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Abstract
Correlation Clustering is an elegant model where given a graph with edges labeled + or −, the
goal is to produce a clustering that agrees the most with the labels: + edges should reside within
clusters and − edges should cross between clusters. In this work we study the MaxCorr objective,
aiming to find a clustering that maximizes the difference between edges classified correctly and
incorrectly. We focus on the case of bipartite graphs and present an improved approximation of
0.254, improving upon the known approximation of 0.219 given by Charikar and Wirth [FOCS‘2004]
and going beyond the 0.2296 barrier imposed by their technique. Our algorithm is inspired by
Krivine’s method for bounding Grothendieck’s constant, and we extend this method to allow for
more than two clusters in the output. Moreover, our algorithm leads to two additional results: (1)
the first known approximation guarantees for MaxCorr where the output is constrained to have
a bounded number of clusters; and (2) a natural extension of Grothendieck’s inequality to large
domains.
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1 Introduction

Correlation Clustering is a classic model, where given objects and possibly inconsistent
pairwise similarity (or dissimilarity) information regarding the objects, the goal is to cluster
the objects in a way that agrees the most with the given information. Since its introduction by
Bansal et al. [7] close to two decades ago, Correlation Clustering has found numerous
practical applications in a wide range of settings: image segmentation [35], cross-lingual link
detection [33], clustering gene expression patterns [5, 8], coreference resolution [14, 15, 28]
and aggregating inconsistent clusterings [18], to name a few (refer to the survey [35] and the
references therein for additional details). Moreover, from a theoretical perspective it can be
shown that Correlation Clustering captures classic graph cuts problems, including Min
s− t Cut, Multiway Cut and Multicut.

Formally, in Correlation Clustering we are given an undirected graph G = (V,E)
equipped with non-negative edge weights w : E → R+. Additionally, each edge is labeled
either with a + or a −, where + indicates similarity and − indicates dissimilarity. We
consider E to be the disjoint union of E+ (all edges labeled +) and E− (all edges labeled −).
Intuitively, two nodes connected by a + edge (− edge) are said to be similar (dissimilar) and
the weight of the edge quantifies the strength of the similarity (dissimilarity) between the
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two nodes. A clustering of the graph is a partition C = {S1, . . . , S`} of V , for some `, where
each Si is called a cluster. Two nodes u and v are in agreement with respect to a clustering
C if (u, v) ∈ E+ (or (u, v) ∈ E−) and u and v belong to the same cluster (different clusters),
and are in disagreement otherwise.

The above leads to three natural objectives, which were introduced in the original paper
of Bansal et. al. [7], measuring the compliance of a clustering C with the input: MaxAgree,
MinDisagree and MaxCorr. Given a clustering C, the first objective aims to maximize
the total weight of edges that are in agreement, the second objective aims to minimize the
total weight of edges that are in disagreement, and the third objective combines the previous
two objectives and aims to maximize the difference between the total weight of edges in
agreement and disagreement. Formally, given a clustering C the MaxCorr objective value
of C is denoted by Corr(C) and is defined as follows: Corr(C) , Agree(C) − DisAgree(C),
where:

Agree(C) =
∑

(u,v)∈E+:C(u)=C(v)

wu,v +
∑

(u,v)∈E−:C(u) 6=C(v)

wu,v

DisAgree(C) =
∑

(u,v)∈E+:C(u)6=C(v)

wu,v +
∑

(u,v)∈E−:C(u)=C(v)

wu,v.

In the above C(u) denotes the cluster in C that u belongs to. The goal is to find a clustering
C that maximizes Corr(C).1 A generalization of MaxCorr, denoted by Max-k-Corr, is
where we are also given as input a parameter k that upper bounds the possible number of
clusters in C.

All the above objectives have been extensively studied for almost two decades for important
special cases, such as bipartite graphs [1, 5, 6, 12], complete unweighted graphs [7, 10] and
weights satisfying specific constraints [2, 12], as well as general graphs [10, 11, 17, 32]. The
more general problem where the number of clusters is bounded has also been studied, e.g.,
[7, 16, 20, 24, 6]. From a practical perspective, the study of clustering of bipartite graphs was
motivated by numerous applications, such as gene expression and biological data analysis
[13, 27], and data mining applications [36].

