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Abstract
We introduce two versions of a new sketch for approximately embedding the Gaussian kernel into
Euclidean inner product space. These work by truncating infinite expansions of the Gaussian
kernel, and carefully invoking the RecursiveTensorSketch [Ahle et al. SODA 2020]. After providing
concentration and approximation properties of these sketches, we use them to approximate the
kernel distance between points sets. These sketches yield almost (1 + ε)-relative error, but with
a small additive α term. In the first variants the dependence on 1/α is poly-logarithmic, but has
higher degree of polynomial dependence on the original dimension d. In the second variant, the
dependence on 1/α is still poly-logarithmic, but the dependence on d is linear.
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1 Introduction

Kernel methods are a pillar of machine learning and general data analysis. These approaches
consider classic problems such as PCA, linear regression, linear classification, k-means
clustering which at their heart fit a linear subspace to a complex data set. Each of the
methods can be solved by only inspecting the data via a dot product 〈x, p〉. Kernel methods,
and specifically the “kernel trick,” simply replaces these Euclidean dot products with a non-
linear inner product operation. The two most common inner products are the polynomial
kernel Kz(x, p) = (〈x, p〉+ 1)z and the Gaussian kernel K(x, p) = exp(−‖x− p‖2).

The “magic” of the kernel method works mainly because of the existence of a reproducing
kernel Hilbert space (RKHS) HK associated with any positive definite (p.d.) kernel [43] K.
It is a function space, so for any data point x ∈ Rd, there is a mapping φ : Rd → HK so
φ(x) = K(x, ·). Since φ(x) is a function with domain Rd, and each “coordinate” of φ(x) is
associated with another point p ∈ Rd, there are an infinite number of “coordinates,” and HK

can be infinite dimensional. However, since 〈φ(x), φ(p)〉HK
= K(x, p), this embedding does

not ever need to be computed, we can simply evaluate K(x, p). And life was good.
However, at the dawn of the age of big data, it became necessary to try to explicitly,

but approximately, compute this map φ. Kernel methods typically start by computing and
then analyzing the n × n gram matrix KX where (KX)i,j = K(xi, xj) for a data sets X
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of size n. As n became huge, this became untenable. In a hallmark paper, Rahimi and
Recht [37] devised random Fourier features (RFFs) for p.d. kernels (with max value 1, e.g.,
Gaussians) that compute a random map φ̃ : Rd → RD̃ so

〈
φ̃(x), φ̃(p)

〉
is an unbiased estimate

of K(x, p), and with probability at least 1 − δ has error |K(x, p) −
〈
φ̃(x), φ̃(p)

〉
| ≤ ε. For

just one pair of points they require D̃ = O((1/ε2) log(1/δ)), or for all comparisons among n
points D̃n = ((1/ε2) log(n/δ)), or for any points in a region Λ of volume vol(Λ) ≤ V , then
D̃V = ((1/ε2) log(V/δ)).

However, relative-error-preserving RKHS embeddings for p.d. kernels are impossible
without some restriction on the size n or domain Λ of the data. Consider n data points
each far from each other so any pair x, p ∈ Rd satisfies K(x, p) < 1/n. In any relative-error-
approximate embedding φ̂ : Rd → RD̂, each point must be virtually orthogonal to all other
points, and hence Ω(n) dimensions are required [28].

Instead, to obtain (almost) relative-error results in big data sets, researchers have relied
on other approaches such as sampling [45], exploiting structure of p.d. Gram matrices [34],
devising modified RFFs for regularized kernel regression [9], or building data structures for
kernel density estimate queries [12].

The kernel distance and data set embeddings. To address these difficulties, we first turn
our attention from the inner product 〈φ(x), φ(p)〉HK

= K(x, p) in the RKHS to the natural
distance it implies. Before stating this distance, we generalize the inner product to point
sets P ⊂ Rd (which extends naturally to probability distributions µP with domain Rd).
We treat P as a discrete probability distribution with uniform 1/|P | weight on each point.
This can be represented in HK as Φ(P ) = 1

|P |
∑
x∈P φ(x), known as the kernel mean [33].

Indeed, for any query point p ∈ Rd, the inner product 〈Φ(P ), φ(p)〉HK
= 1
|P |
∑
x∈P K(x, p)

is precisely the kernel density estimate at p. For two point sets P,Q ⊂ Rd we define
κ(P,Q) = 1

|P |
1
|Q|
∑
x∈P

∑
y∈QK(p, q) = 〈Φ(P ),Φ(Q)〉HK

.
Now the kernel distance [36, 26] (alternatively known as the current distance [23] or

maximum mean discrepancy [24, 39]) is defined

DK(P,Q) = ‖Φ(P )− Φ(Q)‖HK
=
√
κ(P, P ) + κ(Q,Q)− 2κ(P,Q).

Under a slightly restricted class of kernels (a subset of p.d. kernels), called characteristic
kernels [42], this distance is a metric. These include the Gaussian kernels which we focus on
hereafter. This distance looks and largely acts like Euclidean distance; indeed, restricted to
any finite-dimensional subspace, it is equivalent to Euclidean distance.

In data analysis and statistics, kernel mean is a compact way to represent a point set
distribution. One can also use kernel distance to compare different point set as opposed
to more expensive measure such as Wasserstein distance. In practice, there are various
applications such as hypothesis test and geometric search (see section 4 for detail discussion)
that use kernel distance as a core component. We suggest the reader refer to [38, 40] for
more details on the statistical perspective of kernel distance. Therefore, making computation
of the kernel distance scalable by a kernel distance embedding is of significant importance
for those downstream applications. More generally, one can view oblivious kernel distance
embedding as special case of oblivious subspace embedding for RKHS [32, 2], which gives a
stronger guarantee than a subspace in the RKHS is preserved within relative error. However,
many application of kernel distance do not require such a strong guarantee, which generally
attain worse results (see below for more detail comparison).

So a natural question to ask is if this distance is preserved within relative error via some
approximate lifting. Clearly RFFs guarantee additive ε-error. However, relate this problem
to the Johnson-Lindenstrauss (JL) Lemma [25]: JL describe a family of random projections
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from a high-dimensional space to a D′-dimensional space which preserve (1 + ε)-relative error
on Euclidean distance, again with D′ = O((1/ε2) log(n/δ)) for any

(
n
2
)
pairs of distances,

succeed with probability 1− δ, but only guarantees additive error on inner products.
Moreover, it is possible to apply the JL Lemma to create such an approximate embedding.

First for any set of n points X, we can create n×n Gram matrix KX (that is positive definite),
and decompose it to KX = BXB

T
X . Then each row (BX)i in BX is the n-dimensional vector

representation of the ith data point, and the Euclidean distance ‖(BX)i − (BX)j‖2 is the
kernel distance between data points i and j [31, 8]. Then we can apply JL on these rows
{(BX)i} to obtain such an approximate embedding. However, this embedding is not oblivious
to the data (necessary for many big data settings like streaming) and still requires Ω(n2)
time just to create the Gram matrix, not to mention the time for decomposition.

Another recent approach [14] analyzed RFFs for this task, and shows that these ap-
proximate embeddings do guarantee relative error on the kernel distance, but only between
each pair of points x, p ∈ Rd (e.g., so ‖φ̂(x)−φ̂(p)‖

DK(x,p) ∈ (1± ε)), and as we describe next many
downstream analysis tasks require the distance preserved between point sets. Alternatively,
if we assume D2

K(P,Q) > α, then standard RFFs can provide a relative error guarantee using
D̃ = O( 1

ε2α2 log 1
δ ). However, such a large factor in α is undesirable, since typically α� ε.

