
Eta-Equivalence in Core Dependent Haskell
Anastasiya Kravchuk-Kirilyuk
Princeton University, NJ, USA
ayk2@princeton.edu

Antoine Voizard
University of Pennsylvania, Philadelphia, PA, USA
voizard@seas.upenn.edu

Stephanie Weirich
University of Pennsylvania, Philadelphia, PA, USA
sweirich@cis.upenn.edu

Abstract
We extend the core semantics for Dependent Haskell with rules for η-equivalence. This semantics
is defined by two related calculi, Systems D and DC. The first is a Curry-style dependently-typed
language with nontermination, irrelevant arguments, and equality abstraction. The second, inspired
by the Glasgow Haskell Compiler’s core language FC, is the explicitly-typed analogue of System D,
suitable for implementation in GHC. Our work builds on and extends the existing metatheory for
these systems developed using the Coq proof assistant.

2012 ACM Subject Classification Software and its engineering → Functional languages; Software
and its engineering → Polymorphism; Theory of computation → Type theory

Keywords and phrases Dependent types, Haskell, Irrelevance, Eta-equivalence

Digital Object Identifier 10.4230/LIPIcs.TYPES.2019.7

Supplementary Material https://github.com/sweirich/corespec/tree/master

Funding This material is based upon work supported by the National Science Foundation under Grant
No. 1521539 and Grant No. 1704041. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author and do not necessarily reflect the views of the
National Science Foundation.

1 Introduction

In typed programming languages, the definition of type equality determines the expressiveness
of the type system. If more types can (soundly) be shown to be equal, then more programs
will type check. In dependently-typed languages, the definition of type equality relies on a
definition of term equality, because terms may appear in types. Therefore, a dependently-
typed language that can equate more terms can also admit more programs.

Many dependently-typed programming languages, such as Coq (since version 8.4) and
Agda (from its initial design) include rules for η-equivalence when comparing functions for
equality. These rules benefit programmers. For example, if a function f has type

f : P x → Int

then it can be called with an argument of type

P (λy. x y)

because the term (λy. x x) is η-equivalent to x.
Dependent Haskell [20, 47] is a proposal to add dependent types to the Haskell program-

ming language, as implemented by the Glasgow Haskell Compiler. This design unifies the
term and type languages of Haskell so that terms may appear directly in types, removing
the need for awkward singleton encodings of richly-typed data structures [21, 27, 45].

© Anastasiya Kravchuk-Kirilyuk, Antoine Voizard, and Stephanie Weirich;
licensed under Creative Commons License CC-BY

25th International Conference on Types for Proofs and Programs (TYPES 2019).
Editors: Marc Bezem and Assia Mahboubi; Article No. 7; pp. 7:1–7:31

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ayk2@princeton.edu
mailto:voizard@seas.upenn.edu
https://orcid.org/0000-0002-6756-9168
mailto:sweirich@cis.upenn.edu
https://doi.org/10.4230/LIPIcs.TYPES.2019.7
https://github.com/sweirich/corespec/tree/master
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Eta-Equivalence in Core Dependent Haskell

The specification of this language extension [47] is founded on two related dependently
typed core calculi, called Systems D and DC. These two systems differ in their annotations:
the latter language, which is inspired by and extends the FC intermediate language of
GHC [42, 46], includes enough information to support simple, syntax-directed type checking.
On the other hand, System D, is a Curry-style language meant to model the runtime behavior
of the language, and to inspire type inference for the source language. (At the source level,
type inference for Dependent Haskell will require more annotations than System D, which
includes no annotations, and many fewer than System DC, which annotates everything.)

However, the specification of Systems D and DC, as presented in prior work, did not
include rules for η-equivalence. The goal of this paper is to describe our experience with adding
η-equivalence rules to these two systems, demonstrating that η-equivalence is compatible
with Dependent Haskell.

While this extension is small—it involves three new rules for System D and two new rules
for DC—it was not at all clear that it would work out from the beginning. Both Systems D
and DC include support for irrelevant arguments, i.e the marking of some lambda-bound
variables as not relevant for run-time execution. For Dependent Haskell, this feature is
essential. Haskellers expect a type-erasure semantics and GHC erases type arguments during
compilation. Irrelevance generalizes this idea to include not just type arguments but all
terms that are used irrelevantly, enabling the generation of efficient code.

Unfortunately, η-equivalence, when combined with irrelevance in dependently-typed
languages, is a subtle topic. Much prior work has laid out the issues, though in contexts that
are not exactly the same as that found in Dependent Haskell. We describe this landscape in
Section 6.3, and show how our work compares to and does not match any existing treatment
of these features. In particular, our system features the type:type axiom, employs a typed
definition of equivalence that ignores type annotations, supports large eliminations, includes
a variant with decidable type checking, does not restrict how irrelevant arguments may be
used in types, and comes with a completely mechanized type soundness proof.

In particular, this work extends the type soundness proof that was developed in prior
work with support for η-equivalence. Prior work included a mechanized formalization of the
meta-properties of both Systems D and DC, developed using the Coq proof assistant [43]. In
this work, we have extended that development with these new rules and have updated the
proofs accordingly. This mechanized proof gives us complete confidence in our extension,
even in the face of a few curious findings.

As a result, this project also gives us a chance to report a success story for proof
engineering. As the extension described in this paper is small compared to the overall system,
we would expect the changes to the proof to be similarly minor, and they are. Furthermore,
the three different forms of η-equivalence that we add are themselves quite similar to each
other. Because of this relationship, a newcomer (the first author, an undergraduate at
the time) could join the project and was able to adapt the changes needed for the usual
η-equivalence rule to the novel ones for this setting. Although this process required careful
understanding of binding representations, especially in the representation of the new rules,
the mechanical proof served as an essential benefit to the overall research endeavor.

2 Overview of System D and System DC

This work presents and extends the languages Systems D and DC from prior work [47].
Therefore, we begin our discussion with an overview of these systems and their properties.

A. Kravchuk-Kirilyuk, A. Voizard, and S. Weirich 7:3

D DC
Typing Γ � a : A Γ ` a : A
Definitional equality (terms) Γ; ∆ � a ≡ b : A Γ; ∆ ` γ : a ∼ b
Proposition well-formedness Γ � φ ok Γ ` φ ok
Definitional equality (props) Γ; ∆ � φ1 ≡ φ2 Γ; ∆ ` γ : φ1 ∼ φ2

Context well-formedness � Γ ` Γ
Signature well-formedness � Σ ` Σ

Primitive reduction � a > b
One-step reduction � a b Γ ` a b

Figure 1 Summary of judgement forms.

System D is an implicit language; its syntax only contains terms that are relevant
for computation. It is based on a Curry-style variant of a dependently-typed lambda
calculus, with the type:type axiom. Functions are not annotated with their domain types
and computations may not terminate. As a result, type checking in System D is undecidable.
Compared to other Curry-style languages [32, 33], this language annotates the locations of
irrelevant abstractions and irrelevant applications. Such generalizations and instantiations
may occur only at the marked locations. Full Curry-style languages allow generalization and
instantiation at any point in the derivation.

In contrast, System DC is an explicit language. It extends System D with enough
annotations so that type checking is not only decidable, it is straightforward through a simple
syntax-directed algorithm. While System D is intended to serve as a specification of what
Dependent Haskell should mean, System DC is intended to serve as a core implementation
language for the Glasgow Haskell Compiler (GHC) [20, 22], when it is extended with
dependent types. The annotations allow the compiler to check core language terms during
compilation, eliminating potential sources of bugs during compilation.

Because the annotated language DC is, in some sense, a reification of the derivations of
D; DC can thus be seen as a syntax-directed version of D. To emphasize this connection in
our formal system, we reuse the same metavariables for analogous syntactic forms in both
languages.1 The judgement forms are summarized in Figure 1. By convention, judgements
for D use a double turnstile (�) whereas judgements for DC use a single turnstile (`). As
we make precise below, judgements in these two languages are connected: we can apply an
erasure operation to DC derivations to produce analogous judgements in D, and given a
derivation in D, it is possible to add enough annotations to produce an analogous judgement
in DC.

The judgement forms in these languages include the usual typing judgement, a typed
equivalence relation (augmented in DC with an explicit proof witness in γ), a first-class
notion of equality propositions φ, and a judgement when two propositions are equivalent
(also augmented with a proof witness in DC), as well as well-formedness checks for typing
contexts Γ and top-level signatures of recursive definitions Σ.

Computation in both languages is specified operationally, using a small-step, call-by-name,
evaluation relation . These one-step relations are decidable and produce a unique reduct in
each case. This computation is also type sound, which we demonstrate through preservation
and progress theorems [49].

1 In fact, our Coq development uses the same syntax for both languages and relies on the judgement
forms to identify the pertinent sets of constructs.

TYPES 2019

7:4 Eta-Equivalence in Core Dependent Haskell

System D

terms, types a, b, A,B ::= type | x | F | λρx.b | a bρ | � | Πρx :A.B
| Λc.a | a[γ] | ∀c :φ.A

coercions γ ::= •

values v ::= λ+x.a | λ−x.v | Λc.a
| type | Πρx :A.B | ∀c :φ.A

System DC

terms, types a, b, A,B ::= type | x | F | λρx : A .b | a bρ | Πρx :A.B
| Λc : φ .a | a[γ] | ∀c :φ.A
| a . γ

coercions (excerpt) γ ::= c | refl a | sym γ | γ1; γ2 | red a b | . . .
eta a

values v ::= λ+x : A .a | λ−x : A .v | Λc : φ .a
| type | Πρx :A.B | ∀c :φ.A

Shared syntax

propositions φ ::= a ∼A b
relevance ρ ::= + | −

contexts Γ ::= ∅ | Γ, x : A | Γ, c : φ
available set ∆ ::= ∅ | ∆, c
signature Σ ::= ∅ | Σ ∪ {F ∼ a : A}

Figure 2 Syntax of D and DC. The syntactic differences between the two systems are highlighted
in yellow. The sole addition for η-equivalence (the coercion form eta a) is highlighted in green.

The syntax of D, the implicit language, is shown at the top of Figure 2. This language,
inspired by pure type systems [12], uses a shared syntax for terms and types. The language
includes:

a single sort (type) for classifying types,
functions (λ+x.a) with dependent types (Π+x : A.B), and their associated application
form (a b+),
functions with irrelevant arguments (λ−x.a), their types (Π−x :A.B), and instantiation
form (a �−),
coercion abstractions (Λc.a), their types (∀c :φ.B), and instantiation form (a[•]),
and top-level recursive definitions (F).

In this syntax, term and type variables, x , are bound in the bodies of functions and their
types. Similarly, coercion variables, c, are bound in the bodies of coercion abstractions and
their types. (Technically, irrelevant variables and coercion variables are prevented by the

A. Kravchuk-Kirilyuk, A. Voizard, and S. Weirich 7:5

typing rules from actually appearing in the bodies of their respective abstractions.) We use
the same syntax for relevant and irrelevant functions, marking which one we mean with
a relevance annotation ρ. We sometimes omit relevance annotations ρ from applications
a bρ when they are clear from context. We also write nondependent relevant function types
Π+x :A.B as A→ B, when x does not appear free in B, and write nondependent coercion
abstraction types ∀c :φ.A as φ⇒ A, when c does not appear free in A.

The metavariable ∆, called the available set, represents a set of coercion variables. This
set is used to restrict the usage of coercion variables in certain situations; only variables
appearing in the set are available.2 The operation Γ̃ returns the available set made of all the
coercion variables in the domain of context Γ. In other words, it is the available set that
permits the use of all coercion variables in Γ.

