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Abstract
One of the central open questions in the theory of average-case complexity is to establish the
equivalence between the worst-case and average-case complexity of the Polynomial-time Hierarchy
(PH). One general approach is to show that there exists a PH-computable hitting set generator
whose security is based on some NP-hard problem. We present the limits of such an approach,
by showing that there exists no exponential-time-computable hitting set generator whose security
can be proved by using a nonadaptive randomized polynomial-time reduction from any problem
outside AM ∩ coAM, which significantly improves the previous upper bound BPPNP of Gutfreund
and Vadhan (RANDOM/APPROX 2008 [14]). In particular, any security proof of a hitting set
generator based on some NP-hard problem must use either an adaptive or non-black-box reduction
(unless the polynomial-time hierarchy collapses). To the best of our knowledge, this is the first result
that shows limits of black-box reductions from an NP-hard problem to some form of a distributional
problem in DistPH.

Based on our results, we argue that the recent worst-case to average-case reduction of Hirahara
(FOCS 2018 [18]) is inherently non-black-box, without relying on any unproven assumptions. On
the other hand, combining the non-black-box reduction with our simulation technique of black-box
reductions, we exhibit the existence of a “non-black-box selector” for GapMCSP, i.e., an efficient
algorithm that solves GapMCSP given as advice two circuits one of which is guaranteed to compute
GapMCSP.
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1 Introduction

The technique of reductions is one of central tools in complexity theory. In order to show
that a computational task A is easier than another computational task B, it suffices to
design a (black-box) reduction, i.e., the algorithm that solves A given oracle access to B.
Most reductions of complexity theory are black-box. That is, the correctness of a reduction
can be established without assuming any computational efficiency of the oracle. Black-box
reductions are quite powerful and led us to, for instance, the discovery of thousands of
NP-complete problems computationally equivalent to each other. However, a line of work
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15:2 On Nonadaptive Security Reductions of Hitting Set Generators

has exhibited limits of black-box reductions: Black-box reductions are too general to resolve
several important open questions. We herein continue the study of black-box reductions
especially in the context of the construction of a hitting set generator.

A hitting set generator γ-secure against a class C is a family of functions G = {G` :
{0, 1}s(`) → {0, 1}`}`∈N such that no C-algorithm can γ-avoid G; here we say that an
algorithm R γ-avoids G if R rejects every string in the image of G, and R accepts at least a
γ-fraction of all inputs of length ` for every ` ∈ N. By default, we assume γ := 1/4 and we
say that R avoids G if R (1/4)-avoids G. A typical approach for constructing a hitting set
generator is to design a black-box reduction that reduces some computationally hard task to
the task of avoiding a hitting set generator.

In fact, there have been already several known proof techniques that are not black-box.
Impagliazzo and Wigderson [27] constructed a hitting set generator based on the uniform
hardness assumption that EXP 6= BPP. Their security proof of the hitting set generator is
not a (black-box) reduction from the task of solving EXP to the task of avoiding the hitting
set generator; they crucially exploited the fact that there exists an efficient algorithm that
avoids the hitting set generator. Trevisan and Vadhan [36] and Gutfreund and Vadhan [14]
showed that the security reduction of [27] is inherently non-black-box in some senses. More
recently, building on [10, 22], Hirahara [18] applied the proof techniques for constructing
a hitting set generator to the context of average-case complexity, and presented the first
non-black-box worst-case to average-case reduction within NP.

Given the fact that there are already non-black-box proof techniques, why should we
study the limits of black-box reductions? We highlight several points:
1. Black-box reductions are more general and useful than non-black-box reductions. There-

fore, it is desirable to have a black-box reduction when it is possible; studying limits of
black-box reductions enables us to identify when one can hope to construct a black-box
reduction.
For example, Impagliazzo and Wigderson [27] showed that EXP 6⊆ BPP implies that BPP
can be derandomized in sub-exponential time (on most inputs, for infinitely many input
lengths). This is shown by a non-black-box reduction, and it is not known whether the
result can be generalized to a “high-end” result: does EXP 6⊆ BPSUBEXP imply that BPP
can be derandomized in quasi-polynomial time? On one hand, Trevisan and Vadhan [36]
used a black-box reduction and provided a positive answer to this question when EXP is
replaced with PSPACE. On the other hand, Gutfreund and Vadhan [14] showed that a
(mildly adaptive) black-box reduction cannot be used to prove the “high-end” result for
EXP.