Our Results. We provide two sketches G : Rd → RD for the Gaussian kernel, improving on
work of Rahimi and Recht [37] and Avron et al. [9], which achieves almost relative error for
kernel distance. Let F (X) = 1

|X|
∑
x∈X G(x) extend the sketch to point sets X ⊂ Rd. Then

we show that for two point sets P,Q ⊂ Rd∣∣D2
K(P,Q)− ‖F (P )− F (Q)‖2∣∣ ≤ εD2

K(P,Q) + α.

As we can always reduce the dimension G : Rd → RD using JL to about D = 1/ε2, we focus
on reducing the runtime dependence, in particular the dependence on α.

In the first sketch (the GaussianSketch) to process a single point with G(x) it takes
O
(
d2

ε2 log d
ε + ds

)
time, with s = Θ

(
log(d exp(dL2)/α)

log( 1
L2 log(d exp(dL2)/α))

)
, where L describes the (L∞)

radius of the domain containing X. So the dependence on 1/α is less than a single logarithmic
term.

The second sketch (the GaussianSketchHD) is useful when the dimension d is po-
tentially large (it turns out to be very similar to a recent sketch in [2], but our ana-
lysis is different). Then the runtime to compute G(x) is O

(
s3

ε2 log s
ε + s2d

)
where s =

Θ
(

log(4 exp(2R2)/α)
log( 1

R2 log(4 exp(2R2)/α))

)
, and R is the (L2) domain radius. Now the dependence on 1/α

is still poly-logarithmic, but the dependence on dimension d is linear.
For example, we can set α = n−C1 , R = C2

√
logn and L = C3

√
logn for some absolute

constant C1, C2, C3. In low dimension, we have s = Θ( logn
log d ) and the running time is

O(d
2

ε2 log d
ε + d logn

log d ). In high dimension, we have s = Θ(logn) and the running time is
O
( 1
ε2 log3 n log(logn/ε) + d log2 n

)
.

Implications. Several concrete applications work direfctly on this kernel distance between
point sets. First, the kernel two-sample test [24, 33] is a non-parametric way to perform
hypothesis tests between two empirical distributions; simply, the null hypothesis of them
being drawn from the same distribution is rejected if the kernel distance is sufficiently large.
While the sketched kernel two-sample test has proven effective under additive error [48],
when the significance threshold is Θ(1/n), the RFF-based solutions require time O(n2), no
better than brute force; but setting ε constant and α = 1/n, our sketches provide near-linear
or almost-linear time runtimes. Second, devising a Locality Sensitive Hash (LSH) between

APPROX/RANDOM 2020
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point sets (or geometrically-aware LSH for probability distributions) has lacked a great
general solution. Despite progress in special cases (e.g., for polygons [13], curves [18]), more
general distances between geometric distributions, like Earth-Mover distance require Ω(log s)
distortion on a domain with at least s discrete points [7]. In general, an LSH requires relative
error to properly provide (1 + ε)-approximate nearest neighbor results. In Section 4 we
specify how our new almost relative-error embeddings for the kernel distance provide efficient
solutions for these applications.

Furthermore, this embedding can be composed with a Johnson-Lindenstrauss-type em-
bedding [25, 3, 4, 1, 46] to create an overall oblivious embedding of dimension roughly
O( 1

ε2 log 1
δ ), that is with no dependence on 1/α or d (or n or domain radius L or R in the

for each setting), and roughly the same guarantees.

1.1 Comparison to Other Recent Work on Large Data and Kernels
Recent related works on kernel approximation do not provide our guarantees; we survey here
work that addresses similar problems, and often require similar sets of error parameters.

Approximated KDEs. Charikar and Siminelakis [12] describe a data structure of size nD̂
and query time D̂, which answers κ(P, t) queries within (1 + ε)-relative error as long as
κ(P, t) > α; it requires D̂ = O( 1

ε2
1√
α

log 1
δ e
O(log2/3 n log logn)). However, this cannot argue

much about how large DK(P,Q) has to be for this to achieve relative error on the kernel
distance since it could be DK(P,Q) is small but κ(P, t) and κ(P, P ) are both large. Moreover,
its guarantees only work for a single point set P with point queries t, not for two or more
points sets P,Q, as we argue many downstream data analysis tasks require.

Approximated kernel regression. Avron et al. [9] modify the RFF embeddings using dif-
ferent sampling probability related to the statistical leverage in the kernel space. This
approximates a λ-regularized kernel regression problem, creating a D̃-dimensional embed-
ding; that is for an n × n gram matrix KX , and a regularization parameter λ it cre-
ates a n × D̃ matrix Z so (1 − ε)(KX + λIn) � ZZ∗ + λIn � (1 + ε)(KX + λIn), using
D̃ = O( 1

ε2 (Ld logd/2(n/λ) + log2d(n/λ)) log(sλ(K)/δ)). Following our forthcoming methods
for analysis, one can modify this result to (1 + ε)-approximate the kernel distance, with an
additive α term, with an embedding of dimension D = O

(
1
ε2 (Ld logd/2 n

α + log2d n
α ) log n

δ

)
.

Also, Ahle et al. [2] recently showed that one can create such D̃-dimensional embedding
where D̃ = O( 1

ε2 (R2 + log n
ελ )5sλ(KX)) in O( 1

ε2 (R2 + log n
ελ )6sλ(KX)) time for each data

point. Again, in our setting, one can interpret this result as (1 + ε)-approximate the kernel
distance, with an additive α term, in O( 1

ε2 (R2 + log n
εα )6sα(KX)) time.

Compared to our bounds (adapted to our problem using our techniques), these depend
on n and sλ (ours do not), the low-d one is exponential in d (ours is polynomial), and the
other powers are larger.

Approximate Kernel PCA. Suppose we are given a data set X = {x1, . . . , xn} ⊂ Rd, and
want to find a low rank (rank k) approximation of Xφ = {φ(x1), φ(x2), . . . , φ(xn)} ∈ HK . In
particular, this can be described concretely in the context of the Gram matrix KX and its
decomposition BXBTX . Given any n×m matrixM , let [M ]k be its best rank-k approximation.
A natural question is to find a rank-k matrix K̃X so∥∥KX − K̃X

∥∥2
F
≤ (1 + ε) ‖KX − [KX ]k‖2

F .
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While most previous work [19, 30, 22, 41, 44] has focused on providing absolute (or additive)
error bounds. For instance, they showed roughly ‖KX − K̃X‖2

F ≤ ‖KX − [KX ]k‖2
F + εn

using e.g., Nyström sampling and RFFs. More recently, Musco and Woodruff [35] for
p.d. Gram matrices KX show how to efficiently find K̃X with relative error. This only
requires O(nkω−1 · poly(logn/ε)) inspections of entries of KX , where ω < 2.373 is the matrix
multiplication exponent. This is not data oblivious, and uses properties of the p.d. matrix,
so it does not provide an embedding sketch.

A closely related problem is approximate kernel PCA problem which is to find a n× k
orthonormal matrix V so that

‖BX − V V TBX‖2
F ≤ (1 + ε)‖BX − [BX ]k‖2

F .

