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Abstract
A body K ⊂ Rn is convex if and only if the line segment between any two points in K is completely
contained within K or, equivalently, if and only if the convex hull of a set of points in K is contained
within K. We show that neither of those characterizations of convexity are robust: there are bodies
in Rn that are far from convex – in the sense that the volume of the symmetric difference between
the set K and any convex set C is a constant fraction of the volume of K – for which a line segment
between two randomly chosen points x, y ∈ K or the convex hull of a random set X of points in K

is completely contained within K except with exponentially small probability. These results show
that any algorithms for testing convexity based on the natural line segment and convex hull tests
have exponential query complexity.
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1 Introduction

A body is a subset of Rn that is compact – i.e., closed and bounded – and has a non-empty
interior. A body K ⊂ Rn is convex if for every two points x, y ∈ K and every parameter λ
in the range [0, 1], the point z = λx+ (1− λ)y is also in K. The geometric convexity testing
problem is a formalization of the following property testing problem:

How efficiently can we distinguish convex bodies from those that are far from convex?

The geometric convexity testing problem was first studied by Rademacher and Vempala [18],
who formalized the problem as follows. A body K ⊂ Rn is ε-far from convex for some ε > 0
if for every convex body C ⊂ Rn, the volume of the symmetric difference of K and C is
bounded below by Vol(K4C) ≥ εVol(K). Following the standard framework of property
testing [20, 12], we can then define an ε-tester for convexity to be a bounded-error randomized
algorithm that distinguishes convex bodies from bodies that are ε-far from convex. We
consider testers that access an unknown body K ⊂ Rn via the following two standard oracles:
Membership oracle. Given as input a point x ∈ Rn, the oracle returns “yes” if and only if

x ∈ K.
Random oracle. The oracle returns a point x drawn uniformly at random from K.
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18:2 On Testing and Robust Characterizations of Convexity

The measure of complexity of ε-testers of convexity that we examine is the minimum number
of queries to either of these oracles that they require, and the main open question is whether
there exists an ε-tester of convexity of bodies in Rn that has query complexity that is
polynomial in both n and 1/ε. Three natural testers have been proposed and studied
previously with the aim of answering this question.

I. Approximation tester

Rademacher and Vempala [18] showed that there is an ε-tester for convexity of bodies in
Rn with query complexity q = (cn/ε)n for some constant c > 0. This tester is obtained
via the natural testing by learning approach [12]. With q queries to the random oracle for
K, we obtain a set S of points whose convex hull C satisfies Vol(K4C) < ε

2 Vol(K) with
high probability when K is convex and (by definition) always satisfies Vol(K4C) ≥ εVol(K)
when K is ε-far from convex. A tester can then distinguish between these two cases with
O(1/ε) queries to the random and membership oracles for K.

However, any ε-tester for convexity that follows the testing by learning approach must
have query complexity exponential in n, since any algorithm that learns a convex set C which
satisfies Vol(K4C) ≤ εVol(K) for some unknown convex body K ⊂ Rn must have query
complexity 2Ω(

√
n/ε) [13]. (In fact, a number of queries that is exponential in n is required

even just for estimating the volume of K [2, 11].) So a completely different approach is
required if we aim to test convexity of high-dimensional bodies more efficiently.

II. Line segment tester

The definition of convex bodies immediately suggests a simple line segment test for convexity:
draw two points x, y ∈ K using the random oracle for K, pick a parameter λ ∈ [0, 1]
according to some distribution, and use the membership oracle to determine if the point
z = λx+ (1− λ)y is in K. If K is convex, this test will always pass, and conversely when
K is ε-far from convex then there must exist some points x, y, z for which this test does
not pass.

A natural idea for constructing an ε-tester for convexity is to simply run the line
segment test multiple times and accept if and only if each test passes. But Rademacher
and Vempala [18] showed that the resulting tester cannot have query complexity that is
polynomial in both n and 1/ε. More precisely, they showed that there is a body K ⊂ Rn
which is Ω( 1

n2 )-far from convex but for which the line segment xy joining two points x and y
drawn uniformly at random from K satisfies Pr[xy 6⊆ K] = 2−Ω(n).

The counter-example of Rademacher and Vempala, however, does not rule out the
possibility that there exists an ε-tester of convexity with query complexity polynomial in
n when ε is a constant. Our first result rules out this possibility as well, showing that the
query complexity of testers obtained from the line segment test must be exponential in n for
all ε ≤ 1

8 .