The syntax of DC, also shown in the figure, includes the same features as D but with
more typing annotations. In particular, this language removes the trivial argument for
irrelevant instantiation (instead specifying the actual argument it stands for) and adds
domain information to the bound variable in the abstraction forms. Finally, it replaces
implicit type conversions by an explicit coercion term a . γ as well as a language of coercion
proofs (not completely shown in the figure). The addition of η-equivalence requires a new
form of coercion proof, written eta a, that corresponds to all three new equivalence rules in D.

The erasure operation, written |a| translates terms from System DC to System D by
removing all type annotations and coercion proofs. For example, rules of this function include
|λρx :A.a| = λρx.|a| and |a . γ| = |a|.

2.1 Type checking in System D and System DC
Unlike System D, System DC enjoys unique typing, meaning that any given term has at most
one type. Thanks to this uniqueness property and to the presence of typing annotations,
type checking is decidable in System DC. In fact, the syntax of System DC can be seen
as encoding not just a D term, but a D typing derivation. That is, any DC term uniquely
identifies a typing derivation for the underlying (erased) D term.

In System D, type checking is undecidable due to two reasons. The first is that System
D includes Curry-style System F as a sublanguage, where type checking is known to be
undecidable [48, 36]. Since type arguments are implicit in Curry-style languages, irrelevant
quantification is a feature of System D. The second reason for undecidable type checking in
System D is the presence of an implicit conversion rule. In order to maintain decidable type
checking in an environment where implicit conversion is allowed, System DC uses explicit
coercion proofs whenever type conversion is performed. Below, we discuss these two features
which contribute to the undecidability of type checking in System D. However, even though
type checking is undecidable, we sketch what a partial type inference algorithm for System
D might look like in Section 2.3.

2.1.1 Irrelevant quantification
Because Haskell includes parametric polymorphism, which has a type erasure semantics,
Dependent Haskell includes a way to indicate which terms should be erased before execution.3
Thus, the rules that govern the treatment of irrelevant, or implicit, quantification appear in
Figure 3.

2 This is analogous to marking available coercion variables in the context.
3 Although it is possible to infer such information [14], we annotate it here to avoid a reliance on whole

program optimization.

TYPES 2019

7:6 Eta-Equivalence in Core Dependent Haskell

E-Pi
Γ, x : A � B : type

Γ � Πρx :A.B : type

An-Pi
Γ, x : A ` B : type

Γ ` Πρx :A.B : type

E-Abs
Γ, x : A � a : B
(ρ = +) ∨ (x 6∈ fv a)

Γ � λρx.a : Πρx :A.B

An-Abs
Γ, x : A ` a : B

(ρ = +) ∨ (x 6∈ fv |a|)
Γ ` λρx :A.a : Πρx :A.B

E-App
Γ � b : Π+x :A.B Γ � a : A

Γ � b a+ : B{a/x}

An-App
Γ ` b : Πρx :A.B Γ ` a : A

Γ ` b aρ : B{a/x}

E-IApp
Γ � b : Π−x :A.B Γ � a : A

Γ � b �− : B{a/x}

Figure 3 Rules for relevant and irrelevant arguments in System D (left) and System DC (right).

D and DC’s approach to implicit quantification follows ICC [32], ICC∗ [13], and EPTS [33].
When possible, the typing rules use the metavariable ρ to generalize over the relevance of
the abstraction. For example, irrelevance places no restrictions on the usage of the bound
variable in the body of the dependent function type, so the same rule suffices in each case
(see rules E-Pi and An-Pi).

However, for abstractions, if the argument is irrelevant, then the variable cannot appear
in the body of the System D term (rule E-Abs). On the other hand, System DC includes
annotations, which are not relevant, so the DC rule only restricts the variable from appearing
in the erasure of the body (rule An-Abs).

In DC, an application term is type-checked in the same way no matter whether it is
relevant or not, so we are able to use the same rule in both cases (rule An-App). However,
in D, if the application is to an irrelevant argument, then the argument does not appear in
the term. Instead, it must be replaced by the trivial term � (rule E-IApp). Type-checking
an irrelevant application in D thus requires guessing the actual argument used at this
occurrence. Due to this, we need two separate rules for relevant and irrelevant application in
D (rule E-App and rule E-IApp respectively).

2.1.2 Explicit coercions
As mentioned previously, System D includes an implicit conversion rule, shown on the left
below (rule E-Conv). This rule depends on the type equality judgement to allow the system
to work up-to the definition of this type equality. At any point in a System D derivation, the
type of a term can silently be replaced with an equivalent type.

E-Conv
Γ � a : A Γ; Γ̃ � A ≡ B : type

Γ � a : B

An-Conv
Γ ` a : A Γ; Γ̃ ` γ : A ∼ B Γ ` B : type

Γ ` a . γ : B

To enable decidable type checking, System DC includes an explicit justification γ in
rule An-Conv, called a coercion proof, whenever type conversion is used. These coercions
are reifications of the type equality derivations of System D; a coercion proof γ specifies

A. Kravchuk-Kirilyuk, A. Voizard, and S. Weirich 7:7

a unique equality derivation. Equality is homogeneously typed in System D, if we have
Γ; ∆ � a ≡ b : A, then both terms a and b must have type A. In DC the relationship is
more nuanced. If we have a coercion proof Γ; ∆ ` γ : a ∼ b where Γ ` a : A and Γ ` b : B,
then there must exist an additional coercion proof witnessing the equality between types
A and B. In other words, the types of coercible terms must be equal according to System
D. For example, compare the reflexivity rule in System D below (rule E-Refl) with the
two different reflexivity rules in System DC (rule An-Refl and rule An-EraseEq). While
the first DC rule is the classic form of the reflexivity rule, we still need the second form to
account for the case when two terms a and b have different type annotations. To derive
reflexivity between a and b in this case, we must furthermore know that their types are
equal, witnessed by the coercion proof γ. Note also that we cannot get away with having
rule An-EraseEq alone, since rule An-Refl is the only rule which can derive reflexivity
for type. For example, in order to prove Int ∼type Int with rule An-EraseEq, we need the
base case rule An-Refl to prove type ∼type type.

E-Refl
Γ � a : A

Γ; ∆ � a ≡ a : A

An-Refl
Γ ` a : A

Γ; ∆ ` refl a : a ∼ a

An-EraseEq
Γ ` a : A Γ ` b : B

|a| = |b| Γ; Γ̃ ` γ : A ∼ B
Γ; ∆ ` (a |=|γ b) : a ∼ b

The type equality judgement in System D includes primitive (i.e. β) reductions, shown
in rule E-Beta below. The analogous rule in System DC uses an explicit coercion, red a1 a2
in the coercion checking rule An-Beta to indicate a reduction. Both rules use the primitive
reduction relation of System D, available in DC through erasure. Although this relation is
deterministic, there are multiple ways to annotate a System D term. Thus, the coercion
rule must annotate both terms, a1 and a2 involved in the redex. Furthermore, because these
annotations may differ, these terms may have different types in DC, as long as those types
are also related through erasure.

E-Beta
Γ � a1 : B � a1 > a2

Γ; ∆ � a1 ≡ a2 : B

An-Beta
Γ ` a1 : B0

Γ ` a2 : B1 |B0| = |B1| � |a1| > |a2|
Γ; ∆ ` red a1 a2 : a1 ∼ a2

The System D type equality judgement is undecidable because it includes the operational
semantics and the language is nonterminating. This nontermination is due to the type:type
axiom and general recursion, the latter already available in Haskell. Furthermore, because
System D is nonterminating, types themselves may diverge and thus don’t necessarily have
normal forms (this is already the case for GHC, in the presence of certain language extensions).

2.2 Coercion abstraction
D and DC inherit the coercion abstraction feature from System FC, the existing core language
of GHC [42, 46]. This feature is primarily used to implement GADTs in GHC but is also
available for explicit use by Haskell programmers.

Coercion abstraction means that equality is first class. Terms may abstract over equality
propositions (denoted by φ in rules E-CAbs and An-CAbs) and can discharge those
assumptions in contexts where the proposition is derivable (rules E-CApp and An-CApp).
Once an equality has been assumed in the context, it may contribute to an equivalence
derivation as long as the coercion variable is available (i.e. found in the available set ∆).

TYPES 2019

7:8 Eta-Equivalence in Core Dependent Haskell

E-CAbs
Γ, c : φ � a : B

Γ � Λc.a : ∀c :φ.B

An-CAbs
Γ, c : φ ` a : B

Γ ` Λc :φ.a : ∀c :φ.B

E-CApp
Γ � a1 : ∀c : (a ∼A b).B1

Γ; Γ̃ � a ≡ b : A
Γ � a1[•] : B1{•/c}

An-CApp
Γ ` a1 : ∀c :a ∼A1 b.B

Γ; Γ̃ ` γ : a ∼ b
Γ ` a1[γ] : B{γ/c}

E-Assn
� Γ

c : (a ∼A b) ∈ Γ c ∈ ∆
Γ; ∆ � a ≡ b : A

An-Assn
` Γ

c : a ∼A b ∈ Γ c ∈ ∆
Γ; ∆ ` c : a ∼ b

The role of the set ∆ is to prevent the usage of certain coercion variables, namely those
introduced in a congruence proof between two coercion abstraction types. More details about
this issue are available in prior work [47].

2.3 Type inference for System D
Even though complete type inference for System D is undecidable, we still intend it to
be a model for the source language of the Glasgow Haskell Compiler. Type inference
in GHC currently elaborates implicitly-typed Source Haskell to an explicitly-typed core
language, similar to System DC. This inference algorithm works by gathering constraints
and then solving those constraints using a variant of mixed-prefix unification combined
with type-family reduction [44]. This algorithm already supports numerous features related
to System D, including GADTs, type-level computation, higher-rank polymorphism and
the type:type axiom. There are also experimental extensions of this algorithm in support
of type-level lambdas [26], higher-kinds [50], and first-class polymorphism [39]. The most
straightforward extension of GHC’s algorithm with dependent types is based on parallel
reduction; to determine whether two types are equivalent one must find a term that they
both reduce to. In System D, this reduction may not terminate, so this process describes a
semi-decision procedure.

3 Adding η-equivalence to Systems D and DC

Extending Systems D and DC with η-equivalence requires the addition of the following three
rules to System D and two analogous rules in System DC. These three rules encode the usual
η-equivalence properties for normal functions, irrelevant functions, and coercion abstractions.
As our equivalence relation is typed, we must ensure that both left and right hand sides are
well typed with the same type. This precondition also ensures that the bound variable does
not appear free in b.

E-EtaRel
Γ � b : Π+x :A.B

Γ; ∆ � λ+x.b x+ ≡ b : Π+x :A.B

E-EtaIrrel
Γ � b : Π−x :A.B

Γ; ∆ � λ−x.b �− ≡ b : Π−x :A.B

E-EtaC
Γ � b : ∀c :φ.B

Γ; ∆ � Λc.b[•] ≡ b : ∀c :φ.B

A. Kravchuk-Kirilyuk, A. Voizard, and S. Weirich 7:9

In the annotated language, we only need two rules for coercion proofs because we can
unify the two application forms in the annotated language (i.e. we can generalize over ρ).

An-Eta
Γ ` b : Πρx :A.B

Γ; ∆ ` eta b : λρx.b xρ ∼ b

An-EtaC
Γ ` b : ∀c :φ.B

Γ; ∆ ` eta b : Λc.b[c] ∼ b

We use the single marker eta b as the explicit proof witness for both rules. We can
overload this form because the annotated term b includes enough information to recover its
type, and the type of b is enough to determine which of the η-equivalence properties are
needed.

