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Abstract
In this work, we prove new relations between the bias of multilinear forms, the correlation between
multilinear forms and lower degree polynomials, and the rank5 of tensors over F2. We show the
following results for multilinear forms and tensors.

Correlation bounds. We show that a random d-linear form has exponentially low correlation
with low-degree polynomials. More precisely, for d = 2o(k), we show that a random d-linear form
f(X1, X2, . . . , Xd) :

(
Fk

2
)d → F2 has correlation 2−k(1−o(1)) with any polynomial of degree at most

d/2 with high probability.
This result is proved by giving near-optimal bounds on the bias of a random d-linear form, which is in
turn proved by giving near-optimal bounds on the probability that a sum of t random d-dimensional
rank-1 tensors is identically zero.

Tensor rank vs Bias. We show that if a 3-dimensional tensor has small rank then its bias, when
viewed as a 3-linear form, is large. More precisely, given any 3-dimensional tensor

T : [k]3 → F2

of rank at most t, the bias of the 3-linear form

fT (X1, X2, X3) :=
∑

(i1,i2,i3)∈[k]3

T (i1, i2, i3) ·X1,i1 ·X2,i2 ·X3,i3

is at least (3/4)t.

1 This work was done when the author was a graduate student at Rutgers University, USA
2 This work was done when the author was visiting Rutgers University/DIMACS, USA and Weizmann

Institute of Science, Israel.
3 Part of this work was done when the author was a postdoc at DIMACS.
4 Part of this work was done when the author was a postdoc at Center for Mathematical Sciences and
Applications, Harvard University, USA.

5 Here, “rank” refers to the standard notion of the rank of a tensor (not analytic, slice, or partition park).
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This bias vs tensor-rank connection suggests a natural approach to proving nontrivial tensor-
rank lower bounds. In particular, we use this approach to give a new proof that the finite field
multiplication tensor has tensor rank at least 3.52k, which is the best known rank lower bound for
any explicit tensor in three dimensions over F2. Moreover, this relation between bias and tensor
rank holds for d-dimensional tensors for any fixed d.
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1 Introduction

This work is motivated by two fundamental questions regarding “explicit constructions” in
complexity theory: finding functions uncorrelated with low degree polynomials, and finding
tensors with high tensor rank.

Functions uncorrelated with low degree polynomials

The first question is that of finding an explicit function uncorrelated with low degree
polynomials. More concretely, we seek functions f : Fn2 → F2 such that for every polynomial
P (X1, . . . , Xn) ∈ F2[X1, . . . , Xn] of degree at most ` (assume ` ≈ n0.1 say),

Pr
x∈Fn

2

[f(x) = P (x)] = 1
2 + εn ,

where εn is exponentially small in n. It is well known that a random function f has this
property with εn superpolynomially small (and even exponentially small); the challenge is to
find an explicit function f .

A solution to this problem will have immediate applications in Boolean circuit com-
plexity. It will give hard-on-average problems for AC0(⊕), and via the Nisan-Wigderson
hardness vs. randomness technique [15], it will give pseudorandom generators against AC0(⊕)
(improving upon analogous results for AC0 from the late 1980s). The original motivation
for an explicit function with small εn came from the seminal work of Razborov [17] and
Smolensky [20] who used such functions to prove lower bounds against sub-exponential sized
AC0(⊕) circuits. In particular, they showed that for the MOD3 function εn ≤ 1

3 +O(1/
√
n)

and for the MAJORITY function εn = O(`/
√
n).6

6 In a recent work [23], Viola showed that there exist degree ` polynomials which have correlation Ω(`/
√
n)

with the MAJORITY function, thereby showing that the aforementioned upper bound in [17, 20] are
essentially tight.

https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.29
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The current best known constructions of explicit functions [17, 20, 3, 24] that cannot be
approximated by low-degree polynomials come in two flavors, (a) polynomially small εn (in
fact, O(1/

√
n)) for large degree bounds (` as large as n0.1) or (b) exponentially small εn

for small degree bounds (` = o(logn)). However, we do not know of any explicit function f
that exhibits exponentially small εn against low-degree polynomials of polynomially large
(or even super-logarithmically large) degree polynomials. For a nice survey on correlation
with low degree polynomials, see [22].

Tensors with high rank

The second question is that of finding an explicit tensor of high tensor rank. Tensors are
a high-dimensional generalization of (2-dimensional) matrices. Just as a matrix of size k
over a field F is given by a map M : [k]2 → F, a tensor T of dimension d and size k is
given by a map T : [k]d → F. A tensor T is said to be of rank one if there exist vectors
u1, u2, . . . , ud ∈ Fk2 such that T = u1⊗ u2⊗ · · · ⊗ ud or equivalently, for all (i1, . . . , id) ∈ [k]d,
we have T (i1, . . . , id) = u1,i1 · u2,i2 · · ·ud,id . A tensor T is said to be of tensor-rank at most t
if it can be written as the sum of t rank one tensors. We seek tensors with tensor-rank as
high as possible.

It is well known (and easy to prove) that a random tensor T has tensor rank t as large as
Ω(kd−1/d). The challenge is to find an explicit such T with tensor rank larger than kb d

2 c. A
substantial improvement on this lower bound for any explicit tensor will have immediate
applications in arithmetic circuit complexity; for d = 3, it will give improved arithmetic
circuit lower bounds [21], and for large d it will give superpolynomial arithmetic formula
lower bounds [16, 6]. For general odd d, a lower bound of 2kbd/2c + k−O(d log k) was shown
for an explicit tensor by Alexeev et al. [1], while for even d, no lower bounds better than the
trivial bound kb d

2 c are known for any explicit tensor.
Unlike matrix rank, we do not have a good understanding of tensor-rank even for 3-

dimensional tensors. For instance, it is known that for a given 3-dimensional tensor T
over the rationals, the problem of deciding if the rank of T is at most k is NP-hard [10].
In the case of dimension three, the tensor-rank of very specific tensors like the matrix
multiplication tensor [4, 19], the finite field multiplication tensor [7, 18] and the polynomial
multiplication tensor [5, 11] has been studied in prior works. For this case, the current best
lower bound known for any explicit tensor over F2 is a lower bound of 3.52k for the finite
field multiplication tensor due to Chudnovsky and Chudnovsky [7, 18], which builds on the
lower bound result of Brown and Dobkin [5] for the polynomial multiplication tensor. For
general fields, the best known lower bound for any explicit tensor is 2.5k−o(k) for the matrix
multiplication tensor due to Bläser [4].

Also relevant to this discussion is a recent result of Effremenko et al. [8], who showed that
a fairly general class of lower bound techniques called rank methods are not strong enough to
give lower bounds on tensor rank stronger than 2d · kbd/2c. In a nutshell, not only can we not
prove good tensor rank lower bounds, we do not even have techniques, which “in principle”
could be useful for such lower bounds!