I Theorem 1.1. There exists a body K ⊂ Rn that is 1
8 -far from convex for which

Pr
x,y∈K

[
xy 6⊆ K

]
= 2−Ω(n). (1)

Theorem 1.1 has another interpretation that is independent of property testing: it says
that the line segment characterization of convexity is not robust: while it is true that only
convex bodies satisfy xy ∈ K for every x, y ∈ K, there are bodies that are far from convex
where xy ∈ K still holds for “most” points in K.
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III. Convex hull tester

For any m ≥ 1, the convex hull of a set X = {x(1), . . . , x(m)} of m points in Rn is

conv
(
X
)

:=
{
y : ∃λ1, . . . , λm ≥ 0,

m∑
i=1

λi = 1 s.t. y =
m∑
i=1

λix
(i)

}
,

the set of points that can be obtained by taking a convex combination of the points in X. A
natural extension of the line segment test is the convex hull test: for some m ≥ 2, draw a
set X of m points from K using the random oracle, draw a point z from conv(X) according
to some distribution, and check whether z is in K. When m = 2, the convex hull test is
equivalent to the line test which, as we have seen above, cannot lead to an efficient tester
for convexity. For m ≥ 3, however, it is possible that it leads to much more efficient testing
algorithms. Indeed, Berman, Murzabulatov, and Raskhodnikova [6, 5] showed that in a
slightly different property testing model, the convex hull test can be used to test convexity
with a number of queries that is polynomial in 1/ε in the two-dimensional setting where
K ⊂ R2. (See also [19, 7] for related results.)

Our next and main result rules out the possibility of obtaining an efficient tester for
convexity in the high-dimensional setting using the convex hull test by showing that the
convex hull characterization is not robust, even when taking the convex hull of an exponential
(in the dimension n) number of points.

I Theorem 1.2. There exist a body K ⊂ Rn that is 1
8 -far from convex and a constant

c > 0 such that a set X = {x(1), . . . , x(m)} ∈ K of m = 2cn points drawn uniformly and
independently at random from K satisfies

Pr
X

[
conv(X) 6⊆ K

]
= 2−Ω(n).

Theorem 1.2 shows that any ε-tester for convexity built on the convex hull test must have
query complexity 2Ω(n). It also relates to a conjecture of Rademacher and Vempala [18]:
they conjecture that when K ⊂ Rn is ε-far from convex and x, y, z ∈ K are drawn uniformly
at random from K, then the intersection of K with the two-dimensional subspace spanned
by x, y, and z is non-convex with probability at least Ω(ε/n). Theorem 1.2 shows that it is
impossible to strengthen the conjecture by replacing the subspace spanned by {x, y, z} with
the convex hull of these points, since in that case the resulting statement is false.

1.1 Proof overview
Theorems 1.1 and 1.2 are established constructively. The construction that achieves the
bounds promised in the theorems is obtained by taking the union of two truncated cones,
as pictured in Figure 1. The main technical component of the proof of the theorems lies in
the task of showing that, contrary to what our low-dimensional intuition might suggest, the
union of two truncated cones is far from being convex, even when the radius at the point of
intersection of both cones is very close to the maximum radius of both truncated cones. The
construction is defined precisely and is shown to be far from convex in Section 3.

The proof of Theorem 1.1 is completed in Section 4.1, where we show that with high
probability the line segment joining two points drawn uniformly at random from the union of
two truncated cones is contained within the body. We then build on this result in Section 4.2
to show that the convex hull of m ≥ 2 points drawn uniformly from that body is also
contained within the body with high probability.

APPROX/RANDOM 2020



18:4 On Testing and Robust Characterizations of Convexity

1.2 Discussion

Testing convexity efficiently

Our results do not rule out the possibility that convexity of high-dimensional sets can be
tested with a number of queries to random and membership oracles that is polynomial in
n and 1/ε, but they do show that new algorithmic techniques that go beyond convex hull
testing are required if such an efficient convexity tester exists. To determine which additional
techniques might be useful in obtaining such an efficient convexity tester (or ruling out their
existence), it might be instructive to point out that the body constructed in Section 3 is in
fact very easy to distinguish from convex bodies. One way to do this is to notice that the
union of truncated cones has poor expansion: if we take a random walk from a point within
one of the two truncated cones, with high probability it will remain within the same truncated
cone. By contrast, a random walk in a convex body quickly converges to a distribution
that is close to uniform in the body. Is it possible to efficiently test if an unknown body is
expanding or far from it? And is it also possible to efficiently distinguish convex sets from
expanding sets that are far from convex? Affirmative answers to both of these questions –
for any reasonable formalization of the expansion testing problem – would likely lead to a
new efficient tester for convexity; the question of testing expansion of high-dimensional sets
also appears to be worth studying for independent interest as well.

Testing convexity over the Gaussian distribution

There is another formalization of the geometric convexity testing problem in which we
measure the distance to convexity in terms of of the Gaussian distribution on Rn. Chen,
Freilich, Servedio, and Sun [10] studied sample-based testers for convexity in this model –
testers that have access to the membership oracle but can only observe its responses to points
drawn from the Gaussian distribution. They showed that all such sample-based testers for
convexity have exponential sample complexity. Could the construction introduced in this
paper be extended to show a similar bound for the query complexity of a wider class of
testers in the same setting? Such results do not follow immediately from the current work
since the argument showing that the union of truncated cones is far from convex does not
hold in the Gaussian distribution setting.