The five rules shown in this section are all that was needed to extend the definition of
both languages with η-equivalence. Note that we do not include any η rules (i.e. reduction
or expansion) in the operational semantics (i.e. the one step reduction relations � a b
and Γ ` a b). The computational behavior of the system is unchanged by this extension.
Instead, our goal is to extend the systems’ reasoning about this existing computational
behavior through the added equivalences. Although the rules for η-equivalence for relevant
and irrelevant function have appeared in various prior work (see Section 6), the η-equivalence
rule for coercion abstraction is new to this extension.

4 Extending proofs

The addition of the five rules above means that we must extend all existing proofs of Systems
D and DC and show that after the inclusion of the new rules these systems retain the desired
properties. The properties developed in prior work [47] include the following results.

Consistency of definitional equality for System D
Type soundness (progress and preservation) for both languages
Decidable type checking for System DC
Annotation and erasure lemmas relating the two languages

In this section, we provide an overview of these proofs and discuss their interaction with
this extension. In the formal statements of our results below, we include the source file and
definition in our Coq proofs4 that justifies that result.

The type soundness proof comes in two parts. We prove the progress lemma for System
D, and then use the annotation lemma to translate that result to System DC. We prove
the preservation lemmas for both systems directly, but it would also be possible to only
prove preservation for System DC and then use the erasure lemma to translate that proof to
System D.

By far, the largest modification was needed for the proof of the progress lemma for
System D, which in turn relies on the consistency of definitional equality.

4.1 Progress lemma overview
In order to show proof of progress, we must first show the consistency of definitional equality
in our setting (see Corollary 7 below). Consistency means that in certain contexts, types
that have different head forms cannot be proven definitionally equal.

I Definition 1 (Consistent5). Two types A and B are consistent, written consistent A B,
when it is not the case that they are types with conflicting head forms. We formalize this
property with the following two judgements.

4 Available from https://github.com/sweirich/corespec/tree/master/src/FcEtt.
5 ett.ott:consistent

TYPES 2019

https://github.com/sweirich/corespec/tree/master/src/FcEtt
ett.ott:consistent

7:10 Eta-Equivalence in Core Dependent Haskell

hft(A) (Types with head forms)

value-type-Star

hft(type)

value-type-Pi

hft(Πρx :A.B)

value-type-CPi

hft(∀c :φ.B)

consistent a b (Types that do not differ in their heads)
consistent-a-Star

consistent type type

consistent-a-Pi

consistent (Πρx1 :A1.B1) (Πρx2 :A2.B2)

consistent-a-CPi

consistent (∀c1 :φ1.A1) (∀c2 :φ2.A2)

consistent-a-Step-R
¬(hft(b))

consistent a b

consistent-a-Step-L
¬(hft(a))

consistent a b

We use two auxiliary relations, parallel reduction and joinability, when proving consistency.
Parallel reduction, written � a ⇒ b, is not part of the specification of System D6. This

relation is a strongly confluent, but not necessarily terminating, rewrite relation on terms.
In one step of parallel reduction, multiple redexes in one term may be reduced at the same
time. For example, we can reduce (z ((λx.x) 1) ((λy.y) 2)) to (z 1 2) in one step, even though
two different beta-reductions need to be performed at the same time.

Two types are joinable when they reduce to some common term using any number of
steps of parallel reduction.

I Definition 2 (Joinable7). Two types are joinable, written ` a1 ⇔ a2, when there exists
some b such that ` a1 ⇒∗ b and ` a2 ⇒∗ b.

We use these two relations to prove consistency in two steps. First, we show that
definitionally equal types are joinable. Second, we show that joinable types are consistent.

In proving the first step, it is important to note that only some definitionally equal types
are joinable. This is illustrated by the following example. If a has type type, and there
is a coercion assumption a ∼type Int available in the context, then under this assumption
a and Int are two definitionally equal types. However, these two types are not joinable.
Because our consistency proof is based on parallel reduction, and because parallel reduction
ignores assumed equality propositions, we state our result only for equality derivations with
no available coercion assumptions. Thus, we restrict the set of all available assumptions we
can use to derive equality to the empty set.

I Theorem 3 (Equality implies Joinability8). If Γ;∅ � a ≡ b : A then ` a ⇔ b

This restriction in the lemma is necessary because the type system does not rule out
clearly bogus assumptions, such as Int ∼type Bool. Because we cannot use such assumptions
to derive equality, they cannot be allowed to appear in the context. As a result, in order to
be able to prove that consistent types are definitionally equal, the context must not make
any such assumptions available.

To prove the second step, we use the fact that parallel reduction is a strongly confluent
relation, and thus head forms must be preserved by parallel reduction. The confluence
property is stated below.

6 ett.ott:Par
7 ett.ott:join
8 ext_consist.v:consistent_defeq

ett.ott:Par
ett.ott:join
ext_consist.v:consistent_defeq

A. Kravchuk-Kirilyuk, A. Voizard, and S. Weirich 7:11

I Theorem 4 (Confluence9). If � a ⇒ a1 and � a ⇒ a2 then there exists b, such that
� a1 ⇒ b and � a2 ⇒ b.

Our proof of confluence for System D follows the the proof of Church-Rosser for the
untyped lambda calculus given in Barendregt [11], sections 3.2 and 3.2. The proof with
β-reduction is attributed to Tait and Martin-Löf, and its extension with η-reduction is
attributed to Hindley [25] and Rosen [38].

The confluence property essentially shows that even if a term can take several reduction
paths, those paths can never diverge to produce terms with conflicting head forms. Thus,
since joinability is defined in terms of parallel reduction, and parallel reduction is strongly
confluent, it is true that joinability implies consistency.

I Lemma 5 (Joinability is transitive10). If ` A1 ⇔ B and ` B ⇔ A2 then ` A1 ⇔ A2

I Theorem 6 (Joinability implies consistency11). If ` A⇔ B then consistent A B.

I Corollary 7 (Consistency). If Γ; ∆ � a ≡ b : A then consistent a b.

The consistency result allows us to prove the progress lemma for System D. This progress
lemma is stated with respect to the one-step reduction relation and the definition of value
given in Figure 2.

I Lemma 8 (Progress12). If Γ � a : A, Γ contains no coercion assumptions, and no term
variable x in the domain of Γ occurs free in a, then either a is a value or there exists some
a′ such that � a a′.

4.2 Progress lemma update

The addition of η-equivalence required three new rules to be added to the parallel reduction
relation. These rules encode η-reduction, meaning that any outer abstractions of the correct
form can be removed. Because parallel reduction is an untyped relation, there is no analogous
typing precondition as in the equivalence rules. However, these rules also have the condition
that the bound variable not appear free in b or b′. (In our rules below, this condition is not
explicitly mentioned because it is guaranteed by the usual Barendregt variable convention.
We discuss how we maintain this property in our Coq development in Section 5.)

Par-Eta
� b ⇒ b′

� λ+x.b x+ ⇒ b′

Par-EtaIrrel
� b ⇒ b′

� λ−x.b �− ⇒ b′

Par-EtaC
� b ⇒ b′

� Λc.b[•]⇒ b′

We can view joinability as a semi-decision algorithm. Two terms are equal when they join
to the same common reduct, though this process may diverge. This algorithm is a technical
device only; we don’t suggest its direct use in any implementation. Indeed, in the presence of
η-reduction, joinability could equate more terms than definitional equality because it doesn’t
always preserve typing (see below).

9 ext_consist.v:confluence
10 ext_consist.v:join_transitive
11 ext_consist.v:join_consistent
12 ext_consist.v:progress

TYPES 2019

ext_consist.v:confluence
ext_consist.v:join_transitive
ext_consist.v:join_consistent
ext_consist.v: progress

7:12 Eta-Equivalence in Core Dependent Haskell

4.3 Parallel reduction and type preservation
There are three types of reduction included in this development: primitive reduction � a > b,
one-step reduction � a b, and parallel reduction � a ⇒ b. In the original formulation of
System D, all three of these reduction relations were type-preserving.

The first two relations are unchanged by this extension, so type preservation still holds
for those relations13.

However, parallel reduction is an untyped relation. It does not depend on type information,
even in the case of η-equivalence. As a result, after the addition of η-equivalence rules, the
parallel reduction relation is no longer type-preserving.

I Example 9 (Parallel reduction does not preserve types). There is some a such that Γ � a : A
and � a ⇒ a′ where there is no derivation of Γ � a′ : A.

This property fails in the case where λ+x.b x+ reduces to b, but x is required in the
context for b to type check, even though it does not appear free in b.

For example, let A be Π−x : type.Π+z : type.(x → x) and consider the following derivation
of the application of some function y with this type to two arguments: an implicit one
and then an explicit one. In both cases in the derivation, the argument is just x, which is
abstracted in the conclusion of the derivation.

∅, y : A, x : type � y : A ∅, y : A, x : type � x : type
∅, y : A, x : type � y �− : Π+z : type.(x → x) ∅, y : A, x : type � x : type

∅, y : A, x : type � y �− x+ : x → x
∅, y : A � λ+x.(y �−) x+ : Π+x : type.(x → x)

Now, the term λ+x.y �− x+ reduces to y �− using rule Par-Eta. However, there is no
implicit argument that we can fill in so that this term will have type Π+x : type.(x → x).

Subject reduction also does not hold for η-reduction in the case of irrelevant arguments.14
In particular, there is a case where λ−x.b �− reduces to b and the two terms do not have
the same type. This situation is not the same as above: the issue is that in a derivation of
λ−x.b �− there is no requirement that the argument � be the same type as x.

For example, suppose y has type Γ ` y : Π−x : A.B and we have f : A → A′ in the
context Γ where the type A does not equal A′. Then we can construct a derivation of
Γ ` λ−x.(y �−) : Π−x : A′.B{f x/x} by using the term f x as the implicit argument. A
similar counterexample also applies to η-reduction for coercion abstraction.

Thus, in the presence of η-reduction, preservation does not hold for parallel reduction.
However, this loss is not significant to the soundness of the type systems of System D and
System DC. None of our results require this property. The only place where this may come
up is in a parallel-reduction based type inference algorithm for GHC (see Section 2.3). In this
case, parallel reduction must preserve enough type information during reduction to ensure
that the result is still well-typed.

4.4 Additional updates
Other updates to the proof include new cases in the erasure and annotation lemmas and
in the uniqueness and decidability of type checking in DC. These lemmas are proven by
mutual induction on the typing derivations shown in Figure 1. As the new rules are for the
definitional/provable equality judgements, we only list that part of the lemma statement.

13 ext_red.v:Beta_preservation, ext_red.v:reduction_preservation
14This issue was previously observed in the implementation of the Agda compiler: see https://github.

com/agda/agda/issues/2464.

ext_red.v:Beta_preservation
ext_red.v:reduction_preservation
https://github.com/agda/agda/issues/2464
https://github.com/agda/agda/issues/2464

A. Kravchuk-Kirilyuk, A. Voizard, and S. Weirich 7:13

I Lemma 10 (Erasure15). If Γ; ∆ ` γ : a ∼ b then for all A such that Γ ` a : A, we have
|Γ|; ∆ � |a| ≡ |b| : |A|.

I Lemma 11 (Annotation16). If Γ; ∆ � a ≡ b : A then for all Γ0, such that |Γ0| = Γ, there
exists some γ, a0, b0 and A0, such that Γ0; ∆ ` γ : a0 ∼ b0 and Γ0 ` a0 : A0 and Γ0 ` b0 : A0
where |a0| = a and |b0| = b and |A0| = A.

I Lemma 12 (Unique typing for DC17). If Γ; ∆ ` γ : A1 ∼ B1 and Γ; ∆ ` γ : A2 ∼ B2, then
A1 = A2 and B1 = B2.