1.1 Our results
We make contributions to both the above questions by studying multilinear forms and their
bias. A d-linear form is a map f : (Fk2)d → F2 which is linear in each of its d arguments. The
bias of a d-linear form is defined as follows.

bias(f) :=
∣∣∣Ex1,...,xd∈Fk

2
[(−1)f(x1,...,xd)]

∣∣∣ .

APPROX/RANDOM 2020
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This measures the difference between the probability of output 1 and output 0. Similarly, the
correlation of a d-linear form f with another function g is defined as corr(f, g) := bias(f − g),
which measures the difference between the probabilities (on a random input) that f and g
agree and disagree.

A d-linear form f can naturally be viewed as a polynomial of degree d in n = kd variables.
We can then ask, for some ` � d, is there a d-linear form f such that the correlation of
f with every degree ` polynomial in F2[X1, . . . , Xn] is small? Knowing the existence of a
d-linear f that achieves this small correlation property gives a significantly reduced search
space for finding an explicit f with small correlation with lower degree polynomials. Our
first result gives a positive answer to this question for a large range of ` and d.

I Theorem (A). Let d = o(n/logn) and let k = n
d . Let ` < d/2. Then with high probability,

for a uniformly random d-linear form f : (Fk2)d → F2, we have that for all polynomial
P (X1, . . . , Xn) ∈ F2[X1, . . . , Xn] of degree at most `:

corr(f, P ) ≤ 2−k(1−o(1)) = 2−n
d (1−o(1)) .

Moreover, for every d-linear form f , there is a degree 0 polynomial P (namely the constant 0
polynomial) such that corr(f, P ) ≥ Ω(2−k).

For d small enough (Õ(logn)), the above theorem actually holds with ` = d− 1.
An important step towards proving Theorem A is a precise understanding of the distribu-

tion of the bias of a random d-linear form. Along the way, we give tight upper bounds on
the probability that the sum of t random rank-1 d-dimensional tensors equals 0.

Previously, a beautiful result of Ben-Eliezer, Lovett and Hod [2] showed that for all
d < αn, there are polynomials f(X1, . . . , Xn) of degree d whose correlation with polynomials
of degree ` = d−1 is 2−Ω(n/d). The results are incomparable; the f in [2] need not come from
a d-linear form, and for this more general setting the bound 2−Ω(n/d) might not be tight,
but on the positive side [2] can handle larger d while proving correlation bounds against
polynomials with degree as large as d− 1.

A d-linear form f can also be naturally represented as a d-dimensional tensor. Indeed, f
can be completely specified by the tensor T of values f(ei1 , ei2 , . . . , eid), as the ij vary in [k].
We can then ask, are there natural properties of the d-linear form f which would imply that
the tensor rank of T is high? In our next main result, we prove a lower bound on the rank of
a three dimensional tensor by studying the bias of the corresponding trilinear form. As far
as we know, this is the first analytic property of low rank tensors which appears to be useful
for lower bounds on tensor rank. Prior to this work, all the tensor rank lower bound proofs
appear to be algebraic.

I Theorem (B). 7 Let f : (Fk2)3 → F2 be a 3-linear form. Let T be the natural representation
of f as a tensor (see above), and let t be the rank8 of T . Then

bias(f) ≥
(

3
4

)t
.

In particular, if bias(f) = 2−(1−o(1))k, then t ≥ k · log 4
3

2. Moreover, for every t there is a
tensor T with tensor rank t such that the following is true.

bias(f) ≤
(

3
4

)t
+ 3

2k .

7 For brevity, we state this theorem here for d = 3, but it holds more generally for higher dimensional
tensors as well. See Section 3 for details.

8 Here, “rank” refers to the standard notion of the rank of a tensor.
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This gives a natural and clean route to proving nontrivial tensor rank lower bounds for
explicit 3 dimensional tensors. In particular, trilinear forms with nearly minimal bias of
of 2−(1−o(1))k must have tensor rank at least 2.409k (which happens to be tight). A finer
analysis of our arguments shows that trilinear forms with exactly minimal bias of ≈ 2 · 2−k,
such as the finite field multiplication tensor, have tensor rank ≥ 3.52k, thus matching the
best known explicit tensor rank lower bound for 3-dimensional tensors [5, 7, 18] for any
explicit tensor. It also immediately implies that the matrix multiplication tensor has tensor
rank ≥ 1.8k, which is nontrivial (but still far from the best known bound of 3k [19, 4]).
We remark that since every a 3-linear form f : (Fk2)d → F2 has bias at least exp(−Ω(k)),
we cannot hope to prove super linear lower bounds on tensor rank via a direct use of this
connection between bias and tensor rank. We also note while that an analogous connection
between bias and tensor rank also holds in 4 and higher dimensions (see Theorem 8), the
quantitative bounds are not strong enough to give a non-trivial lower bound on tensor rank
for d dimensional tensors for d ≥ 4. Here, by non-trivial tensor rank lower bounds, we mean
bounds are better than the bound of kbd/2c that can be obtained by just flattening the tensor
into a matrix and using the rank of the matrix as a lower bound on tensor rank.

We remark this method of studying the bias of a three dimensional tensor as a tool
for proving tensor rank lower bounds appears to be new. Informally it shows a non-trivial
connection between one of the weakest measures of computational pseudorandomness of a
function, namely bias, and one of the strongest measures of computational pseudorandomness,
namely tensor rank. While such a connection is well known for matrices, to the best of our
knowledge, this connection between bias and rank is new for tensors of dimension 3 and
larger. In addition to the intrinsic appeal, this connection lets us recover the lower bound of
3.52k for an explicit three dimensional tensor over F2. To recover this lower bound, we end
up using the proof of Theorem B in a non-blackbox manner.

The results of Theorem B can also be phrased in terms of the notion of analytic rank
introduced in the work of Gowers and Wolf [9]. The analytic rank of a multilinear form f

over a finite field F is defined by:

arank(f) := − log|F| (bias(f)) .

Stated in this language9, our result says that if f : (Fk2)3 → F2 is a 3-linear form of tensor
rank t then

t ≥ 1
log2 (8/7) · arank(f) .

This is essentially the best lower bound one can hope to prove on the tensor rank in terms of
the analytic rank.
In their work, Gowers and Wolf prove that analytic rank is approximately subadditive. In
particular, they show that

arank(f + g) ≤ 2d (arank(f) + arank(g)) .

This implies only a quantitatively much weaker version of Theorem B which does not give
any nontrivial tensor rank lower bounds even for d = 3. Shortly after we posted our paper
online, Lovett [13] showed that analytic rank is fully subadditive (improving upon the above

9 Similar to Theorem B, this also holds for general d dimensional tensors. We focus on the d = 3 case
here.

APPROX/RANDOM 2020



29:6 On Multilinear Forms: Bias, Correlation, and Tensor Rank

result of Gowers and Wolf by getting rid of the multiplicative factor of 2d). The proof is
extremely elegant and clever. This result of Lovett implies and greatly elucidates the real
reason underlying Theorem B, although we do not know if a tensor rank lower bound of
anything close to 3.52k can be recovered directly from it.