Testing convex functions

Another problem that has received a considerable amount of attention in the property testing
literature, starting with the work of Parnas, Ron, and Rubinfeld [17], is that of testing the
convexity of functions [8, 4, 9, 3]. There is a close connection between convexity of sets and
convexity of functions. Namely, a function f : Rn → R is convex if and only if its epigraph is
a convex set in Rn+1. The definitions of distance to convexity, however, make the problems
of testing convex functions and testing convex sets quite different in general. Nonetheless,
as Berman, Raskhodnikova, and Yaroslavtsev [8] pointed out, the two problems are closely
connected when we consider the testing of convex functions under the `1 norm, and it would
be interesting to see if the techniques or results introduced here could yield any progress on
the problem of testing convex functions with a polynomial number of queries. (See [8, 22] for
more details on this problem.)
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2 Preliminaries

We use standard notions and results regarding high-dimensional convex sets. For general
introductions to the topic and to algorithmic implications, see [1, 15, 16, 14, 21].

2.1 Convex bodies and slices
The distance between two bodies A,B ∈ Rn is defined to be

dist(A,B) = Vol(A4B) = Vol(A \B) + Vol(B \A),

the measure of the symmetric difference of the two bodies. We will repeatedly use the
following simple lower bound on the distance of two bodies.

I Proposition 2.1. The distance between two bodies A,B ⊂ Rn is bounded below by

dist(A,B) ≥ max
{

Vol(A)−Vol(B),Vol(B)−Vol(A)
}
.

Furthermore, equality holds whenever A ⊆ B or B ⊆ A.

Proof. The distance between A and B is bounded below by

dist(A,B) = Vol(A \B) + Vol(B \A) ≥ max{Vol(A \B),Vol(B \A)}.

The lower bound then follows from the observation that Vol(A \B) = Vol(A)−Vol(A∩B) ≥
Vol(A)−Vol(B) and, similarly, that Vol(B \A) ≥ Vol(B)−Vol(A). Finally, when A ⊆ B,
then Vol(A \B) = 0 and Vol(B \A) = Vol(B)−Vol(A), as Vol(A∩B) = Vol(A) so equality
holds. Similarly, equality also holds when B ⊆ A. J

Much of our analysis in Section 3 is concerned with various slices of a high-dimensional
body. To make this notion precise, for each t ∈ R we define

Ht = {x ∈ Rn : x1 = t}

to be the hyperplane of all points with first coordinate value t. The corresponding halfspaces
are denoted by H≤t = {x ∈ Rn : x1 ≤ t} and H≥t = {x ∈ Rn : x1 ≥ t}. The t-th slice of a
body A ⊂ Rn is

At = A ∩Ht = {x ∈ A : x1 = t}.

For t1 ≤ t2 ∈ R, we also define A[t1,t2] = A ∩H≥t1 ∩H≤t2 to be the set of points in A with
first coordinate between t1 and t2.

A fundamental property of the slices of a convex body is that the (n− 1)-th root of their
volumes is a concave function.

I Brunn’s Theorem. For any convex body C ⊂ Rn, the function t 7→ Voln−1(Ct)
1

n−1 is
concave on its support.

2.2 High-dimensional balls and cones
We use Bn(x, r) = {y ∈ Rn : ‖y − x‖ ≤ r} to denote the ball of radius r around a point
x ∈ Rn. We use B(r) as a shorthand for Bn(o, r), and Bn−1(r) for Bn−1(o, r), where o is the
origin. Similarly, we use Sn(x, r) = {y ∈ Rn : ‖y − x‖ = r} to denote the sphere of radius r
around a point x ∈ Rn. We will use the following standard approximation on the volume of
the ball.

APPROX/RANDOM 2020
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I Proposition 2.2. The volume of ball B(r) ⊂ Rn with radius r is

Vol(B(r)) = rn · π
n
2

Γ(n2 + 1) = rn · 1√
πn

(2πe
n

)n
2 · (1 +O(n−1)),

where Γ is Euler’s gamma function.

We also use the following standard concentration inequality for high-dimensional balls.
(See, e.g., [1].)

I Proposition 2.3. Let x ∈ Rn be drawn uniformly at random from B(r). Then

Pr
[
|x1| ≥ r

100
]
≤ 2−Ω(n).

I Definition 2.4. Let H ⊂ Rn be a hyperplane, S ⊂ H be an (n − 1)-dimensional convex
body, and x ∈ Rn \H be a point. The cone with x as vertex and S as base is the convex hull
of x with the body S;

cone(x, S) = conv(x ∪ S).

We use the following result on the volume of cones.

I Proposition 2.5. Let H ⊂ Rn be a hyperplane, S ⊂ H be an (n− 1)-dimensional convex
body, and x ∈ Rn \H be a point at a distance h = miny∈H ‖x− y‖ from the hyperplane H.
Then the volume of the cone is

Vol(cone(x, S)) = h

n
Voln−1(S).

