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Abstract
We consider `1-Rank-r Approximation over GF(2), where for a binary m× n matrix A and a
positive integer constant r, one seeks a binary matrix B of rank at most r, minimizing the column-
sum norm ‖A−B‖1. We show that for every ε ∈ (0, 1), there is a randomized (1 + ε)-approximation
algorithm for `1-Rank-r Approximation over GF(2) of running time mO(1)nO(24r·ε−4). This is
the first polynomial time approximation scheme (PTAS) for this problem.
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1 Introduction

Low-rank matrix approximation is the method of compressing a matrix by reducing its
dimension. It is the basic component of various methods in data analysis including Principal
Component Analysis (PCA), one of the most popular and successful techniques used for
dimension reduction in data analysis and machine learning [31, 15, 8]. In low-rank matrix
approximation one seeks the best low-rank approximation of data matrix A with matrix B
solving

minimize ‖A−B‖ν (1)
subject to rank(B) ≤ r.
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32:2 Low-Rank Binary Matrix Approximation in Column-Sum Norm

Here ‖ · ‖ν is some matrix norm. The most popular matrix norms studied in the literature are
the Frobenius ||A||2F =

∑
i,j a

2
ij and the spectral ‖A‖2 = supx 6=0

‖Ax‖2
‖x‖2

norms. By the Eckart-
Young-Mirsky theorem [8, 27], (1) is efficiently solvable via Singular Value Decomposition
(SVD) for these two norms. The spectral norm is an “extremal” norm – it measures the
worst-case stretch of the matrix. On the other hand, the Frobenius norm is “averaging”.
Spectral norm is usually applied in the situation when one is interested in actual columns for
the subspaces they define and is of greater interest in scientific computing and numerical
linear algebra. The Frobenius norm is widely used in statistics and machine learning, see the
survey of Mahony [24] for further discussions.

Recently there has been considerable interest in developing algorithms for low-rank matrix
approximation problems for binary (categorical) data. Such variants of dimension reduction
for high-dimensional data sets with binary attributes arise naturally in applications involving
binary data sets, like latent semantic analysis [4], pattern discovery for gene expression[32],
or web search models [19], see [7, 17, 14, 20, 30, 37] for other applications. In many such
applications it is much more desirable to approximate a binary matrix A with a binary
matrix B of small (GF(2) or Boolean) rank because it could provide a deeper insight into the
semantics associated with the original matrix. There is a big body of work done on binary
and Boolean low-rank matrix approximation, see [2, 3, 7, 22, 25, 26, 28, 35, 34] for further
discussions.

Unfortunately, SVD is not applicable for the binary case which makes such problems
computationally much more challenging. For a binary matrix, its squared Frobenius norm
is equal to the number of its 1-entries, that is ‖A‖2

F =
∑n
j=1

∑m
i=1 aij . Thus, the value

‖A−B‖2
F measures the total Hamming distance from points (columns) of A to the subspace

spanned by the columns of B. For this variant of the low-rank binary matrix approximation,
a number of approximation algorithms were developed, resulting in efficient polynomial time
approximation schemes (EPTASes) obtained in [1, 9]. However, the algorithmic complexity
of the problem for any vector-induced norm, including the spectral norm, remained open.

For binary matrices, the natural “extremal” norm to consider is the ‖ · ‖1 norm, also
known as column-sum norm, operator 1-norm, or Hölder matrix 1-norm. That is, for a
matrix A,

‖A‖1 = sup
‖x‖1 6=0

‖Ax‖1

‖x‖1
= max

1≤j≤n

m∑
i=1
|aij |.

In other words, the column-sum norm is the maximum number of 1-entries in a column in A,
whereas the Frobenius norm is the total number of 1-entries in A. The column-sum norm is
analogous to the spectral norm, only it is induced by the `1 vector norm, not the `2 vector
norm.

We consider the problem, where for an m×n binary data matrix A and a positive integer
constant r, one seeks a binary matrix B optimizing

minimize ‖A−B‖1 (2)
subject to rank(B) ≤ r.

Here, by the rank of the binary matrix B we mean its GF(2)-rank. We refer to the problem
defined by (2) as to `1-Rank-r Approximation over GF(2). The value ‖A − B‖1 is
the maximum Hamming distance from each of the columns of A to the subspace spanned
by columns of B and thus, compared to approximation with the Frobenius norm, it could
provide a more accurate dimension reduction.



F. V. Fomin, P. A. Golovach, F. Panolan, and K. Simonov 32:3

It is easy to see by the reduction from the Closest String problem, that already for
r = 1, `1-Rank-r Approximation over GF(2) is NP-hard. The main result of this paper
is that (2) admits a polynomial time approximation scheme (PTAS). More precisely, we
prove the following theorem.

I Theorem 1. For every ε ∈ (0, 1), there is a randomized (1 + ε)-approximation algorithm
for `1-Rank-r Approximation over GF(2) of running time mO(1)nO(24r·ε−4).

In order to prove Theorem 1 we obtain a PTAS for a more general problem, namely
Binary Constrained k-Center. This problem has a strong expressive power and can be
used to obtain PTASes for a number of problems related to `1-Rank-r Approximation
over GF(2). For example, for the variant, when the rank of the matrix B is not over GF(2)
but is Boolean. Or a variant of clustering, where we want to partition binary vectors into
groups, minimizing the maximum distance in each of the group to some subspace of small
dimension. We provide discussions of other applications of our work in Section 4.

Related work. The variant of (1) with both matrices A and B binary, and ‖ · ‖ν being
the Frobenius norm, is known as Low GF(2)-Rank Approximation. Due to numerous
applications, various heuristic algorithms for Low GF(2)-Rank Approximation could be
found in the literature [16, 17, 11, 20, 32].

When it concerns rigorous algorithmic analysis of Low GF(2)-Rank Approximation,
Gillis and Vavasis [13] and Dan et al. [7] have shown that Low GF(2)-Rank Approx-
imation is NP-complete for every r ≥ 1. A subset of the authors studied parameterized
algorithms for Low GF(2)-Rank Approximation in [10]. The first approximation al-
gorithm for Low GF(2)-Rank Approximation is due to Shen et al. [32], who gave a
2-approximation algorithm for the special case of r = 1. For rank r > 1, Dan et al. [7] have
shown that a (r/2 + 1 + r

2(2r−1) )-approximate solution can be formed from r columns of
the input matrix A. Recently, these algorithms were significantly improved in [1, 9], where
efficient polynomial time approximation schemes (EPTASes) were obtained.

Also note that for general (non-binary) matrices a significant amount of work is devoted
to L1-PCA, where one seeks a low-rank matrix B approximating given matrix A in entrywise
`1 norm, see e.g. [33].

While our main motivation stems from low-rank matrix approximation problems, `1-Rank-
r Approximation over GF(2) extends Closest String, very well-studied problem about
strings. Given a set of binary strings S = {s1, s2, . . . , sn}, each of length m, the Closest
String problem is to find the smallest d and a string s of length m which is within Hamming
distance d to each si ∈ S.

