et′ = et′′ + eut′ , mt′ = mt′′ +mu
t′ , ft′ = ft′′ + fut′ and Γ = Γt′ ∧ Γut′ .

And by the i.h. applied to the second premise of Φ, there exist Φu′ ,Φu
u′ , bu′′ , buu′ , eu′′ ,

euu′ , mu′′ , mu
u′ , fu′′ , fuu′ , contexts Γu′ , Γuu′ and multitype Au′ , such that

Φu′ .∆u′ ;x : Au′ `(bu′′ ,eu′′ ,mu′′ ,fu′′ ) u′ : B Φuu′ .∆u
u′ `(bu

u′ ,e
u
u′ ,m

u
u′ ,f

u
u′ ) u : Au′

where bu′ = bu′′ +buu′ , eu′ = eu′′ +euu′ ,mu′ = mu′′ +mu
u′ , fu′ = fu′′ +fuu′ and ∆ = ∆u′∧∆u

u′ .
Now, taking A = At′ ∧ Au′ , and using the (app) rule, one gets a derivation of the
form Φt′u′ . Γt′ ∧ ∆u′ ;x : At′ ∧ Au′ `(bt′′ +bu′′ ,et′′ +eu′′ ,mt′′ +mu′′ ,ft′′ +fu′′ ) t′ : B → σ

and applying the (many) rule to the premises of Φu
t′ and Φu

u′ one gets a derivation
of the form Φu . Γut′ ∧ ∆u

u′ `(bu
t′ +bu

u′ ,e
u
t′ +eu

u′ ,m
u
t′ +mu

u′ ,f
u
t′ +fu

u′ ) u : A. Note that Γ ∧ ∆ =
(Γt′∧Γut′)∧(∆u′∧∆u

u′) = (Γt′∧∆u′)∧(Γut′∧∆u
u′) and b = bt′ +bu′ = (bt′′ +but′)+(bu′′ +buu′) =

(bt′′ + bu′′) + (but′ + buu′) as expected (the same happens for the remaining counters).
If Φ ends with (absp), (appp) or (match) the result follows from the inductive hypothesis,
as in the previous cases.
If Φ ends with (pair) or (pairp), so that t = 〈t′, u′〉, then we have two cases. The case
for pairp, follows from Φ being of the form `(0,0,0,1) 〈t′{x\u}, u′{x\u}〉 : •M. We then
take A = [ ], Φ〈t′,u′〉 . x : [ ] `(0,0,0,1) 〈t′, u′〉 : •M and Φu. `(0,0,0,0) u : [ ] follows trivially
from the (many) rule. Then conditions on counters and contexts hold trivially. The case
for (pair) follows by induction using the same reasoning as in rule (app). J

I Lemma 19 (Exact Subject Expansion). If Φ′ .Γ `(b′,e′,m′,f ′) t′ : σ, and t −→h t
′ is an s-step,

with s ∈ {b, e, m}, then Φ . Γ `(b,e,m,f) t : σ, where
s = b implies b = b′ + 1, e′ = e, m′ = m.
s = e implies b′ = b, e = e′ + 1, m′ = m.
s = m implies b′ = b, e′ = e, m = m′ + 1.
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Proof. By induction on −→h, using Lem. 18.
t = L[[λp.v]]u −→h L[[v[p\u]]] = t′. The proof is by induction on the list context L.
If L = 2 then by construction there are derivations Φv � Γv `(bv,ev,mv,fv) v : σ and
Φu � Γu `(bu,eu,mu,fu) u : A for some multitype A, and Φ′ is of the form

Φv (Γv)|p 
(ep,mp,fp) p : A Φu
(Γv\\ var(p)) ∧ Γu `(b′,e′,m′,f) v[p\u] : σ

where Γ = (Γv\\ var(p)) ∧ Γu, b′ = bv + bu, e′ = ev + eu + ep, m′ = mv +mu +mp and
f = fv + fu + fp. Then

Φ .