I Definition 2.6. A truncated cone is the convex hull of two balls Bn−1((t1, 0 . . . , 0), r1) ⊂
Ht1 and Bn−1((t2, 0 . . . , 0), r2) ⊂ Ht2 , conv(Bn−1((t1, 0 . . . , 0), r1) ∪Bn−1((t2, 0 . . . , 0), r2)).

3 Union of truncated cones

Theorems 1.1 and 1.2 are both established by analyzing a construction obtained by taking
the union of two truncated cones. We describe this construction in Section 3.1. The main
technical component of the proofs is in Section 3.2, where we show that the union of truncated
cones is far from convex.

3.1 Description of the union of truncated cones D

The body D ⊂ Rn that will show the non-robustness of the line and convex hull definition is
defined as follows. First, let d > 0 be some distance parameter. This distance parameter
does not affect the results in the following sections; the reader may fix d = 1 for simplicity.

Let BL, BR, and BO be three (n − 1)-dimensional balls in the hyperplanes H−d, Hd,
and H0, respectively. We define the balls BL and BR to have radius 1.1 each and be
centered on the points (−d, 0, 0, . . . , 0) and (d, 0, 0, . . . , 0), respectively, while BO has radius
1 and is centered at the origin. Define the body D to be the union of the truncated cones
conv(BL, BO) and conv(BO, BR),

D = conv(BL, BO) ∪ conv(BO, BR).

The definition of the body D is illustrated in Figure 1.
One of the basic properties of the body D that we will use in later sections is that a point

drawn uniformly at random from D will have a large value in its first coordinate with high
probability.
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o e1

11.1 1.1

d d

Figure 1 The body D obtained by taking the union of two truncated cones.

I Proposition 3.1. Let x = (x1, . . . , xn) be drawn uniformly at random from D. Then

Pr
[
|x1| ≤

d

2

]
= 2−Ω(n).

Proof. Using the formula in Proposition 2.5 for the volume of a cone, the volume of the
body D is bounded below by

Vol(D) = 2 Vol(D[0,d]) = 2
(11d
n

(1.1)n−1 Voln−1
(
Bn−1(1)

)
− 10d

n
(1)n−1 Voln−1(Bn−1(1))

)
≥ 2d

n
(1.1)n−1 Voln−1(Bn−1(1)).

Similarly, the volume of the body D[− d
2 ,

d
2 ] is bounded above by

Vol(D[− d
2 ,

d
2 ]) = 2 Vol(D[0, d

2 ]) = 2
(10.5d

n
(1.05)n−1 Voln−1(Bn−1(1))

− 10d
n

(1)n−1 Voln−1(Bn−1(1))
)

≤ 21d
n

(1.05)n−1 Voln−1(Bn−1(1)).

Therefore, the probability that the absolute value of the first coordinate of the point is less
than or equal to d

2 is bounded by

Pr
[
|x1| ≤

d

2

]
=

Vol(D[− d
2 ,

d
2 ])

Vol(D) ≤
21d
n (1.05)n−1 Voln−1(Bn−1(1))
2d
n (1.1)n−1 Voln−1(Bn−1(1))

≤ 1
2Ω(n) . J

3.2 D is far from convex
In this section, we prove that the body D is 1

8 -far from convex. We prove this in three
steps. First, we show that the closest convex body to D must be symmetric about the axis
e1 = (1, 0, 0, . . . , 0). Next, we prove that if the closest convex body is symmetric about e1,
then it has to be a truncated cone. Finally, we prove that every truncated cone is 1

8 -far from
our body D.

3.2.1 A partial converse to Brunn’s Theorem
The first step in the proof – showing that the closest convex body to D must be symmetric –
uses Brunn’s Theorem as well as the following partial converse result.

APPROX/RANDOM 2020
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I Lemma 3.2. Let K ⊂ Rn be a body such that for each t ∈ R the slice Kt is an (n − 1)
dimensional ball and the function t 7→ Voln−1(Kt)

1
n−1 is concave on its support. Then K is

convex.

Proof. Assume for the sake of contradiction that K is a non-convex body that satisfies the
conditions of the theorem. Then there exist points x, y ∈ K and 0 ≤ λ ≤ 1 such that the
point z = λx+ (1− λ)y /∈ K.

Let r : R → R be the function defined by setting r(t) to be the radius of the (n − 1)-
dimensional ball with volume Voln−1(Kt). By applying the formula for volume of the ball
from Proposition 2.2, we have that

r(t) =
Γ(n−1

2 + 1)
1

n−1

√
π

Voln−1(Kt)
1

n−1 .

Since the function t 7→ Voln−1(Kt)
1

n−1 is concave, the function r is concave as well.
The concavity of r and the fact that x, y ∈ K imply that

r(z1) = r(λx1 + (1− λ)y1) ≥ λr(x1) + (1− λ)r(y1) ≥ λ
√ ∑

2≤i≤n
x2
i + (1− λ)

√ ∑
2≤i≤n

y2
i .