2. Studying limits of black-box reductions can inspire new black-box reductions. Inspired
by this work, Hirahara [21, 20] subsequently presented new constructions of black-box
reductions to Kolmogorov complexity, which were previously conjectured to be impossible.

3. Surprisingly, in some cases, the proof techniques for showing limits of black-box reductions
can be combined with non-black-box reductions. We will show that one of our new
algorithms for simulating black-box reductions can be combined with a non-black-box
reduction of [18] (under some assumptions), and present a new structural property of an
approximation version of the Minimum Circuit Size Problem (MCSP [28]).

As a main result of this paper, we show that any security proof of a hitting set generator
based on some NP-hard problem must use either an adaptive or non-black-box reduction.
This is the first limit of black-box worst-case to average-case reductions from NP-hard
problems to some form of a distributional problem in DistPH.
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Due to the connection to several research areas such as average-case complexity, black-box
reductions, and derandomization, it is not easy to describe the literature in few words;
we thus review the literature in the subsequent two sections. In Section 2, we review the
theory of average-case complexity and state our main results. In Section 3, we review the
non-black-box reduction of [18], present some applications of our results, and describe our
proof techniques. Due to the space limitation, details are omitted in this version; see the full
version of the paper.

2 Average-Case Complexity

2.1 Background
One of the central open questions in the theory of average-case complexity [29] is to establish
the equivalence between the worst-case and average-case complexity of NP.

I Open Question 1. Does DistNP ⊆ AvgP imply NP = P?

Here DistNP is the class of distributional problems (L,D) (i.e., a pair of a problem and
its input distribution) such that L ∈ NP and D is an efficiently samplable distribution.
AvgP is the class of distributional problems that admit an errorless heuristic polynomial-
time scheme [8] (also known as an “average-case polynomial-time algorithm”). Here, for
L ⊆ {0, 1}∗ and D = {Dm}m∈N, a distributional problem (L,D) is said to be in AvgP if there
exists an algorithm M such that, for every m ∈ N, given an input x in the support of Dm,
and a parameter δ > 0,
1. M(x, δ) halts in time poly(m, 1/δ),
2. M(x, δ) outputs either the correct answer L(x) or ⊥ (“I don’t know”), and
3. the probability that M(x, δ) outputs ⊥ over a choice of x ∼ Dm is at most δ.

Open Question 1 is of particular importance from the perspective of cryptography:
Average-case hardness of NP is a prerequisite for constructing secure complexity-theoretic
cryptographic primitives such as one-way functions (OWFs). Thus resolving Open Question 1
is an important step towards building cryptographic primitives whose security is based on
more plausible assumptions (e.g., the worst-case hardness of NP).

There has been a line of work showing that Open Question 1 cannot be resolved by using
either relativizing proof techniques [26], black-box worst-case-to-average-case reductions
[11, 9, 2, 7, 6], or error-correcting codes [37].

For large enough complexity classes such as PSPACE and EXP, there is a general technique
for converting any worst-case hard function f to some two-sided-error average-case hard
function Enc(f) based on error-correcting codes [35, 36]. Here, the encoded function Enc(f) is
computable in EXP or PSPACE given oracle access to f ; thus, the worst-case and average-case
complexity of such large complexity classes are known to be equivalent. Viola [37] showed
limits of such an approach: Enc(f) cannot be computed in PHf ; thus, the proof technique
of using error-correcting codes is not sufficient to resolve Open Question 1 as well as the
following weaker open question:

I Open Question 2. Does DistPH ⊆ AvgP imply PH = P (or, equivalently, NP = P)? 1

1 We mention in passing that Pavan, Santhanam, and Vinodchandran [32] made some progress, by proving
that DistPNP ⊆ AvgP implies NP = P, under the implausible assumption that NP ⊆ P/poly.

APPROX/RANDOM 2020
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Note that Open Question 2 is an easier question than Open Question 1, since PH = P is
known to be equivalent to NP = P. In fact, this well-known equivalence between PH = P and
NP = P is shown by using a non-black-box reduction technique2; as we will explain later,
this is one reason why all the previous limits of black-box reductions [11, 9, 2, 7, 6] fail to
explain the difficulty of resolving Open Question 2. In this work, we present the first limit
of black-box reduction techniques for resolving Open Question 2, thereby clarifying what
kind of proof techniques are useful. We emphasize that, while Viola’s result [37] excludes
the construction of error-correcting codes within PH, it does not show limits of black-box
worst-case to average-case reduction techniques such as Ajtai’s reduction [1].