Φv (Γv)|p 
(ep,mp,fp) p : A
Γv\\ var(p) `(bv+1,ev+ep,mv+mp,fv+fp) λp.v : A → σ Φu

(Γv\\ var(p)) ∧ Γu `((bv+1)+bu,(ev+ep)+eu,(mv+mp)+mu,(fv+fp)+fu) (λp.v)u : σ

where b = (bv + 1) + bu = b′ + 1, e = (ev + ep) + eu = e′ and m = (mv +mp) +mu = m′.
If L 6= 2 the proof from the i.h. is straightforward.
t = v[x\u] −→h v{x\u} = t′, where v 6−→h . Then by the anti-substitution property (Lem. 18)
there exist derivations Φv, Φu, integers bv, bu, ev, eu,mv,mu, fv, fu, contexts Γv,Γu, and
multitype A such that Φv . Γv;x : A `(bv,ev,mv,fv) v : σ, Φu . Γu `(bu,eu,mu,fu) u : A,
b′ = bv + bu, e′ = ev + eu, m′ = mv +mu, f = fv + fu, and Γ = Γv ∧ Γu. Then,

Φ .
Φv (Γv;x : A)|x 
(1,0,0) x : A Φu

Γv ∧ Γu `(bv+bu,ev+eu+1,mv+mu+0,fv+fu+0) v[x\u] : σ

where b = bv + bu = b′, e = ev + eu + 1 = e′ + 1 and m = mv + mu = m′. Note that
(Γv;x : A)\\ var(x) = Γv.
t = v[〈p1, p2〉\L[[〈u1, u2〉]]] −→h L[[v[p1\u1][p2\u2]]] = t′, where v 6−→h . Let us abbreviate
p = 〈p1, p2〉 and u = 〈u1, u2〉. The proof is by induction on the list L.

L = 2, then there are Φv . Γv `(bv,ev,mv,fv) v : σ, Φ1 . Γ1 `(b1
u,e

1
u,m

1
u,f

1
u) u1 : A1 and

Φ2 . Γ2 `(b2
u,e

2
u,m

2
u,f

2
u) u2 : A2 where

Φv[p1\u1] .
Φv Γv|p1 


(e1,m1,f1) p1 : A1 Φ1

(Γv\\ var(p1)) ∧ Γ1 `(bv+b1
u,ev+e1

u+e1,mv+m1
u+m1,fv+f1

u+f1) v[p1\u1] : σ

and

Φ′ .
Φv[p1\u1] ((Γv\\ var(p1)) ∧ Γ1)|p2 


(e2,m2,f2) p2 : A2 Φ2

Γ `(b′,e′,m′,f) v[p1\u1][p2\u2] : σ

where b′ = bv +i=1,2 b
i
u, e′ = ev +i=1,2 e

i
u + ei, m′ = mv +i=1,2 m

i
u + mi, f =

fv +i=1,2 f
i
u + fi and Γ = (((Γv\\ var(p1)) ∧ Γ1)\\ var(p2)) ∧ Γ2.

Moreover, (((Γv\\ var(p1)) ∧ Γ1)\\ var(p2)) = ((Γv\\ var(p1))\\ var(p2) ∧ Γ1\\ var(p2)),
where (Γv\\ var(p1))\\ var(p2) = Γv\\ var(〈p1, p2〉) and Γ1\\ var(p2) =L. 8 Γ1. Simi-
larly, ((Γv\\ var(p1)) ∧ Γ1)|p2 =Lem. 8 (Γv\\ var(p1))|p2 and, by linearity of patterns,
(Γv\\ var(p1))|p2 = Γv|p2 . Hence,

Φ〈p1,p2〉 .
Γv|p1 


(e1,m1,f1) p1 : A1 Γv|p2 

(e2,m2,f2) p2 : A2

Γv|p1 ∧ Γv|p2 

(e1+e2,1+m1+m2,f1+f2) 〈p1, p2〉 : [×(A1,A2)]

where Γv|p1 ∧ Γv|p2 = Γv|〈p1,p2〉, and Φ〈u1,u2〉 . Γ1 ∧ Γ2 `(b1
u+b2

u,e
1
u+e2

u,m
1
u+m2

u,f
1
u+f2

u)

〈u1, u2〉 : [×(A1,A2)]. Therefore,
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Φ .
Φv Φ〈p1,p2〉 Φ〈u1,u2〉

(Γv\\ var(〈p1, p2〉)) ∧ (Γ1 ∧ Γ2) `(b,e,m,f) v[〈p1, p2〉\〈u1, u2〉] : σ

where b = bv+i=1,2 b
i
u = b′, e′ = ev+i=1,2e

i
u+ei = e′ and m = 1+mv+i=1,2m

i
u+mi =

m′ + 1.
If L = L′[q\s], then Φ′ is of the form:

ΓL′ `(b′
l,e

′
l,m

′
l,f

′
l ) L′[[v[p1\u1][p2\u2]]] : σ ΓL′ |q 
(eq,mq,fq) q : A Γs `(bs,es,ms,fs) s : A

ΓL′\\ var(q) ∧ Γs `(b′
l+bs,e

′
l+es+eq,m

′
l+ms+mq,f

′
l +fs+fq) L′[[v[p1\u1][p2\u2]]][q\s] : σ

where b′ = b′l + bs, e′ = e′l + es + eq, m′ = m′l + ms + mq, f ′ = f ′l + fs + fq
and Γ = ΓL′\\ var(q) ∧ Γs. From v[〈p1, p2〉\L′[[〈u1, u2〉]]] −→h L′[[v[p1\u1][p2\u2]]] and
derivation Φ′L′ for the leftmost premise by the i.h. one gets ΦL′ . ΓL′ `(bl,el,ml,fl)

v[〈p1, p2〉\L′[[〈u1, u2〉]]] : σ where bl = b′l, el = e′l, ml = m′l+1 and fl = f ′l . Furthermore
ΦL′ is necessarily of the form:

Γv `(bv,ev,mv,fv) v : σ Γv|p 
(ep,mp,fp) p : [×(A1,A2)]

Γu `(b′
u,e′

u,m′
u,f ′

u) L′[[u]] : ×(A1,A2)

Γu `(b′
u,e′

u,m′
u,f ′

u) L′[[u]] : [×(A1,A2)]

Γv\\ var(p) ∧ Γu `(bv+b′
u,ev+e′

u+ep,mv+m′
u+mp,fv+f ′

u+fp) v[p\L′[[u]]] : σ

where bl = bv + b′u, el = ev + e′u + ep, ml = mv + m′u + mp, fl = fv + f ′u + fp
and ΓL′ = Γv\\ var(p) ∧ Γu. Note that, by relevance and α-conversion we have that
ΓL′ |q = Γu|q. Then one can construct the following derivation Φu:

Γu `(b′
u,e

′
u,m

′
u,f

′
u) L′[[u]] : ×(A1,A2) Γu|q 
(eq,mq,fq) q : A Φs

Γu\\ var(q) ∧ Γs `(b′
u+bs,e

′
u+es+eq,m

′
u+ms+mq,f

′
u+fs+fq) L′[q\s][[u]] : ×(A1,A2)

Γu\\ var(q) ∧ Γs `(b′
u+bs,e

′
u+es+eq,m

′
u+ms+mq,f

′
u+fs+fq) L′[q\s][[u]] : [×(A1,A2)]

where bu = b′u + bs, eu = e′u + es + eq, mu = m′u + ms + mq and fu = f ′u + fs + fq.
From Φv . Γv `(bv,ev,mv,fv) v : σ and Πp . Γv|p 
(ep,mp,fp) p : [×(A1,A2)] we build Φ:

Φv Πp Γu\\ var(q) ∧ Γs `(bu,eu,mu,fu) L′[q\s][[u]] : [×(A1,A2)]

Γv\\ var(p) ∧ Γu\\ var(q) ∧ Γs `(bv+bu,ev+eu+ep,mv+mu+mp,fv+fu+fp) v[p\L′[q\s][[u]]] : σ

With Γv\\ var(p)∧Γu\\ var(q)∧Γs = (Γv\\ var(p)∧Γu)\\ var(q)∧Γs = Γ. Furthermore,
∗ b = bv + bu = bv + b′u + bs = bl + bs = b′

∗ e = ev + eu + ep = ev + e′u + es + eq + ep = el + es + eq = e′

∗ m = mv +mu +mp = mv +m′u +ms +mq +mp = ml +ms +mq = m′ + 1
∗ f = fv + fu + fp = fv + f ′u + fs + fq + fp = fl + fs + fq = f ′

Most of the inductive cases are straightforward, so we only show the interesting one.
Let t = v[p\u] −→h v[p\u′] = t′, where v 6−→h and p 6= x and u −→h u

′. By construction
there are subderivations Φv . Γv `(bv,ev,mv,fv) v : σ, Γv|p 
(ep,mp,fp) p : A and Φu′ .

Γu′ `(bu′ ,eu′ ,mu′ ,fu′ ) u′ : A for some multiset A and Γ = (Γv\\ var(p)) ∧ Γu′ . Since p is
not a variable then Φp ends with rule (patp) or (pat×). In both cases A contains only
one type, let us say A = [σu′ ]. Then Φu′ has the following form

Φu′ .
Γu′ `(bu′ ,eu′ ,mu′ ,fu′ ) u′ : σu′

Γu′ `(bu′ ,eu′ ,mu′ ,fu′ ) u′ : [σu′ ]

The i.h. applied to the premise of Φu′ gives a derivation Γu′ `(bu,eu,mu,fu) u : σu′ and
having the expected counters. To conclude we build a type derivation Φ′ for v[p\u′]
having the expected counters. J
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