The fact that z /∈ K also implies that

r(z1) <
√ ∑

2≤i≤n
z2
i =

√ ∑
2≤i≤n

(λxi + (1− λ)yi)2.

But by the convexity of Euclidean norm and Jensen’s inequality,
√∑

2≤i≤n(λxi + (1− λ)yi)2

≤ λ
√∑

2≤i≤n x
2
i + (1− λ)

√∑
2≤i≤n y

2
i so the last two inequalities yield the desired contra-

diction. J

3.2.2 Symmetry of the closest convex body
A body K ⊂ Rn is symmetric about e1 = (1, 0, 0, . . . , 0) if for every point x ∈ K, all points
y ∈ Rn that satisfy x1 = y1 and

∑n
i=2 x

2
i =

∑n
i=2 y

2
i are also in K. In other words, a body K

is symmetric about e1 if it is invariant under rotations about the axis e1. We use a standard
symmetrization argument to prove that the closest convex body to D is symmetric about e1.

I Lemma 3.3. There exists a closest convex body to D that is symmetric about e1.

Proof. Fix C to be any convex body which minimizes dist(D,C). C should be contained
between H−d and Hd, otherwise we can truncate C and get a convex body closer to D. Let
Cs be the body where for every t ∈ R, the slice Cst of the body is an (n− 1)-dimensional
ball centered at (t, 0, 0, . . . , 0) and has volume Voln−1(Cst ) equal to the volume of the slice
Ct of C. By this construction, Cs is symmetric about e1. To complete the proof, we need to
show that it satisfies dist(D,Cs) ≤ dist(D,C) and that it is convex.

We first establish the inequality dist(D,Cs) ≤ dist(D,C). The distance between D and
C is

dist(D,C) =
∫ d

t=−d
dist(Dt, Ct) dt =

∫ d

t=−d
Voln−1(Dt4Ct) dt.

By Proposition 2.1, for every t ∈ R, the volume of the symmetric difference between the
slices Dt and Ct is bounded below by

Voln−1(Dt4Ct) ≥ max
{

Voln−1(Ct)−Voln−1(Dt),Voln−1(Dt)−Voln−1(Ct)
}
.
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1.1

e1

rD

rCcrCs

p1
p2

0−d

d1

d

d2

Figure 2 Illustration of the radius functions rD, rCs , and rCc and of the points p1 and p2 in the
proof of Lemma 3.5.

Since Voln−1(Ct) = Voln−1(Cst), we then obtain

dist(D,C) ≥
∫ d

t=−d
max

{
Voln−1(Cst)−Voln−1(Dt),Voln−1(Dt)−Voln−1(Cst)

}
dt.

Both Dt and Cst are balls with the same center, so one is a strict subset of the other and so
we can apply the equality condition of Proposition 2.1 to obtain

dist(D,C) ≥
∫ d

t=−d
Voln−1(Dt4Cst) dt =

∫ d

t=−d
dist(Dt, C

s
t) dt = dist(D,Cs),

as we wanted to show.
We now complete the proof of the lemma by showing that Cs is convex. From Brunn’s

Theorem, the function t 7→ Voln−1(Ct)
1

n−1 is concave on its support. And from the construc-
tion we have that Voln−1(Cst)

1
n−1 = Voln−1(Ct)

1
n−1 . Hence, the function t 7→ Voln−1(Cst)

1
n−1

is also concave on its support and by Lemma 3.2, the body Cs is convex. J

3.2.3 The closest convex body is a truncated cone
We now show that the closest symmetric convex body to D is a truncated cone. The proof
of this claim uses the following standard result about the separation of convex and concave
functions.

I Lemma 3.4. Fix any d1 ≤ d2 ∈ R. Let f : [d1, d2] → R be a convex function and
g : [d1, d2]→ R be a concave function such that ∀t ∈ [d1, d2], f(t) ≥ g(t). Then there exists
an affine function h : [d1, d2]→ R such that g(t) ≤ h(t) ≤ f(t) for all t ∈ [d1, d2].

Proof. The proof follows from the fact that any two convex sets have a separating hyperplane.
Let S1 = {(t, x) : t ∈ [d1, d2], x ≥ f(t)} and S2 = {(t, x) : t ∈ [d1, d2], x ≤ g(t)}. The sets S1
and S2 are convex and their separating hyperplane corresponds to the function h. J

I Lemma 3.5. The closest convex body to D that is symmetric about e1 is a truncated cone.

Proof. Let Cs be a convex body that is symmetric about e1 and minimizes dist(D,Cs). We
will construct a truncated cone Cc that is also symmetric about e1 and satisfies dist(D,Cc) ≤
dist(Cs, D).

APPROX/RANDOM 2020
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Define the functions rD, rCs : R→ R where rD(t) and rCs(t) are the radii of the (n− 1)-
dimensional balls Dt and Cst , respectively. Let d1 be the infimum of t for which rCs(t) > 0
and d2 be the supremum of t for which rCs(t) > 0. Note that −d ≤ d1 < d2 ≤ d since the
body Cs is contained between the hyperplanes H−d, Hd.