One general approach for constructing an (errorless) average-case hard function is to make
use of a hitting set generator. Indeed, a hitting set generator G secure against polynomial-
time algorithms naturally induces a hard distributional problem in DistNPG: Consider the
distributional problem (Im(G),U), i.e., the distributional problem of checking whether an
input x is in the image of G, where x is randomly chosen from the uniform distribution U .
Since the number of Yes instances of Im(G) is small under the uniform distribution, any
errorless heuristic algorithm must reject a large fraction of No instances, which gives rise to
an algorithm that avoids G. To summarize:

I Fact 3 (Implicit in [18]). Suppose there exists a hitting set generator G := {G` : {0, 1}`−1 →
{0, 1}`}`∈N that is 1/4-secure against polynomial-time algorithms. Then, DistNPG 6⊆ AvgP.
In particular, when G is computable in PH, we obtain DistPH 6⊆ AvgP.

Fact 3 suggests an approach for resolving Open Question 2: Try to construct a PH-
computable hitting set generator whose security is based on the worst-case hardness of NP.
How do we compare this approach with the technique based on error-correcting codes [37]?
Our approach is more general, because, given a two-sided-error average-case hard function
Enc(f), one can construct a pseudorandom generator G = {G` : {0, 1}`−1 → {0, 1}`}`∈N
defined as G`(z) := (z,Enc(f)(z)) for a seed z ∈ {0, 1}`−1 [38].

In order to construct a secure hitting set generator based on the hardness of a problem
L, we need to argue that, if there exists an efficient algorithm that avoids G, then L can
be solved efficiently. A typical way to establish such an implication is to design black-box
reductions from L to a distinguisher for a hitting set generator. Specifically, for a candidate
hitting set generator G, a reduction M is said to be a black-box reduction from L to any
γ-avoiding oracle R for G if, for every input x and any oracle R that γ-avoids G, M computes
L on input x under the oracle R.

Gutfreund and Vadhan [14] initiated the study of limits of such a black-box reduction,
motivated by the question on whether derandomization is possible under uniform assumptions
(e.g., [27, 36]). They showed that any polynomial-time randomized nonadaptive black-box
reductions to any oracle avoiding an exponential-time-computable hitting set generator G
can be simulated in BPPNP. Unfortunately, their upper bound is too weak to deduce any
limit of the approach on Open Question 2 since NP ⊆ BPPNP. Similarly, it is impossible to
deduce any limit of the approach on Open Question 1, because the upper bound becomes
trivial when G is polynomial-time-computable.

2 Indeed, if the reduction is black-box, we should have PH ⊆ PNP, which means that PH collapses.
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2.2 Our Results: Limits of Security Proof of Hitting Set Generators
We significantly improve the upper bound of [14] to AM∩ coAM. We also show upper bounds
of NP/poly ∩ coNP/poly ∩ SNP

2 even if G is not computable.
To state our results formally, let BPPR‖ denote the class of languages solvable by a

randomized polynomial-time machine with nonadaptive oracle access to R.3 In the definition
of a black-box reduction M to any γ-avoiding oracle R, the reduction M is not allowed
to depend on R. However, we will show that the existence of a randomized nonadaptive
black-box reduction from L to any γ-avoding oracle R is equivalent to saying that L ∈ BPPR‖
for every oracle R that γ-avoids R.4 In light of this, the result of Gutfreund and Vadhan [14]
can be stated as

⋂
R BPPR‖ ⊆ BPPNP, where the intersection is taken over all oracles R that

γ-avoid an exponential-time computable function G. Our main result improves BPPNP to
AM ∩ coAM:

I Theorem 4 (Main). Let G = {G` : {0, 1}s(`) → {0, 1}`}`∈N be any (not necessarily
computable) family of functions and γ : N→ [0, 1) be a parameter such that

there exists a constant ε > 0 such that s(`) ≤ (1− ε)` for all large ` ∈ N, and
there exists a constant c > 0 such that γ(`) ≤ 1− `−c for all large ` ∈ N.

Then,⋂
R

BPPR‖ ⊆ NP/poly ∩ coNP/poly ∩ SNP
2 ,

where the intersection is taken over all oracles R that γ-avoids G. Moreover, if G can be
computed in time 2O(`), then we also have⋂

R

BPPR‖ ⊆ AM ∩ coAM.