1.2 Organization
Section 2 contains the preliminaries. Section 3 discusses the connection between bias and
tensor rank (Theorem B above) and proves rank lower bounds for explicit tensors. Section 4
proves correlation bounds for random d-linear forms (Theorem A above) and other related
results.

2 Preliminaries

Unless otherwise stated, we always work over the field F2. We use capital X,Y, Z etc.
to denote formal variables or sets of formal variables, and small letters x, y, z to denote
instantiations of these formal variables.

For integers n, d ≥ 0, denote by Poly(n, d) the set of all degree ≤ d multilinear polynomials
in F2[X], where X = {X1, ..., Xn} is a variable set. Note that every f ∈ Poly(n, d) naturally
corresponds to a unique map f : Fn2 → F2.

2.1 Bias and Correlation
Two fundamental notions used in this paper are those of bias and correlation, which we now
define.

I Definition 1 (Bias). Bias of a function f : Fn2 → {0, 1} is defined as

bias(f) :=
∣∣∣Ex∈Fn

2
(−1)f(x)

∣∣∣ .
The bias of an F2-valued function f : Fn2 → F2 is defined as bias(f) := bias(ι(f)), where ι is
the standard map from F2 to {0, 1}.

I Definition 2 (Correlation). We define the correlation between two functions f, g : Fn2 → F2,
by

corr(f, g) := bias(f − g) .

Given a function f : Fn2 → F2, we will be interested in its maximum correlation with low
degree polynomials. Towards this we define

corr(f, d) := max
g∈Poly(n,d)

corr(f, g) .

More generally, given a class C of functions, we define

corr(f, C) := max
g∈C

corr(f, g) .
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2.2 Tensors and d-linear forms
Tensors are generalizations of matrices to higher dimensions.

I Definition 3 (Tensors and Tensor rank). Let k and d be natural numbers. A d dimensional
tensor T of size k over a field F is a map T : [k]d → F. T is said to be of rank one
if there exist d vectors u1, u2, . . . , ud : [k] → F such that for every (i1, i2, . . . , id) ∈ [k]d,
T (i1, i2, . . . , id) =

∏d
j=1 uj(ij). The rank of T is the minimum t such that T can be written

as a sum of t rank one tensors.

Every matrix can be naturally associated with a bilinear polynomial, and in some cases, one
can study the properties of this bilinear polynomial as a proxy of studying various properties
of the matrix itself. This paradigm also generalizes to tensors, as the following definition
indicates.

I Definition 4 (Tensors as Multilinear Forms). Let T : [k]d → F be a d dimensional tensor.
Then, the set-multilinear polynomial associated with T is the polynomial fT in variables
{Xi,j : i ∈ [d], j ∈ [k]} over F defined as follows.

fT (X1,1, X1,2, . . . , Xd,k) =
∑

(i1,i2,...,id)∈[k]d
T (i1, i2, . . . , id) ·

d∏
j=1

Xj,ij .

Given the above association between d-dimensional tensors and d-linear forms, we will use
the terms tensor and d-linear form interchangeably.

2.3 Some explicit tensors
We now define some explicit tensors which we shall use in the next section.

2.3.1 Trace tensor
I Definition 5. Trace : F2k → F2 is the F2-linear map defined as follows.

Trace(α) = α+ α2 + . . .+ α2k−1
.

The Trace map will be useful for us as we define the candidate hard tensor for our lower
bounds.

I Definition 6. Let Tr : Fk×k×k2 → F2 be the function defined as follows.

Tr(X,Y, Z) := Trace(XY Z) ,

where XY Z denotes multiplication over the larger field F2k when X = (X1, X2, . . . , Xk), Y =
(Y1, Y2, . . . , Yk), Z = (Z1, Z2, . . . Zk) are viewed as encodings of elements in F2k .

Since Trace is an F2-linear map, the function Tr(X,Y, Z) can be viewed as a 3-linear
polynomial in the variables X = (X1, X2, . . . , Xk), Y = (Y1, Y2, . . . , Yk), Z = (Z1, Z2, . . . Zk).
For the rest of this paper, when we say Tr(X,Y, Z), we refer to this natural 3-linear
polynomial and the three dimensional tensor associated with it. Up to a change of basis, this
is the finite field multiplication tensor, which was analyzed by Chudnovsky-Chudnovsky [7]
and Shparlinksi-Tsfasman-Vladut [18]. It is also worth noting that these papers also proved
a surprising and beautiful O(k) upper bound on the tensor rank of this tensor.

APPROX/RANDOM 2020
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2.3.2 Matrix multiplication tensor
I Definition 7. The tensor corresponding to the product of two n× n matrices is defined as

Mn(X,Y, Z) =
n∑
i=1

n∑
j=1

n∑
k=1

Xi,jYj,kZi,k .

Here, X = {Xi,j : i, j ∈ [n]} , Y = {Yi,j : i, j ∈ [n]} , Z = {Zi,j : i, j ∈ [n]}.

Note that Mn(X,Y, Z) is the trace of the matrix product X · Y · ZT . In other words,
Mn(X,Y, ZT ) = Trace(X · Y · Z). Note this is the matrix trace and is different from the
trace function considered in the previous section where we viewed X,Y, Z as elements of the
large field.

3 High-rank tensors from unbiased polynomials

It is well-known that the bias of a bilinear form corresponding to a matrixM ∈ Fk×k2 is tightly
related to its rank rank(M) (more precisely, bias(M) = 2−rank(M)). In this section, we explore
a similar connection for higher dimensional tensors. We then use this to (re)prove some
existing tensor rank lower bounds (e.g., for the trace tensor and the matrix multiplication
tensor). We note that while in the introduction we stated this connection between bias and
tensor rank specifically for three dimensional tensors, we prove a general statement which
holds even for higher dimensional tensors.

3.1 Small Bias implies large tensor rank
We begin with the main theorem of this section which shows tensors with small bias have
large rank.

I Theorem 8 (Small bias implies large rank). Let P ∈ Fk×k···×k2 be any d-dimensional tensor
of rank ≤ t. Then

bias(P ) ≥
(

1− 2
2d

)t
.

An important ingredient of our proof will be the following lemma.

I Lemma 9. Let d be a natural number. Let M1,M2, . . . ,Mt ∈ Fk×k···×k2 be d-dimensional
tensors of rank at most 1. Then,

Pr
x1,x2,...,xd∈Fk

2

[∀i ∈ [t],Mi(x1, x2, . . . , xd) = 0] ≥
(

1− 1
2d

)t
. (1)

Proof. Our proof is by induction on d.