The only known algorithm for MaxCorr is given by Charikar and Wirth [11] who
elegantly reduced the problem to maximizing a quadratic form. We denote the latter
by Max Quad: given a matrix B ∈ Rn×n find x ∈ {±1}n maximizing xTBx.2 The
algorithm of [11] works as follows (for simplicity of presentation we assume that V =
{1, . . . , n}): First, set Bi,j to be wi,j if (i, j) ∈ E+, −wi,j if (i, j) ∈ E− (and 0 otherwise)
and approximately solve maxx∈{±1}n{xTBx}. Second, consider the clustering C1 = {S1, S2}
defined by x: S1 = {i : xi = 1} and S2 = {i : xi = −1}. Third, consider the clustering
C2 = {S1, . . . , Sn} of V into singletons, where Si = {i}. Finally, return the best from C1
and C2, i.e., max{Corr(C1),Corr(C2)}. [11] proved that if there exists an α approximation
algorithm for Max Quad, the above reduction provides an approximation of α/(2 + α) for
MaxCorr. Since Max Quad is known to have a logarithmic approximation [11, 31], i.e.,
α = Ω(1/ logn), this results in an approximation of Ω(1/ logn) for MaxCorr on general
graphs.

We note that using the above exact same reduction, one can implicitly deduce an improved
approximation algorithm for MaxCorr for bipartite graphs by simply substituting the
approximation algorithm for Max Quad with one for maximizing a bipartite quadratic form.

1 Equivalently one can formulate MaxCorr without the edge labels by negating the weight of − edges
and then maximizing the total weight of edges inside clusters minus the total weight of edges that cross
between clusters.

2 It is assumed that the diagonal of B is all zeros, i.e., Bi,i = 0 for every i = 1, . . . , n.
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We denote the latter by Max BiQuad: given A ∈ Rn×m find x ∈ {±1}n and y ∈ {±1}m
maximizing xTAy.3 Specifically, assuming G is a bipartite graph containing n vertices
on one side and m vertices on the other, instead of the previously defined B consider a
matrix A ∈ Rn×m as follows: Ai,j is set to wi,j if (i, j) ∈ E+, −wi,j if (i, j) ∈ E− and
0 otherwise. Given A, approximately solve the instance of Max BiQuad defined by A,
i.e., maxx∈{±1}n,y∈{±1}m{xTAy}. The rest of [11]’s reduction remains unchanged. One can
easily verify that the overall approximation guarantee of the reduction remains as before.
Max BiQuad is known to have an approximation of ≈ 0.5611 [4, 26] that follows from
Grothendieck’s inequality, resulting in an improved approximation of 0.5611/(2 + 0.5611) =
0.219 for MaxCorr when G is a bipartite graph.4

To the best of our knowledge, no other approximation algorithm for MaxCorr besides
Charikar and Wirth [11] is known, both for general and bipartite graphs. It is important
to note that when restricting attention to bipartite graphs, the algorithm of [11] imposes
an intrinsic barrier of 0.2296 that follows from lower bounds on Grothendieck’s constant
KG (see Section 1.2 for more details). Thus, it seems there is no much room to improve the
current 0.219 approximation using [11]’s approach. Moreover, no approximation is known
for Max-k-Corr, even when considering bipartite graphs. The reason for the latter is that
the algorithm of [11] might output n singleton clusters, thus violating the bound k on the
number of clusters. The only exception is Max-2-Corr, which coincides with Max Quad
and Max BiQuad for general and bipartite graphs, respectively.

Grothendieck’s Inequality with Large Domains

Our work closely relates to Grothendieck’s inequality. This classic inequality, first presented
in [21], states that there is a universal constant KG such that for every matrix A ∈ Rn×m
(recall that Sd denotes the Euclidean unit sphere in Rd+1):

max
{ui}n

i=1∪{vj}m
j=1⊆Sn+m−1


n∑
i=1

m∑
j=1

Ai,j 〈ui,vj〉

 ≤ KG · max
x∈{±1}n,y∈{±1}m


n∑
i=1

m∑
j=1

Ai,jxiyj

 .

The problem of bounding KG, both upper and lower bounds, has been studied for more than
half a century [9, 21, 26, 29, 30]. Specifically, upper bounding KG is typically achieved by
providing an approximation algorithm for Max BiQuad that rounds a fractional solution
to the natural semi-definite relaxation: each xi and yj is assigned a unit vector ui and
vj respectively and xiyj is replaced with 〈ui,vj〉. Intuitively, K−1

G can be viewed as the
integrality gap of this relaxation.