A long history of algorithmic improvements for Closest String was concluded by the
PTAS of running time nO(ε−5) by Li, Ma, and Wang [21], which running time was later
improved to nO(ε−2) [23]. Let us note that Closest String can be seen as a special case of
`1-Rank-r Approximation over GF(2) for r = 1. Indeed, Closest String is exactly
the variant of `1-Rank-r Approximation over GF(2), where columns of A are strings
of S and approximating matrix B is required to have all columns equal. Note that in a
binary matrix B of rank 1 all non-zero columns are equal. However, it is easy to construct
an equivalent instance of Closest String by attaching to each string of S a string 1m+1,
such that the solution to `1-Rank-r Approximation over GF(2) for r = 1 does not have
zero columns.

Cygan et al. [6] proved that the existence of an EPTAS for Closest String, that is
(1 + ε)-approximation in time nO(1) · f(ε), for any computable function f , is unlikely, as it
would imply that FPT=W[1], a highly unexpected collapse in the hierarchy of parameterized

APPROX/RANDOM 2020
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complexity classes. They also showed that the existence of a PTAS for Closest String with
running time f(ε)no(1/ε), for any computable function f , would contradict the Exponential
Time Hypothesis. The result of Cygan et al. implies that `1-Rank-r Approximation over
GF(2) also does not admit EPTAS (unless FPT=W[1]) already for r = 1.

A generalization of Closest String, k-closest strings is also known to admit a
PTAS [18, 12]. This problem corresponds to the variant of `1-Rank-r Approximation
over GF(2), where approximating matrix B is required to have at most k different columns.
However, it is not clear how solution to this special case can be adopted to solve `1-Rank-r
Approximation over GF(2).

1.1 Our approach
The usual toolbox of techniques to handle NP-hard variants of low-rank matrix approximation
problems like sketching [36], sampling, and dimension reduction [5] is based on randomized
linear algebra. It is very unclear whether any of these techniques can be used to solve even
the simplest case of `1-Rank-r Approximation over GF(2) with r = 1. For example
for sampling, the presence of just one outlier outside of a sample, makes all information we
can deduce from the sample about the column sum norm of the matrix, completely useless.
This is exactly the reason why approximation algorithms for Closest String do not rely
on such techniques. On the other hand, randomized dimension reduction appears to be
very helpful as a “preprocessing” procedure whose application allows us to solve `1-Rank-r
Approximation over GF(2) by applying linear programming techniques similar to the
ones developed for the Closest String. From a very general perspective, our algorithm
consists of three steps. While each of these steps is based on the previous works, the way to
combine these steps, as well as the correctness proof, is a non-trivial task. We start with a
high-level description of the steps and then provide more technical explanations.

Step 1. In order to solve `1-Rank-r Approximation over GF(2), we encode it as
the Binary Constrained k-Center problem. This initial step is almost identical to
the encoding used in [9] for Low GF(2)-Rank Approximation. Informally, Binary
Constrained k-Center is defined as follows. For a given set of binary vectors X, a
positive integer k, and a set of constraints, we want to find k binary vectors C = (c1, . . . , ck)
satisfying the constraints and minimizing maxx∈X dH(x, C), where dH(x, C) is the Hamming
distance between x and the closest vector from C. For example, when k = 1 and there are
no constraints, then this is just the Closest String problem over binary alphabet.

In the technical description below we give a formal definition of this encoding and in
Section 4 we prove that `1-Rank-r Approximation over GF(2) is a special case of
Binary Constrained k-Center. Now on, we are working with Binary Constrained
k-Center.

Step 2. We give an approximate Turing reduction which allows to find a partition of
vector set X into clusters X1, . . . , Xk such that if we find a tuple of vectors C = (c1, . . . , ck)
satisfying the constraints and minimizing max1≤i≤k,x∈Xi

dH(x, {ci}), then the same tuple C
will be a good approximation to Binary Constrained k-Center. In order to obtain such
a partition, we use the dimension reduction technique of Ostrovsky and Rabani [29]. While
this provides us with important structural information, we are not done yet. Even with a
given partition, the task of finding the corresponding tuple of “closest strings” C satisfying
the constraints, is non-trivial.
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Step 3. In order to find the centers, we implement the approach used by Li, Ma, and Wang
in [21] to solve Closest String. By brute-forcing, it is possible to reduce the solution of
the problem to special instances, which loosely speaking, have a large optimum. Moreover,
Binary Constrained k-Center has an Integer Programming (IP) formulation. Similar
to [21], for the reduced instance of Binary Constrained k-Center (which has a “large
optimum”) it is possible to prove that the randomized rounding of the corresponding Linear
Program (LP) relaxation of this IP, provides a good approximation.

Now we give a more technical description of the algorithm.

Step 1. Binary Constrained k-Center. Note that the Binary Constrained k-Center
problem is nearly identical to Binary Constrained Clustering defined in [9], except
for the cost function. Still, for completeness we define Binary Constrained k-Center
formally next. First, we need to define some notations. A k-ary relation R is a set of binary
k-tuples with elements from {0, 1}. A k-tuple t = (t1, . . . , tk) satisfies R, we write t ∈ R, if t
is equal to one of the k-tuples in R.

I Definition 2 (Vectors satisfying R). Let R = (R1, . . . , Rm) be a tuple of k-ary relations.
We say that a tuple C = (c1, c2, . . . , ck) of binary m-dimensional vectors satisfies R and
write < C,R >, if (c1[i], . . . , ck[i]) ∈ Ri for all i ∈ {1, . . . ,m}.

For example, form=2, k=3, R1 ={(0, 0, 1), (1, 0, 0)}, and R2 ={(1, 1, 1), (1, 0, 1), (0, 0, 1)},
the tuple of vectors

c1 =
(

0
1

)
, c2 =

(
0
0

)
, c3 =

(
1
1

)
satisfies R = (R1, R2) because (c1[1], c2[1], c3[1]) = (0, 0, 1) ∈ R1 and (c1[2], c2[2], c3[2]) =
(1, 0, 1) ∈ R2.

Let us recall that the Hamming distance between two vectors x,y ∈ {0, 1}m, where
x = (x1, . . . , xm)ᵀ and y = (y1, . . . , ym)ᵀ, is dH(x,y) =

∑m
i=1 |xi − yi| or, in words, the

number of positions i ∈ {1, . . . ,m} where xi and yi differ. Recall that for a set of vectors
C ⊆ {0, 1}m and a vector x ∈ {0, 1}m, dH(x, C) = minc∈C dH(x, c). For sets X,C ⊂ {0, 1}m,
we define cost(X,C) = maxx∈X dH(x, C).

Now we define Binary Constrained k-Center formally.

Binary Constrained k-Center
Input: A set X ⊆ {0, 1}m of n vectors, a positive integer k, and a tuple of k-ary relations
R = (R1, . . . , Rm).
Task: Among all tuples C = (c1, . . . , ck) of vectors from {0, 1}m satisfying R, find a
tuple C minimizing cost(X,C).