Base Case. The base case when d = 1 trivially follows since if there are t linear forms
u1, u2, . . . , ut over F2, then the maximum number r of independent linear forms among them
is at most t. We hence have,

Pr
x∈Fk

2

[∀i ∈ [t], ui(x) = 0] = (1/2)r ≥ (1/2)t . (2)
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Induction Step. For the inductive step, we assume that the lemma is true up to dimension
d− 1, and prove it for d dimensions. For every i ∈ [t], we denote by ui the linear form in Fk2
and by M ′i the d− 1 dimensional tensor of rank 1 in Fk×k×k···×k2 such that

Mi(X1, X2, . . . , Xd) = ui(X1) ·M ′i(X2, X3, . . . , Xd) .

For every S ⊆ [t], MS denotes the tensor
∑
j∈SMj , which has rank at most |S|. We now

proceed via a sequence of inequalities.

Pr
x1,x2,...,xd∈Fk

2

[∀i ∈ [t],Mi(x1, x2, . . . , xd) = 0]

= Ex1,x2,...,xd∈Fk
2

[
t∏
i=1

(
1 + (−1)Mi(x1,x2,...,xd)

2

)]

= Ex1,x2,...,xd∈Fk
2

 1
2t ·

∑
S⊆[t]

(−1)MS(x1,x2,...,xd)


= Ex1,x2,...,xd∈Fk

2

[
ES⊆[t]

[
(−1)MS(x1,x2,...,xd)

]]
= ES⊆[t]

[
Ex1,x2,...,xd∈Fk

2

[
(−1)MS(x1,x2,...,xd)

]]
.

Now, observe that for every S ⊆ [t],

Ex1,x2,...,xd∈Fk
2

[
(−1)MS(x1,x2,...,xd)

]
≥ Pr
x2,x3,...,xd

[
∀j ∈ S,M ′j(x2, x3, . . . , xd) = 0

]
.

Moreover, from the induction hypothesis, we get that for all S ⊆ [t],

Pr
x2,x3,...,xd

[
∀j ∈ S,M ′j(x2, x3, . . . , xd) = 0

]
≥
(

1− 1
2d−1

)|S|
.

Plugging this back in the calculations, we get

Pr
x1,x2,...,xd∈Fk

2

[∀i ∈ [t],Mi(x1, x2, . . . , xd) = 0] ≥ ES⊆[t]

[(
1− 1

2d−1

)|S|]

≥ 1
2t ·

(
1 + 1− 1

2d−1

)t
=
(

1− 1
2d

)t
. J

We now complete the proof of Theorem 8.

Proof of Theorem 8. Since P has rank ≤ t, then there is a collection of linear forms
u1, u2, . . . , ut and tensors M1,M2, . . . ,Mt of rank at most 1 in d− 1 dimensions such that

P (X1, X2, . . . , Xd) =
t∑
i=1

ui(X1) ·Mi(X2, X3, . . . , Xd) .

Now, observe that

bias(P ) =
∣∣∣Ex1,x2,...,xd∈Fk

2

[
(−1)P (x1,x2,...,xd)

]∣∣∣
= Pr
x2,x3,...,xd∈Fk

2

[P (X1, x2, x3, . . . , xd) ≡ 0]

≥ Pr
x2,x3,...,xd∈Fk

2

[∀i ∈ [t], Mi(x2, x3, . . . , xd) = 0]

≥
(

1− 1
2d−1

)t
[By Lemma 9] . J

APPROX/RANDOM 2020
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We can complement the above theorem with an almost matching upper bound on the
bias of random high rank tensors. It is known that a random high rank tensor has low bias.
The following lemma gives a precise quantitative version of this observation (the idea for the
proof was suggested to us by Shubhangi Saraf).

I Lemma 10. For i ∈ [t] and j ∈ [d], let ui,j ∈ Fk2 be a uniformly random vector. Consider
the random rank-t d-linear form p : (Fk2)d → F2 given by

p(x1, x2, . . . , xd) =
t∑
i=1

d∏
j=1
〈xj , ui,j〉 .

Then

E[bias(p)] ≤ d · 2−k +
(

1− 2
2d

)t
.

We refer the reader to the full version of our paper for the proof.
The following special cases of Theorem 8, for d = 2 and d = 3 will be useful for us, on

our way to proving lower bounds on the rank of three dimensional tensors.

I Corollary 11. Let P ∈ Fk×k2 be a matrix of rank ≤ t ≤ k. Then, bias(P ) ≥ 2−t.

I Corollary 12. Let P ∈ Fk×k×k2 be a 3-dimensional tensor of rank ≤ t. Then, bias(P ) ≥( 3
4
)t.

In the subsequent two sections, we will observe that some well-known explicit tensors in
three dimensions have very low bias, and then use the above corollaries to conclude that
these tensors have large rank.

3.2 A 3.52k Tensor Rank Lower Bound for Trace(XY Z)
In this section, we use the bias-vs-tensor-rank connection explored in the previous section to
construct explicit 3-dimensional tensors with large tensor rank.

It can be observed that Trace(XY Z) is a function with bias exactly 2/2k − 1/22k (We
omit the proof in interest of space).

I Lemma 13. bias(Tr(X,Y, Z)) = 2 · 2−k − 2−2k.

This lemma coupled with Corollary 12 immediately gives the following lower bound on tensor
rank of Tr(X,Y, Z).

I Corollary 14. rank(Tr(X,Y, Z)) ≥ (log4/3 2) · k ≥ 2.409k.

We remark that a much stronger rank lower-bound of 3.52k is known due to Chudnovsky
and Chudnovsky [7, 18] and indeed we do a more careful analysis of our ideas to get a new
proof of the 3.52k lower bound. We will need the following well-known rate-distance MRRW
tradeoff for linear codes.

I Theorem 15 ([14]). Let S be a subspace of dimension at least k of Ft2, such that every
non-zero vector in S has weight at least k. Then, t ≥ 3.52k.10

10The MRRW bound for binary codes states that any family of codes with fractional distance δ satisfies
R(δ) ≤ h2

(
1
2 −
√
δ(1− δ)

)
where h2(x) = x log2(1/x) + (1− x) log2(1/1− x) is the binary entropy

function. The above mentioned bound can be obtained from this (see [5] for details).
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I Theorem 16. The rank of the tensor Tr(X,Y, Z) is at least 3.52k.

Proof. Let the tensor rank of Tr(X,Y, Z) be t. Then there exists t vectors a1, a2, . . . , at ∈ Fk2
and t rank-1 matrices M1,M2, . . . ,Mt such that

Tr(X,Y, Z) =
t∑
i=1
〈ai, X〉 · 〈Y,MiZ〉 . (3)

Let A be the k × t matrix such that for every i ∈ [t], the ith column of A equals ai. Let
K be the kernel of A. Clearly, dim(K) ≥ t − k. In fact, dim(K) = t − k. To see this,
observe that if dim(K) ≥ t− k+ 1, then by the rank-nullity theorem, rank(A) ≤ k− 1. Thus,
there is a non-zero x ∈ F k2 denoted by x0 such that for every i ∈ [t], 〈ai, x0〉 = 0. Thus,
Tr(x0, Y, Z) ≡ 0 for a non-zero x0, which is a contradiction.