I Lemma 13 (Decidable typing for DC18). Given Γ, ∆, and γ, it is decidable whether there
exists some A and B such that Γ; ∆ ` γ : A ∼ B.

5 Proof engineering

The development of our Coq formalization for Systems D and DC was assisted with the use
of two tools for mechanized reasoning about programming language metatheory. The first
tool, Ott [40], takes as input a specification of the syntax and type system and produces
both Coq definitions and LaTeX figures. The inference rules of this paper were typeset with
this shared specification, though some rules in the main body of the paper have been slightly
modified for clarity. We include the complete and unmodified specification of the system in
Appendix A.

In addition to producing inductive definitions for the syntax and judgements, the Ott
tool also produces substitution and free variable functions. To make working with these
definitions more convenient, we also use the LNgen tool [9], that automatically states and
proves many lemmas about these operations.

This extension increased the overall size of the original development by about ten percent,
just looking at the line counts of the two versions. In Figure 4 we order the proof files by
largest difference in line count19 to see that the most significant effort was the update to
the progress proofs for System D. The preservation proof file (ext_red.v) shrank due to the
removal of the preservation lemma for the parallel reduction relation. The table includes
some modifications (such as inserting a newline, or slight refactoring of proof scripts) that
have no effect on the development. Files with unchanged line counts are omitted from this
figure.

The ett_ind.v file contains tactics that are tailored to our language development. These
tactics automatically apply inference rules, pick fresh variables with respect to binders, etc.
As we have added new rules to the language definition, we needed to update these tactics. To
assist in the rest of this proof development, we developed a tactic for automatically rewriting
a term given a hypothesis of the form found in the η-rules (and similar).

The ext_invert.v file contains inversion lemmas for System D. New with this extension
is the addition of a lemma that asserts that • is the only coercion proof found in System D
terms.

15 erase.v:typing_erase
16 erase.v:annotation_mutual
17 fc_unique.v:unique_mutual
18 fc_dec.v:FC_typechecking_decidable
19These numbers were calculated using the cloc tool, version 1.76, available from http://github.com/

AlDanial/cloc.

TYPES 2019

ext_red.v
ett_ind.v
ext_invert.v
erase.v: typing_erase
erase.v:annotation_mutual
fc_unique.v:unique_mutual
fc_dec.v:FC_typechecking_decidable
http://github.com/AlDanial/cloc
http://github.com/AlDanial/cloc

7:14 Eta-Equivalence in Core Dependent Haskell

File name (1) (1η) (2) (3) (3η)
Specification (generated) ett_ott.v 1337 1386 49 29 78

Progress (D) ext_consist.v 1427 2054 627 205 832
Progress (D) ett_par.v 660 1044 384 35 419
Erasure/annotation (D and DC) erase.v 2002 2182 180 2 182
Decidability (DC) fc_dec_fun.v 1561 1695 134 45 179
Progress (DC) fc_consist.v 768 901 133 48 181
Inversion and regularity (D) ext_invert.v 1057 1174 117 0 117
Inversion lemmas (DC) fc_invert.v 650 665 15 82 97
Dec. of type checking (DC) fc_get.v 774 844 70 1 71
General tactics ett_ind.v 439 493 54 8 62
Preservation (D) ext_red.v 290 241 -49 91 42
Context includes all vars (DC) fc_context_fv.v 221 257 36 0 36
Context includes all vars (D) ext_context_fv.v 143 178 35 0 35
Dec. of type checking (DC) fc_dec_aux.v 395 399 4 18 22
Substitution (DC) fc_subst.v 1270 1292 22 0 22
Unique typing (DC) fc_unique.v 261 277 16 0 16
Reduction determinism (D) ext_red_one.v 111 123 12 0 12
Substitution (D) ext_subst.v 550 561 11 1 12
Primitive reduction beta.v 71 78 7 4 11
Subst. prop. for coercions (DC) congruence.v 349 354 5 0 5
Weakening (D) ext_weak.v 139 141 2 3 5
Preservation (DC) fc_preservation.v 247 245 -2 4 2
Well-formedness (D) ext_wf.v 93 93 0 3 3
Dec. of type checking (DC) fc_dec_fuel.v 223 223 0 2 2
Erasure properties erase_syntax.v 486 486 0 1 1
General tactics tactics.v 182 182 0 1 1

Total 17499 19404 554 2445

Figure 4 Comparison between line counts in the original [47] and extended proof developments.
The columns are (1) - number of lines in the original, (1η) - number of lines in the extended version,
(2) - change in line counts between the versions, (3) - size of diff for original, and (3η) - size of diff
for the extended version. Files that are identical between the versions are not included in the table,
but appear in the total line count. Note, all line counts include only non-blank, non-comment lines
of code.

A. Kravchuk-Kirilyuk, A. Voizard, and S. Weirich 7:15

5.1 Stating rules for η-equivalence

One issue that we faced in our development is the precise characterization of the new η-
equivalence rules using Ott. In the end, our actual formalization specifies these rules in a
slightly different form than as presented in Section 3. For example, rule Par-Eta reads as
follows, where we have named the body of the abstraction a and constrain it to be equal to
the application as a premise of the rule.

Par-Eta
� b ⇒ b′ a = b x+

� λ+x.a ⇒ b′

Although informally, this is a minor change, the precise statement of the rule determines the
definitions that will be produced in Coq.

The generated Coq definition uses the locally nameless representation and co-finite
quantification [8] for the bound variable inside the abstraction. Given any choice for the
bound variable x (except for some variables that must be avoided in the set L), we can show
that opening the body of the abstraction20 produces an application of b to that variable.
Furthermore, because this equation must hold for almost any variable x, we know that x
could not have appeared in the term b to begin with.

Inductive Par : context -> available_set -> tm -> tm -> Prop :=
...
| Par_Eta : forall (L:vars) (G:context) (D:available_set) (a b' b:tm),

Par G D b b' ->
(forall x, x \notin L ->

open a (Var_f x) = App b Rel (Var_f x)) ->
Par G D (UAbs Rel a) b'

In the Ott version of the rule, we need not explicitly mention that x cannot appear free
in b due to this use of cofinite quantification. Thus, the usual side condition on η-reduction
is implied by our formulation of the rule in Ott and does not need to be stated again.

5.2 Confluence proof update

Updating the confluence proof with the new cases for these rules was fairly straightforward.
In particular, Coq was easily able to point out the new cases that needed to be added.

One wrinkle was that the new cases required a change from an induction on the syntax
of the term to an induction on the height of the term. The reason for this modification is
that the new η-rules reduce b, which is not an immediate subterm of λ+x.b x+. However, it
is clear that in comparison to λ+x.b x+ the term b has a smaller height. The induction on
height of term was also effective for the other cases where we were dealing with immediate
subterms. Furthermore, our tool support (LNgen) already defined an appropriate height
function for terms which we were able to use for this purpose. Consequently, although we
needed to adjust the use of induction in each case, the overall modifications were minor.

20The process of replacing the bound variable, represented by an index, with a free one.

TYPES 2019

7:16 Eta-Equivalence in Core Dependent Haskell

6 Related work

6.1 Mechanized metatheory for dependent types
Mechanical reasoning via proof assistants has long been applied to dependent type theories.
We will not attempt to describe all results. However, we will mention two recent developments:

Sozeau et al. [41] present the first implementation of a type checker for the kernel of Coq,
which is proven correct in Coq with respect to its formal specification. More specifically,
their work models an extension of the Predicative Calculus of (Co)-Inductive Constructions:
a Pure Type System with an infinite hierarchy of universes, universe polymorphism, an
impredicative sort, and inductive and co-inductive type families. However, although the
Coq system includes η from version 8.4, this formalization does not include η-conversion.
Like this work, their proofs of the metatheory of this system include a confluence proof of a
parallel reduction relation, following Tait and Martin-Löf.

In [3], Abel, Öhman and Vezzozi mechanically prove (in Agda) the correctness of an
algorithm for deciding conversion in a dependent type theory with one universe, an inductive
type, and η-equality for function types. The algorithm that they verify is similar to the one
used by Agda and is derived from Harper and Pfenning’s definition of LF [24], as refined and
extended by Scherer and Abel [4, 2]. The proof of correctness of this algorithm is based on a
Kripke logical relations argument, parameterized by suitable notion of equivalence of terms.

6.2 Dependent types, type:type and η-equivalence
Similarly, the literature is rich with work pertaining to η-equivalence in type theories. Below,
we will focus on the interaction with type:type systems. In the next subsection, we discuss
the interactions with irrelevant arguments.

Many versions of the type:type language do not include η-equivalence in the definition of
conversion. For example, Coquand presents a semi-decision procedure for type checking a
language with type:type [18]. This algorithm compares types for equality through weak-head
normalization only. Similarly, Abel and Altenkirch [1] provide a more modern implementation
of the type checking algorithm for a very similar language (still without η-conversion), and
prove completeness on terminating terms (with a terminating type).

One difficulty with η-reduction in this setting is the problem with confluence for Church-
style calculi. To avoid a dependency between type checking and reduction, many dependent
type systems rely on an untyped reduction relation. However, in Church-style systems,
parallel reduction is only confluent for well-typed terms; ill-typed terms may not have a
common reduct. For example, the term (λx : A.(λy : B.y) x) can η-convert to λy : B.y or
β-convert to λx :A.x. These terms are only equal when A = B, but that is only guaranteed
by well-typed terms. As System D is a Curry-style system however, it does not suffer from
this issue.

Two versions of type:type that include η-equivalence are Cardelli [15] and Coquand and
Takeyama [19]. Both of these works justify the soundness of the type systems and the
consistency of the conversion relation using a denotational semantics. Furthermore, in
both of these systems, the denotational semantics ignores the annotated domain types of
lambda-expressions.

Coquand and Takeyama additionally provide a semi-decidable type checking algorithm.
Their conversion algorithm is not based on parallel reduction; instead it follows Coquand’s
algorithm[17], reducing expressions to their weak-head-normal-forms before a structural
comparison. When one of the terms being compared is a lambda expression and the other is
not, the algorithm invents a fresh variable, applies both terms to this fresh variable and then
continues checking for conversion.

A. Kravchuk-Kirilyuk, A. Voizard, and S. Weirich 7:17

Q DC TE η-F η-T Π MM
P01 [37] LF X X X X

AS12 [4] MLTT X X X X

AVW17 [5] MLTT X X X X 2.
NVD17 [35] MLTT X X 3.
ND18 [34] MLTT 4. X X X 3.
A18 [7] MLTT 4. X 5. 5. X

M01 [32] ECC X X

BB08 [13] ECC X X X

MLS08 [33] IPTS PTS X

MLS08 [33] EPTS PTS X X

System D [47] TT X 1. X X

System DC [47] TT X X 1. X X

Notes:
1. Contribution of the current paper.
2. Only arguments of type size can be used without restriction.
3. Includes several different quantifiers, some with restriction, some without.
4. Not explicitly discussed in the paper. (But there are enough annotations that type

checking is likely decidable.)
5. Definitional equality rules are not discussed in the paper, so the status is unclear.

Figure 5 Dependent type systems with irrelevance.

6.3 Irrelevant quantification and η-equivalence

In this section, we survey prior work on dependently-typed languages that include some form
of irrelevant quantification and discuss their interaction with η-equivalence. The contents of
this section are summarized in Figure 5, which compares these systems along the features
described below.

Note that the terms “irrelevance” and “irrelevant quantification” have multiple meanings
in the literature. Our primary focus is on erasability, the ability for terms to quantify over
arguments that need not be present at runtime. However, this terminology often includes
compile-time irrelevance, or the blindness of type equality to such erasable parts of terms. It
can also refer to erasability in the compile-time type equivalence algorithm. These terms are
also related to, but not the same as, “parametricity” or “parametric quantification”, which
characterizes functions that map equivalent arguments to equivalent results.