One can easily note that the existence of a 1/βk approximation for Max-k-Corr for
bipartite graphs, that is based on rounding the natural semi-definite relaxation (see Section 2),
implies a generalization of Grothendieck’s inequality to larger domains. This generalization
states that there exists an αk, where αk ≤ βk, such that for every matrix A ∈ Rn×m,

max
{ui}n

i=1∪{vj}m
j=1∈Pk


n∑
i=1

m∑
j=1

Ai,j
(2(k − 1) 〈ui,vj〉 − (k − 2))

k

 ≤
αk · max

x∈[k]n,y∈[k]m


n∑
i=1

m∑
j=1

Ai,js(xi, yj)

 .

3 Both problems, Max BiQuad and Max Quad, are known to be NP-hard [4, 11].
4 Braverman et al. [9] showed an improvement over 0.5611 by a very small absolute constant, thus one

can in fact obtain an approximation for MaxCorr in bipartite graphs that is slightly better than 0.219.
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In the above Pk is defined as follows: Pk , {U ⊆ Sn+m−1 : 〈u,v〉 ≥ −1/(k−1) ∀u,v ∈ U},
s is the signed indicator function, i.e., s(xi, yj) = 1 if xi = yj and s(xi, yj) = −1 if xi 6= yj ,
and [k] = {0, . . . , k−1}. It is important to note that when k = 2 the above inequality reduces
to the classic Grothendieck’s inequality since P2 only enforces that all vectors {ui}ni=1 and
{vj}mj=1 are unit vectors. Thus, Grothendieck’s original inequality corresponds to the case
where the size of the domain is 2. Hence, for larger values of k the above inequality can
be viewed as an extension of Grothendieck’s original inequality to larger domains. To the
best of our knowledge, such an extension was not considered in the past. A special case of
particular interest of the above extended inequality, in addition to the case k = 2, is when
k →∞. In this case the above extended inequality reduces to:

max
{ui}n

i=1∪{vj}m
j=1∈P∞


n∑
i=1

m∑
j=1

Ai,j (2 〈ui,vj〉 − 1)

 ≤
α∞ · max

x∈[n+m]n,y∈[n+m]m


n∑
i=1

m∑
j=1

Ai,js(xi, yj)

 ,

where P∞ only enforces that all vectors are unit and in the positive orthant. This case
is interesting since one can easily observe that if MaxCorr admits an approximation of
1/β for bipartite graphs, that is based on rounding the natural semi-definite relaxation (see
Section 2), then α∞ ≤ β.

CSP Over Large Domains

We note that MaxCorr and Max-k-Corr can be equivalently cast as a constraint satis-
faction problem over a large domain with negative payoffs. Specifically, when considering
bipartite graphs, we are given variables x1, . . . , xn, y1, . . . , ym, and weighted equality/inequal-
ity constraints containing exactly two variables per constraint (one from each type), i.e.,
xi = yj or xi 6= yj . Given an assignment of values from the domain [k] to each of the
variables, the value of a constraint is its weight if it is satisfied and the negation of its weight
if it is unsatisfied. The goal is to find an assignment maximizing the sum of values of the
constraints. The above equivalence obviously applies to general graphs as well. CSP over
large (non-binary) domains was studied, for example, by Guruswami and Raghavendra [22]
(see the references therein for additional related work). Moreover, the classic problem of
Max k-Cut, studied by Frieze and Jerum [19], is also a CSP (or equivalently a clustering
problem) over a domain of size k.

1.1 Our Results
In this work we focus on MaxCorr and Max-k-Corr in bipartite graphs. We obtain the
following main result for MaxCorr.

I Theorem 1. There exists a polynomial-time 0.254-approximation algorithm for the problem
of MaxCorr on bipartite graphs.

There are three important things to note regarding Theorem 1. First, it improves upon the
previously known approximation of 0.219 of Charikar and Wirth [11]. Second, it goes beyond
the 0.2296 barrier which is intrinsic to the algorithm of [11] and follows from lower bounds
on Grothendieck’s constant KG (see Section 1.2 for more details). Third, our algorithm that
proves Theorem 1 produces at most three clusters, whereas the optimal solution might have
any number of clusters.
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We show how our main algorithm can be adapted to handle any bound k on the number
of clusters. This results in an approximation factor that for k = 2 equals Krivine’s [4, 26]
guarantee of 0.5611, gracefully degrades as k increases, and reaches the guarantee of 0.254 of
Theorem 1 for unbounded k (see Table 1 for approximation guarantees for some values of
k). To the best of our knowledge, no previous approximation for Max-k-Corr for bipartite
graphs is known. Similarly to Theorem 1, the number of clusters produced by our algorithm
for Max-k-Corr in bipartite graphs does not exceed four, regardless of how many clusters
are in the optimal solution. Moreover, allowing our algorithms to produce more clusters than
four is not beneficial.