As in the case of Low GF(2)-Rank Approximation in [9], we prove that `1-Rank-r
Approximation over GF(2) is a special case of Binary Constrained k-Center, where
k = 2r. For completeness, this proof and other applications of Binary Constrained
k-Center are given in Section 4. Thus, to prove Theorem 1, it is enough to design a PTAS
for Binary Constrained k-Center.

I Theorem 3. There is an algorithm for Binary Constrained k-Center that given
an instance J = (X, k,R) and 0 < ε < 1, runs in time mO(1)nO((k/ε)4), and outputs a
(1 + ε)-approximate solution with probability at least 1− 2n−2.

By the argument above, Theorem 1 is an immediate corollary of Theorem 3.

APPROX/RANDOM 2020
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Step 2: Dimension reduction. Let J = (X, k,R = (R1, . . . , Rm)) be an instance of Binary
Constrained k-Center and C = (c1, . . . , ck) be a solution to J , that is, a tuple of vectors
satisfying R. Then, the cost of C is cost(X,C). Given the tuple C, there is a natural way
we can partition the set of vectors X into k parts X1 ] · · · ]Xk such that

cost(X,C) = max
i∈{1,...,k},x∈Xi

dH(x, ci).

Thus, for each vector x in Xi, the closest to x vector from C is ci. We call such a partition
X1 ] · · · ] Xk the clustering of X induced by C and refer to the sets X1, . . . , Xk as the
clusters corresponding to C. We use OPT(J) to denote the cost of an optimal solution to J .
That is, OPT(J) = min{cost(X,C) | < C,R >}. In fact, even if we know the clustering of
X induced by a hypothetical optimal solution, finding a good solution is not trivial as the
case when k = 1 is the same as the Closest String problem.

As mentioned before, our approach is to reduce to a version of Binary Constrained
k-Center, where we know the partition of X, and solve the corresponding problem. That
is, we design an approximation scheme for the following partitioned version of the problem.

Binary Constrained Partition Center
Input: A positive integer k, a set X ⊆ {0, 1}m of n vectors partitioned into X1] . . .]Xk,
and a tuple of k-ary relations R = (R1, . . . , Rm).
Task: Among all tuples C = (c1, . . . , ck) of vectors from {0, 1}m satisfying R, find a
tuple C minimizing maxi∈{1,...,k},x∈Xi

dH(x, ci).

For an instance J ′ = (k,X = X1 ] . . . ]Xk,R) of Binary Constrained Partition
Center, we use OPT(J ′) to denote the cost of an optimal solution to J ′. That is,

OPT(J ′) = min
C=(c1,...,ck) s.t. <C,R>

{
max

i∈{1,...,k},x∈Xi

dH(x, ci)
}
.

Clearly, for an instance J = (X, k,R) of Binary Constrained k-Center and a
partition of X into X1 ] . . . ]Xk, any solution to the instance J ′ = (k,X = X1 ] . . . Xk,R)
of Binary Constrained Partition Center, of cost d, is also a solution to J with cost at
most d. We prove that there is a randomized polynomial time algorithm that given an instance
J = (X, k,R) of Binary Constrained k-Center and 0 < ε ≤ 1

4 , outputs a collection I of
Binary Constrained Partition Center instances J ′ = (k,X = X1 ] . . . ]Xk,R) such
that the cost of at least one instance in I is at most (1 + 4ε)OPT(J) with high probability.

I Lemma 4. There is an algorithm that given an instance J = (X, k,R) of Binary
Constrained k-Center, 0 < ε ≤ 1

4 , and γ > 0, runs in time m2nO(k/ε4), and outputs a
collection I of m · nO(k/ε4) instances of Binary Constrained Partition Center such
that each instance in I is of the form (k,X = X1 ] . . .]Xk,R), and there exists J ′ ∈ I such
that OPT(J ′) ≤ (1 + 4ε)OPT(J) with probability at least 1− n−γ .

To prove Lemma 4, we use the dimension reduction technique of Ostrovsky and Rabani
from [29]. Loosely speaking, this technique provides a linear map ψ with the following
properties. For any y ∈ {0, 1}m, ψ(y) is a 0-1 vector of length O(logn/ε4), and for any set
Y of n+ k vectors, Hamming distances between any pair of vectors in ψ(Y ) are relatively
preserved with high probability. So we assume that ψ is “a good map” for the set of
vectors X ∪ C, where C = (c1, . . . , ck) is a hypothetical optimal solution to J . Then, we
guess the potential tuples of vectors (φ(c1), . . . , φ(ck)) for the hypothetical optimal solution
C = (c1, . . . , ck), and use these choices for (φ(c1), . . . , φ(ck)) to construct partitions of X,
and thereby construct instances in I. Lemma 4 is proved in Section 2.
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Step 3: LP relaxation. Because of Lemma 4, to prove Theorem 3, it is enough to design a
PTAS for Binary Constrained Partition Center which is more challenging part in our
algorithm. So we prove the following lemma.

I Lemma 5. There is an algorithm for Binary Constrained Partition Center that
given an instance J = (k,X = Xi

1]. . .]Xi
k,R) and 0 < ε < 1/2, runs in timemO(1)nO((k/ε)4),

and outputs a solution of cost at most (1 + ε)OPT(J) with probability at least 1− n−2.

Towards the proof of Lemma 5, we encode Binary Constrained Partition Center
using an Integer programming (IP) formulation (see (6) in Section 3). We show that the
randomized rounding using the solution of the linear programming relaxation of this IP
provides a good approximation if the optimum value is large. Here we follow the approach
similar to the one used by Li, Ma, and Wang in [21] to solve Closest String. We prove
that there exist Y1 ⊆ X1, . . . , Yk ⊆ Xk, each of size r = 1 + 4

ε , with the following property.
Let Q be the set of positions in {1, . . . ,m} such that for each i ∈ {1, . . . , k} and j ∈ Q, all
the vectors in Yi agree at the position j, and for each j ∈ Q, (y1[j], . . . ,yk[j]) ∈ Rj , where
yi ∈ Yi for all i ∈ {1, . . . , k}. Then, for any solution of J such that for each j ∈ Q the
entries at the position j coincide with (y1[j], . . . ,yk[j]), the cost of this solution restricted
to Q deviates from the cost of an optimal solution restricted to Q by at most 1

r−1 OPT(J).
Moreover, the subproblem of J restricted to {1, . . . ,m} \Q has large optimum value and we
could use linear programming to solve the subproblem. Lemma 5 is proved in Section 3.