At the core of Theorem 4 is the following two types of algorithms simulating black-box
reductions: One is an Sp

2-type algorithm that simulates any query q
?
∈ R of length at most

Θ(logn), and the other is an AM ∩ coAM-type algorithm that simulates any query q
?
∈ R

of length at least Θ(logn). In particular, if G is exponential-time computable, the Sp
2-type

algorithm can be replaced with a polynomial-time algorithm and obtain the AM ∩ coAM
upper bound.

Theorem 4 shows that there exists no hitting set generator whose security can be based on
the hardness of some NP-hard problem via a nonadaptive reduction (unless NP ⊆ coNP/poly).
In particular, the approach for Open Question 2 by constructing a PH-computable hitting
set generator based on an NP-hard problem must use either an adaptive or non-black-box
reduction.

It is worthy of note that Theorem 4 is almost tight from several perspectives: First, it is
impossible to extend Theorem 4 to the case of adaptive reductions (unless PSPACE = AM).
Indeed, Trevisan and Vadhan [36] constructed an exponential-time-computable pseudorandom
generator based on the intractability of some PSPACE-complete problem, and its security
reduction is adaptive and black-box in the sense of Theorem 4. Second, our Sp

2-type algorithm
for simulating short queries is completely tight when G is a universal Turing machine. Third,
it is possible to construct a hitting set generator based on the hardness of SZK (Statistical

3 The subscript ‖ stands for parallel queries.
4 We state our results in the latter way because this makes our impossibility results stronger. The proof

of the equivalence can be found in the full version of the paper.

APPROX/RANDOM 2020
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Zero Knowledge), which is one of the best lower bound on AM∩ coAM; thus, the AM∩ coAM
upper bound of Theorem 4 cannot be significantly improved. (The details can be found in
the full version of the paper.)

2.3 Related Work: Limits of Worst-case to Average-case Reductions
within NP

To the best of our knowledge, Theorem 4 is the first result that shows limits of black-box
reductions from an NP-hard problem to (some form of) a distributional problem in DistPH.
In order to explain this in more detail, we review the previous work on limits of worst-case
to average-case reductions within NP.

A natural approach for establishing the equivalence between the worst-case and average-
case complexity of NP is by means of black-box reductions. That is, it is sufficient for
resolving Open Question 1 to design a reduction that solves some NP-hard problem L,
using oracle access to an errorless heuristic algorithm M that solves some distributional
problem in DistNP. A line of work has been devoted to explaining why such a black-box
reduction technique is too general to establish a worst-case to average-case connection for an
NP-complete problem.

Building on the work of Feigenbaum and Fortnow [11], Bogdanov and Trevisan [9]
showed that if a worst-case problem L is reducible to some distributional problem in
DistNP via a nonadaptive black-box randomized polynomial-time reduction, then L must
be in NP/poly ∩ coNP/poly. This in particular shows that the average-case hardness of
NP cannot be based on the worst-case hardness of an NP-complete problem using such a
reduction technique (unless the polynomial-time hierarchy collapses [39]). Akavia, Goldreich,
Goldwasser and Moshkovitz [2, 3] showed that, in the special case of a nonadaptive reduction
to the task of inverting a one-way function, the upper bound of [9] can be improved to
AM ∩ coAM, thereby removing the advice “/poly”. Bogdanov and Brzuska [7] showed that
even an adaptive reduction to the task of inverting a size-verifiable one-way function cannot
be used for any problem outside AM ∩ coAM. Applebaum, Barak, and Xiao [6] studied
black-box reductions to PAC learning, and observed that the technique of [2] can be applied
to (some restricted type of) a black-box reduction to the task of inverting an auxiliary-input
one-way function (AIOWF), which is a weaker primitive than a one-way function. We
summarize the limits of black-box reductions (depicted by →) as well as known implications
(depicted by =⇒) in Figure 1.

Compared to the previous results on the limits of black-box worst-case-to-average-case
reductions within NP, a surprising aspect of Theorem 4 is that it generalizes to any function
G that may not be computable (and this is a key property for obtaining the limits of the
approach on Open Question 2). Indeed, almost all the previous results [11, 9, 2, 6] crucially
exploit the fact that a verifier can check the correctness of a certificate for an NP problem;
thus a dishonest prover can cheat the verifier only in one direction by not providing a
certificate for a Yes instance. In our simulation algorithms, a verifier cannot compute G
and thus cannot prevent dishonest provers from cheating in this way. At a high level, our
technical contributions are to overcome this difficulty by combining the ideas of Gutfreund
and Vadhan [14] with the techniques developed in [11, 9].