Table 1 Approximation for Max-k-Corr.

k 2 3 4 5 6 10
approximation 0.561 0.397 0.348 0.32 0.309 0.285

The above approximation guarantees of MaxCorr and Max-k-Corr for bipartite
graphs lead to the following results regarding α∞ and αk for the extension of Grothendieck’s
inequality to large domains.

I Theorem 2. αk is a universal constant for every k ≥ 2. Moreover, α∞ is also a universal
constant.

The specific values of the bounds on α∞ and αk can be derived directly from our approximation
factors and integrality gaps.

1.2 Our Techniques
The existing approach for approximating MaxCorr in bipartite graphs, i.e., the reduction of
Charikar and Wirth [11], poses two difficulties. The first main difficulty is that this approach
most likely cannot provide a much better approximation than its promised 0.219 guarantee.
Recall that its approximation equals α/(2 + α), where α is the known approximation for
Max BiQuad. It can be shown that the dependence on α in the approximation is tight, i.e.,
[11]’s algorithm cannot provide an approximation better than α/(2 + α). Thus, improving
this algorithm requires improving α, a task that most likely will improve Grothendieck’s
constant KG as well. Moreover, the known lower bound of β = 1.6769 on KG [29] yields
that [11]’s approach cannot provide an approximation better than (1/β)/(2 + 1/β) ≈ 0.2296
for MaxCorr on bipartite graphs. The latter is true since the only known method for
approximating Max BiQuad uses the standard semi-definite relaxation whose integrality
gap is exactly K−1

G . We note that our guarantee of 0.254 in Theorem 1 goes beyond this
0.2296 barrier that is inherent to the approach of [11]. The second main difficulty is that the
approach of Charikar and Wirth [11] results in an algorithm that might produce up to n
clusters. Therefore, it cannot be applied to Max-k-Corr as it violates the constraint on the
number of clusters k in the output.

To eschew the above difficulties, we adopt an approach that is inspired by Krivine’s result
for bounding KG [26]. This approach is based on transforming two collections of disjoint
vectors in such a way that allows random hyperplane rounding to be successful even when
negative values are present in the objective function. We first show that a straightforward
adaptation of this method yields an approximation of 0.198 for MaxCorr on bipartite
graphs. To obtain our main result for MaxCorr we show that it suffices to extend Krivine’s
method to only three clusters and present suitable transformations to this end. Focusing on
Max-k-Corr we require more subtlety, as we build upon and adapt our two algorithms for

APPROX/RANDOM 2020
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MaxCorr which are based on Krivine’s method (the straightforward adaptation as well as
the three cluster extension). We note that allowing our algorithms to produce more than
four clusters is not beneficial.

1.3 Related Work
Many variants of Correlation Clustering were presented and studied throughout the
years, both from theoretical and practical perspectives. We present here only some of the
more relevant previous work. For general graphs, [7, 32] presented a 0.766-approximation for
MaxAgree, [10, 17] presented an O(logn) approximation for MinDisagree, [11] presented
an Ω(1/ logn) approximation for MaxCorr (while [3] presented a more refined guarantee of
Ω(1/ log(ϑ(Ḡ)))).

For complete unweighted graphs, Bansal et al. [7] presented a PTAS for MaxAgree,
a constant factor approximation for MinDisagree, and a simple 3-approximation for
MinDisagree restricted to two clusters. The approximation factor for MinDisagree was
continually improved by Charikar et al. [10] to 4, Ailon et al. [2] to 2.5 and by Chawla et
al. [12] to 2.06 − ε. Moreover, Giotis et al. [20] presented a PTAS for MaxAgree and
MinDisagree when the number of clusters is restricted to a constant k.

Focusing on bipartite graphs, Asteris et al. [6] presented a PTAS for MaxAgree on
complete bipartite graphs, even when the number of clusters is restricted. Amit [5] presented
a 11-approximation algorithm for MinDisagree on complete bipartite graphs. The latter
was subsequently improved by [1] to a factor of 4 and by [12] to a factor of 3.