Putting together. Next we explain how to prove Theorem 3 using Lemmata 4 and 5. Let
J = (X, k,R) be the input instance of Binary Constrained k-Center and 0 < ε < 1 be
the given error parameter. Let β = ε

8 . Since ε < 1, β < 1
4 . Now, we apply Lemma 4 on

J , β, and γ = 2. As a result, we get a collection I of instances of Binary Constrained
Partition Center such that each instance in I is of the form (k,X = X1] . . .]Xk,R), and
there exists J ′ ∈ I such that OPT(J ′) ≤ (1 + 4β)OPT(J) with probability at least 1− n−2.
From now on, we assume that this event happened. Next, for each instance Ĵ ∈ I, we apply
Lemma 5 with the error parameter β, and output the best solution among the solutions
produced. Let J ′ ∈ I be the instance such that OPT(J ′) ≤ (1+4β)OPT(J) ≤ (1+ ε

2 )OPT(J).
Any solution to Ĵ ∈ I of cost d, is also a solution to J of cost at most d. Therefore,
because of Lemmas 4 and 5, our algorithm outputs a solution of J with cost at most
(1 +β)OPT(J ′) = (1 + ε

8 )(1 + ε
2 )OPT(J) ≤ (1 + ε)OPT(J) with probability at least 1− 2n−2,

since both Lemmas 4 and 5 have the success probability of at least 1− n−2. The running
time of the algorithm follows from Lemmata 4 and 5.

As Theorem 3 is already proved using Lemmas 4 and 5, the rest of the paper is devoted
to the proofs of Lemmata 4 and 5, and to the examples of the expressive power of Binary
Constrained k-Center, including `1-Rank-r Approximation over GF(2). In Sections 2
and 3, we prove Lemmata 4 and 5, respectively. In Section 4, we give applications of
Theorem 3.

2 Proof of Lemma 4

In this section we prove Lemma 4. The main idea is to map the given instance to a low-
dimensional space while approximately preserving distances, then try all possible tuples of
centers in the low-dimensional space, and construct an instance of Binary Constrained
Partition Center by taking the optimal partition of the images with respect to a fixed
tuple of centers back to the original vectors.

APPROX/RANDOM 2020
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To implement the mapping, we employ the notion of (δ, `, h)-distorted maps, introduced
by Ostrovsky and Rabani [29]. Intuitively, a (δ, `, h)-distorted map approximately preserves
distances between ` and h, does not shrink distances larger than h too much, and does not
expand distances smaller than ` too much. In what follows we make the definitions formal.

A metric space is a pair (P, d) where P is a set (whose elements are called points), and
d is a distance function d : P × P → R (called a metric), such that for every p1, p2, p3 ∈ P
the following conditions hold: (i) d(p1, p2) ≥ 0, (ii) d(p1, p2) = d(p2, p1), (iii) d(p1, p2) = 0
if and only if p1 = p2, and (iv) d(p1, p2) + d(p2, p3) ≥ d(p1, p3). Condition (iv) is called the
triangle inequality. The pair ({0, 1}m, dH), binary vectors of lentgh m and the Hamming
distance, is a metric space.

I Definition 6 ([29]). Let (P, d) and (P ′, d′) be two metric spaces. Let X,Y ⊆ P . Let δ, `, h
be such that δ > 0 and h > ` ≥ 0. A mapping ψ : P → P ′ is (δ, `, h)-distorted on (X,Y ) if
and only if there exists α > 0 such that for every x ∈ X and y ∈ Y , the following conditions
hold.
1. If d(x, y) < `, then d(ψ(x), ψ(y)) < (1 + δ)α`.
2. If d(x, y) > h, then d(ψ(x), ψ(y)) > (1− δ)αh.
3. If ` ≤ d(x, y) ≤ h, then (1− δ)αd(x, y) ≤ d(ψ(x), ψ(y)) ≤ (1 + δ)αd(x, y).
If X = Y , then we say that ψ is (δ, `, h)-distorted on X.

For any r, r′ ∈ N and ε > 0, Ar,r′(ε) denotes a distribution over r′ × r binary matrices
M ∈ {0, 1}r′×r, where entries are independent, identically distributed, random 0/1 variables
with Pr[1] = ε.

I Proposition 7 ([29]). Let m, ` ∈ N, and let X ⊆ {0, 1}m be a set of n vectors. For every
0 < ε ≤ 1/2, there exists a mapping φ : X → {0, 1}m′ , where m′ = O(logn/ε4), which is
(ε, `/4, `/2ε)-distorted on X (with respect to the Hamming distance in both spaces). More
precisely, for every γ > 0 there exists λ > 0, such that, setting m′ = λ logn/ε4, the linear
map x 7→ Ax, where A is a random matrix drawn from Am,m′(ε2/`), is (ε, `/4, `/2ε)-distorted
on X with probability at least 1− n−γ .

Now we are ready to prove Lemma 4. We restate it for convenience.

I Lemma 4. There is an algorithm that given an instance J = (X, k,R) of Binary
Constrained k-Center, 0 < ε ≤ 1

4 , and γ > 0, runs in time m2nO(k/ε4), and outputs a
collection I of m · nO(k/ε4) instances of Binary Constrained Partition Center such
that each instance in I is of the form (k,X = X1 ] . . .]Xk,R), and there exists J ′ ∈ I such
that OPT(J ′) ≤ (1 + 4ε)OPT(J) with probability at least 1− n−γ .

Proof. Without loss of generality, we may assume OPT(J) > 0. If OPT(J) = 0, there are
at most k distinct vectors in X, and we trivially construct a single instance of Binary
Constrained Partition Center by grouping equal vectors together.

Let n = |X| and n′ = n+ k. Let λ = λ(γ) be the constant mentioned in Proposition 7,
and m′ = λ logn′/ε4. Then, for each ` ∈ [m]2, we construct the collection I` of nO(k/ε4)

Binary Constrained Partition Center instances as follows.
Start with I` := ∅.
Randomly choose a matrix A` from the distribution Am,m′(ε2/`).

2 For an integer n ∈ N, we use [n] as a shorthand for {1, . . . , n}.
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For each choice of k vectors c′1, . . . , c′k ∈ {0, 1}m
′ , construct a partition X1] . . .]Xk of X

such that for each x ∈ Xi, c′i is one of the closest vectors to A`x among C ′ = {c′1, . . . , c′k}.
Then, add (k,X = Xi

1 ] . . . Xi
k,R) to I`.

Finally, our algorithm outputs I =
⋃
`∈[m] I` as the required collection of Binary

Constrained Partition Center instances. Notice that for any ` ∈ [m], |I`| = 2m′k =
nO(k/ε4). This implies that the cardinality of I is upper bounded by m · nO(k/ε4), and the
construction of I` takes time m · nO(k/ε4). Thus, the total running time of the algorithm is
m2 · nO(k/ε4).

Next, we prove the correctness of the algorithm. Let ` = OPT(J) and C = (c1, . . . , ck)
be an optimum solution of J . Let Y1, . . . , Yk be the clusters corresponding to C. Consider
the step in the algorithm where we constructed I`. By Proposition 7, the map ψ : x 7→ A`x
is (ε, `/4, `/2ε)-distorted on X ∪C with probability at least 1− n−γ . In the rest of the proof,
we assume that this event happened. Let c′1 = A`c1, . . . , c′k = A`ck. Consider the Binary
Constrained Partition Center instance constructed for the choice of vectors c′1, . . . , c′k.
That is, let X1, . . . , Xk be the partition of X such that for each x ∈ Xi, c′i is one of the
closest vector to A`x from C ′ = {c′1, . . . , c′k}. Let J ′ be the instance (k,X = Xi

1 ] . . . Xi
k,R)

of Binary Constrained Partition Center.
Now, we claim that C is a solution to J ′ with cost at most (1 + 4ε)` = (1 + 4ε)OPT(J).