The RKHS basis V , provides a compact and non-linear set of attributes to describe a
complex data set X, and has many uses in analyzing complex data which lacks strong linear
correlations. Musco and Woodruff [34] provide an algorithm with runtime O(nnz(X)) +
Õ(nω+1.5( k

σk+1ε2 )ω−1.5); which has polynomial dependence on 1/σk+1. They leave open
whether this can be removed or reduced while maintaining only roughly nnz(X) dependence
on X. The matrix V returned by their algorithm can be used to approximate the matrix
KX by writing BXPBTX where P is the projection onto the row span of V V TBX .

Our techniques can be combined with the a sketch for the polynomial kernel [10] to
explicitly solve for V so

‖BX − V V TBX‖2
F ≤ (1 + ε)‖BX − [BX ]k‖2

F + α.

with similar dimensions required for approximating the kernel distance; the s parameter
increases roughly by logn/ log logn. This is detailed in Appendix A. If the data size n has
a known bound, then this provides an oblivious sketch for this almost relative error kernel
PCA problem. Moreover, replacing the σk+1 with εα, it almost answers the kernel PCA
nnz(X) question of Musco and Woodruff [34] – however our algorithm does not depend on
the number-of-non-zeros of X through our sketches, so we leave as an open question if our
sketches G(x), particular the GaussianSketchHD or similar, can be generated in time
O(nnz(x)polylog(1/α) + npoly(k, 1/ε, log(1/α)).

2 The GaussianSketch and its Properties

In this section we describe our new sketches for approximate mapping from Rd to an RKHS
associated with a Gaussian kernel. They are based on the RecursiveTensorSketch of
Ahle et al. [2], so we first review its properties.

The RecursiveTensorSketch. We first introduce RecursiveTensorSketch hash fam-
ily [2]. Given positive integers n, m and k, RecursiveTensorSketchn,m,k is the family
of hash functions T : Rn

k → Rm as constructed in [2]. This hash family will be used
to construct our main sketch and has the following guarantee [2]: suppose u, v ∈ Rn

k

and picking m = O( kε2 ), then the expectation E(〈T (u), T (v)〉) = 〈u, v〉 and the variance
Var(〈T (u), T (v)〉) ≤ ε2

10 ‖u‖
2 ‖v‖2. Moreover, the running time of computing T (x) for any

x ∈ Rn
k is O(km logm+ kn).

APPROX/RANDOM 2020



12:6 The GaussianSketch for Almost Relative Error Kernel Distance

The GaussianSketch. Now, we can define the hash family of the first sketch for the Gaussian
kernel GaussianSketch. Given a vector x ∈ Rd and a positive integer s, we first define d vec-
tors y(1)

x . . . , y
(d)
x ∈ Rs such that ith coordinate of y(j)

x is exp(−x2
j )
√

2i−1

(i−1)!x
i−1
j . Given an in-

teger m, define GaussianSketchm,s to be the family of hash functions that if G is in it, then
G(x) = T (y(1)

x ⊗· · ·⊗y(d)
x ) where T is randomly chosen from RecursiveTensorSketchs,m,d.

Here, x ⊗ y is Kronecker product. Namely, given x ∈ Rp and y ∈ Rq, x ⊗ y is a pq
dimensional vector indexed by two integers i, j where i = 1, . . . , p and j = 1, . . . , q such that
(x⊗ y)i,j = xi · yj . For notational convenience, we extend Kronecker product when p and
q are infinity. Namely, given {xi}∞i=1 and {yj}∞j=1 are infinite sequences, x ⊗ y is also an
infinite sequence indexed by two positive integers i, j such that (x ⊗ y)i,j = xi · yj . Also,
denote x⊗k = x⊗ x⊗k−1 and x⊗0 = 1.

The rationale for the GaussianSketch comes from the following infinite expansion of
the Gaussian kernel. Define ȳ(j)

x (for j ∈ [d]) as the infinite dimensional analog of y(j)
x with

its ith coordinate as exp(−x2
j )
√

2i−1

(i−1)!x
i−1
j .

I Lemma 1. For x, p ∈ Rd

exp(−‖x− p‖2)

=
∞∑
j1=0
· · ·

∞∑
jd=0

(
exp(−‖x‖2)

(
d∏
i=1

√
2ji
ji!
xjii

))(
exp(−‖p‖2)

(
d∏
i=1

√
2ji
ji!
pjii

))

=
〈
ȳ(1)
x ⊗ · · · ⊗ ȳ(d)

x , ȳ(1)
p ⊗ · · · ⊗ ȳ(d)

p

〉
.

Proof.

exp(−‖x− p‖2)

= exp(−‖x‖2) exp(−‖p‖2) exp(2 〈x, p〉)

= exp(−‖x‖2) exp(−‖p‖2)
d∏
i=1

exp(2xipi)

= exp(−‖x‖2) exp(−‖p‖2)
d∏
i=1

 ∞∑
j=0

1
j! (2xipi)

j

 by Taylor expansion of exp(·)

= exp(−‖x‖2) exp(−‖p‖2)
∞∑
j1=0
· · ·

∞∑
jd=0

(
d∏
i=1

1
ji!

(2xipi)ji
)

=
∞∑
j1=0
· · ·

∞∑
jd=0

(
exp(−‖x‖2)

(
d∏
i=1

√
2ji
ji!
xjii

))(
exp(−‖p‖2)

(
d∏
i=1

√
2ji
ji!
pjii

))

=
〈
ȳ(1)
x ⊗ · · · ⊗ ȳ(d)

x , ȳ(1)
p ⊗ · · · ⊗ ȳ(d)

p

〉
. J

Note that the Gaussian sketch takes as input one element of these inner products, but
trimmed so that each ȳ(j)

x is trimmed to y(j)
x (without the ¯ marker) that only has s terms

each.

The GaussianSketchHD. We can also define another hash family of sketches for the Gaus-
sian kernel GaussianSketchHD, which works better for high dimension d, but will have
worse dependence on other error and domain parameters. For j = 1, . . . , s, it will use Tj
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as randomly chosen from RecursiveTensorSketchd,mj ,j−1. Given a vector x ∈ Rd, a
positive integer s, and s positive integers m1, . . . ,ms, define GaussianSketchHDm1,...,ms,s

to be the family of hash functions that if G is in it, then G(x) ∈ Rm with (mj−1 + 1)th
coordinate to mjth coordinate be

√
2j−1

(j−1)! exp(−‖x‖2)Tj(x⊗j−1) = Tj(z(j)
x ) ∈ Rmj where

z
(j)
x =

√
2j−1

(j−1)! exp(−‖x‖2)x⊗j−1 ∈ Rd
j−1 and m =

∑s
j=1 mj . Denote zx the ds−1

d−1 dimen-

sional vector where the first coordinate is z(1)
x , the next d coordinates are z(2)

x , the next d2

coordinates are z(3)
x , and so on. The GaussianSketchHD uses the following, a different

infinite expansion of the Gaussian kernel (also explored by Cotter et al. [17]).

I Lemma 2. For x, p ∈ Rd,

exp(−‖x− p‖2) =
∞∑
i=0

〈
exp(−‖x‖2)

√
2i
i! x
⊗i, exp(−‖p‖2)

√
2i
i! p
⊗i

〉
=
∞∑
i=0

〈
z(i)
x , z(i)

p

〉
Proof.

exp(−‖x− p‖2)

= exp(−‖x‖2) exp(−‖p‖2) exp(2 〈x, p〉)

= exp(−‖x‖2) exp(−‖p‖2)
∞∑
i=0

1
j! (2 〈x, p〉)j by Taylor expansion of exp(·)

= exp(−‖x‖2) exp(−‖p‖2)
∞∑
i=0

2j

j!
〈
x⊗j , p⊗j

〉
=
∞∑
j=0

〈
exp(−‖x‖2)

√
2j
j! x
⊗j , exp(−‖p‖2)

√
2i
j! p
⊗j

〉
J

2.1 Concentration Bounds for GaussianSketch and GaussianSketchHD
The sketches will inherit the concentration properties of the RecursiveTensorSketch.
Similar observations were recently observed by Ahle et al. [2]. Consider a weighted set of
elements X ⊂ Rd with weights αx for x ∈ X, and we use the general concentration bounds
for these under the GaussianSketch.