We define an affine function rCc : [d1, d2] → R. We further define Cc to be the body
whose slices Cct are (n− 1)-dimensional balls of radius rCc(t), for t ∈ [d1, d2]. Clearly Cc is
a truncated cone. We define rCc differently for different cases mentioned below. In Case
1 we define it directly and in Cases 2, 3 we define two values a1, a2. The affine function
rCc : [d1, d2]→ R corresponding to the values a1, a2 is defined by the line joining the points
p1 = (a1, rD(a1)), p2 = (a2, rD(a2)). See Figure 2 for an illustration of this construction.

Case 1: ∀t ∈ (d1, d2), rCs(t) ≤ rD(t)
Since rD is convex and rCs is concave, from Lemma 3.4, there exists an affine function
rCc : [d1, d2]→ R such that rD(t) ≥ rCc(t) ≥ rCs(t) for all t ∈ [d1, d2].
Case 2: ∀t ∈ (d1, d2), rCs(t) > rD(t)
Let a1 = d1, a2 = d2.
Case 3: ∃t1, t2 ∈ [d1, d2] such that rCs(t1) ≤ rD(t1) and rCs(t2) > rD(t2)
This case be further divided into three sub-cases.

Case 3a: rCs(d1) ≤ rD(d1) and rCs(d2) ≤ rD(d2)
In this case since rCs is concave and rD is convex the curves have exactly two points
of intersection. Let a1, a2 be the values of t where the curves intersect.
Case 3b: rCs(d1) ≤ rD(d1) and rCs(d2) > rD(d2)
In this case since rCs is concave and rD is convex the curves have exactly one point of
intersection. Let a1 be the value of t where the curves intersect and let a2 = d2.
Case 3c: rCs(d1) > rD(d1) and rCs(d2) ≤ rD(d2)
In this case since rCs is concave and rD is convex the curves have exactly one point of
intersection. Let a2 be the value of t where the curves intersect and let a1 = d1.

Since the function rCc is affine, it is also concave and so by Lemma 3.2 the body Cc is
convex. To complete the proof, we need to show that dist(D,Cc) ≤ dist(D,Cs) in all three
cases.

By definition, the distance between D and Cs is

dist(D,Cs) = Vol(D \ Cs) + Vol(Cs \D) =
∫ d

−d
Voln−1(Dt \ Cst) + Voln−1(Cst \Dt) dt.

For Case 1, since D,Cs, Cc are symmetric about e1 and rD(t) ≥ rCc(t) ≥ rCs(t) for every
t ∈ [d1, d2],

dist(D,Cs) =
∫ d1

−d
Voln−1(Dt) dt+

∫ d2

d1

Voln−1(Dt)

−Voln−1(Cst) dt+
∫ d

d2

Voln−1(Dt) dt

≥
∫ d1

−d
Voln−1(Dt) dt+

∫ d2

d1

Voln−1(Dt)

−Voln−1(Cct) dt+
∫ d

d2

Voln−1(Dt) dt

= dist(D,Cc).
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For Cases 2 and 3, for t ∈ (d1, a1)∪ (a2, d2), the ball Dt contains the ball Cst . Conversely, for
every t ∈ [a1, a2], Cst contains Dt. And for t ∈ (−d, d1) ∪ (d2, d) the ball Cst has zero radius
Hence, the distance between D and Cs is

dist(D,Cs) =
∫ a1

d1

Voln−1(Dt)−Voln−1(Cst) dt+
∫ a2

a1

Voln−1(Cst)−Voln−1(Dt) dt

+
∫ d2

a2

Voln−1(Dt)−Voln−1(Cst) dt+
∫ d1

−d
Voln−1(Dt) dt

+
∫ d

d2

Voln−1(Dt) dt.

For every t ∈ (d1, a1) ∪ (a2, d2), we have that rD(t) ≥ rCc(t) ≥ rCs(t). And for every
t ∈ (a1, a2), we have the reverse inequalities rD(t) ≤ rCc(t) ≤ rCs(t). Therefore,

dist(D,Cs) ≥
∫ a1

d1

Voln−1(Dt)−Voln−1(Cct) dt+
∫ a2

a1

Voln−1(Cct)−Voln−1(Dt) dt

+
∫ d2

a2

Voln−1(Dt)−Voln−1(Cct) dt+
∫ d1

−d
Voln−1(Dt) dt

+
∫ d

d2

Voln−1(Dt) dt

= Vol(D \ Cc) + Vol(Cc \D) = dist(D,Cc). J

3.2.4 Every truncated cone is far from D

As the last step in the proof that D is far from convex, we show that it is far from every
truncated cone.

I Lemma 3.6. Every truncated cone is 1
8 -far from D.

Proof. Let Cc be a truncated cone. Without loss of generality let the truncated cone have
larger radius towards the left side. We consider the two cases where Vol(Cc[0,d]) ≤

1
2Vol(D[0,d])

and where Vol(Cc[0,d]) >
1
2Vol(D[0,d]) separately.