Below, we describe the various columns in this table that we use to lay out the design
space of dependent type systems with irrelevance. Our purpose in this taxonomy is merely
to define terms and summarize properties that we discuss below. We do not intend this table
to characterize the contributions of prior work.

What form of type quantification is supported (Q)? First, we distinguish prior work by
whether, and how, they support type quantification—that is, the ability for the system to
quantify over types as well as terms. Type quantification is the foundation for parametric
polymorphism, a key feature of modern programming languages, enabling modularity and
code reuse. In dependent type systems, type quantification can take different forms, which
have varying degrees of expressiveness. Prior work is based on the following foundations
for type quantification:

TYPES 2019

7:18 Eta-Equivalence in Core Dependent Haskell

LF [23], variants of the Logical Framework. This system includes dependency on terms
only and does not allow quantification over types.

MLTT [30, 31], variants of Martin-Löf Type Theory. These systems feature predicative
polymorphism only, where types are stratified into an infinite hierarchy of universes.
A type from one universe can quantify only over types from lower universes.

ECC [16, 28], variants of the extended calculus of constructions. These systems feature
an impredicative sort (called Prop), in addition to an infinite hierarchy of predicative
universes. The types in the impredicative sort can quantify over themselves, all others
must be stratified.

TT [29, 15], variants of core systems that include the type:type axiom. In these systems
there is only a single sort of type, which includes types that quantify over all types.
Systems D and DC include this form of quantification to make the system simpler for
Haskell programmers, who are used to the impredicative polymorphism of System F.

PTS [10], pure type systems. These systems do not fix a single regime of type quantifica-
tion. Instead, they may be instantiated with many different treatments of quantification,
including all of the forms described above.

Is type checking decidable (DC)? Next, we distinguish systems based on whether they
support decidable type checking (X) or not (). Some calculi include enough annotations
so that a decidable type checking algorithm can be defined, others merely specify when
terms are well-typed. Sometimes the “same” system can be cast in two different variants.
For example, System D does not support decidable type checking, System DC augments
the syntax of terms with annotations for this purpose.21

Is the definition of equality typed (TE)? Does the conversion rule in the type system use
a typed (X) or untyped () definition of equivalence? A typed equivalence requires a
typed judgemental equality ([6]) and each transitive step used in the derivation to be
between well-typed terms. In contrast, an untyped equivalence is usually defined in terms
of β- or βη- conversion of terms, only checking that the endpoints are well typed.
This distinction can affect expressiveness in both directions. On the one hand, an untyped
relation might equate terms with different types, or justify an equality using ill-typed
terms. There may be no analogous derivation in a typed relation. On the other hand,
some equivalence rules (like η for the unit type, see below) can only be included in the
system when type information is present, thus expanding the relation.
The inclusion of typed equivalence relation means that the algorithm used for type
checking may depend not just on the syntax of terms but also on their types during
execution. This type information may be used to prevent two terms from being equated
(for example, if one of the terms doesn’t type check), or it may be used to enable two
terms to be equated (such as in the case of the η-equivalence rule for the unit type).

Does the equality include η-equivalence rules for functions (η-F)? In this column, we in-
clude rules for functions regardless of whether they take relevant or irrelevant arguments.
Note that some systems ([32]) do not mark the introduction and elimination sites of
functions with irrelevant arguments. As a result, the corresponding equivalence rules
are unnecessary. Similarly to other features, η-F (as well as η-T below) is important for
programming as it may be used to derive equalities between types that mention functions,
and thus to type-check more programs.

21Note, one typical location of annotation is the type of bound variables. Systems are often called
“Church”-style when they include this annotation and “Curry”-style when they do not. However, this
annotation is independent of the decidability of the type system, and many type systems that do not
include this annotation support complete typing algorithms.

A. Kravchuk-Kirilyuk, A. Voizard, and S. Weirich 7:19

Does the equality include η-equivalence rules for products and unit (η-T)? Does the
equality include type-directed η-equivalence rules for products or the unit type? For
example, the rule for the unit type equates all terms of this type. Because this rule is
type dependent, it can only be added to systems that use a typed definition of equiva-
lence. These rules are typically implemented in the type system through a type-directed
equivalence algorithm [24, 2].
At a high-level, the type-directed algorithm works in two stages. First, in the type-directed
phase, if the terms being compared have function types, the two terms are applied to a
fresh variable. This process takes care of η-equality. If the terms do not have function
types, then the algorithm continues by converting both terms to weak-head normal form.
If their heads match, then the algorithm recurses with the type-directed stage again on
each of the corresponding subterms.

Is the codomain of the irrelevant Π-type unrestricted (Π)? In some systems, the type of
an irrelevant abstraction is restricted so that the dependent argument must also be
used irrelevantly. In other systems, the variable can appear freely without restrictions.
Still others only allow unrestricted use for certain types of variables [5], or give users a
choice [35, 34]. We discuss systems that include such restrictions, and their reasons for it,
in Section 6.4. Systems D and DC do not restrict the codomain of irrelevant Π-types.

Mechanized metatheory (MM)? Have the metatheoretic results in the paper been devel-
oped and checked using a proof assistant? Our work is unique in this respect compared
to similar systems.

6.4 Irrelevant quantification and restrictions on Π types

In this paper, we use irrelevance to mean erasure—i.e. the property that some arguments
may be removed from the term without affecting the runtime behavior of the operational
semantics. However, there is also a question of what happens to these arguments during
type checking. Do these arguments affect the definition of type equality? If not, can they
similarly be erased as part of a type checking algorithm?

Abel and Scherer [4] noted that although some arguments are irrelevant at run-time, they
can still be relevant when determining type equality. If the definitional equality of the type
system is typed, and if the type system allows large eliminations, i.e. the definition of a type
via case analysis, then it can be difficult to incorporate type erasure into a type-directed
equivalence algorithm. Fundamentally, the algorithm is driven by type information (instead
of the structure of terms) and if irrelevant arguments can influence those types, they cannot
be erased.

The key difficulty is demonstrated by the following example, taken from Abel and
Scherer [4]. In the presence of large eliminations, and without any other restrictions, one
would be able to type check the following term t, reproduced below in the syntax of DC
extended with booleans.22

22Note that many systems support the large elimination needed for this example, even in the absence of
inductive types. For example, in Systems D and DC we can use a Church-style encoding of booleans.

TYPES 2019

7:20 Eta-Equivalence in Core Dependent Haskell

T : Bool→ type
T =λ+x :Bool.if x then (Bool→ Bool) else Bool

t =λ−F : Π−x :Bool.(T x → T x)→ type.
λ+f : (F False− (λ+x :Bool.x)+)→ Bool.
λ+n : F True− (λ+x : (Bool→ Bool).λ+y :Bool.x y+)+.

f (n . γ)+

The DC coercion proof γ marks the point where conversion must be used in this example.
This term is well-typed in a setting where the type system can derive an equality between the
type of the parameter to f and the type of the argument n. These two types differ in only
their irrelevant components, so they should be equated. In System DC, which, like ICC∗,
includes rules that erase types as part of type equivalence, we can define a coercion proof γ
that witnesses the equality between the two types. Such a proof is composed transitively
by first using the erasure-based reflexivity rule (rule An-EraseEq) to change the implicit
argument to F , and then using η-equivalence with the explicit argument.

|F False− (λ+x :Bool.x)+| = F �− (λ+x.x)+

=βη F �− (λ+x.λ+y.x y+)+

= |F True− (λ+x : (Bool→ Bool).λ+y :Bool.x y+)+|

This example causes no difficulty for type checking in DC because it does not use a type-
directed equivalence algorithm. Indeed, all of the information required by the algorithm is
already present in the term.

However, it is difficult to extend a type-directed equivalence algorithm, particularly
one that includes the η-equivalence rule for the unit type, so that it can equate these two
types. Therefore, Abel and Scherer proposed restrictions on the use of irrelevantly quantified
variables, not just in abstractions, but also in the codomain of irrelevant quantifiers. These
restrictions were lifted in [5] for sized types, on the observation that they were irrelevant to
the shape of types and therefore were not relevant to the operation of the type-equivalence
algorithm. Nuyts and Devriese [35] expand on this idea and develop a modal type theory
that includes, along with other modalities, irrelevance and shape-irrelevance in a unified
framework.

However, note that the issue with this example is the desire to use erasure as part of
a type-directed algorithm, not in the use of a typed equivalence in the language definition
itself, nor the fact that the definition of type-equivalence ignores irrelevant components.

Because System DC does not rely on this sort of algorithm, it demonstrates that decidable
type checking, irrelevance and large eliminations are compatible. Indeed, System DC requires
the use of erasure in one of its key coercion proofs. On the other hand, one could worry
that this example would cause trouble for System D. The fact that type checking is already
undecidable in that language is not an excuse: a compiler like GHC will need to implement
some type inference algorithm and should identify some subset of the language that it will
support. This example demonstrates that type-directed algorithms are not a good fit for this
setting, but does not rule out the algorithms sketched in Section 2.3.

A. Kravchuk-Kirilyuk, A. Voizard, and S. Weirich 7:21

7 Conclusion

Overall, this work demonstrates the benefits of developing the metatheory of type systems
using a proof assistant. Although establishing the original development in prior work [47]
took significant effort, we are able to build on that foundation when considering extensions
of the system.

Furthermore, the availability of this sort of proof as a software engineering artifact makes it
easier to bring on new collaborators. Because all of the proofs are machine-checked, newcomers
can easily find what parts of the system need extension, even without understanding all
details of how everything fits together. As a result, this sort of effort can be shared among
many more collaborators, who can assist in maintaining the results.

Finally, the confidence gained from machine-checked proofs is also important. The failure
of preservation for parallel η-reduction is obvious only in hindsight, and could have been
easily overlooked in a pen-and-paper proof. At the same time, the automatic reassurance
that this failure does not interact with the main soundness and decidability results is also
welcome.

References
1 Andreas Abel and Thorsten Altenkirch. A partial type checking algorithm for Type:Type.

Electronic Notes in Theoretical Computer Science, 229(5):3–17, 2011. Proceedings of the
Second Workshop on Mathematically Structured Functional Programming (MSFP 2008).
doi:10.1016/j.entcs.2011.02.013.

2 Andreas Abel, Thierry Coquand, and Peter Dybjer. Normalization by evaluation for Martin-
Löf type theory with typed equality judgements. In 22nd Annual IEEE Symposium on Logic
in Computer Science (LICS 2007), pages 3–12. IEEE, 2007.

3 Andreas Abel, Joakim Öhman, and Andrea Vezzosi. Decidability of conversion for type theory
in type theory. Proceedings of the acm on programming languages, 2(POPL):23, 2017.

4 Andreas Abel and Gabriel Scherer. On irrelevance and algorithmic equality in predicative type
theory. Logical Methods in Computer Science, 8(1), 2012. doi:10.2168/LMCS-8(1:29)2012.

5 Andreas Abel, Andrea Vezzosi, and Théo Winterhalter. Normalization by evaluation for sized
dependent types. PACMPL, 1(ICFP):33:1–33:30, 2017. doi:10.1145/3110277.

6 ROBIN ADAMS. Pure type systems with judgemental equality. Journal of Functional
Programming, 16(2):219–246, 2006. doi:10.1017/S0956796805005770.

7 Robert Atkey. The syntax and semantics of quantitative type theory. In LICS ’18: 33rd
Annual ACM/IEEE Symposium on Logic in Computer Science, July 9–12, 2018, Oxford,
United Kingdom, 2018. doi:10.1145/3209108.3209189.