Is it possible to directly deduce some limits of an approach on Open Question 2 from
the previous results [11, 9]? No! Recall that, in order to resolve Open Question 2, it suffices
to establish a reduction from an NP-complete problem to DistPH (using the non-black-box
equivalence between P = NP and P = PH). The results of [11, 9] crucially rely on the fact
that a Yes instance of DistNP is verifiable in polynomial time. If we would like to simulate
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DistNP 6⊆ AvgBPP

NP 6⊆ BPP

∃HSG

GapεMCSP 6∈ BPP

∃OWF∃PRG ∃AIOWF

SZK 6⊆ BPP

[16]

[18]

[18]

[31]

[5]

[9]
This Work

[23] [6]

[2, 7]

Figure 1 Average-case complexity and limits of black-box reductions. “A→ B” means that there
is no black-box (or oracle-independent) reduction technique showing “A ⇒ B” under reasonable
complexity theoretic assumptions. The security of all cryptographic primitives is with respect to an
almost-everywhere polynomial-time randomized adversary.

a black-box reduction to DistNPA for some oracle A, the simulation protocol of Feigenbaum
and Fortnow [11] runs in NPA/poly ∩ coNPA/poly. Thus, in order to simulate a reduction
to DistΣp

2 ⊆ DistPH, the upper bound becomes NPNP/poly ∩ coNPNP/poly, which trivially
contains NP.

It is also worthy of note that Theorem 4 improves some aspects of all the previous
results about limits of black-box reductions within NP. Compared to [9], our results show
that the advice “/poly” is not required to simulate black-box reductions to any oracle
avoiding an exponential-time-computable hitting set generator. Compared to [2, 6], our
results are “improvement” on their results in the sense that the existence of auxiliary-input
one-way functions implies the existence of hitting set generators; on the other hand, since the
implication goes through the adaptive reduction (from the task of inverting a one-way function
to a distinguisher for a PRG) of [16], technically speaking, our results are incomparable with
their results.5 Similarly, our results conceptually improve the result of [23], but these are
technically incomparable, mainly because the implication goes through the non-black-box
reduction of [18].

3 In Search of Inherently Non-Black-Box Reduction Techniques

Hirahara [18] presented the first non-black-box worst-case to average-case reduction within
NP, which is the motivation for this work. Building on [10, 22], Hirahara [18] presented a
(nonadaptive) reduction from GapεMCSP to a distinguisher for a polynomial-time-computable
hitting set generator Gint = {Gint

2n : {0, 1}Õ(2δn) → {0, 1}2n}n∈N. Here, Gint is a “circuit

5 We emphasize that we concern the nonadaptivity of reductions used in the security proof of pseudorandom
generators. Several simplified constructions of pseudorandom generators Gf from one-way functions f
(e.g., [25, 15]) are nonadaptive in the sense that Gf can be efficiently computed with nonadaptive oracle
access to f ; however, the security reductions of these constructions are adaptive because of the use of
Holenstein’s uniform hardcore lemma [24]. Similarly, the reduction of [16, Lemma 6.5] is adaptive. (We
note that, in the special case when the degeneracy of a one-way function is efficiently computable, the
reduction of [16] is nonadaptive.)

APPROX/RANDOM 2020
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interpreter”: a function that takes a description of a circuit of size 2δn and outputs its truth
table. For a constant ε > 0, GapεMCSP denotes the problem of approximating the minimum
circuit size of a Boolean function f : {0, 1}n → {0, 1} within a factor of 2(1−ε)n, given the
truth table of f . Rudich [33] conjectured that GapεMCSP cannot be solved in coNP/poly
(even in the sense of average-case complexity). Therefore, the reduction of [18] is indeed
non-black-box under Rudich’s conjecture, as otherwise it contradicts the limits of black-box
reductions (such as Theorem 4 and [9]).

Here we pose the following question:

Are the reductions of [18] inherently non-black-box? Or should we regard it as an
approach for refuting Rudich’s conjecture?

On one hand, the proofs of [18] seem to yield only non-black-box reductions, in the sense that
the efficiency of an oracle is crucially exploited. On the other hand, if the reduction from
GapεMCSP to DistNP could be made black-box, by using our coAM simulation protocol of
black-box reductions (i.e., Theorem 4), we would obtain GapεMCSP ∈ coAM ⊆ coNP/poly,
which refutes Rudich’s conjecture.