I Lemma 3 ([2]). Let G be a randomly chosen hash function in GaussianSketchm,s
with m = O

(
d
ε2

)
. Let v =

∑
x∈X αxy

(1)
x ⊗ · · · ⊗ y(d)

x , then E
[∥∥∑

x∈X αxG(x)
∥∥2
]

= ‖v‖2

and Var
[∥∥∑

x∈X αxG(x)
∥∥2
]
≤ ε2

10‖v‖
4 and hence with probability at least 9/10 we have∣∣∣∥∥∑x∈X αxG(x)

∥∥2 − ‖v‖2
∣∣∣ ≤ ε‖v‖2.

If G is randomly chosen from GaussianSketchHDm1,...,ms,s, then G(x) = Szx, where
S is a m× ds−1

d−1 random matrix (recall m =
∑s
j=1 mj) so, for the (mi−1 + 1)th row to the

mith row, and the (d
i−1−1
d−1 + 1)th column to the di−1

d−1 th column forms a matrix Si where
Ti(z(i)

x ) = Siz
(i)
x , and the rest of entries are zero.

I Lemma 4 ([2]). Suppose A,B has ds−1
d−1 columns. Denote Ai and Bi be ith row of A and B

respectively. By taking mi = O
(
i
ε2

)
, we have Pr

[∥∥ABT −ASTSBT∥∥2
F
≤ ε2 ‖A‖2

F ‖B‖
2
F

]
≥

1− δ.
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2.2 Truncation Bounds for GaussianSketch and GaussianSketchHD
These sketches are effective when it is useful to analyze the effect of sketching a large data
set X of size n, and we desire to show the cumulative measured across all pairs of elements.
For each sketch we expand these infinite sums, and determine the truncation parameter s so
the sum of terms past s have a bounded effect.

In our analysis, we will use the following inequality which follows by standard calculus
analysis, for any η > 0,

∞∑
j=s

ηj

j! ≤

(
supy∈[−η,η] exp(y)

)
ηs

s! ≤ exp(η)ηs

s! (1)

The following expression also arises in our analysis.

I Lemma 5. For ξ, a, b > 0, setting s = Θ
(

log ξ·a
α

log( 1
b log ξ·a

α )

)
then the we have ξ · a

(
b
s

)s ≤ α.
Proof. By setting s

b = C γ
log γ for some large constant C where γ = 1

b log ξa
α , we have

s

b
log s

b
= C

γ

log γ log
(
C

γ

log γ

)
= γ · C

(
1 + logC

log γ −
log log γ

log γ

)
≥ γ = 1

b
log ξa

α
.

Now, if we rearrange the inequality then ξ · a
(
b
s

)s ≤ α. J

Consider a point set X = {x(1), x(2), . . . , x(n)} ⊂ Rd, denote KX as the n × n matrix
with (KX)i,j = exp(−

∥∥x(i) − x(j)
∥∥2). First truncate KX using Lemma 1 to obtain the n×n

matrix KGS
X,s with

(KGS
X,s)i,j

=
s−1∑
j1=0
· · ·

s−1∑
jd=0

(
exp(−

∥∥∥x(i)
∥∥∥2

)
(

d∏
a=1

√
2ja
ja! (x(i)

a )ja
))

·

(
exp(−

∥∥∥x(j)
∥∥∥2

)
(

d∏
a=1

√
2ja
ja! (p(j)

a )ja
))

I Lemma 6. Suppose X ⊂ Rd so for all x(i) ∈ X has
∥∥x(i)

∥∥
∞ ≤ L for some L > 0. Given

a vector w ∈ Rn with (
∑n
i=1 |wi|)

2 ≤ ξ, we have

wT (KX −KGS
X,s)w ≤

(
n∑
i=1
|wi|

)2

d exp(2dL2)
(

2eL2

s

)s
≤ α,

where the last ≤ α inequality follows from setting s = sL,d,α = Θ
(

log ξ·d exp(2dL2)
α

log
(

1
2eL2 log ξ·d exp(2dL2)

α

)).
Proof. From Lemma 1, we have

(KX −KGS
X,s)i,j

=
∑

j1,...,jd
one of jb ≥ s

(
exp(−

∥∥∥x(i)
∥∥∥2

)
(

d∏
a=1

√
2ja
ja! (x(i)

a )ja
))

·

(
exp(−

∥∥∥x(j)
∥∥∥2

)
(

d∏
a=1

√
2ja
ja! (x(j)

a )ja
))
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Then we can analyze these in aggregate with respect to a test vector z. The first line uses
the fact that a matrix A (for instance with A = KX −KGS

X,s) written as∑
j(
∑
xi∈X ψj(xi))(

∑
x′
i
∈X ψj(x′i)) can be simplified wTAw =

∑
j(
∑
xi∈X wiψj(xi))

2.

wT (KX −KGS
X,s)w

=
∑

j1,...,jd
one of jb ≥ s

(
n∑

i=1

wi exp(−
∥∥x(i)∥∥2

)

(
d∏

a=1

√
2ja

ja! (x(i)
a )ja

))2

≤
d∑

b=1

∑
j1,...,jd

jb≥s

(
n∑

i=1

wi exp(−
∥∥x(i)∥∥2

)

(
d∏

a=1

√
2ja

ja! (x(i)
a )ja

))2

by union bound

≤
d∑

b=1

∑
j1,...,jd

jb≥s

(
n∑

i=1

|wi|

(
d∏

a=1

√
2ja

ja! L
ja

))2

assuming
∥∥x(i)∥∥

∞
≤ L

≤

(
n∑

i=1

|wi|

)2
 d∑

b=1

∑
j1,...,jd

jb≥s

(
d∏

a=1

(2L2)ja

ja!

)
The term

∑d
b=1
∑
j1,...,jd
jb≥s

(∏d
a=1

(2L2)ja
ja!

)
can be expressed as the follows.

d∑
b=1

∑
j1,...,jd

jb≥s

(
d∏

a=1

(2L2)ja

ja!

)

=
d∑

b=1

(
∞∑

j1=0

(2L2)j1

j1!

)
· · ·

(
∞∑

jb=s

(2L2)jb

jb!

)
· · ·

(
∞∑

jd=0

(2L2)jd

jd!

)

=
d∑

b=1

 d∏
a=1
a6=b

exp(2L2)

( ∞∑
jb=s

(2L2)jb

jb!

)

≤
d∑

b=1

(
exp((d− 1)2L2)

) exp(2L2)(2L2)s

s! by (1)

= d exp(2dL2)(2L2)s

s!

≤ d exp(2dL2)
(

2eL2

s

)s

by the fact s! ≥
(
s

e

)s

Thus, we have

wT (KX −KGS
X,s)w ≤

(
n∑

i=1

|wi|

)2
 d∑

b=1

∑
j1,...,jd

jb≥s

(
d∏

a=1

(2L2)ja

ja!