8 Brian Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack, and Stephanie
Weirich. Engineering formal metatheory. In ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL), pages 3–15, January 2008.

9 Brian Aydemir and Stephanie Weirich. LNgen: Tool support for locally nameless represen-
tations. Technical Report MS-CIS-10-24, Computer and Information Science, University of
Pennsylvania, June 2010.

10 H. P. Barendregt. Lambda Calculi with Types, page 117–309. Oxford University Press, Inc.,
USA, 1993.

11 Hendrik Pieter Barendregt. The Lambda Calculus - its Syntax and Semantics, volume 103 of
Studies in logic and the foundations of mathematics. North-Holland, 1985.

12 Henk Barendregt. Introduction to generalized type systems. J. Funct. Program., 1(2):125–154,
1991.

TYPES 2019

https://doi.org/10.1016/j.entcs.2011.02.013
https://doi.org/10.2168/LMCS-8(1:29)2012
https://doi.org/10.1145/3110277
https://doi.org/10.1017/S0956796805005770
https://doi.org/10.1145/3209108.3209189

7:22 Eta-Equivalence in Core Dependent Haskell

13 Bruno Barras and Bruno Bernardo. The implicit calculus of constructions as a programming
language with dependent types. In Roberto Amadio, editor, Foundations of Software Science
and Computational Structures, pages 365–379, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg.

14 Edwin Brady. Practical Implementation of a Dependently Typed Functional Programming
Language. PhD thesis, Durham University, 2005.

15 Luca Cardelli. A polymorphic λ-calculus with Type:Type. Technical report, DEC SRC, 1986.
URL: http://lucacardelli.name/Papers/TypeType.A4.pdf.

16 Thierry Coquand. A calculus of constructions. manuscript, November 1986.
17 Thierry Coquand. An algorithm for testing conversion in type theory. In Gérard Huet and

Gordon Plotkin, editors, Logical Frameworks, pages 255–279. Cambridge University Press,
New York, NY, USA, 1991.

18 Thierry Coquand. An algorithm for type-checking dependent types. Science of computer
programming., 26(1-3):167,177, 1996-05.

19 Thierry Coquand and Makoto Takeyama. An implementation of type: type. In International
Workshop on Types for Proofs and Programs, pages 53–62. Springer, 2000.

20 Richard A. Eisenberg. Dependent Types in Haskell: Theory and Practice. PhD thesis, University
of Pennsylvania, 2016.

21 Richard A. Eisenberg and Stephanie Weirich. Dependently typed programming with singletons.
In ACM SIGPLAN Haskell Symposium, 2012.

22 Adam Gundry. Type Inference, Haskell and Dependent Types. PhD thesis, University of
Strathclyde, 2013.

23 Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. J. ACM,
40(1):143–184, January 1993. doi:10.1145/138027.138060.

24 Robert Harper and Frank Pfenning. On equivalence and canonical forms in the LF type theory.
ACM Trans. Comput. Logic, 6(1):61–101, January 2005. doi:10.1145/1042038.1042041.

25 J. Roger Hindley. The Church-Rosser property and a result in combinatory logic. PhD thesis,
University of Newcastle upon Tyne, 1964.

26 Csongor Kiss, Tony Field, Susan Eisenbach, and Simon Peyton Jones. Higher-order type-level
programming in haskell. Proc. ACM Program. Lang., 3(ICFP), July 2019. doi:10.1145/
3341706.

27 Sam Lindley and Conor McBride. Hasochism: the pleasure and pain of dependently typed
Haskell programming. In ACM SIGPLAN Haskell Symposium, 2013.

28 Z. Luo. ECC, an extended calculus of constructions. In [1989] Proceedings. Fourth Annual
Symposium on Logic in Computer Science, pages 386–395, 1989.

29 Per Martin-Löf. A theory of types. Unpublished manuscript, 1971.
30 Per Martin-Löf. An intuitionistic theory of types: predicative part. In H.E. Rose and J.C.

Shepherdson, editors, Logic Colloquium ’73, Proceedings of the Logic Colloquium, volume 80
of Studies in Logic and the Foundations of Mathematics, pages 73–118. North-Holland, 1975.

31 Per Martin-Löf. Intuitionistic type theory, volume 1 of Studies in Proof Theory. Bibliopolis,
1984.

32 Alexandre Miquel. The implicit calculus of constructions: Extending pure type systems with
an intersection type binder and subtyping. In Proceedings of the 5th International Conference
on Typed Lambda Calculi and Applications, TLCA’01, pages 344–359, Berlin, Heidelberg, 2001.
Springer-Verlag.

33 Nathan Mishra-Linger and Tim Sheard. Erasure and polymorphism in pure type systems. In
Roberto M. Amadio, editor, Foundations of Software Science and Computational Structures,
11th International Conference, FOSSACS 2008, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29 - April 6,
2008. Proceedings, volume 4962 of Lecture Notes in Computer Science, pages 350–364. Springer,
2008. doi:10.1007/978-3-540-78499-9_25.

http://lucacardelli.name/Papers/TypeType.A4.pdf
https://doi.org/10.1145/138027.138060
https://doi.org/10.1145/1042038.1042041
https://doi.org/10.1145/3341706
https://doi.org/10.1145/3341706
https://doi.org/10.1007/978-3-540-78499-9_25

A. Kravchuk-Kirilyuk, A. Voizard, and S. Weirich 7:23

34 Andreas Nuyts and Dominique Devriese. Degrees of relatedness: A unified framework for
parametricity, irrelevance, ad hoc polymorphism, intersections, unions and algebra in dependent
type theory. In Anuj Dawar and Erich Grädel, editors, Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12,
2018, pages 779–788. ACM, 2018. doi:10.1145/3209108.3209119.

35 Andreas Nuyts, Andrea Vezzosi, and Dominique Devriese. Parametric quantifiers for dependent
type theory. Proc. ACM Program. Lang., 1(ICFP):32:1–32:29, August 2017. doi:10.1145/
3110276.

36 Frank Pfenning. On the undecidability of partial polymorphic type reconstruction. Technical
report, Carnegie Mellon University, Pittsburgh, PA, USA, 1992.

37 Frank Pfenning. Intensionality, extensionality, and proof irrelevance in modal type theory. In
J. Halpern, editor, Proceedings of the 16th Annual Symposium on Logic in Computer Science
(LICS’01), pages 221–230, Boston, Massachusetts, June 2001. IEEE Computer Society Press.

38 Barry K. Rosen. Tree-manipulating systems and Church-Rosser theorems. J. ACM, 20(1):160–
187, January 1973. doi:10.1145/321738.321750.

39 Alejandro Serrano, Jurriaan Hage, Dimitrios Vytiniotis, and Simon Peyton Jones. Guarded
impredicative polymorphism. In Jeffrey S. Foster and Dan Grossman, editors, Proceedings of
the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018, pages 783–796. ACM, 2018. doi:
10.1145/3192366.3192389.

40 Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Thomas Ridge, Susmit
Sarkar, and Rok Strniša. Ott: Effective tool support for the working semanticist. Journal of
Functional Programming, 20(1), January 2010.

41 Matthieu Sozeau, Simon Boulier, Yannick Forster, Nicolas Tabareau, and Théo Winterhalter.
Coq coq correct! verification of type checking and erasure for coq, in coq. Proc. ACM Program.
Lang., 4(POPL):8:1–8:28, 2020. doi:10.1145/3371076.

42 M. Sulzmann, M. Chakravarty, S. Peyton Jones, and K. Donnelly. System F with type equality
coercions. In François Pottier and George C. Necula, editors, Proceedings of TLDI’07: 2007
ACM SIGPLAN International Workshop on Types in Languages Design and Implementation,
Nice, France, January 16, 2007, pages 53–66. ACM, 2007.

43 The Coq Development Team. The Coq proof assistant, version 8.8.0, April 2018. doi:
10.5281/zenodo.1219885.

44 Dimitrios Vytiniotis, Simon L. Peyton Jones, Tom Schrijvers, and Martin Sulzmann. Out-
sidein(x) modular type inference with local assumptions. J. Funct. Program., 21(4-5):333–412,
2011. doi:10.1017/S0956796811000098.

45 Stephanie Weirich. Depending on types, 2014. Invited keynote given at ICFP 2014.
46 Stephanie Weirich, Justin Hsu, and Richard A. Eisenberg. System FC with explicit kind

equality. In Proceedings of The 18th ACM SIGPLAN International Conference on Functional
Programming, ICFP ’13, pages 275–286, Boston, MA, September 2013.

47 Stephanie Weirich, Antoine Voizard, Pedro Henrique Avezedo de Amorim, and Richard A.
Eisenberg. A specification for dependent types in Haskell. Proc. ACM Program. Lang.,
1(ICFP):31:1–31:29, August 2017. doi:10.1145/3110275.

48 J.B. Wells. Typability and type checking in System F are equivalent and undecidable. Annals
of Pure and Applied Logic, 98(1):111–156, 1999. doi:10.1016/S0168-0072(98)00047-5.

49 A.K. Wright and M. Felleisen. A syntactic approach to type soundness. Inf. Comput.,
115(1):38–94, November 1994. doi:10.1006/inco.1994.1093.

50 Ningning Xie, Richard A. Eisenberg, and Bruno C. d. S. Oliveira. Kind inference for datatypes.
Proc. ACM Program. Lang., 4(POPL):53:1–53:28, 2020. doi:10.1145/3371121.

TYPES 2019

https://doi.org/10.1145/3209108.3209119
https://doi.org/10.1145/3110276
https://doi.org/10.1145/3110276
https://doi.org/10.1145/321738.321750
https://doi.org/10.1145/3192366.3192389
https://doi.org/10.1145/3192366.3192389
https://doi.org/10.1145/3371076
https://doi.org/10.5281/zenodo.1219885
https://doi.org/10.5281/zenodo.1219885
https://doi.org/10.1017/S0956796811000098
https://doi.org/10.1145/3110275
https://doi.org/10.1016/S0168-0072(98)00047-5
https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.1145/3371121

7:24 Eta-Equivalence in Core Dependent Haskell

A Complete system specification

The complete type system appears in here including the actual rules that we used, auto-
matically generated by Ott. For presentation purposes, we have removed some redundant
hypotheses from these rules in the main body of the paper when they were implied via
regularity. We have proven (in Coq) that these additional premises are admissible, so their
removal does not change the type system.23 These redundant hypotheses are marked by
square brackets in the complete system below.

We need to include these redundant hypotheses in our rules for two reasons. First,
sometimes these hypotheses simplify the reasoning and allow us to prove properties more
independently of one another. For example, in the rule E-Beta rule, we require a2 to have
the same type as a1. However, this type system supports the preservation lemma so this
typing premise will always be derivable. But, it is convenient to prove the regularity property
early, so we include that hypothesis in the definition of the type system.

Another source of redundancy comes from our use of the Coq proof assistant. Some of
our proofs require the use of induction on judgements that are not direct premises, but are
derived from other premises via regularity. These derivations are always the same height or
shorter than the original, so this use of induction is justified. However, while Coq natively
supports proofs by induction on derivations, it does not natively support induction on the
heights of derivations. Therefore, to make these induction hypotheses available for reasoning,
we include them as additional premises.

Finally, instead of the usual syntactic distinction of values (as in Figure 2), our formal-
ization identifies values using the judgement [Value a], overloaded for both System D and
System DC terms.

B Top-level signatures

Our results are proven with respect to the following top-level signatures:

Σ1 = ∅ ∪ {Fix ∼ λ−x : type.λ+y :x.(y (Fix[x] y)) : Π−x : type.(x→ x)→ x}

Σ0 = |Σ1|

However, our Coq proofs use these signature definitions opaquely. As a result, any pair
of top-level signatures are compatible with the definition of the languages as long as they
satisfy the following properties.