In order to answer the question, it is desirable to clarify a fundamental obstacle to
applying the simulation techniques of black-box reductions to the reductions of [18], without
relying on any unproven assumption.

3.1 Hirahara’s Reduction is Unconditionally Non-Black-Box
Based on Theorem 4, we can argue that the reductions of [18] are inherently non-black-box
in a certain formal sense. The reason is that the idea of [18] can be applied to not only
time-bounded Kolmogorov complexity but also any other types of Kolmogorov complexity,
including resource-unbounded Kolmogorov complexity. Therefore, if this generalized reduction
could be made black-box, then (as outlined below) by Theorem 4 we would obtain a finite-
running-time algorithm SNP

2 that approximates resource-unbounded Kolmogorov complexity,
which is a contradiction unconditionally.

More specifically, fix any universal Turing machine U , and regard it as a hitting set
generator U = {U` : {0, 1}`/2 → {0, 1}`}`∈N. That is, U` takes an input (M,x) of length `/2,
simulates the Turing machine M on input x, and outputs M(x) if the length of the output
M(x) is exactly `; otherwise, U` outputs 1`.

B Claim 5. Suppose that there exists a computable oracle R that avoids U . Then, there
exists a randomized polynomial-time nonadaptive R-oracle algorithm that approximates
KU (x).

Proof Sketch. The idea of the non-black-box reduction of [18] is as follows: Given an input
x ∈ {0, 1}n, take any construction of a pseudorandom generator Gx : {0, 1}`/4 → {0, 1}`
based on a worst-case hard function x : {0, 1}logn → {0, 1}.6 For example, we can use the
Nisan-Wigderson generator [30] combined with some error-correcting codes. The reduction
estimates p := Ez[R(Gx(z))] by sampling, and accepts if and only if p is small.

The correctness is proved as follows: If KU (x) ≤ `/5, then KU (Gx(z)) ≤ |z|+KU (x)� `/2
for a large enough `; thus p = 0. Conversely, if p ≈ 0, then by using the security proof of Gx,
we obtain a small R-oracle Turing machine that outputs x; thus KR

U (x) ≤ poly(`, logn); in
particular, by using the assumption that R is computable, we obtain KU (x) ≤ poly(`, logn).
Therefore, the reduction distinguishes the Yes instances x such that KU (x) ≤ `/5 and the
No instances x such that KU (x) > poly(`, logn). C

6 Here we identify a function with its truth table.
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Observe that, in the proof above, we crucially used the assumption that R is computable.
Can we avoid the assumption and generalize Claim 5 for any R that avoids U? In other
words, is there a black-box reduction from approximating KU (x) to the task of avoiding U?
If it is the case, Theorem 4 implies that approximating KU (x) can be done in SNP

2 , which
contradicts the undecidability of Kolmogorov complexity. Therefore, we conclude that the
reduction of Claim 5 is inherently non-black-box.

3.2 Applications: Non-Black-Box Selector for GapMCSP
As explained in the previous subsection, the non-black-box reductions of [18] cannot be
combined with Theorem 4 unconditionally. However, we show that our simulation protocol
of black-box reductions can be combined with the non-black-box reductions conditionally,
which constitutes a new structural property of GapMCSP – the existence of a “non-black-box
selector.”

I Theorem 6 (GapMCSP Has a “Non-Black-Box Selector”). For any constant ε > 0, there
exist some constant δ > 0 and a randomized polynomial-time algorithm that takes as advice
two circuits one of which is guaranteed to solve GapεMCSP and solves GapδMCSP with high
probability.

A selector for a problem L is an efficient algorithm that solves L given oracle access to
two oracles one of which is guaranteed to solve; thus, it “selects” the correct answer from
the two oracles. The notion of selector exactly characterizes the class of languages for which
advice of logarithmic length can be removed [17]. The selector of Theorem 6 is non-black-box
in the sense that it requires to take as advice two polynomial-size circuits instead of black-box
access to two oracles.

The main building block of the non-black-box selector is our Sp
2-type simulation algorithm

of Theorem 4. Recall that Sp
2 is a proof system where two competing provers, one of which is

guaranteed to be honest, try to convince a polynomial-time verifier. In our Sp
2 simulation

algorithm of black-box reductions, for each i ∈ {0, 1}, the ith prover sends a set Ri; the
honest prover sends a set Ri that avoids a hitting set generator G. Then a verifier obtains
an oracle R0 ∩R1 that avoids G, to which the reduction is guaranteed to work.