From the proof of Theorem 8 for d = 3, we know that

bias(Tr(X,Y, Z)) = Pr
y,z∈Fk

2

[Tr(X, y, z) = 0] .

So far we were proving a lower bound on Pry,z∈Fk
2
[Tr(X, y, z) = 0] by proving a lower bound

on Pry,z∈Fk
2

[∀i ∈ [t], 〈y,Miz〉 = 0]. Clearly, this seems to be somewhat lossy since even for
a choice of y and z in Fk2 such that 〈y,Miz〉 6= 0 for some i ∈ [t], it is conceivable that
Tr(X, y, z) is identically zero. For this proof, we try to be a bit more careful about this.
Note that for every u ∈ K ⊂ Ft2,

t∑
i=1

ui · 〈ai, X〉 ≡ 0 .

Thus, we have,

Pr
y,z∈Fk

2

[Tr(X, y, z) = 0] =
∑
u∈K

Pr
y,z∈Fk

2

[∀i ∈ [t], 〈y,Miz〉 = ui]

=
∑
u∈K

Ey,z

∏
i∈[t]

(
1 + (−1)〈y,Miz〉+ui

2

)
=
∑
u∈K

Ey,z
[
ES⊆[t](−1)〈y,MSz〉 · (−1)〈u,1S〉

]
.

Here, for every S ⊆ [t], 1S is the characteristic vector of S in t dimensions, andMS =
∑
i∈SMi.

Simplifying further, we get,

Pr
y,z∈Fk

2

[Tr(X, y, z) = 0] = ES⊆[t]

[(
Ey,z(−1)〈y,MSz〉

)
·

(∑
u∈K

(−1)〈u,1S〉

)]
.

Now, we observe that the term
(∑

u∈K(−1)〈u,1S〉
)

= |K| if and only if 1S ∈ K⊥, otherwise
it equals zero. Also, from Corollary 11, we know that

(
Ey,z(−1)〈y,MSz〉

)
= 2−rankMS is at

at least max{2−k, 2−|S|}. Plugging these into the inequality above, we have the following
inequality (Below, |v| denotes the Hamming weight of v).

Pr
y,z∈Fk

2

[Tr(X, y, z) = 0] ≥ |K|2t ·
∑
v∈K⊥

max{2−k, 2−|v|}

≥ Ev∈K⊥ max{2−k, 2−|v|} [ Since |K| ·
∣∣K⊥∣∣ = 2t]
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Recall that the dimension of K⊥ equals k. Now,

Ev∈K⊥ max{2−k, 2−|v|} = 2−k + Ev∈K⊥\{0k}max{2−k, 2−|v|} .

From Lemma 13, we know that the bias of Tr(X,Y, Z) is 2 ·2−k−2−2k. Thus, it must be the
case that Ev∈K⊥\{0k}max{2−k, 2−|v|} ≤ (1− 2−k) · 2−k. But this is possible only if all the
vectors in K⊥ \ {0k} have weight at least k. In this case, the space K⊥ is a linear subspace
of Ft2 of dimension k such that every non-zero vector in it has Hamming weight at least k.
From Theorem 15, we get that t ≥ 3.52k. This completes the proof. J

3.3 Lower Bound on the Rank of Matrix Multiplication Tensor

In this section, we obtain a lower bound on the rank of the matrix multiplication tensor by
proving an upper bound on its bias. Even though better bounds are known for this tensor,
our proof is a fairly straightforward application of our techniques, and we believe this is
instructive.

Our main technical observation in this section is the following lemma which gives an
upper bound on the bias of Mn(X,Y , Z) as each of the variables take values in F2.

I Lemma 17. The bias of Mn(X,Y , Z) is at most n · 2− 3n2
4 .

Before proving Lemma 17, we note that Lemma 17 and Corollary 12 immediately imply a
non-trivial lower bound on the tensor rank of Mn. .

I Theorem 18. The tensor rank of Mn is at least 3n2

4 log2(4/3) ≥ 1.8n2.

Proof of Lemma 17. We observe that for any two fixed matrices x, y, the 3-linear form Mn

reduces to a linear form in z which is non-zero iff the product of the two matrices x and y is
non-zero. Furthermore, given a matrix y, the probability (over x) that the product matrix
x · y is zero is exactly 2−n·rank(y). Combining these observations, we have

bias(Mn) = Pr
x,y

[x · y = 0n×n]

= Ey
[
2−n·rank(y)

]
=

n∑
r=0

Pr
y

[rank(y) = r] · 2−nr .

To complete the proof, we rely on the following claim, whose proof we defer to the end of
this section.

B Claim 19. For every r ∈ {0, 1, . . . , n}, the following inequality is true.

Pr
y

[rank(y) = r] ≤ 2−(n−r)2
.
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From the claim above, we get

bias(Mn) ≤
n∑
r=0

2−(n−r)2−nr

≤
n∑
r=0

2−n
2−r2+nr

≤ 2−n
2

n∑
r=0

2r(n−r)

≤ 2−n
2
n · 2n

2/4

≤ n · 2−3n2/4 . J

For completeness, we now provide a proof of Claim 19. We remark that the following
tighter bound is known (see [12, Theorem 3.2.1]).

Pr
y

[rank(y) = r] = 2−(n−r)2
·

n∏
i=n−r+1

(
1− 1

2i

)
·

 ∑
0≤i1≤...in−r≤r

1
2i1+...+in−r


≤ 2−(n−r)2

·
n∏

i=n−r+1

(
1− 1

2i

)
·
n−r∏
i=1

(
1− 1

2i

)−1
.

However, the weaker bound given in the claim suffices for our purposes.

Proof of Claim 19. The goal is to upper bound the probability that a uniformly random n×n
matrix y over F2 has rank equal to r. This probability is upper bounded by the probability
that the rows of y are contained within a subspace of dimension r of Fn2 . For any fixed
subspace S of dimension equal to r, this event happens with a probability equal to 2−n(n−r).
The number of subspaces of Fn2 of dimension equal to r is given by the Gaussian binomial
coefficient

[
n
r

]
2 =

∏r−1
i=0

(2n−2i)
(2r−2i) ≤

2nr

2r2 . Thus, by a union bound, we get the following.

Pr
y

[rank(y) = r] ≤ 2nr

2r2 · 2−n(n−r) = 2−(n−r)2
. C

4 Correlation of random d-linear forms

In this section, we study the correlation of random d-linear forms with lower degree polyno-
mials.
Our main result in this section is the following theorem, which states that a random d-linear
form is uncorrelated with degree-` polynomials under certain conditions.