)
≤

(
n∑

i=1

|wi|

)2

d exp(2dL2)
(

2eL2

s

)s

≤ α

where the last inequality follows Lemma 5 using ξ = (
∑n
i=1 |wi|)

2, a = d exp(2dL2) and
b = 2eL2. J
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12:10 The GaussianSketch for Almost Relative Error Kernel Distance

Now truncate KX based on Lemma 2 to obtain KHD
X,s with

(KHD
X,s)i,j =

s−1∑
a=0

〈
exp(−

∥∥∥x(i)
∥∥∥2

)
√

2a
a! (x(i))⊗a, exp(−

∥∥∥x(j)
∥∥∥2

)
√

2a
a! (x(j))⊗a

〉
I Lemma 7. Define ΛdR = {x ∈ Rd | ‖x‖2 ≤ R}. For a point set X ⊂ ΛdR, and a vector
w ∈ Rn with (

∑n
i=1 |wi|)2 ≤ ξ, we have

wT (KX −KHD
X,s)w ≤

(
n∑
i=1
|wi|

)2

exp(2R2)
(

2eR2

s

)s
≤ α

where the last ≤ α inequality follows from setting s = sR,α = Θ
(

log ξ·exp(2R2)
α

log
(

1
2eR2 log ξ·exp(2R2)

α

)).
Proof. From Lemma 2, we have

(KX −KHD
X,s)i,j =

∞∑
a=s

〈
exp(−

∥∥∥p(i)
∥∥∥2

)
√

2a
a! (p(i))⊗a, exp(−

∥∥∥p(j)
∥∥∥2

)
√

2a
a! (p(j))⊗a

〉
Then we can analyze these in aggregate with respect to a test vector z. The first line uses
the fact that a matrix A (for instance with A = KX −KHD

X,s) written as∑
j(
∑
xi∈X ψj(xi))(

∑
x′
i
∈X ψj(x′i)) can be simplified wTAw =

∑
j(
∑
xi∈X wiψj(xi))

2.

wT (KX −KHD
X,s)w

=
∞∑

a=s

∥∥∥∥∥
n∑

i=1

wi exp(−
∥∥x(i)∥∥2

)
√

2a

a! (x(i))⊗a

∥∥∥∥∥
2

≤
∞∑

a=s

(
n∑

i=1

|wi|

∥∥∥∥∥exp(−
∥∥x(i)∥∥2

)
√

2a

a! (x(i))⊗a

∥∥∥∥∥
)2

≤
∞∑

a=s

(
n∑

i=1

|wi|
√

2a

a!R
a

)2

assuming
∥∥x(i)∥∥ ≤ R

=

(
n∑

i=1

|wi|

)2( ∞∑
a=s

(2R2)a

a!

)

≤

(
n∑

i=1

|wi|

)2
exp(2R2)(2R2)s

s! by (1)

≤

(
n∑

i=1

|wi|

)2

exp(2R2)
(

2eR2

s

)s

by the fact s! ≥
(
s

e

)s

≤ α

where the last inequality follows Lemma 5 using ξ = (
∑n
i=1 |wi|)

2, a = exp(2R2) and
b = 2eR2. J

3 Application to the Gaussian Kernel Distance

Let K : Rd × Rd → R be Gaussian kernel. Namely, for any x, y ∈ Rd, K(x, y) =
exp(−‖x− y‖2). Given two point sets P,Q ⊂ Rd, one can define a similarity function
κ(P,Q) = 1

|P |
1
|Q|
∑
x∈P

∑
y∈QK(x, y) and a squared kernel distance

D2
K(P,Q) = κ(P, P )− 2κ(P,Q) + κ(Q,Q).
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We make the important observation that the above formulation is equivalent to the
following form which will be much simpler to fit within our framework:

D2
K(P,Q) =

∑
x∈P∪Q

∑
y∈P∪Q

βxβy exp(−‖x− y‖2)

where βx is 1
|P | if x ∈ P and − 1

|Q| if x ∈ Q.
We now express D2

K(P,Q) as the infinite sum using Lemma 1.

D2
K(P,Q)

=
∑

x∈P∪Q

∑
y∈P∪Q

βxβy exp(−‖x− y‖2)

=
∑

x∈P∪Q

∑
y∈P∪Q

βxβy

∞∑
j1=0
· · ·

∞∑
jd=0

(
exp(−‖x‖2)

(
d∏
i=1

√
2ji
ji!
xjii

))

·

(
exp(−‖y‖2)

(
d∏
i=1

√
2ji
ji!
yjii

))

=
∞∑
j1=0
· · ·

∞∑
jd=0

 ∑
x∈P∪Q

βx exp(−‖x‖2)
(

d∏
i=1

√
2ji
ji!
xjii

)2

=

∥∥∥∥∥∥
∑

x∈P∪Q
βxȳ

(1)
x ⊗ · · · ⊗ ȳ(d)

x

∥∥∥∥∥∥
2

,

where each ȳ(j)
x is an infinite dimension vector with ith coordinate exp(−x2

j )
√

2i−1

(i−1)!x
i−1
j .

I Theorem 8. For any ε,R, α > 0, let G be randomly chosen from GaussianSketchm,s
with m = O

(
d
ε2

)
and s = Θ

(
log 4d exp(2dL2)

α

log
(

1
2eL2 log 4d exp(2dL2)

α

)). Let Ωd
L = {x ∈ Rd | ‖x‖∞ ≤ L}.

Define a mapping function F from any X ⊂ Ωd
L so F (X) =

∑
x∈X G(x), which is a vector

in Rm. Then for any P,Q ⊂ ΩdL with probability at least 9/10∣∣‖F (P )− F (Q)‖2 − D2
K(P,Q)

∣∣ ≤ εD2
K(P,Q) + α.

The mapping G : Rd → Rm can be computed in O
(
d2

ε2 log d
ε + ds

)
time.

Proof. To analyze the GaussianSketch, we need to account for error from two sources:
from the RecursiveTensorSketch (using Lemma 3) and parameter m, and from the
truncation of the Taylor expansion at s (using Lemma 6). In this case we analyze the
following infinite expansion

D2
K(P,Q) =

∥∥∥∥∥∥
∑

x∈P∪Q
βxȳ

(1)
x ⊗ · · · ⊗ ȳ(d)

x

∥∥∥∥∥∥
2

,

where each ȳ(j)
x is an infinite dimension vector with ith coordinate exp(−x2

j )
√

2i−1

(i−1)!x
i−1
j .

Let v =
∑
x∈P∪Q βxȳ

(1)
x ⊗ · · · ⊗ ȳ(d)

x . Then by Lemma 3 by setting m = O(d/ε2) we have
with probability at least 9/10 that∣∣∣∣∣∣∣

∥∥∥∥∥∥
∑

x∈P∪Q
βxG(x)

∥∥∥∥∥∥
2

− ‖v‖2

∣∣∣∣∣∣∣ ≤ ε‖v‖2.
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12:12 The GaussianSketch for Almost Relative Error Kernel Distance

Next note that (
∑
x∈P∪Q |βx|)2 ≤ 4 = ξ. So by Lemma 6 the truncation by only s terms

can be accounted for as

D2
K(P,Q)− ‖v‖2 = βT

(
KP∪Q −KGS

P∪Q,s
)
β ≤ 4d exp(2dL2)

(
2eL2

s

)2

≤ α,

where KP∪Q and KGS
P∪Q,s are defined as in Lemma 6 with X = P ∪Q.