In the context of Grothendieck’s Inequality, numerous studies were conducted. For
bounding KG, Grothendieck [21] showed that π

2 ≤ KG ≤ sinh(π2 ). Later on, Reeds [29]
presented a lower bound of 1.6769. The upper bound was also improved by Rietz [30] to
2.261 and by Krivine [26] to 1.78821 who conjectured that this is the correct number. Many
years later, Braverman et al. [9] showed that Krivine’s bound is not the correct answer for
KG, by slightly improving the upper bound. These days, the value of KG is still unknown.
Many extensions of Grothendieck’s Inequality were presented and studied, e.g., [3, 25]. In
addition, Nesterov [34] presented a (2/π)-approximation for Max Quad for the special case
the matrix A is positive semi-definite.

2 Semi-Definite Relaxations for MaxCorr and Max-k-Corr

In this section we present natural semi-definite programming relaxations for both MaxCorr
and Max-k-Corr. These relaxation apply to both general and bipartite graphs. Focusing
first on MaxCorr, we consider the following natural semi-definite programming formulation,
denoted by SDP, which assigns to each vertex u a unit vector yu.

max
∑

(u,v)∈E+

wu,v · (2yu · yv − 1) +
∑

(u,v)∈E−
wu,v · (1− 2yu · yv) (1)

s.t. yv · yv = 1 ∀v ∈ V
yu · yv ≥ 0 ∀u, v ∈ V

In the following lemma, we prove that (1) is a relaxation5 for the MaxCorr problem.

I Lemma 3. Let OPTSDP be the optimum value of (1), and OPT be the value of the optimal
clustering. Then it holds that OPTSDP ≥ OPT.

5 The integrality gap of this relaxation is discussed in Appendix C.
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Proof. Given an optimal solution COPT, we can assign each yv to be a standard unit vector
in Rn, while a pair of vectors yu, yv will be the same unit vector if and only if u and v are
in the same cluster in COPT. This way, all the constrains are satisfied: for each v ∈ V we
have that yv · yv = 1, and for each u, v ∈ V it holds that yu · yv ∈ {0, 1}. Moreover, the
value of this solution for the SDP formulation is the same as Corr(COPT): for a plus edge
(u, v), if u and v are in the same cluster in COPT, then yu · yv = 1 and so it contributes
wu,v. If they are in different cluster, then yu · yv = 0 and the edge contributes −wu,v to the
objective function. Similar argument can be placed for the minus edges. Therefore, it holds
that OPTSDP ≥ OPT. J

Recall that in Max-k-Corr the output can contain at most k clusters. Therefore, focusing
on Max-k-Corr we consider the following natural semi-definite formulation, inspired by
the work of Karger et. al. on 3-Coloring [23], which we denote by SDPk:

(2)

max
∑

(u,v)∈E+

wu,v

(
2(k − 1)

k
yu · yv −

k − 2
k

)
+

∑
(u,v)∈E−

wu,v

(
k − 2
k
− 2(k − 1)

k
yu · yv

)
s.t. yv · yv = 1 ∀v ∈ V

yu · yv ≥ −1/(k − 1) ∀u, v ∈ V

One may observe, that if we are limited to two clusters only, i.e., k = 2, then SDP2 is
exactly the standard semi-definite relaxation for both Max Quad and Max BiQuad (as
in Grothendieck’s inequality). Moreover, when k →∞, namely k is large enough such that
Max-k-Corr becomes MaxCorr, SDP∞ becomes the relaxation for MaxCorr. Similarly
to MaxCorr, we prove the following lemma which shows that (2) is indeed a relaxation for
the problem of Max-k-Corr.

I Lemma 4. Let OPTSDPk be the optimum value of (2), and OPTk be the value of the
optimal clustering with at most k clusters. Then it holds that OPTSDPk ≥ OPTk.

Proof. Given an optimal solution with at most k clusters, COPT, we construct the following
fractional solution. Let v1, . . . , vk be the vectors that form the k− 1-regular simplex centered
at the origin. We know that v1 + · · ·+ vk = 0, and therefore

0 = ‖v1 + · · ·+ vk‖2 =
k∑
i=1

vi · vi +
∑
i 6=j

vi · vj = k +
∑
i6=j

vi · vj .