Since C satisfies R, C is a solution of J ′. To prove OPT(J ′) ≤ (1 + 4ε)`, it is enough to prove
that for each i ∈ [k] and x ∈ Xi, dH(x, ci) ≤ (1 + 4ε)`. Fix an index i ∈ [k] and x ∈ Xi.
Suppose x ∈ Yi. Since C is an optimum solution of J with corresponding clusters Y1, . . . Yk,
we have that dH(y, ci) ≤ ` for all y ∈ Yi ∩Xi. Thus, dH(x, ci) ≤ `. So, now consider the
case x ∈ Yj for some j 6= i. Notice that if dH(x, ci) ≤ `, then we are done. We have the
following two subcases.

Case 1: dH(x, ci) ≤ `
2ε . We know that the map ψ : x 7→ A`x is (ε, `/4, `/2ε)-distorted on

X∪C, and let α > 0 be the number such that conditions of Definition 6 hold. Since x ∈ Xi,
we have that (a) dH(ψ(x), ψ(ci)) ≤ dH(ψ(x), ψ(cj)). Since dH(x, cj) ≤ ` (because x ∈ Yj)
and ψ is (ε, `/4, `/2ε)-distorted on X ∪ C, we have that (b) dH(ψ(x), ψ(cj)) ≤ (1 + ε)α`.
Since ` < dH(x, ci) ≤ `

2ε , and ψ is (ε, `/4, `/2ε)-distorted on X ∪ C, we have that (c)
(1− ε)αdH(x, ci) ≤ dH(ψ(x), ψ(ci)). The statements (a), (b), and (c) imply that

dH(x, ci) ≤
1 + ε

1− ε` ≤ (1 + 4ε)`,

where the last inequality holds since ε ≤ 1/4.
Case 2: dH(x, ci) > `

2ε . We prove that this case is impossible by showing a contradiction.
Since ε ≤ 1/4, in this case, we have that dH(x, ci) > 2`. Since ψ is (ε, `/4, `/2ε)-distorted
on X ∪ C, dH(x, ci) > 2`, and dH(x, cj) ≤ `, we have that

(1− ε)α · 2` ≤ dH(ψ(x), ψ(ci)) ≤ dH(ψ(x), ψ(cj)) ≤ (1 + ε)α · `.
Then 2(1− ε) ≤ (1 + ε) and thus ε ≥ 1/3, which contradicts the assumption that ε ≤ 1/4.

This completes the proof of the lemma. J

3 Proof of Lemma 5

For a set of positions P ⊂ [m], let us define the Hamming distance restricted to P by

dPH(x,y) =
∑
i∈P
|xi − yi|.

We use the following lemma in our proof.
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I Lemma 8. Let Y = {y1, · · · ,yl} ⊂ {0, 1}m be a set of vectors and c∗ ∈ {0, 1}m be a
vector. Let d∗ = cost(Y, {c∗}) = maxy∈Y dH(y, c∗). For any r ∈ N, r ≥ 2, there exist indices
i1, . . . , ir such that for any x ∈ Y

dPH(x,yi1)− dPH(x, c∗) ≤ 1
r − 1d

∗,

where P is any subset of Qi1,...,ir and Qi1,...,ir is the set of positions where all of yi1 , . . . ,yir
coincide (i.e., Qi1,...,ir = {j ∈ [m] : yi1 [j] = yi2 [j] = . . . = yir [j]}).

Proof. For a vector x = y`′ ∈ Y and P ⊆ Qi1,...,ir , let

JP (`′) = {j ∈ P : yi1 [j] 6= x[j] and yi1 [j] 6= c∗[j]} , and
J(`′) = {j ∈ Qi1,...,ir : yi1 [j] 6= x[j] and yi1 [j] 6= c∗[j]} .

To prove the lemma it is enough to prove that |JP (`′)| ≤ 1
r−1d

∗. Also, since JP (`′) ⊆ J(`′),
to prove the lemma, it is enough to prove that |J(`′)| ≤ 1

r−1d
∗. Recall that for any s ∈ [`]

and 1 ≤ i1, . . . , is ≤ `, Qi1,...,is is the set of positions where all of yi1 , . . . ,yis coincide. For
any 2 ≤ s ≤ r + 1 and 1 ≤ i1, . . . , is ≤ `, let pi1,...,is be the number of mismatches between
yi1 and c∗ at the positions in Qi1,...,is . Let

ρs = min
1≤i1,...,is≤n

pi1,...,is
d∗

.

Notice that for any 2 ≤ s ≤ r + 1, ρs ≤ 1.

B Claim 9 (Claim 2.2 [21]). 3 For any s such that 2 ≤ s ≤ r, there are indices 1 ≤
i1, i2, . . . , ir ≤ ` such that for any x = y`′ ∈ Y , |J(`′)| ≤ (ρs − ρs+1)d∗.

Proof. Consider indices 1 ≤ i1, . . . , is ≤ ` such that pi1,...,is = ρs · d∗. Next arbitrarily pick
r − s indices is+1, is+2, . . . , ir from [`] \ {i1, . . . , is}. Next we prove that i1, i2, . . . , ir are the
required set of indices. Towards that, fix x = y`′ ∈ Y ,

J(`′) = | {j ∈ Qi1,...,ir : yi1 [j] 6= x[j] and yi1 [j] 6= c∗[j]} |
≤ | {j ∈ Qi1,...,is : yi1 [j] 6= x[j] and yi1 [j] 6= c∗[j]} |

(Because Qi1,...,ir ⊆ Qi1,...,is)
= | {j ∈ Qi1,...,is : yi1 [j] 6= c∗[j]} \ {j ∈ Qi1,...,is : yi1 [j] = x[j] ∧ yi1 [j] 6= c∗[j]} |
= | {j ∈ Qi1,...,is : yi1 [j] 6= c∗[j]} \ {j ∈ Qi1,...,is,`′ : yi1 [j] 6= c∗[j]} |

(Since x = y`′)
= | {j ∈ Qi1,...,is : yi1 [j] 6= c∗[j]} | − | {j ∈ Qi1,...,is,`′ : yi1 [j] 6= c∗[j]} | (3)
= pi1,...,is − pi1,...,is,`′ (By definition)
≤ (ρs − ρs+1)d∗ (4)

The equality (3) holds since Qi1,...,is ⊇ Qi1,...,is,`′ . The inequality (4) holds because pi1,...,is =
ρs · d∗ by the choice of i1, . . . , is, and ρs+1d

∗ ≤ pi1,...,is,`′ by definition. C

Notice that (ρ2 − ρ3) + (ρ3 − ρ4) + . . .+ (ρr − ρr+1) = (ρ2 − ρr+1) ≤ ρ2 ≤ 1. Thus, one
of (ρ2 − ρ3), (ρ3 − ρ4), . . . , (ρr − ρr+1) is at most 1/(r − 1). This completes the proof. J