I Theorem 20. Let `, d, n be integers such that d divides n, d = o
(

n
logn

)
and ` < d/2. Set

k = n/d. Pick a uniformly random d-linear form f : (Fk2)d → F2. Then, with probability
1− o(1), f has the following property. For all polynomials P (X1, . . . , Xn) ∈ F2[X1, . . . , Xn]
with degree at most `, we have,

corr(f, P ) < 2−(1−o(1))n/d .

Along the way, we develop several tools to understand the bias of random d-linear
forms. For example, we show that a random d-linear form is unbiased with extremely high
probability.
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I Theorem 21. Let ε > 0 be fixed. Let d, k be integers with d < 2εk/5, and consider a
uniformly random d-linear form f : (Fk2)d → F2. Then,

Pr
[
bias(f) ≥ 2−(1−ε)k

]
≤ 2−Ω(ε2kd) .

I Remark 22. Note that any d-linear form f(X1, . . . , Xd) vanishes if any one of the block
of variables X1, . . . , Xd is zero. Hence, the bias of any d-linear form (or equivalently its
correlation with the constant 0 polynomial) is at least 2−k = 2−n/d. Theorem 21 states that
it is extremely unlikely for a random d-linear form to have even slightly more bias while
Theorem 20 states that it is extremely unlikely for a random d-linear form to have slightly
better correlation with any degree ` polynomial.

The key ingredient in the proofs of the above theorems is the following theorem on the
distribution of the sum of random rank-1 tensors.

I Theorem 23. Let ε > 0 be a constant. Let d, k, t be integers with d < 2εk/5, and t < ε
5k

d−1.
Let {x(i,j)}i∈[t],j∈[d] be picked independently and uniformly distributed in Fk2 .Then,

Pr

 t∑
i=1

d⊗
j=1

x(i,j) = 0

 ≤ 2−(1−ε/2)·kt .

I Remark 24. If any block of vectors (say wlog. {x(i,1)}i∈[t], the first block of vectors) are all 0
(this happens with probability 2−kt), then the d-dimensional linear form

∑t
i=1
⊗d

j=1 x
(i,j) = 0.

The above theorem states that the probability of the d-linear form vanishing is not significantly
larger.

In turn, the proof of the above theorem is based on the following lemma, which gives an
upper bound on the probability that a random rank-1 tensor lies in a fixed low dimensional
subspace.

I Lemma 25. Let k, d be integers and U be a subspace of (Fk2)⊗d of dimension u. Let
x1, . . . , xd ∈ Fk2 be picked independently and uniformly at random, and let T = ⊗di=1xi.
Then,

Pr[T ∈ U ] ≤ d

2k + 2u/kd−1

2k .

I Remark 26. Let U = V ⊗ (Fk2)⊗(d−1) where V is a u/kd−1-dimensional subspace of Fk2 .
Note, dim(U) = u. Clearly, Pr[⊗di=1xi ∈ U ] = Pr[x1 ∈ V ] = 2u/kd−1

/2k. The above lemma
states that the probability is not significantly larger than this for any other U .

In the next subsection, we show how Theorem 20 and Theorem 21 follow from Theorem 23.
We defer the proof of Lemma 25 and Theorem 23 to Appendix A.

4.1 Proofs of Theorem 20 and Theorem 21
We first prove Theorem 21.

Proof of Theorem 21. We want to bound Prf [bias(f) ≥ 2−(1−ε)k]. We shall do so by
bounding the tth moment of bias(f) for a suitable choice of t and applying Markov’s
inequality.

Let T : [k]d → F2 denote the tensor associated with f . Thus T (i1, . . . , id) are all
independent and uniformly distributed in F2.
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We now compute the tth moment of f .

Ef [(bias(f))t]

= Ef
[(

Ex(1),...,x(d)∼Fk
2

[
(−1)f(x

(1),...,x(d))
])t]

= Ef

∏
i∈[t]

(
Ex(i,1),...,x(i,d)∼Fk

2

[
(−1)f(x

(i,1),...,x(i,d))
])

= E{x(i,j)}i∈[t],j∈[d]

[
Ef
[
(−1)

∑t

i=1
f(x(i,1),...,x(i,d))

]]
= E{x(i,j)}i∈[t],j∈[d]

 ∏
(`1,...,`d)∈[k]d

(
ET (`1,...,`d)∼F2

[
(−1)

T (`1,...,`d)·
(∑t

i=1

∏d

j=1
x

(i,j)
`j

)])
= E{x(i,j)}i∈[t],j∈[d]

 ∏
(`1,...,`d)∈[k]d

1∑t

i=1

∏d

j=1
x

(i,j)
`j

=0


= E{x(i,j)}i∈[t],j∈[d]

[
1∀(`1,...,`d)∈[k]d,

∑t

i=1

∏d

j=1
x

(i,j)
`j

=0

]

= Pr
{x(i,j)}i∈[t],j∈[d]

∀(`1, . . . , `d) ∈ [k]d,
t∑
i=1

d∏
j=1

x
(i,j)
`j

= 0


= Pr
{x(i,j)}i∈[t],j∈[d]

 t∑
i=1

d⊗
j=1

x(i,j) = 0

 .
Setting t = ε

10k
d−1, Theorem 23 tells us that

Ef [(bias(f))t] = 2−(1−ε/2)kt .

Using Markov’s inequality,

Pr
f

[
bias(f) ≥ 2−(1−ε)k

]
≤ 2−(1−ε/2))kt

2−(1−ε)kt ≤ 2−εkt/2 ≤ 2−Ω(ε2kd)

as claimed. J

We now use a similar argument to prove Theorem 20.

Proof of Theorem 20. Fix an arbitrary ε > 0. Let C denote the space of degree ≤ `

polynomials in F2[X1, . . . , Xn]. We want to show that with high probability over the choice
of f , we have that for every P ∈ C, corr(f, P ) ≤ 2−(1−ε)k.

Fix P ∈ C and consider the tth moment of bias(f−P ). Imitating the proof of Theorem 21,
we get

Ef [(bias(f − P ))t]

= E{x(i,j)}i∈[t],j∈[d]

[
(−1)

∑t

i=1
P(x(i,1),...,x(i,d)) · 1∀(`1,...,`d)∈[k]d,

∑t

i=1

∏d

j=1
x

(i,j)
`j

=0

]
≤ E{x(i,j)}i∈[t],j∈[d]

[
1∀(`1,...,`d)∈[k]d,

∑t

i=1

∏d

j=1
x

(i,j)
`j

=0

]

= Pr

 t∑
i=1

d⊗
j=1

x(i,j) = 0

 .
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Now we will apply Theorem 23. Observe that since d = o(n/ logn), we have,

d < 2εk/5 .