Combining these together we have

(1− ε)
(
D2
K(P,Q)− α

)
≤ (1− ε)‖v‖2 ≤ |F (P )− F (Q)| ≤ (1 + ε)‖v‖2 ≤ (1 + ε)D2

K(P,Q).

and hence as desired∣∣‖F (P )− F (Q)‖2 − D2
K(P,Q)

∣∣ ≤ εD2
K(P,Q) + α.

Recall that the running time of G for mapping a point is

O(dm logm+ ds) = O

(
d2

ε2 log d
ε

+ ds

)
. J

Using the Gaussian Sketch HD for high dimensions. We first express exp(−‖x− y‖2) as
another infinite sum using Lemma 2. Starting with
D2
K(P,Q) =

∑
x∈P∪Q

∑
y∈P∪Q βxβy exp

(
−‖x− y‖2

)
where βx is 1

|P | if x ∈ P and − 1
|Q| if

x ∈ Q, we have

D2
K(P,Q) =

∑
x∈P∪Q

∑
y∈P∪Q

βxβy

〈
exp(−‖x‖2)

√
2i
i! x
⊗i, exp(−‖y‖2)

√
2i
i! y
⊗i

〉

=
∞∑
i=0

∥∥∥∥∥∥
∑

x∈P∪Q
βx exp(−‖x‖2)

√
2i
i! x
⊗i

∥∥∥∥∥∥
2

.

I Theorem 9. For any ε,R, α > 0, let G be randomly chosen from

GaussianSketchHDm1,...,ms,s with mi = O
(
i
ε2

)
and s = Θ

(
log 4 exp(2R2)

α

log
(

1
2eR2 log 4 exp(2R2)

α

)). Let

ΛdR = {x ∈ Rd | ‖x‖2 ≤ R}. Define a mapping function F from any X ⊂ ΛdL so F (X) =∑
x∈X G(x), which is a vector in Rm where m =

∑s
i=1 mi. Then for any P,Q ⊂ ΛdR with

probability at least 9/10∣∣‖F (P )− F (Q)‖2 − D2
K(P,Q)

∣∣ ≤ εD2
K(P,Q) + α.

The mapping G : Rd → Rm can be computed in O( s
3

ε2 log s
ε + s2d) time.

Proof. Suppose G(x) ∈ Rm with (mi−1 + 1)th coordinate to mith coordinate be√
2i−1

(i−1)! exp(−‖x‖2)Ti(x⊗i−1). Here, Ti is randomly chosen from
RecursiveTensorSketchd,mi,i−1 for i = 1, . . . , s.

We first need to invoke Lemma 4 to inherit the appropriate concentration bounds from the
RecursiveTensorSketch. We use t× ds−1

d−1 matrices A and B as just row vectors with t = 1,
and let A = B. In particular, define this single row as z =

∑
x∈P∪Q βx[z(1)

x , z
(2)
x , . . . , z

(s)
x ],

then the conclusion of Lemma 4 is that with probability at least 1− δ∣∣∣∣∣∣∣‖z‖2 −

∥∥∥∥∥∥
∑

x∈P∪Q
βxG(x)

∥∥∥∥∥∥
2
∣∣∣∣∣∣∣
2

=
∥∥∥‖z‖2 − zSTSzT

∥∥∥2

F
≤ ε2 ‖z‖4

.
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So by Lemma 7 the truncation by only s terms can be accounted for as

D2
K(P,Q)− ‖z‖2 = βT (KP∪Q −KHD

P∪Q,s))β ≤ 4d exp(2dL2)(2eL2/s)2 ≤ α,

where KP∪Q and KHD
P∪Q,s are defined as in Lemma 7 with X = P ∪Q.

Combining these together we have

(1− ε)(D2
K(P,Q)−α) ≤ (1− ε)‖z‖2 ≤ ‖F (P )− F (Q)‖2 ≤ (1 + ε)‖z‖2 ≤ (1 + ε)D2

K(P,Q).

and hence as desired∣∣‖F (P )− F (Q)‖2 − D2
K(P,Q)

∣∣ ≤ εD2
K(P,Q) + α.

Recall that the running time of G for mapping a point is O(
∑s
i=1 imi logmi + id) =

O(
∑s
i=1

i2

ε2 log i
ε + id) = O( s

3

ε2 log s
ε + s2d). J

4 Extensions and Data Analysis Implications

There are many data analysis applications where useful sketched bounds almost immediately
follow from this new embedding. Before we begin, we start by improving the dimensionality of
the embedding with a simple post-processing. We can applying a Johnson-Lindenstrauss-type
embedding [25, 3, 4, 1] to the m-dimensional space to obtain O(1/ε2)-dimensional space
that, with constant probability, preserves the distance of a pair of point sets. Furthermore,
we can use median trick to boost the success probability to 1 − δ by running O(log 1

δ )
independent copies. For applications in kernel two-sample hypothesis testing and nearest
neighbor searching, setting δ depends on the number of queries q we make, for instances
the bounded number needed for k-means clustering [16], now applied to kernel k-means.
These results are useful for reducing the storage space of data representations. Recall that
the running time of JL embedding from m-dimensional space to ρ-dimensional space is
O(m log ρ+ ρ2) [3, 4].

4.1 Kernel Two-Sample Test
The kernel two-sample test [24] is a “non-parametric” hypothesis test between two probability
distributions represented by finite samples P and Q; let n = |P ∪Q|. Then this test simply
calculates DK(P,Q), and if the value is large enough it rejects the null hypothesis that P
and Q represent the same distribution. Since its introduction a few year ago it has seen
many applications and relations; see the recent 140 page survey [33]. Zhao and Deng [48]
proposed to speed this test up for large sets using RFFs which improves runtime and in some
cases even statistical power. While several improvements are suggested [47] including using
FastFood [29], these all only provide additive ε-error.

Consider P ∼ µP and Q ∼ µQ. If µP = µQ, then empirical distributions P,Q may have
DK(P,Q) = Θ(1/n). Hence distinguishing the case of µP = µQ from them not being equal
would either require additive error ε = Θ(1/n), or relative (1 + ε)-error with a minimum
Θ(1/n) additive error. RFFs would require Θ(1/ε2) = Θ(n2) dimensions, so one may just as
well compute DK(P,Q) exactly in O(n2) time. In our approach, we can set ε to be a constant
(say ε = 0.2) and α to be Θ(1/n). Assuming a constant region diameter, the total running
time is O

(
n logn

log logn

)
in the low dimensional case (by Theorem 8) or O

(
n log2 n(logn+d)

log2 logn

)
in

the high dimensional case (by Theorem 9).
Another way to determine if DK(P,Q) should estimate P and Q as distinct, is to run

permutation tests. That is for some large number (e.g., q = 1000) of trials, select two sets
Pj , Qj iid from P ∪Q, of size |P | and |Q| respectively. For each generated pair we calculate
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12:14 The GaussianSketch for Almost Relative Error Kernel Distance

(or estimate using Theorem 8 or Theorem 9) the value of DK(Pj , Qj), and then use the
95th-percentile of these values as a threshold. Note since each Pj , Qj is drawn from the same
domain as P,Q, then the guarantees on the accuracy of the featurized estimate carries over
directly even under a large q number of permutations.