Theorem 6 is proved by combining this Sp
2-type simulation algorithm with the non-black-

box reductions of [10, 18].7 The reason why we can combine the non-black-box reductions
with our Sp

2-type simulation algorithm is that the non-black-box reduction of [18] is, in fact,
a size-restricted black-box reduction [14]. This is a black-box reduction which works correctly
when an oracle can be computed by a polynomial-size circuit. Our Sp

2-type simulation
algorithm can simulate the size-restricted black-box reduction under the assumption that
there exists a polynomial-size circuit that avoids a hitting set generator.

In contrast, we were not able to combine our AM ∩ coAM algorithm of Theorem 4 with
the non-black-box reductions under similar conditions. We leave it as an interesting open
question, which could have an application to fixed-polynomial circuit lower bounds (e.g., [34]).

I Open Question 7 (“Non-Black-Box Instance Checkability” of GapMCSP). Prove that
MCSP ∈ P/poly (or NP ⊆ P/poly) implies GapεMCSP ∈ coAM for some constant ε > 0.

7 There is an alternative proof based on the search-to-decision reduction of GapMCSP given by Carmosino,
Impagliazzo, Kabanets, and Kolokolova [10]. However, we choose to present the proof by combining
the Sp

2 -type simulation algorithm with the non-black-box reductions in order to highlight the difference
between Theorem 6 and Open Question 7.

APPROX/RANDOM 2020
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3.3 Our Techniques

We outline our proof strategy for Theorem 4 below. Suppose that we have some reduction
M from L to any oracle R that avoids a hitting set generator G. Fix any input x ∈ {0, 1}∗,
and let Qx denote the query distribution that a reduction makes on input x. We focus on
the case when the length of each query is larger than Θ(logn), and explain the proof ideas
for showing L ∈ AM ∩ coAM.

As a warm-up, consider the case when the support supp(Qx) of Qx is small (i.e.,
|supp(Qx) ∩ {0, 1}`| � 2` for all large ` ∈ N). In this case, we can define an oracle R1
so that R1 := {0, 1}∗ \ supp(Qx) \ Im(G); this avoids the hitting generator G because
R1 ∩ Im(G) = ∅ and the size of R1 ∩ {0, 1}` is at least 2` − |supp(Qx)| − |Im(G`)| � 2`−1

for all large ` ∈ N. Therefore, it is guaranteed that the reduction M computes L correctly
under the oracle R1; we can simulate the reduction by simply answering all the queries by
saying “No” (since q 6∈ R1 for every q ∈ Qx); hence L ∈ BPP.

In general, we cannot hope that supp(Qx) is small enough. To generalize the observation
above, let us recall the notion of α-heaviness [9]: We say that a query q is α-heavy (with
respect to Qx) if the query q is α times more likely to be sampled under Qx than the uniform
distribution on {0, 1}|q|; that is, Prw∼Qx [w = q] ≥ α2−|q|. Now we define our new oracle
R2 := {0, 1}∗ \ { q ∈ {0, 1}∗ | q : α-heavy } \ Im(G), which can again be shown to avoid G
because the fraction of α-heavy queries is at most 1/α (� 1 ).

The problem now is that it is difficult to simulate the new oracle R2; it appears that,
given a query q, we need to test whether q

?
∈ Im(G), which is not possible in AM ∩ coAM.

However, it turns out that it is not necessary to test it, as we explain next: Observe that the
size of Im(G) is very small; it is at most 2s(`) (� 2`

)
. Thus, the probability that a query

q is in Im(G) and q is not α-heavy (i.e., q is rarely queried) is at most α · 2s(`)−`, where `
denotes the length of q. As a consequence, the reduction cannot “distinguish” the oracle
R2 and a new oracle R3 := {0, 1}∗ \ { q ∈ {0, 1}∗ | q : α-heavy }; hence, we can simulate the
reduction if, given a query q, we can decide whether q

?
∈ R3 in AM ∩ coAM.

This task, however, still appears to be difficult for AM ∩ coAM; indeed, at this point,
Gutfreund and Vadhan [14] used the fact that the approximate counting is possible in BPPNP,
and thereby simulated the oracle R3 by a BPPNP algorithm.

Our main technical contribution is to develop a way of simulating the reduction to R3.
First, note that the lower bound protocol of Goldwasser and Sipser [13] enables us to give an
AM certificate for α-heaviness; we can check, given a query q, whether q is α(1 + ε)-heavy or
α-light for any small error parameter ε > 0. Thus, we have an AM protocol for {0, 1}∗ \R3
for every query q (except for the queries that are α-heavy and α(1 + ε)-light).