3 We remark that Claim 2.2 in [21] is stated for a vector c such that d∗ = cost(Y, {c}) = minc′ cost(Y, {c′}).
But the steps of the same proof work in our case as well.
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Consider the instance J = (k,X = Xi
1 ] . . . Xi

k,R) of Binary Constrained Partition
Center. Let C∗ = (c∗1, · · · , c∗k) ⊂ {0, 1}m be an optimum solution to J . Let dopt =
OPT(J) = maxi∈[k],x∈Xi

dH(x, c∗i ). For each i ∈ [k] and r ≥ 2, by Lemma 8, there exist r
elements x(1)

i , . . . , x(r)
i of Xi such that for any x ∈ Xi,

dPH(x,x(1)
i )− dPH(x, c∗i ) ≤

1
r − 1dopt, (5)

where P is any subset of Qi, and Qi is the set of coordinates on which x(1)
i , . . . , x(r)

i agree.
Let us denote as Q the intersection of all Qi from which the positions not satisfying R are
removed. That is,

Q =

j ∈ ⋂
i∈[k]

Qi : (x(1)
1 [j],x(1)

2 [j], . . . ,x(1)
k [j]) ∈ Rj

 .

Because of (5), there is an approximate solution where the coordinates j ∈ Q are identified
using x(1)

1 , . . . ,x(1)
k . Let Q = [m] \Q. Now the idea is to solve the problem restricted to Q

separately, and then complement the solution on Q by the values of x(1)
i . We prove that for

the “subproblem” restricted on Q, the optimum value is large. Towards that we first prove
the following lemma.

I Lemma 10 (?). 4 Let J = (k,X = Xi
1]. . . Xi

k,R) be an instance of Binary Constrained
Partition Center. Let (c∗1, . . . , c∗k) be an optimal solution for J , and r ≥ 2 be an integer.
Then, there exist {x(1)

1 , . . . , x(r)
1 } ⊂ X1, . . . , {x(1)

k , . . . , x(r)
k } ⊂ Xk with the following

properties. For each i ∈ [k], let Qi be the set of coordinates on which x(1)
i , . . . , x(r)

i agree,
Q =

{
j ∈

⋂
i∈[k] Qi : (x(1)

1 [j],x(1)
2 [j], . . . ,x(1)

k [j]) ∈ Rj
}
, and Q = [m] \Q.

For any i ∈ [k] and x ∈ Xi, dQH(x,x(1)
i )− dQH(x, c∗i ) ≤ 1

r−1 OPT(J), and
|Q| ≤ rk · OPT(J).

As mentioned earlier, we fix the entries of our solution in positions j of Q with values in
x(1)

1 [j], . . . ,x(1)
k [j]. Towards finding the entries of our solution in positions of Q, we define

the following problem and solve it.

Binary Constrained Partition Center?

Input: A positive integer k, a set X ⊆ {0, 1}m of n vectors partitioned into X1] . . .]Xk,
a tuple of k-ary relations R = (R1, . . . , Rm), and for all x ∈ X, dx ∈ N
Task: Among all tuples C = (c1, . . . , ck) of vectors from {0, 1}m satisfying R, find a tuple
C that minimizes the integer d such that for all i ∈ [k] and x ∈ Xi, dH(x, ci) ≤ d− dx.

I Lemma 11. Let J ′ = (k,X = X1 ] . . . Xk,R, (dx)x∈X) be an instance of Binary Con-
strained Partition Center?, OPT(J ′) ≥ m

c for some integer c, and 0 < δ < 1/c. Then,
there is an algorithm which runs in time mO(1)nO(c2k/δ2), and outputs a solution C of J ′, of
cost at most (1 + δ)OPT(J ′) with probability at least 1− n−2.

Before proving Lemma 11, we explain how all these result put together to form a proof of
Lemma 5. We restate Lemma 5 for the convenience of the reader.

4 The proofs of results marked with ? are deferred to the full version of the paper.
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I Lemma 5. There is an algorithm for Binary Constrained Partition Center that
given an instance J = (k,X = Xi

1]. . .]Xi
k,R) and 0 < ε < 1/2, runs in timemO(1)nO((k/ε)4),

and outputs a solution of cost at most (1 + ε)OPT(J) with probability at least 1− n−2.

Proof. Let J = (k,X = Xi
1 ] . . . Xi

k,R) be the input instance of Binary Constrained
Partition Center, and 0 < ε < 1

2 be the error parameter. Let (c∗1, . . . , c∗k) be an optimal
solution for J . Let r ≥ 2 be an integer which we fix later. First, for each i ∈ [k] we
obtain r vectors x(1)

i , . . . , x(r)
i ∈ Xi which satisfy the conditions of Lemma 10. Their

existence is guaranteed by Lemma 10, and we guess them in time nO(rk) over all i ∈ [k].
For each i ∈ [k], let Qi be the set of coordinates on which x(1)

i , . . . , x(r)
i agree, Q ={

j ∈
⋂
i∈[k] Qi : (x(1)

1 [j],x(1)
2 [j], . . . ,x(1)

k [j]) ∈ Rj
}
, and Q = [m] \ Q. Next, we construct a

solution C = (c1, . . . , ck) as follows. For each i ∈ [k] and j ∈ Q, we set ci[j] = x(1)
i [j].

Towards finding the entries of vectors c1, . . . , ck at the coordinates in Q, we use Lemma 11.
Let J ′ be the instance of Binary Constrained Partition Center?, which is a natural
restriction of J to Q. That is, J ′ = (k,X ′ = X ′1 ] . . . X ′k,R|Q, (dx|

Q
)x∈X′), where for each

i ∈ [k], X ′i = {x|Q : x ∈ Xi} and for each x ∈ Xi, dx|
Q

= dQH(x,x(1)
i ). By the second

condition in Lemma 10, we have that |Q| ≤ rk · OPT(J).

B Claim 12. OPT(J) ≤ OPT(J ′) ≤
(

1 + 1
r−1

)
OPT(J).

Proof. First, we prove that OPT(J) ≤ OPT(J ′). Towards that we show that we can transform
a solution C ′ = (c′1, · · · , c′k) of J ′ with the objective value d to a solution C of J with the
same objective value. For each i ∈ [k], consider ĉi which is equal to x(1)

i restricted to Q, and
to c′i restricted to Q, and the solution Ĉ = (ĉ1, · · · , ĉk). Clearly, Ĉ satisfies R since on Q it
is guaranteed by C ′ being a solution to J ′, and on Q by construction of Q. The objective
value of C is

max
i∈[k],x∈Xi

dH(x, ci) = max
i∈[k],x∈Xi

(
dQH(x, ci) + dQH(x, ci)

)
= max

i∈[k],x∈Xi

(
dH(x|Q, c

′
i) + dQH(x,x(1)

i )
)

= max
i∈[k],x∈Xi

(
dH(x|Q, c

′
i) + dx|

Q

)
= d.