As in the proof of Theorem 21, we set t = ε
10k

d−1, invoke Theorem 23 and apply Markov’s
inequality to get,

Pr
f

[
bias(f − P ) ≥ 2−(1−ε)k

]
≤ 2−ε

2kd/20 .

Now bias(f − P ) = corr(f, P ). Thus, by a union bound over all P ∈ C, we have the
following.

Pr
f

[
corr(f, C) ≥ 2−(1−ε)k

]
≤ |C| · 2−ε

2kd/20. (4)

It remains to estimate |C|. We show below that |C| = 2o(kd). The proof of this lemma
works for any other C as long as C satisfies |C| = 2o(kd). Note that |C| = 2( n

≤`). Let δ denote
d/n.(

n

≤ `

)
≤
(

n

≤ d/2

)
≤
(

2en
d

)d/2
≤
(

2e
δ

)δn/2
= o

((
1
δ

)δn)
[Since δ = o(1)]

= o(kd) .

Combining this with Equation (4), we get,

Pr
f

[
corr(f, C) ≥ 2−(1−ε)k

]
≤ 2o(k

d) · 2−ε
2kd/20 .

Since this holds for every ε > 0, we get the desired result. J
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A Random rank-1 tensors

In this subsection, we first prove Lemma 25 on the probability that a random rank-1 tensor
lies in a fixed low-dimensional subspace. We then give a corollary of this lemma which bounds
the probability that a collection of random rank-1 tensors spans a very low dimensional
subspace. This corollary will be used in the proof of Theorem 23.

Proof of Lemma 25. Define

fd,k(u) =
(

1−
(

1− 1
2k

)d−1
)

+
(

1− 1
2k

)d−1
· 2u/kd−1

2k .

We will prove, by induction on d, the following stronger bound.

Pr[T ∈ U ] ≤ fd,k(u) .

The fact that this implies the lemma, follows from the observations that 1− d−1
2k ≤

(
1− 1

2k

)d−1

and that
(
1− 1

2k

)d−1 ≤ 1.

Base case. The d = 1 case is trivial (using the observation that f1,k(u) = 2u

2k ). We now show
the statement holds for larger d.

Induction step. Let k′ = kd−1. We will view (Fk2)⊗d as Fk2 ⊗ Fk′2 . Every element v of
(Fk2)⊗d can thus be written as a tuple (v1, . . . , vk), where each vi is an element of Fk′2 (thus
the kd coordinates are partitioned into k blocks of coordinates, with each block having k′
coordinates). We let πi : (Fk2)⊗d → Fk′2 be the ith projection map, mapping v to vi.

With this convention, we take a basis for U in row echelon form. Concretely, this gives us
a basis B for U , such that B is a disjoint union of B1, . . . ,Bk (Bj is the set of basis vectors
pivoted in the j’th block of coordinates), such that,

for all v ∈ Bj and i < j, πi(v) = 0,
the vectors πj(v) ∈ Fk′2 , as v varies in Bj , are linearly independent.

Define Uj = span{πj(v) | v ∈ Bj)}. Thus we have dim(Uj) = |Bj | and

k∑
j=1

dim(Uj) = dim(U) .

For i > j, we define a linear map ψij : Uj → Fk′2 by defining ψij on a basis for Uj :

ψij(πj(v)) = πi(v), ∀v ∈ Bj .

Then we have the following basic claim (which follows immediately from the above echelon
form representation of U).

B Claim 27. Let v ∈ (Fk2)⊗d. Then v ∈ U only if there exists (u1, . . . , uk) ∈
∏k
i=1 Ui such

that for each i ∈ [k] we have

πi(v) = ui +
∑
j<i

ψij(uj) .

To simplify notation, we will denote x1 by y and ⊗di=2xi by z. We want to find an upper
bound on Pr[y ⊗ z ∈ U ].
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B Claim 28. Let z̃ ∈ (Fk2)⊗(d−1) and S = {i | z̃ ∈ Ui}, then, Pry∈Fk
2
[y ⊗ z̃ ∈ U ] ≤ 2|S|

2k .

Proof. For fixed z̃, given the random variable v = y ⊗ z̃, we define random variables
u1, u2, ..., uk by: ui := πi(v)−

∑
j<i ψij(uj). Note that πi(v) = πi(y ⊗ z̃) = yiz̃. Also note

that ui is only a function of y1, . . . , yi. By Claim 27, v ∈ U only if for all i, ui ∈ Ui.

Pr
y∈Fk

2

[y ⊗ z̃ ∈ U ]

≤ Pr
y

[∀i ≤ k, ui ∈ Ui]

=
k∏
i=1

Pr [ui ∈ Ui | u1 ∈ U1, . . . , ui−1 ∈ Ui−1]

=
k∏
i=1

Eu1∈U1,...,ui−1∈Ui−1

[
Pr
ui

[ui ∈ Ui | u1, . . . , ui−1]
]

=
k∏
i=1

Eu1∈U1,...,ui−1∈Ui−1

Prui

πi(v)−
∑
j<i

ψij(uj) ∈ Ui

∣∣∣∣∣∣ u1, . . . , ui−1


=

k∏
i=1

Eu1∈U1,...,ui−1∈Ui−1

Pryi

yiz̃ −∑
j<i

ψij(uj) ∈ Ui

∣∣∣∣∣∣ u1, . . . , ui−1


≤
∏
i 6∈S

(
1
2

)
=
(

1
2

)k−|S|
,

where the last inequality follows since for every i /∈ S and every vector w, at most one of w
and w + z̃ can lie in Ui (as z̃ /∈ Ui). C

For S ⊆ [k], let US =
⋂
i∈S Ui. Then,

Pr
y,z

[y ⊗ z ∈ U ] ≤ Ez

2
∑k

i=1
1Ui

(z)

2k

 [Follows from the above claim]

= 1
2kEz

[
k∏
i=1

21Ui
(z)

]

= 1
2kEz

[
k∏
i=1

(1 + 1Ui
(z))

]

= 1
2kEz

∑
S⊆[k]

1US
(z)


= 1

2k
∑
S⊆[k]

Pr
z

[z ∈ US ] .

Now, observe that for each i ∈ S, we have Pr[z ∈ US ] ≤ Pr[z ∈ Ui]. Thus if we sort the
Ui so that dim(U1) ≥ dim(U2) ≥ . . . ≥ dim(Uk), then we have the following sequence of
inequalities.
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Pr
y,z

[y ⊗ z ∈ U ] ≤ 1
2k

1 +
∑
i∈[k]

∑
S⊆[i],i∈S

Pr
z

[z ∈ US ]


≤ 1

2k

1 +
∑
i∈[k]

2i−1 Pr
z

[z ∈ Ui]


≤ 1

2k

1 +
∑
i∈[k]

2i−1fd−1,k(dim(Ui))

 ,

where the last step follows from the induction hypothesis. To find an upper bound for this
last expression, we let ai = dim(Ui). We have the constraints∑

i

ai = u ,

k′ ≥ a1 ≥ a2 ≥ . . . ≥ ak ≥ 0 ,
where k′ = kd−1, and we want to maximize an expression of the form

k∑
i=1

2i−1(α+ β2ai/k
d−2

) = α · (2k − 1) + β ·

(
k∑
i=1

2i−1+ai/k
d−2

)
.

where α, β > 0.
It is worth noting what happens in the two examples U = V ⊗ Fk′2 and U = Fk2 ⊗W ,

where V ⊆ Fk2 and W ⊆ Fk′2 are subspaces of the appropriate dimension. In the first case,
a1 = a2 = . . . = au/k′ = k′ and the remaining ai are 0. In the second case, all the ai = u/k.
Both are global maxima of the expression we want to maximize! The existence of these very
different maxima makes this maximization problem somewhat tricky.