If, in addition, we had an AM protocol for R3, then we would be done; however, it
does not seem possible in general. The upper bound protocol of Fortnow [12] performs a
similar task, but the protocol can be applied only for a limited purpose: we need to keep the
randomness used to generate a query q ∼ Qx from being revealed to the prover. When the
number of queries of the reduction is limited to 1, we can use the upper bound protocol in
order to give an AM certificate for R3; on the other hand, if the reduction makes two queries
(q1, q2) ∼ Qx, we cannot simultaneously provide AM certificates of the upper bound protocol
for both q1 and q2, because the fact that q1 and q2 are sampled together may reveal some
information about the private randomness. To summarize, the upper bound protocol works
only for the marginal distribution of each query, but does not work for the joint distribution
of several queries.
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Still, the upper bound protocol is useful for extracting some information about each query.
For example, the heavy-sample protocol of Bogdanov and Trevisan [9] (which combines the
lower and upper bound protocol and sampling) estimates, in AM∩coAM, the probability that
a query q sampled from Qx is α-heavy. This protocol enables us to estimate the probability
that q ∈ R3 over the choice of q ∼ Qx.

The probability that q ∈ R3 is useful for simulating the reduction M . Feigenbaum and
Fortnow [11] developed an AM ∩ coAM protocol that simulates a nonadaptive reduction to
an NP oracle R, given as advice the probability that a query q is in R. We generalize this
protocol for the case when the oracle R is solvable by AM on average:

I Theorem 8 (Generalized Feigenbaum–Fortnow Protocol; informal). Suppose that M is
a randomized polynomial-time nonadaptive reduction to an oracle R whose queries are
distributed according to Qx on input x ∈ {0, 1}n, and that R is solvable by AM on average
(i.e., there exists an AM protocol ΠR such that, with probability 1− 1/poly(n) over the choice
of q ∼ Qx, the protocol ΠR computes R on input q). Then, there exists an AM ∩ coAM
protocol ΠM such that, given a probability p∗ ≈ Prq∼Qx [q ∈ R] as advice, the protocol ΠM

simulates the reduction M with probability at least 1− 1/poly(n).

Let R denote the complement of R3, i.e., R := { q ∈ {0, 1}∗ | q : α-heavy }. Using the
generalized Feigenbaum–Fortnow protocol, we simulate the reduction M to R as follows.
Firstly, we use the heavy-sample protocol of [9] in order to estimate p∗ ≈ Prq∼Qx [q : α-heavy].
Secondly, using the lower bound protocol of [13], we argue that R can be solved by some
AM-protocol ΠR on average. Lastly, we use the protocol of Theorem 8 to simulate M . The
details can be found in the full version of the paper.

We mention in passing the difficulty of Open Question 7, i.e., the reason why we were not
able to combine our AM∩ coAM-type simulation algorithm with the non-black-box reduction
even conditionally: The non-black-box reduction outlined in Subsection 3.1 reduces the
promise problem whose Yes instance consists of KU (x) ≤ `/5 and No instance consists
of KR

U (x) > poly(`, logn) to an oracle R. In order to make sure that the promise problem
is non-trivial, it is important that R does not depend on x. On the other hand, in our
simulation algorithm, we need to choose an oracle Rx depending on the input x, which
potentially makes the promise problem trivial. (For example, KRx

U (x) may be always close
to 0.)

3.4 Subsequent Work

Inspired by this work, Allender’s conjectures [4] were refuted under the plausible assumptions
about the exponential-time hierarchy [21, 20]. Moreover, it turned out that the stretch of
a hitting set generator construction is important. In [20], it was shown that there exists a
function G = {G : {0, 1}n−O(logn) → {0, 1}n}n∈N such that NEXP∪coNEXP ⊆ BPPR‖ for any
oracle R that avoids G. This result bypasses our limits of black-box reductions (Theorem 4)
because G extends its seed by a small amount of O(logn) whereas Theorem 4 requires that
G extends its seed by a constant factor. In [19], the approximation quality of non-black-box
reductions of [18] is improved. Moreover, based on the improvement, it is shown that, under
the assumption that DistPH ⊆ AvgP, the time-bounded SAT-oracle Kolmogorov complexity
of a string x is equal to the time-bounded Kolmogorov complexity of x up to an additive
term of O(logn), for any string x ∈ {0, 1}n.

APPROX/RANDOM 2020
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