Thus, OPT(J) ≤ OPT(J ′).
Next, we prove that OPT(J ′) ≤

(
1 + 1

r−1

)
OPT(J). Recall that (c∗1, . . . , c∗k) is an optimal

solution for J . Then, (e∗1, . . . , e∗k), where each e∗i is the restriction of c∗i on Q, is a solution
for J ′. For each i ∈ [k] and x ∈ Xi,

dH(x|Q, e
∗
i ) + dx|

Q
= dQH(x, c∗i ) + dQH(x,x(1)

i )

≤ dQH(x, c∗i ) + dQH(x, c∗i ) + 1
r − 1OPT(J) (By Lemma 10)

≤ dH(x, c∗i ) + 1
r − 1OPT(J)

≤
(

1 + 1
r − 1

)
OPT(J)

This completes the proof of the claim. C

Since |Q| ≤ rk · OPT(J) and by Claim 12, we have that OPT(J ′) ≥ |Q|
rk = |Q|

c , where
c = rk. Let 0 < δ < 1

c be a number which we fix later.



F. V. Fomin, P. A. Golovach, F. Panolan, and K. Simonov 32:13

Now we apply Lemma 11 on the input J ′ and δ, and let C ′ = (c′1, . . . , c′k) be the solution
for J ′ obtained. We know that the cost d′ of c′ is at most (1 + δ)OPT(J ′) with probability at
least 1− n−2. For the rest of the proof we assume that the cost d′ ≤ (1 + δ)OPT(J ′). Recall
that we have partially computed the entries of the solution c = (c1, . . . , ck) for the instance
J . That is, for each j ∈ Q and i ∈ [k], we have already set the value of ci[j]. Notice that
C ′ ⊆ {0, 1}|Q|. Since J ′ is obtained from J by restricting to Q, there is a natural bijection f
from Q to [|Q|] such that for each x ∈ X and j ∈ Q, x[j] = y[f(j)], where y = x|Q. Now for
each i ∈ [k] and j ∈ Q, we set ci[j] = c′i[f(j)].

In Claim 12, we have proven that the solution C of J obtained in this way has cost
at most d′. By Lemma 11, we know that d′ ≤ (1 + δ)OPT(J ′). By Claim 12, OPT(J ′) ≤
(1 + 1

r−1 )OPT(J). Thus, we have that the cost of the solution C of J is at most (1 + δ)(1 +
1
r−1 )OPT(J). Now we fix r = (1 + 4

ε ) and δ = ε
(2ε+8)k . Then the cost of C is at most

(1 + ε)OPT(J).

Running time analysis. The number of choices for {x(1)
1 , . . . , x(r)

1 } ⊂ X1, . . . , {x(1)
k , . . . ,

x(r)
k } ⊂ Xk is at most nO(rk) = nO(k/ε). For each such choice, we run the algorithm of

Lemma 11 which takes time at most mO(1)nO(c2k/δ2) = mO(1)nO((k/ε)4). Thus, the total
running time is mO(1)nO((k/ε)4). J

Now the only piece left is the proof of Lemma 11. We use the following tail inequality (a
variation of Chernoff bound) in the proof of Lemma 11.

I Proposition 13 (Lemma 1.2 [21]). Let X1, . . . , Xn be n independent 0-1 random variables,
X =

∑n
i=1 Xi, and 0 < ε ≤ 1. Then, Pr[X > E[X] + εn] ≤ e− 1

3nε
2
.

Finally, we prove Lemma 11.

Proof of Lemma 11. First, assume that m < 9c2 logn/δ2. If this is the case, we enumerate
all possible solutions for J ′ and output the best solution. The number of solutions is at
most 2k·m = nO(c2k/δ2). Thus, in this case the algorithm is exact and deterministic, and the
running time bound holds. For the rest of the proof we assume that m ≥ 9c2 logn/δ2.

Binary Constrained Partition Center? can be formulated as a 0-1 optimization
problem as explained below. For each j ∈ [m] and tuple t ∈ Rj , we use a 0-1 variable
yj,t to indicate whether the jth entries of a solution form a tuple t ∈ Rj or not. For any
i ∈ [k], x ∈ Xi, j ∈ [m] and t ∈ Rj , denote χi(x[j], t) = 0 if x[j] = t[i] and χi(x[j], t) = 1 if
x[j] 6= t[i]. Now Binary Constrained Partition Center? can be defined as the following
0-1 optimization problem.

min d
subject to∑
t∈Rj

yj,t = 1, for all j ∈ [m]; (6)

∑
j∈[m]

∑
t∈Rj

χi(x[j], t) · yj,t ≤ d− dx, for all i ∈ [k] and x ∈ Xi

yj,t ∈ {0, 1}, for all j ∈ [m] and t ∈ Rj .

Any solution yj,t (j ∈ [m] and t ∈ Rj) to (6) corresponds to the solution C = (c1, . . . , ck)
where for all j ∈ [m] and t ∈ Rj such that yj,t = 1, we have (c1[j], . . . , ck[j]) = t.
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Now, we solve the above optimization problem using linear programming relaxation and
obtain a fractional solution y?j,t (j ∈ [m] and t ∈ Rj) with cost d′. Clearly, d′ ≤ dopt =
OPT(J ′). Now, for each j ∈ [m], independently with probability y?j,t, we set y′j,t = 1 and
y′j,t′ = 0, for any t′ ∈ Rj \ {t}. Then y′j,t (j ∈ [m] and t ∈ Rj) form a solution to (6). Next
we construct the solution C = (c1, . . . , ck) to Binary Constrained Partition Center?,
corresponding to y′j,t (j ∈ [m] and t ∈ Rj). That is, for all j ∈ [m] and t ∈ Rj such that
yj,t = 1, we have (c1[j], . . . , ck[j]) = t.

For the running time analysis, notice that solving the linear program and performing the
random rounding takes polynomial time in the size of the problem (6). And the size of (6) is
polynomial in the size of J ′, so the running time bound is satisfied. It remains to show that
the constructed solution has cost at most (1 + δ)OPT(J ′) with probability at least 1− n−2.

For any j ∈ [m], the above random rounding procedure ensures that there is exactly
one tuple t ∈ Rj such that y′j,t = 1. This implies that for any j ∈ [m], i ∈ [k] and
x ∈ Xi,

∑
t∈Rj

χi(x[j], t) · y′j,t is a 0-1 random variable. Since for each j ∈ [m] the rounding
procedure is independent, we have that for any i ∈ [k] and x ∈ Xi the random variables
(
∑
t∈R1

χi(x[1], t) ·y′1,t), . . . , (
∑
t∈Rm

χi(x[m], t) ·y′j,t) are independent. Hence, for any i ∈ [k]
and x ∈ Xi, the Hamming distance between x and ci, dH(x, ci) =

∑
j∈[m]

∑
t∈Rj

χi(x[j], t) ·
y′j,t, is the sum of m independent 0-1 random variables. For each i ∈ [k] and x ∈ Xi, we
upper bound the expected value of dH(x, ci) as follows.