1. � Σ0

2. ` Σ1

3. Σ0 = |Σ1|

23 ext_invert.v:E_Pi2,E_Abs2,E_CPi2,E_CAbs2,E_Fam2, ext_invert.v:E_Wff2,E_PiCong2,E_
AbsCong2,E_CPiCong2,E_CAbsCong2, ext_red.v:E_Beta2, fc_invert.v:An_Pi_exists2,An_Abs_
exists2,An_CPi_exists2,An_CAbs_exists2,An_Fam2, fc_invert.v:An_Sym2,An_Trans2,An_
AbsCong_exists2, fc_invert.v:An_AppCong2,An_CPiCong_exists2,An_CAppCong2

ext_invert.v:E_Pi2,E_Abs2,E_CPi2,E_CAbs2,E_Fam2
ext_invert.v:E_Wff2,E_PiCong2,E_AbsCong2,E_CPiCong2,E_CAbsCong2
ext_invert.v:E_Wff2,E_PiCong2,E_AbsCong2,E_CPiCong2,E_CAbsCong2
ext_red.v:E_Beta2
fc_invert.v:An_Pi_exists2,An_Abs_exists2,An_CPi_exists2,An_CAbs_exists2,An_Fam2
fc_invert.v:An_Pi_exists2,An_Abs_exists2,An_CPi_exists2,An_CAbs_exists2,An_Fam2
fc_invert.v:An_Sym2,An_Trans2,An_AbsCong_exists2
fc_invert.v:An_Sym2,An_Trans2,An_AbsCong_exists2
fc_invert.v:An_AppCong2,An_CPiCong_exists2,An_CAppCong2

A. Kravchuk-Kirilyuk, A. Voizard, and S. Weirich 7:25

C Reduction relations

C.1 Primitive reduction
� a > b (primitive reductions on erased terms)

Beta-AppAbs

� (λ+x.v) b+ > v{b/x}

Beta-AppAbsIrrel
[Value (λ−x.v)]

� (λ−x.v) �− > v{�/x}

Beta-CAppCAbs

� (Λc.a′)[•] > a′{•/c}

Beta-Axiom
F ∼ a : A ∈ Σ0

� F > a

C.2 System D one-step reduction
� a b (single-step head reduction for implicit language)

E-AbsTerm
� a a′

� λ−x.a λ−x.a′

E-AppLeft
� a a′

� a b+ a′ b+

E-AppLeftIrrel
� a a′

� a �− a′ �−

E-CAppLeft
� a a′

� a[•] a′[•]

E-AppAbs

� (λ+x.v) a+ v{a/x}

E-AppAbsIrrel
[Value (λ−x.v)]

� (λ−x.v) �− v{�/x}

E-CAppCAbs

� (Λc.b)[•] b{•/c}

E-Axiom
F ∼ a : A ∈ Σ0

� F a

C.3 System DC one-step reduction
Γ ` a b (single-step, weak head reduction to values for annotated language)

An-AppLeft
Γ ` a a′

Γ ` a bρ a′ bρ

An-AppAbs
[Value (λρx :A.w)]

Γ ` (λρx :A.w) aρ w{a/x}

An-CAppLeft
Γ ` a a′

Γ ` a[γ] a′[γ]

An-CAppCAbs

Γ ` (Λc :φ.b)[γ] b{γ/c}

An-AbsTerm
Γ ` A : type

Γ, x : A ` b b′

Γ ` (λ−x :A.b) (λ−x :A.b′)

An-Axiom
F ∼ a : A ∈ Σ1

Γ ` F a

An-ConvTerm
Γ ` a a′

Γ ` a . γ a′ . γ

An-Combine
[Value v]

Γ ` (v . γ1) . γ2 v . (γ1; γ2)

An-Push
[Value v]

Γ; Γ̃ ` γ : Πρx1 :A1.B1 ∼ Πρx2 :A2.B2
b′ = b . sym (piFst γ)
γ′ = γ@(b′ |=|(piFst γ) b)

Γ ` (v . γ) bρ (v b′ρ) . γ′

An-CPush
[Value v]

Γ; Γ̃ ` γ : ∀c1 :φ1.A1 ∼ ∀c2 :φ2.A2
γ′1 = γ1 . sym (cpiFst γ)

γ′ = γ@(γ′1 ∼ γ1)
Γ ` (v . γ)[γ1] (v[γ′1]) . γ′

TYPES 2019

7:26 Eta-Equivalence in Core Dependent Haskell

C.4 Parallel reduction
� a ⇒ b (parallel reduction (implicit language))

Par-Refl

� a ⇒ a

Par-Beta
� a ⇒ (λ+x.a′)
� b ⇒ b′

� a b+ ⇒ a′{b′/x}

Par-BetaIrrel
� a ⇒ (λ−x.a′)
� a �− ⇒ a′{�/x}

Par-App
� a ⇒ a′ � b ⇒ b′

� a b+ ⇒ a′ b′+

Par-AppIrrel
� a ⇒ a′

� a �− ⇒ a′ �−

Par-CBeta
� a ⇒ (Λc.a′)
� a[•]⇒ a′{•/c}

Par-CApp
� a ⇒ a′

� a[•]⇒ a′[•]

Par-Abs
� a ⇒ a′

� λρx.a ⇒ λρx.a′

Par-Pi
� A⇒ A′ � B ⇒ B′

� Πρx :A.B ⇒ Πρx :A′.B′

Par-CAbs
� a ⇒ a′

� Λc.a ⇒ Λc.a′

Par-CPi
� A⇒ A′ � B ⇒ B′
� a ⇒ a′ � A1 ⇒ A′1

� ∀c :A ∼A1 B.a ⇒ ∀c :A′ ∼A′
1

B′.a′

Par-Axiom
F ∼ a : A ∈ Σ0

� F ⇒ a

Par-Eta
� b ⇒ b′ a = b x+

� λ+x.a ⇒ b′

Par-EtaIrrel
� b ⇒ b′ a = b �−

� λ−x.a ⇒ b′

Par-EtaC
� b ⇒ b′ a = b[•]
� Λc.a ⇒ b′

D Full system specification: System D type system

Γ � a : A (typing)

E-Star
� Γ

Γ � type : type

E-Var
� Γ x : A ∈ Γ

Γ � x : A

E-Pi
Γ, x : A � B : type

[Γ � A : type]
Γ � Πρx :A.B : type

E-Abs
Γ, x : A � a : B
[Γ � A : type]

(ρ = +) ∨ (x 6∈ fv a)
Γ � λρx.a : Πρx :A.B

E-App
Γ � b : Π+x :A.B

Γ � a : A
Γ � b a+ : B{a/x}

E-IApp
Γ � b : Π−x :A.B

Γ � a : A
Γ � b �− : B{a/x}

E-Conv
Γ � a : A

Γ; Γ̃ � A ≡ B : type
[Γ � B : type]

Γ � a : B

E-CPi
Γ, c : φ � B : type

[Γ � φ ok]
Γ � ∀c :φ.B : type

E-CAbs
Γ, c : φ � a : B

[Γ � φ ok]
Γ � Λc.a : ∀c :φ.B

E-CApp
Γ � a1 : ∀c : (a ∼A b).B1

Γ; Γ̃ � a ≡ b : A
Γ � a1[•] : B1{•/c}

E-Fam
� Γ F ∼ a : A ∈ Σ0

[∅ � A : type]
Γ � F : A

Γ � φ ok (Prop wellformedness)

E-Wff
Γ � a : A Γ � b : A

[Γ � A : type]
Γ � a ∼A b ok

A. Kravchuk-Kirilyuk, A. Voizard, and S. Weirich 7:27

Γ; ∆ � φ1 ≡ φ2 (prop equality)

E-PropCong
Γ; ∆ � A1 ≡ A2 : A
Γ; ∆ � B1 ≡ B2 : A

Γ; ∆ � A1 ∼A B1 ≡ A2 ∼A B2

E-IsoConv
Γ; ∆ � A ≡ B : type
Γ � A1 ∼A A2 ok
Γ � A1 ∼B A2 ok

Γ; ∆ � A1 ∼A A2 ≡ A1 ∼B A2

E-CPiFst
Γ; ∆ � ∀c :φ1.B1 ≡ ∀c :φ2.B2 : type

Γ; ∆ � φ1 ≡ φ2

Γ; ∆ � a ≡ b : A (definitional equality)

E-Assn
� Γ c : (a ∼A b) ∈ Γ

c ∈ ∆
Γ; ∆ � a ≡ b : A

E-Refl
Γ � a : A

Γ; ∆ � a ≡ a : A

E-Sym
Γ; ∆ � b ≡ a : A
Γ; ∆ � a ≡ b : A

E-Trans
Γ; ∆ � a ≡ a1 : A
Γ; ∆ � a1 ≡ b : A
Γ; ∆ � a ≡ b : A

E-Beta
Γ � a1 : B

[Γ � a2 : B] � a1 > a2

Γ; ∆ � a1 ≡ a2 : B

E-PiCong
Γ; ∆ � A1 ≡ A2 : type

Γ, x : A1; ∆ � B1 ≡ B2 : type
[Γ � A1 : type]

[Γ � Πρx :A1.B1 : type]
[Γ � Πρx :A2.B2 : type]

Γ; ∆ � (Πρx :A1.B1) ≡ (Πρx :A2.B2) : type

E-AbsCong
Γ, x : A1; ∆ � b1 ≡ b2 : B

[Γ � A1 : type]
(ρ = +) ∨ (x 6∈ fv b1)
(ρ = +) ∨ (x 6∈ fv b2)

Γ; ∆ � (λρx.b1) ≡ (λρx.b2) : Πρx :A1.B

E-AppCong
Γ; ∆ � a1 ≡ b1 : Π+x :A.B

Γ; ∆ � a2 ≡ b2 : A
Γ; ∆ � a1 a2

+ ≡ b1 b2
+ : B{a2/x}

E-IAppCong
Γ; ∆ � a1 ≡ b1 : Π−x :A.B

Γ � a : A
Γ; ∆ � a1 �

− ≡ b1 �
− : B{a/x}

E-PiFst
Γ; ∆ � Πρx :A1.B1 ≡ Πρx :A2.B2 : type

Γ; ∆ � A1 ≡ A2 : type

E-PiSnd
Γ; ∆ � Πρx :A1.B1 ≡ Πρx :A2.B2 : type

Γ; ∆ � a1 ≡ a2 : A1

Γ; ∆ � B1{a1/x} ≡ B2{a2/x} : type

E-CPiCong
Γ; ∆ � φ1 ≡ φ2

Γ, c : φ1; ∆ � A ≡ B : type
[Γ � φ1 ok]

[Γ � ∀c :φ1.A : type]
[Γ � ∀c :φ2.B : type]