Case 1: Vol(Cc[0,d]) ≤
1
2Vol(D[0,d]).

In this case, Proposition 2.1 and the case condition yield

Vol(D4Cc) ≥ Vol(D[0,d]4Cc[0,d]) ≥ Vol(D[0,d])−Vol(Cc[0,d]) ≥
1
2Vol(D[0,d]) = 1

4Vol(D).

Case 2: Vol(Cc[0,d]) ≥
1
2Vol(D[0,d])

In this case, if Cc[−d,− d
2 ] = ∅, then from Proposition 3.1

Vol(D4Cc) ≥ Vol(D[−d,− d
2 ]4C

c
[−d,− d

2 ]) = Vol(D[−d,− d
2 ]) ≥

1
4Vol(D).

If Cc[−d,− d
2 ] 6= ∅, then using the fact that Cc is a truncated cone with larger radius on the

left side we get

Vol(Cc[− d
2 ,

d
2 ]) ≥ Vol(Cc[0,d]) ≥

1
2Vol(D[0,d]) ≥

1
4Vol(D).

Then Proposition 2.1 implies that
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Vol(D4Cc) ≥ Vol(D[− d
2 ,

d
2 ]4C

c
[− d

2 ,
d
2 ]) ≥ Vol(Cc[− d

2 ,
d
2 ])−Vol(D[− d

2 ,
d
2 ])

≥ 1
4Vol(D)−Vol(D[− d

2 ,
d
2 ]).

From Proposition 3.1, we also have that Vol(D[− d
2 ,

d
2 ]) is exponentially smaller than

Vol(D). Hence,

Vol(D4CC) ≥ 1
4Vol(D)− o

(
Vol(D)

)
≥ 1

8Vol(D). J

Putting our last three lemmas together completes the proof of the main result from this
section.

I Theorem 3.7. The body D is 1
8 -far from convex.

I Remark 3.8. In fact, the above argument shows that D is ( 1
4 − o(1))-far from convex. With

more careful calculations, it is possible to show that D is ( 1
2 − o(1))-far from convex. This

result is tight, since the body D is ( 1
2 − o(1))-close to the convex body obtained by deleting

the right half of D and extending the truncated cone in the left half to d.

4 Proofs of Theorems 1.1 and 1.2

We complete the proofs of Theorems 1.1 and 1.2 in this section. The proof of Theorem 1.1 is
completed in Section 4.1, where we show that a line segment connecting two points drawn at
random from the body is contained within the body with high probability. In Section 4.2,
we generalize this result to show that the convex hull of a set of points picked uniformly at
random lies inside the body with high probability.

4.1 Non-robustness of the line characterization
We are now ready to prove Theorem 1.1 by showing that when two points x and y are drawn
uniformly at random from D, then with high probability the line segment xy that connects
x to y is completely contained within D.

I Lemma 4.1. When x, y ∈ D are drawn uniformly at random from D, then the line segment
xy that joins x and y satisfies

Pr [xy 6⊆ D] = 2−Ω(n).

Proof. Let x = (α, x2, . . . , xn) and y be drawn independently and uniformly at random from
D. By the symmetry of D with respect to reflection on the axis e1, we can assume without
loss of generality that α ≤ 0. Furthermore, since D is symmetric with respect to rotations
around e1, we can also assume that x2 ≥ 0 and rest of the xi = 0. Hence, without loss of
generality let x = (α, x2, 0, 0, . . . , 0) and let y = (β, y2, . . . , yn).

If β ≤ 0, then both x and y lie in the same half of D, and that half is a convex set so the
line segment xy is contained in D.

Consider the case now where β > 0. By Proposition 3.1, with probability 1− 2−Ω(n) we
have α ≤ −d/2 and β ≥ d/2. Furthermore, for any given β since (y2, . . . , yn) is uniformly
distributed over an (n − 1)-dimensional ball of radius at most 1.1, from Proposition 2.3
we have that Pr[|y2| ≤ 1

10 ] = 1 − 2−Ω(n). In the rest of the proof, assume that all three
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inequalities α ≤ −d2 , β ≥
d
2 , and |y2| ≤ 1

10 hold. We will show that in this case, the line
passes through the center slice D0 and, therefore, the line segment xy is contained in D, thus
completing the proof of the theorem.

Consider the point z = |α|
|α|+|β| (β, y2, . . . , yn) + |β|

|α|+|β| (α, x2, 0, 0, . . . , 0). The point z lies
in the hyperplane H0. We want to show that it is contained in the slice D0 or, equivalently,
that ‖z‖2 ≤ 1. By definition,

‖z‖2 =
(

1
|α|+ |β|

)2 (
|α|y2 + |β|x2

)2 +
(

|α|
|α|+ |β|

)2 n−1∑
i=3

y2
i

=
(
|β|x2

|α|+ |β|

)2
+
(

1
|α|+ |β|

)2
2|α||β|x2y2 +

(
|α|

|α|+ |β|

)2 n∑
i=2

y2
i .