4.2 LSH for Point Sets, Geometric Distributions

The new results also allow us to immediately design LSH and nearest neighbor structures for
the kernel distance by relying on standard Euclidean LSH [6]. Building a search engine for
low-dimensional shapes [21] has long been a goal in computational geometry and geometric
modeling. A difficulty arises in that many of the best-known shape distance measures require
an alignment (e.g., Frechet [20, 5] or earth movers [11]) which creates many challenges in
designing LSH-type procedures. Some methods have been designed, but with limitations,
e.g., on point set size for earth mover distance [7] or number of segments in curves for discrete
Frechet [18]. The kernel distance provides an alternative distance for shapes, low-dimensional
distributions, or curves [26]; it can encode normals or tangents as well to encode direction
information of curves [23]. That is, given two shapes composed of (or approximated by)
point sets Pi, Pj , the distance between the shapes is simply DK(Pi, Pj).

Given a family of point sets P = {P1, P2, . . . , PN} such that each Pi ⊂ Rd has size at
most n, an ε-approximate nearest neighbor of a query point set Q is a point set P̂ ∈ P

so that DK(P̂ , Q) ≤ (1 + ε) minPj∈P DK(Pj , Q). Here, we assume that DK(Pi, Pj) ≥ α′

for any i 6= j. For ε ≤ 1/2, we can embed each Pj to F (Pj) ∈ RD, and then invoke
the key result from Andoni and Indyk [6] for a c′-approximate nearest neighbor, so the
total error factor is c′(1 + ε). Overall, we can retrieve a c-approximate nearest neighbor
(setting c = c′(1 + ε)) to a query Q ⊂ Rd with O(DN1/c2+o(1)) query time after using
O(DN1+1/c2+o(1)) space and O(DN1+1/c2+o(1) +N( n log 1

εα′
log log 1

εα′
+ 1
ε2 log 1

ε )) preprocessing when

d is small or O(DN1+1/c2+o(1) +Nn( log2 1
εα′ (log 1

εα′+d)
ε2 log2 log 1

εα′
)) preprocessing when d is large, both

assuming a data region with constant diameter.
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√
n) random features. In NeruIPS, 2018.

45 Shusen Wang, Alex Gittens, and Michael W. Mahoney. Scalable kernel k-means clustering with
nystrom approximation: Relative-error bounds. JMLR, arXiv, (to appear). arXiv:1706.02803.

46 David P. Woodruff. Sketching as a tool for numerical linear algebra. Foundations and Trends
in Theoretical Computer Science, 10:1–157, 2014.

47 Wojciech Zaremba, Arthur Gretton, and Matthew Blaschko. B-tests: Low variance kernel
two-sample tests. In NIPS, 2013.

48 Ji Zhao and Deyu Meng. Fastmmd: Ensemble of circular discrepancy for efficient two-sample
test. Neural Computation, 27:1354–1372, 2015.

A Gaussian Kernel PCA

Let k be a positive integer and ε > 0. Avron et al. [10] provide the following algorithm.
Suppose S and T are randomly chosen from RecursiveTensorSketchs,m,d and
RecursiveTensorSketchs,r,d respectively where m = Θ(d(k2 + k

ε )) and r = Θ(dm
2

ε2 ).
Given n vectors v(1), . . . , v(n) ∈ Rs

d , compute n×m matrix M with ith row as S(v(i)) and
n× r matrix N that ith row as T (v(i)). Let U be the orthonormal basis for column space of
M and W be m × k matrix containing top k left singular vector of UTN . Finally, return
V = UW . This algorithm has the following guarantee.
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I Lemma 10 ([10] with straightforward modification). Given a n-by-sd matrix A, a positive
integer k and ε > 0. The above algorithm that has rows of A as input returns a matrix V
such that∥∥A− V V TA∥∥2

F
≤ (1 + ε) ‖A− [A]k‖2

F

where [A]k is the best rank-k approximation of A.

Now, we can directly modify the above algorithm into our context for rank-k Gaussian
low-rank approximation. Given a point set X = {x1, . . . , xn} ⊂ Rd and a positive integer s.
Suppose G and H are randomly chosen from GaussianSketchm,s and GaussianSketchr,s
respectively. Recall that m = Θ(d(k2 + k

ε )) and r = Θ(dm
2

ε2 ). Compute the n×m matrix M
with ith row as G(xi) and n× r matrix N with ith row as H(xi). Let U be the orthonormal
basis for column space of M and W be m× k matrix containing top k left singular vector of
UTN . Finally, return V = UW .

I Theorem 11. Let ε, L, α > 0 and s = Θ
(

log 4n2d exp(2dL2)
α

log
(

1
2eL2 log 4n2d exp(2dL2)

α

)). For ΩdL = {x ∈ Rd |

‖x‖∞ ≤ L} and X ⊂ Ωd
L, and let AX be a pd matrix with elements (AX)i,j = K(xi, xj) =

exp(−‖xi − xj‖2) for xi, xj ∈ X and factorization AX = BXB
T
X . Then with constant

probability∥∥BX − V V TBX∥∥2
F
≤ (1 + ε) ‖BX − [BX ]k‖2

F + α.

The runtime to compute V is O
(
nds+ n

d4(k2+ k
ε )3

ε2

)
.

Proof. Let v(i)
x be a vector in Rs with jth coordinate to be exp(−x2

i )
√

2j−1

(j−1)!x
j−1
i for any

x ∈ Rd.
By Lemma 10, taking As as an n× sd matrix with ith row as v(1)

xi ⊗ · · · ⊗ v
(d)
xi . We have∥∥As − V V TAs∥∥2

F
≤ (1 + ε) ‖As − [As]k‖2

F

From Lemma 6, vT (BXBTX − AsATs )v ≤ (
∑n
i=1 |vi|)

2
d exp(2dL2)

(
2eL2

s

)s
≤ α/n. To

see this expression is at most α/n, first observe that columns of V are orthonormal, and
therefore, the norm of each row of I − V V T is at most 2. Hence, (

∑n
i=1 |vi|)

2 ≤ 4n. Then
the choice of s and Lemma 5 with ξ = 4n2, a = d exp(2dL2) and b = 2eL2 complete this
derivation.

We now have∥∥BX − V V TBX∥∥2
F

= Tr((I − V V T )BXBTX(I − V V T )T )

≤
∥∥As − V V TAs∥∥2

F
+ Tr((I − V V T )(BXBTX −AsATs )(I − V V T )T )

≤
∥∥As − V V TAs∥∥2

F
+ α

On the other hand, by Lemma 1, BXBTX −AsATs is still positive definite. Therefore,

‖As − [As]k‖2
F

=
∥∥As − UUTAs∥∥2

F
where U is the matrix of top-k left singular vectors of As

≤
∥∥As − U ′U ′TAs∥∥2

F
where U is the matrix of top-k left singular vectors of BX

= ‖BX − [BX ]k‖2
F − Tr((I − U ′U ′T )(BXBTX −AsATs )(I − U ′U ′T ))

≤ ‖BX − [BX ]k‖2
F recall that BXBTX −AsATs is positive definite
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We can plug in everything.∥∥BX − V V TBX∥∥2
F
≤
∥∥As − V V TAs∥∥2

F
+ α

≤ ‖As − [As]k‖2
F + α

≤ ‖BX − [BX ]k‖2
F + α.