Γ; ∆ � ∀c :φ1.A ≡ ∀c :φ2.B : type

E-CAbsCong
Γ, c : φ1; ∆ � a ≡ b : B

[Γ � φ1 ok]
Γ; ∆ � (Λc.a) ≡ (Λc.b) : ∀c :φ1.B

E-CAppCong
Γ; ∆ � a1 ≡ b1 : ∀c : (a ∼A b).B

Γ; Γ̃ � a ≡ b : A
Γ; ∆ � a1[•] ≡ b1[•] : B{•/c}

TYPES 2019

7:28 Eta-Equivalence in Core Dependent Haskell

E-CPiSnd
Γ; ∆ � ∀c : (a1 ∼A a2).B1 ≡ ∀c : (a′1 ∼A′ a′2).B2 : type

Γ; Γ̃ � a1 ≡ a2 : A
Γ; Γ̃ � a′1 ≡ a′2 : A′

Γ; ∆ � B1{•/c} ≡ B2{•/c} : type

E-Cast
Γ; ∆ � a ≡ b : A

Γ; ∆ � a ∼A b ≡ a′ ∼A′ b′

Γ; ∆ � a′ ≡ b′ : A′

E-EqConv
Γ; ∆ � a ≡ b : A

Γ; Γ̃ � A ≡ B : type
Γ; ∆ � a ≡ b : B

E-IsoSnd
Γ; ∆ � a ∼A b ≡ a′ ∼A′ b′

Γ; ∆ � A ≡ A′ : type

E-EtaRel
Γ � b : Π+x :A.B

a = b x+

Γ; ∆ � λ+x.a ≡ b : Π+x :A.B

E-EtaIrrel
Γ � b : Π−x :A.B

a = b �−

Γ; ∆ � λ−x.a ≡ b : Π−x :A.B

E-EtaC
Γ � b : ∀c :φ.B

a = b[•]
Γ; ∆ � Λc.a ≡ b : ∀c :φ.B

� Γ (context wellformedness)

E-Empty

� ∅

E-ConsTm
� Γ Γ � A : type

x 6∈ dom Γ
� Γ, x : A

E-ConsCo
� Γ

Γ � φ ok c 6∈ dom Γ
� Γ, c : φ

� Σ (signature wellformedness)

Sig-Empty

� ∅

Sig-ConsAx
� Σ ∅ � A : type

∅ � a : A F 6∈ dom Σ
� Σ ∪ {F ∼ a : A}

E Full system specification: System DC type system

Γ ` a : A (typing)

An-Star
` Γ

Γ ` type : type

An-Var
` Γ x : A ∈ Γ

Γ ` x : A

An-Pi
Γ, x : A ` B : type

[Γ ` A : type]
Γ ` Πρx :A.B : type

An-Abs
[Γ ` A : type]

Γ, x : A ` a : B
(ρ = +) ∨ (x 6∈ fv |a|)

Γ ` λρx :A.a : Πρx :A.B

An-App
Γ ` b : Πρx :A.B

Γ ` a : A
Γ ` b aρ : B{a/x}

An-Conv
Γ ` a : A

Γ; Γ̃ ` γ : A ∼ B
Γ ` B : type
Γ ` a . γ : B

An-CPi
[Γ ` φ ok]

Γ, c : φ ` B : type
Γ ` ∀c :φ.B : type

An-CAbs
[Γ ` φ ok]

Γ, c : φ ` a : B
Γ ` Λc :φ.a : ∀c :φ.B

An-CApp
Γ ` a1 : ∀c :a ∼A1 b.B

Γ; Γ̃ ` γ : a ∼ b
Γ ` a1[γ] : B{γ/c}

An-Fam
` Γ F ∼ a : A ∈ Σ1

[∅ ` A : type]
Γ ` F : A

A. Kravchuk-Kirilyuk, A. Voizard, and S. Weirich 7:29

Γ ` φ ok (prop wellformedness)

An-Wff
Γ ` a : A

Γ ` b : B |A| = |B|
Γ ` a ∼A b ok

Γ; ∆ ` γ : φ1 ∼ φ2 (coercion between props)

An-PropCong
Γ; ∆ ` γ1 : A1 ∼ A2
Γ; ∆ ` γ2 : B1 ∼ B2
Γ ` A1 ∼A B1 ok
Γ ` A2 ∼A B2 ok

Γ; ∆ ` (γ1 ∼A γ2) : (A1 ∼A B1) ∼ (A2 ∼A B2)

An-CPiFst
Γ; ∆ ` γ : ∀c :φ1.A2 ∼ ∀c :φ2.B2

Γ; ∆ ` cpiFst γ : φ1 ∼ φ2

An-IsoSym
Γ; ∆ ` γ : φ1 ∼ φ2

Γ; ∆ ` sym γ : φ2 ∼ φ1

An-IsoConv
Γ; ∆ ` γ : A ∼ B
Γ ` a1 ∼A a2 ok
Γ ` a′1 ∼B a′2 ok

|a1| = |a′1| |a2| = |a′2|
Γ; ∆ ` conv (a1 ∼A a2) ∼γ (a′1 ∼B a′2) : (a1 ∼A a2) ∼ (a′1 ∼B a′2)

Γ; ∆ ` γ : A ∼ B (coercion between types)

An-Assn
` Γ

c : a ∼A b ∈ Γ c ∈ ∆
Γ; ∆ ` c : a ∼ b

An-Refl
Γ ` a : A

Γ; ∆ ` refl a : a ∼ a

An-EraseEq
Γ ` a : A

Γ ` b : B |a| = |b|
Γ; Γ̃ ` γ : A ∼ B

Γ; ∆ ` (a |=|γ b) : a ∼ b

An-Sym
Γ ` b : B Γ ` a : A

[Γ; Γ̃ ` γ1 : B ∼ A]
Γ; ∆ ` γ : b ∼ a

Γ; ∆ ` sym γ : a ∼ b

An-Trans
Γ; ∆ ` γ1 : a ∼ a1
Γ; ∆ ` γ2 : a1 ∼ b

[Γ ` a : A]
[Γ ` a1 : A1]

[Γ; Γ̃ ` γ3 : A ∼ A1]
Γ; ∆ ` (γ1; γ2) : a ∼ b

An-Beta
Γ ` a1 : B0
Γ ` a2 : B1
|B0| = |B1|
� |a1| > |a2|

Γ; ∆ ` red a1 a2 : a1 ∼ a2

An-PiCong
Γ; ∆ ` γ1 : A1 ∼ A2

Γ, x : A1; ∆ ` γ2 : B1 ∼ B2
B3 = B2{x . sym γ1/x}
Γ ` Πρx :A1.B1 : type
Γ ` Πρx :A2.B3 : type

Γ ` (Πρx :A1.B2) : type
Γ; ∆ ` Πρx :γ1.γ2 : (Πρx :A1.B1) ∼ (Πρx :A2.B3)

TYPES 2019

7:30 Eta-Equivalence in Core Dependent Haskell

An-AbsCong
Γ; ∆ ` γ1 : A1 ∼ A2

Γ, x : A1; ∆ ` γ2 : b1 ∼ b2
b3 = b2{x . sym γ1/x}

[Γ ` A1 : type]
Γ ` A2 : type

(ρ = +) ∨ (x 6∈ fv |b1|)
(ρ = +) ∨ (x 6∈ fv |b3|)
[Γ ` (λρx :A1.b2) : B]

Γ; ∆ ` (λρx :γ1.γ2) : (λρx :A1.b1) ∼ (λρx :A2.b3)

An-AppCong
Γ; ∆ ` γ1 : a1 ∼ b1
Γ; ∆ ` γ2 : a2 ∼ b2

Γ ` a1 a2
ρ : A

Γ ` b1 b2
ρ : B

[Γ; Γ̃ ` γ3 : A ∼ B]
Γ; ∆ ` γ1 γ

ρ
2 : a1 a2

ρ ∼ b1 b2
ρ

An-PiFst
Γ; ∆ ` γ : Πρx :A1.B1 ∼ Πρx :A2.B2

Γ; ∆ ` piFst γ : A1 ∼ A2

An-PiSnd
Γ; ∆ ` γ1 : Πρx :A1.B1 ∼ Πρx :A2.B2

Γ; ∆ ` γ2 : a1 ∼ a2
Γ ` a1 : A1
Γ ` a2 : A2

Γ; ∆ ` γ1@γ2 : B1{a1/x} ∼ B2{a2/x}

An-CPiCong
Γ; ∆ ` γ1 : φ1 ∼ φ2

Γ, c : φ1; ∆ ` γ3 : B1 ∼ B2
B3 = B2{c . sym γ1/c}

Γ ` ∀c :φ1.B1 : type
[Γ ` ∀c :φ2.B3 : type]
Γ ` ∀c :φ1.B2 : type

Γ; ∆ ` (∀c :γ1.γ3) : (∀c :φ1.B1) ∼ (∀c :φ2.B3)

An-CAbsCong
Γ; ∆ ` γ1 : φ1 ∼ φ2

Γ, c : φ1; ∆ ` γ3 : a1 ∼ a2
a3 = a2{c . sym γ1/c}

Γ ` (Λc :φ1.a1) : ∀c :φ1.B1
Γ ` (Λc :φ2.a3) : ∀c :φ2.B2

Γ ` (Λc :φ1.a2) : B
Γ; Γ̃ ` γ4 : ∀c :φ1.B1 ∼ ∀c :φ2.B2

Γ; ∆ ` (λc :γ1.γ3@γ4) : (Λc :φ1.a1) ∼ (Λc :φ2.a3)

An-CAppCong
Γ; ∆ ` γ1 : a1 ∼ b1

Γ; Γ̃ ` γ2 : a2 ∼ b2

Γ; Γ̃ ` γ3 : a3 ∼ b3
Γ ` a1[γ2] : A
Γ ` b1[γ3] : B

[Γ; Γ̃ ` γ4 : A ∼ B]
Γ; ∆ ` γ1(γ2, γ3) : a1[γ2] ∼ b1[γ3]

An-CPiSnd
Γ; ∆ ` γ1 : (∀c1 :a ∼A a′.B1) ∼ (∀c2 :b ∼B b′.B2)

Γ; Γ̃ ` γ2 : a ∼ a′

Γ; Γ̃ ` γ3 : b ∼ b′

Γ; ∆ ` γ1@(γ2 ∼ γ3) : B1{γ2/c1} ∼ B2{γ3/c2}

An-Cast
Γ; ∆ ` γ1 : a ∼ a′

Γ; ∆ ` γ2 : a ∼A a′ ∼ b ∼B b′

Γ; ∆ ` γ1 . γ2 : b ∼ b′

An-IsoSnd
Γ; ∆ ` γ : (a ∼A a′) ∼ (b ∼B b′)

Γ; ∆ ` isoSnd γ : A ∼ B

An-Eta
Γ ` b : Πρx :A.B

a = b xρ

Γ; ∆ ` eta b : (λρx :A.a) ∼ b

A. Kravchuk-Kirilyuk, A. Voizard, and S. Weirich 7:31

An-EtaC
Γ ` b : ∀c :φ.B

a = b[c]
Γ; ∆ ` eta b : (Λc :φ.a) ∼ b

` Γ (context wellformedness)

An-Empty

` ∅

An-ConsTm
` Γ Γ ` A : type

x 6∈ dom Γ
` Γ, x : A

An-ConsCo
` Γ

Γ ` φ ok c 6∈ dom Γ
` Γ, c : φ

` Σ (signature wellformedness)

An-Sig-Empty

` ∅

An-Sig-ConsAx
` Σ ∅ ` A : type

∅ ` a : A F 6∈ dom Σ
` Σ ∪ {F ∼ a : A}

TYPES 2019

	Introduction
	Overview of System D and System DC
	Type checking in System D and System DC
	Irrelevant quantification
	Explicit coercions

	Coercion abstraction
	Type inference for System D

	Adding eta-equivalence to Systems D and DC
	Extending proofs
	Progress lemma overview
	Progress lemma update
	Parallel reduction and type preservation
	Additional updates

	Proof engineering
	Stating rules for eta-equivalence
	Confluence proof update

	Related work
	Mechanized metatheory for dependent types
	Dependent types, type:type and eta-equivalence
	Irrelevant quantification and eta-equivalence
	Irrelevant quantification and restrictions on Pi types

	Conclusion
	Complete system specification
	Top-level signatures
	Reduction relations
	Primitive reduction
	System D one-step reduction
	System DC one-step reduction
	Parallel reduction

	Full system specification: System D type system
	Full system specification: System DC type system