E[dH(x, ci)] = E

∑
j∈[m]

∑
t∈Rj

χi(x[j], t) · y′j,t


=

∑
j∈[m]

∑
t∈Rj

χi(x[j], t) · E[y′j,t]

=
∑
j∈[m]

∑
t∈Rj

χi(x[j], t) · y?j,t

≤ d′ − dx (By the constraints of (6))

Fix ε = δ
c . Then, by Proposition 13, for all i ∈ [k], and x ∈ Xi,

Pr[dH(x, ci) > d′ − dx + εm] ≤ e− 1
3mε

2
.

Therefore, by the union bound,

Pr[There exist i ∈ [k] and x ∈ Xi such that dH(x, ci) > d′ − dx + εm] ≤ n · e− 1
3mε

2
(7)

We remind that m ≥ 9c2 logn/δ2 = 9 logn/ε2 and so n · e− 1
3mε

2 ≤ n−2. Thus, by (7),

Pr[There exist i ∈ [k] and x ∈ Xi such that dH(x, ci) > d′ − dx + εm] ≤ n−2. (8)

Since d′ ≤ OPT(J ′) and OPT(J ′) ≥ m/c, d′ + εm ≤ (1 + cε)OPT(J ′). Then, the probability
that there exist i ∈ [k] and x ∈ Xi such that dH(x, ci) > (1 + cε)OPT(J ′)− dx is at most
n−2 by (8). Since cε = δ, the proof is complete. J

4 Applications

In this section we explain the impact of Theorem 3 about Binary Constrained k-Center
to other problems around low-rank matrix approximation. We would like to mention that
Binary Constrained k-Center is very similar to the Binary Constrained Clustering
problem from [9]. In Binary Constrained k-Center we want to minimize the maximum
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distance of a vector from the input set of vectors to the closest center, whereas in Binary
Constrained Clustering the sum of distances is minimized. While these problems are
different, the reduction we explain here, except a few details, are identical to the ones
described in [9]. For reader’s convenience, we give one reduction (Lemma 14) in full details
and skip all other reductions, which are similar.

In the following lemma we show that `1-Rank-r Approximation over GF(2) is a
special case of Binary Constrained k-Center.

I Lemma 14 (?). There is an algorithm that given an instance (A, r) of `1-Rank-r Ap-
proximation over GF(2), where A is an m× n-matrix and r is an integer, runs in time
O(m + n + 22r), and outputs an instance J = (X, k = 2r,R) of Binary Constrained
k-Center with the following property. Given any α-approximate solution C to J , an
α-approximate solution B to (A, r) can be constructed in time O(rmn) and vice versa.

Thus, Theorem 1 follows from Theorem 3 and Lemma 14.

Low Boolean-Rank Approximation. Let A be a binary m × n matrix. Now we consider
the elements of A to be Boolean variables. The Boolean rank of A is the minimum r such
that A = U ∧V for a Boolean m× r matrix U and a Boolean r × n matrix V, where the
product is Boolean, that is, the logical ∧ plays the role of multiplication and ∨ the role of
sum. Here 0 ∧ 0 = 0, 0 ∧ 1 = 0, 1 ∧ 1 = 1 , 0 ∨ 0 = 0, 0 ∨ 1 = 1, and 1 ∨ 1 = 1. Thus the
matrix product is over the Boolean semi-ring (0, 1,∧,∨). This can be equivalently expressed
as the normal matrix product with addition defined as 1 + 1 = 1. Binary matrices equipped
with such algebra are called Boolean matrices.

In Boolean `1-Rank-r Approximation, we are given an m× n binary data matrix A
and a positive integer r, and we seek a binary matrix B optimizing

minimize ‖A−B‖1

subject to rank(B) ≤ r.

Here, by the rank of binary matrix B we mean its Boolean rank, and norm ‖ ·‖1 is the column
sum norm. Similar to Lemma 14, one can prove that Boolean `1-Rank-r Approximation
is a special case of Binary Constrained k-Center, where k = 2r. Thus, we get the
following corollary from Theorem 3.

I Corollary 15. There is an algorithm for Boolean `1-Rank-r Approximation that
given an instance I = (A, r) and 0 < ε < 1, runs in time mO(1)nO(24r/ε4), and outputs a
(1 + ε)-approximate solution with probability at least 1− 2n−2.

Projective k-center. The Binary Projective k-Center problem is a variation of the
Binary k-Center problem, where the centers of clusters are linear subspaces of bounded
dimension r. (For r = 1 this is Binary k-Center and for k = 1 this is `1-Rank-r
Approximation over GF(2).) Formally, in Binary Projective k-Center we are
given a set X ⊆ {0, 1}m of n vectors and positive integers k and r. The objective is to
find a family of r-dimensional linear subspaces C = {C1, . . . , Ck} over GF(2) minimizing
maxx∈X dH(x,

⋃k
i=1 C).

To see that Binary Projective k-Center is a special case of Binary Constrained
k-Center, we observe that the condition that Ci is an r-dimensional subspace over GF(2)
can be encoded (as in Lemma 14) by 2r constraints. This observation leads to the following
lemma.

APPROX/RANDOM 2020
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I Lemma 16. There is an algorithm that given an instance (X, r, k) of Binary Projective
k-Center, runs in time O(m+ n+ 2O(rk)), and outputs an instance J = (X, k′ = 2kr,R)
of Binary Constrained k-Center with the following property. Given any α-approximate
solution C to J , an α-approximate solution C ′ to (X, r, k) can be constructed in time O(rkmn)
and vice versa.

Combining Theorem 3 and Lemma 16 together, we get the following corollary.

I Corollary 17. There is an algorithm for Binary Projective k-Center that given an
instance I = (X, r, k) and 0 < ε < 1, where X ⊆ {0, 1}m is a set of n vectors and r, k ∈ N,
runs in time mO(1)nO(24kr/ε4), and outputs a (1 + ε)-approximate solution with probability at
least 1− 2n−2.

5 Conclusion

In this paper we gave a randomized PTAS for the Binary Constrained k-Center problem.
This yields the first approximation scheme for `1-Rank-r Approximation over GF(2)
and its Boolean variant. This paper leaves several interesting open problems. The running
time of our (1 + ε)-approximation algorithm is mO(1)nO(24r·ε−4). How far is this running
time from being optimal? A simple adaptation of the result of Cygan et al. [6] for Closest
String, yields that already for r = 1, an (1 + ε)-approximation in time nO(1) · f(ε), for
any computable function f , would imply that FPT=W[1]. Also the existence of a PTAS
for r = 1 with running time f(ε)no(1/ε), for any computable function f , would contradict
the Exponential Time Hypothesis [6]. But these results do not exclude the opportunity of
having an algorithm of running time f(r, ε) · (nm)poly(1/ε) for some function f . Even the
existence of an algorithm for `1-Rank-r Approximation over GF(2) of running time
mO(1)npoly(r,ε) is an interesting open question.
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