Since x and y are in D, then
∑n
i=2 y

2
i ≤ (1.1)2 and x2 ≤ 1.1. And we have that y2 ≤ 0.1.

Substituting these bounds into the above expression, we obtain

‖z‖2 ≤
(

1.1|β|
|α|+ |β|

)2
+
(

1
|α|+ |β|

)2
.22|α||β|+

(
1.1|α|
|α|+ |β|

)2

= (1.1)2 − 2.2|α||β|
(

1
|α|+ |β|

)2
.

Defining δ = |α|/|β|, the above equation simplifies to ‖z‖2 ≤ 1.21− 2.2 δ
(1+δ)2 . Since |α|

and |β| are both in the range [ d2 , d], then δ ∈ [ 1
2 , 2]. The minimum value of the function

δ
(1+δ)2 in the interval [ 1

2 , 2] is 2
9 , so ‖z‖

2 ≤ 1.21− 2.2 · 2
9 ≤ 1. J

Theorem 1.1 follows immediately from Theorem 3.7 and Lemma 4.1.

4.2 Non-robustness of the convex hull characterization
In this section, we complete the proof of Theorem 1.2 by combining Lemma 4.1 with the
following structural result about the body D.

I Lemma 4.2. For any finite set X ⊂ D, if the line connecting any two points x, y ∈ X
satisfies xy ⊆ D, then

conv(X) ⊆ D.

Proof. We prove the claim by induction on the number of points in X. The base case where
|X| = 2 is trivially true. For the base case where |X| = 3, let X = {x, y, z} be any set
that satisfies xy, xz, yz ⊆ D. We can assume without loss of generality that x, y ∈ D≥0. If
z ∈ D≥0 as well, then conv(X) ⊆ D since D≥0 is a convex set. Let us now consider the
case where z ∈ D<0. Note that a line joining two points a ∈ D≤0, b ∈ D≥0 is contained in
the body if and only if ab ∩D0 6= ∅. From this observation, we get that xz ∩D0 6= ∅ and
yz ∩D0 6= ∅. Define x′ = xz ∩D0 and y′ = yz ∩D0. Let w be any point on the line xy and
define w′ = zw ∩ H0. Since w ∈ xy, we have that w′ ∈ x′y′. Since x′, y′ ∈ D0 and D0 is
convex, we must also have that w′ ∈ D0, and so zw ⊆ D. Since every point in the convex
hull of X is on the line zw for some w ∈ xy, this means that conv(X) ⊆ D.

For the induction step, we assume that the claim is true for all sets with at most k
points for some fixed k ≥ 2. Fix any set X ⊆ D with k + 1 elements such that every line xy
connecting x, y ∈ X is contained in D. We want to show that conv(X) ⊆ D.
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Let x ∈ X be an element for which there exists y ∈ X that satisfies x1y1 ≥ 0, i.e x, y are
in the same half of D. Such an element x is guaranteed to exist since |X| ≥ 3. Without
loss of generality, assume x ∈ D≤0. Define Xk = X \ {x}. By the induction hypothesis, we
must have that conv(Xk) ⊆ D. Furthermore, if every x′ ∈ conv(Xk) satisfies x′x ⊆ D, then
conv(X) = conv(x ∪Xk) ⊆ D. To complete the proof, let us now assume that there exists
x′ ∈ conv(Xk) for which x′x 6⊆ D and show that this leads to a contradiction.

Define X1 = {y : y ∈ Xk ∩D≤0} and X2 = Xk \X1. By our choice of x, |X1| ≥ 1 and so
|X2| ≤ k−1. And since x′ ∈ conv(Xk) = conv(X1∪X2), there exist two points x′′ ∈ conv(X1)
and x′′′ ∈ conv(X2) such that x′ ∈ x′′x′′′. We have xx′′ ⊆ D as x, x′′ ∈ D≤0 and D≤0 is
convex. And xx′′′ ⊆ D because conv({x} ∪X2) ⊆ D from the induction hypothesis. Finally,
since x′′, x′′′ ∈ conv(Xk) we also have that x′′x′′′ ⊆ D. Hence, the three points x, x′′, x′′′
satisfy xx′′ ⊆ D, xx′′′ ⊆ D, and x′′x′′′ ⊆ D. Therefore, from the induction hypothesis on
the set {x, x′′, x′′′}, conv(x, x′′, x′′′) ⊆ D. This implies xx′ ⊆ D, which is a contradiction.
Therefore, conv(X) = conv({x} ∪XK) ⊆ D. J

There exists a small constant c > 0 such that if we pick m = 2cn points, X, uniformly at
random then the probability that ∀x, y ∈ X, xy ⊂ D is greater than 1− 1

2Ω(n) . We get this
by applying a union bound on Lemma 4.1. This combined with Lemma 4.2 completes the
proof of Theorem 1.2.
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