To see the running time, it takes O(d(s+m logm)) to compute G(·) and O(d(s+ r log r))
time to compute H(·), and hence n times as much to compute matrices M and N . We
can compute the basis U of M in O(nm2) time, and the projection UTN in O(nrm) time.
The basis W takes O(rm2) time, and the final low rank basis V = UW takes O(nmk)
time. Thus the total runtime is O(nd(s+m logm+ r log r) + nm2 + nrm+ rm2 + nmk) =
O(nd(s + rm)) using that r > m2 > k4 that m > log r, and assuming n > r. Now using
m = O(d(k2 + k/ε)) and r = O(dm2/ε2) = O(d3(k4 + k2/ε2)/ε2) and we have a total time
of O

(
nds+ n

d4(k2+ k
ε )3

ε2

)
. J

Gaussian Low Rank Approximation with Gaussian Sketch HD in High Dimensions. Now,
we can also modify the above algorithm into our context for rank-k Gaussian low-rank
approximation in another way. Given a point set X = {x1, . . . , xn} ⊂ Rd and a positive
integer s. Suppose G and H are randomly chosen from GaussianSketchHDm1,...,ms,s and
GaussianSketchHDr1,...,rs,s respectively. Here, mi = Θ(i(k2 + k

ε )) and ri = Θ( im
2

ε2 ) where
m =

∑s
i=1 mi. Compute the n ×m matrix M with ith row as G(xi) and n × r matrix N

with ith row as H(xi). Let U be the orthonormal basis for column space of M and W be
m× k matrix containing top k left singular vector of UTN . Finally, return V = UW .

Note that a hash function in GaussianSketchHD is not directly applying a hash
function in RecursiveTensorSketch. Therefore, Lemma 10 cannot be directly applied.
However, we can still exploit the structure of it in order to prove the same lemma.

As Avron et al. [10] suggest, it is generally possible by combining Lemma 4 and arguments
in [10, 15, 27]. We have the following lemma. Here, denote As is a n× ds−1

d−1 matrix that ith
row as zxi for given point set X = {x1, x2 . . . , xn} ⊂ Rd.

I Lemma 12. Given a point set X ⊂ Rd, a positive integer k and ε > 0. The above algorithm
returns a matrix V such that∥∥As − V V TAs∥∥2

F
≤ (1 + ε) ‖As − [As]k‖2

F

where [A]k is the best rank-k approximation of A.

Before getting into Lemma 12, the following lemma from [10] which is implied by Lemma
4 would be helpful.

I Lemma 13 ([10] implied by Lemma 4 with straightforward modification). For any positive in-
teger k′, given any ds−1

d−1 ×k
′ matrix B with orthonormal columns, we have

∥∥BTSTSB − I∥∥2 ≤
ε. Here, S is randomly chosen from GaussianSketchHDn1,...,ns,s where ni = ik′2

ε2 .

Proof. (of Lemma 12)
In the proof of Theorem 3.1 from [15], the only properties of S used are
Given any ds−1

d−1 × k matrix B with orthonormal columns, we have
∥∥BTSTSB − I∥∥2 ≤ ε0

for some constant ε0 > 0
For any two matrices A,B with ds−1

d−1 columns,
∥∥ABT −ASTSBT∥∥

F
≤
√

ε
k ‖A‖F ‖B‖F
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The first property can be shown by Lemma 13 since we pick mi = Ω(ik2) and the second
property can be shown by Lemma 4 since we pick mi = Ω( ikε ). Also, Theorem 3.1 of
[15] implies Lemma 4.2 of [15] which means there is a matrix Z such that ‖UZ −As‖F ≤
(1 + ε) ‖As − [As]k‖F in our context. Combining Lemma 4.3 of [15], we have∥∥U [UTAs]−As

∥∥
F
≤ (1 + ε) ‖As − [As]k‖F (2)

Now, Lemma 13 implies Lemma 2.1 from [27] and further implies∥∥WWTUTAs −As
∥∥
f
≤ (1 + ε) ‖As − [As]k‖F (3)

by setting k′ in Lemma 13 be m and picking ri = Θ(3im2

ε2 ). Using equation (2) and (3)
in the proof of Theorem 1.1 from [27], we have our conclusion

∥∥As − UWWTUTAs
∥∥2
F

=∥∥As − V V TAs∥∥2
F
≤ (1 + ε) ‖As − [As]k‖2

F . J

I Theorem 14. Let ε,R, α > 0 and s = Θ
(

log 4n2 exp(2R2)
α

log
(

1
2eR2 log 4n2 exp(2R2)

α

)). For ΛdR = {x ∈ Rd |

‖x‖2 ≤ R} and X ⊂ ΛdR, and let AX be a pd matrix with elements (AX)i,j = K(xi, xj) =
exp(−‖xi − xj‖2) for xi, xj ∈ X and factorization AX = BXB

T
X . Then with constant

probability∥∥BX − V V TBX∥∥2
F
≤ (1 + ε) ‖BX − [BX ]k‖2

F + α.

The runtime to compute V is O(nds2 + n
34s(k2+ k

ε )3

ε2 ).

Proof. By Lemma 12, we have∥∥As − V V TAs∥∥2
F
≤ (1 + ε) ‖As − [As]k‖2

F .

From Lemma 7, vT (BXBTX −AsATs )v ≤ (
∑n
i=1 |vi|)

2 exp(2R2)
(

2eR2

s

)s
≤ α/n with our

setting of s as long as (
∑n
i=1 |vi|)

2 ≤ 4n. Indeed the columns of V are orthonormal, so the
norm of each row of I − V V T is at most 2, and thus (

∑n
i=1 |vi|)

2 ≤ 4n.
We now have∥∥BX − V V TBX∥∥2

F
= Tr((I − V V T )BXBTX(I − V V T )T )

≤
∥∥As − V V TAs∥∥2

F
+ Tr((I − V V T )(BXBTX −AsATs )(I − V V T )T )

≤
∥∥As − V V TAs∥∥2

F
+ n · (α/n)

Also by Lemma 2, BXBTX −AsATs is still positive definite. Therefore,

‖As − [As]k‖2
F

=
∥∥As − UUTAs∥∥2

F
where U is the matrix of top-k left singular vectors of As

≤
∥∥As − U ′U ′TAs∥∥2

F
where U ′ is the matrix of top-k left singular vectors of BX

= ‖BX − [BX ]k‖2
F − Tr((I − U ′U ′T )(BXBTX −AsATs )(I − U ′U ′T ))

≤ ‖BX − [BX ]k‖2
F recall that BXBTX −AsATs is positive definite

We can plug in everything.∥∥BX − V V TBX∥∥2
F
≤
∥∥As − V V TAs∥∥2

F
+ α

≤ ‖As − [As]k‖2
F + α

≤ ‖BX − [BX ]k‖2
F + α
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To see the running time, it takes O(
∑s
i=1 i(d+mi logmi)) to compute G(·) and

O(
∑s
i=1 i(d+ ri log ri)) time to compute H(·). Using that ri > m2

i > k4 and mi > 1/ε then
it takes less time to compute H(·) than G(·), and this runtime is O(ds2 + s2rs log rs) =
O(ds2 + s2r log r) since the ri values are exponentially increasing in i, and so rs = O(r) for
r =

∑s
i=1 ri. The time to compute M and N is n time longer.

We can compute the basis U of M in O(nm2) time, and the projection UTN in O(nrm)
time – this step is the post-sketch bottlneck. The basis W takes O(rm2) time, and the final
low rank basis V = UW takes O(nmk) time. Thus the total runtime is O(n(ds2 + s2r log r) +
nm2 +nrm+ rm2 +nmk) = O(n(ds2 + rm)) using that r > m2 > k4 that m > s2 log r, and
assuming n > r. Now using m = O(s2(k2 +k/ε)) and r = O(sm2/ε2) = O(s3(k4 +k2/ε2)/ε2)
and we have a total time of O(nds2 + ns4(k2 + k

ε )3/ε2). J
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