In Theorem 29 we prove a tight upper bound for this function. For every i ∈ [k], let
bi = ai/k

d−2, and let ũ = u/kd−2. Then, b1, b2, . . . , bk and ũ satisfy the constraints in the
hypothesis of Theorem 29, and Theorem 29 tells us that a global maxima is achieved when
all the ai are equal to dim(U)/k. Thus,

Pr
y,z

[y ⊗ z ∈ U ] ≤ 1
2k

1 +
∑
i∈[k]

2i−1fd−1,k(u/k)


= 1

2k
(
1 + (2k − 1)fd−1,k(u/k)

)
=
(

1
2k + (1− 1

2k )fd−1,k(u/k)
)

= fd,k(u) .

This completes the induction step. J

I Theorem 29. Let k be a positive integer, and let ũ ∈ [0, k2] be a real number. Suppose
b1, b2, . . . , bk are real numbers satisfying the following constraints.

k ≥ b1 ≥ b2 . . . ≥ bk ≥ 0 , (5)
k∑
i=1

bi = ũ . (6)
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Then,

k∑
i=1

2i−12bi ≤
k∑
i=1

2i−12ũ/k = (2k − 1)2ũ/k .

We refer the reader to the full version of our paper for a proof of Theorem 29.
We now use the previous lemma to prove a corollary about the dimension of the span of

several random rank 1 tensors.

I Corollary 30. Let d, k, t be integers. For each i ∈ [t] and j ∈ [d], pick x(i,j) ∈ Fk2 uniformly
at random. For i ∈ [t], let Ti be the rank-1 tensor ⊗dj=1x

(i,j). Then, for every 0 ≤ r ≤ t,

Pr[dim(span({T1, . . . , Tt})) = r] ≤
(
t

r

)(
d+ 2t/kd−1

2k

)t−r
.

Proof. Let us reveal T1, . . . , Tt one at a time. For 0 ≤ i ≤ t, let Vi = span({T1, . . . , Ti−1, Ti}).
Thus we have 0 = dim(V0) ≤ dim(V1) ≤ . . . dim(Vt). We want to estimate the probability
that dim(Vt) = r. Let Ei denote the event that Ti ∈ Vi−1. For I ⊆ [t], let EI denote the
event

⋂
i∈I Ei. In terms of these events, we can bound Pr[dim(Vt) = r] as follows.

Pr[dim(Vt) = r] ≤ Pr[∃I ⊆ [t], |I| = t− r such that EI occurs]

≤
∑

I⊆[t],|I|=t−r

Pr[EI ] .

We conclude the proof by bounding Pr[EI ]. Fix I ⊆ [t] with |I| = t−r. Let I = {i1, . . . , it−r}
with i1 < i2 < . . . < it−r.

Pr[EI ] =
t−r∏
j=1

Pr[Eij |
⋂
`<j

Ei` ] .

Lemma 25 implies the following.

Pr[Ei|T1, . . . , Ti−1] ≤ d+ 2dim(Vi−1)/kd−1

2k .

For any given j ∈ [t− r], the events Ei1 , . . . , Eij−1 are all determined by T1, . . . , Tij−1 (since
Ei` depends on T1, . . . , Ti` , and ij−1 ≤ ij − 1). Thus, for each j ∈ [t− r], we have,

Pr[Eij |
⋂
`<j

Ei` ] ≤ d+ 2t/kd−1

2k .

Here we used the fact that dim(Vij−1) ≤ t. Using this in our previous bound, we conclude
that

Pr[EI ] ≤
(
d+ 2t/kd−1

2k

)t−r
,

and thus,

Pr[dim(Vt) = r] ≤
(
t

r

)
·

(
d+ 2t/kd−1

2k

)t−r
. J
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A.1 Proof of Theorem 23
We now use Corollary 30 to prove Theorem 23.

Proof of Theorem 23. The equation

t∑
i=1

d⊗
j=1

x(i,j) = 0 (7)

implies that

∀` ∈ [k],
t∑
i=1

x
(i,1)
` ·

d⊗
j=2

x(i,j) = 0 . (8)

Let Ti denote
⊗d

j=2 x
(i,j) for i ∈ [t] and T = span({T1, . . . , Tt}). Then we have,

Pr[{x(i,j)}i∈[t],j∈[d] satisfy (7)] (9)

≤ Pr[{x(i,j)}i∈[t],j∈[d] satisfy (8)]

=
t∑

r=0
Pr
[
{x(i,j)}i∈[t],j∈[d] satisfy (8)

∣∣dim(T ) = r
]

Pr [dim(T ) = r]

=
t∑

r=0

∏
`∈[k]

Pr
[

t∑
i=1

x
(i,1)
` · Ti = 0

∣∣dim(T ) = r

] · Pr [dim(T ) = r]

≤
t∑

r=0

(
1
2r

)k
· Pr [dim(T ) = r] . (10)

Here, the equality in the third step follows from the fact that {x(i,1)
` }i∈[t],`∈[k] are independ-

ently and uniformly distributed in F2.
By the given distribution of T1, . . . , Tt in (Fk2)⊗(d−1), Corollary 30 says that

Pr [dim(T ) = r] ≤
(
t

r

)(
d− 1 + 2

t

kd−2

2k

)t−r
.

Plugging this bound back into (9) gives

Pr[{x(i,j)}i∈[t],j∈[d] satisfy (7)] ≤
t∑

r=0

(
t

r

)
1

2rk

(
d− 1 + 2

t

kd−2

2k

)t−r

≤
t∑

r=0

(
t

r

)(
1
2k

)r (
d− 1 + 2

t

kd−2

2k

)t−r

=
(

1
2k + d− 1 + 2

t

kd−2

2k

)t

≤

(
d+ 2

t

kd−2

2k

)t
.
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Now, since d < 2εk/5 and t < εkd−1/5, we have

d+ 2
t

kd−2 < 2 · 2εk/5 < 2εk/2 ,

we conclude that

Pr

 t∑
i=1

d⊗
j=1

x(i,j) = 0

 < 2−(1−ε/2)kt .

This completes the proof. J
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