Since the vertices of the regular simplex are in equal distance from each other, it must be
the case that vi · vj = −1/(k − 1) for all i 6= j. One can show that this is the most efficient
solution, in terms of maximizing the minimum distance between k points on the Euclidean
unit sphere.

Let us assign the vectors {yv}v∈V to the vectors v1, . . . , vk where yu = yv iff u and v are
in the same cluster in COPT. One can see that if yu · yv = 1, it holds that

2(k − 1)
k

yu · yv −
k − 2
k

= 2k − 2− k + 2
k

= 1,

and if yu · yv = −1/(k − 1), then it holds that
2(k − 1)

k
yu · yv −

k − 2
k

= −2− k + 2
k

= −1.

Hence, the value of the objective of (2) with this fractional solution equals the value of the
integral solution. Thus, OPTSDPk ≥ OPTk. J

APPROX/RANDOM 2020
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3 Approximation Algorithms for MaxCorr

In this section we present our approximation algorithms for MaxCorr on bipartite graphs,
thus proving Theorem 1. First, for simplicity of presentation, we show that a straightforward
adaptation of Krivine’s method to SDP yields an approximation of 0.198. Second, we present
an improved algorithm that achieves the guarantee of Theorem 1 by extending Krivine’s
method to more than two clusters.

3.1 Case Study: A Simple Two Clusters Algorithm
In this section we present a straightforward adaptation of Krivine’s method to round SDP
that produces at most two clusters. Denote by V = V1 ∪ V2 the two sides of the graph
and by n the total number of vertices in V . Let A ∈ Rn×n be the matrix of the solution
of (1). That is, Ai,j = yi · yj for all i, j ∈ V . Given a solution A, we can construct the
corresponding vectors {yv}v∈V in polynomial time. Additionally, we note that (1) can be
solved, in polynomial time, and the value of the solution will be far from the optimum up to
some additive error which is arbitrarily small.

Algorithm 1 Two Clusters Algorithm.

Input: G = (V1, V2, E) and w : E → R
Output: clustering C

1 Solve (1) for G and w to obtain a positive semi-definite matrix A ∈ Rn×n.

2 Define Ã ∈ Rn×n as follows: Ãi,j ←
{
f(Ai,j) if i and j in different sides of V
g(Ai,j) otherwise

3 Find vectors {ỹi}i∈V s.t.: ỹi · ỹj = Ãi,j ∀i, j ∈ V (via Cholesky decomposition of Ã).
4 Choose z uniformly at random from Sn−1.
5 Set C1 ← {i ∈ V : ỹi · z ≥ 0} and C2 ← {i ∈ V : ỹi · z < 0}.
6 Return C = {C1, C2}.

Next, we show how to choose the transformation functions f and g, and prove that the
algorithm achieves the desired approximation factor. Specifically, we prove that it suffices to
choose:

f(x) , sin(cπx) cos(cπ2 )− cos(cπx) sin(cπ2 )

g(x) , sinh(cπx) cos(cπ2 ) + cosh(cπx) sin(cπ2 ),

where c is the solution to the equation sinh(cπ) cos( cπ2 ) + cosh(cπ) sin( cπ2 ) = 1. The reader
is referred to Appendix A for the complete analysis.

3.2 Producing More Clusters – Better Approximation
Algorithm 1 always clusters the graph into at most two clusters while ignoring the fact that
the optimal solution might contain a larger number of clusters. Building upon Algorithm 1,
we present an algorithm that clusters the graph into at most three clusters. Though this
seems like only a minor change, it enables us to improve the approximation factor to 0.254,
well beyond the 0.2296 barrier of the approach of Charikar and Wirth [11].

We note that Algorithm 2 differs from Algorithm 1 since it uniformly at random picks one
of the two initial clusters and splits it again using another independent random hyperplane.
This subtle change incurs a significant change in the choice of f and g, as will be evident
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Algorithm 2 Three Clusters Algorithm.

Input: G = (V1, V2, E) and w : E → R
Output: clustering C

1 Solve (1) for G and w to obtain a positive semi-definite matrix A ∈ Rn×n.

2 Define Ã ∈ Rn×n as follows: Ãi,j ←
{
f(Ai,j) if i and j in different sides of V
g(Ai,j) otherwise

3 Find vectors {ỹi}i∈V s.t.: ỹi · ỹj = Ãi,j ∀i, j ∈ V (via Cholesky decomposition of Ã).
4 Choose z and z′ independently and uniformly from Sn−1.
5 Set C ′ ← {i ∈ V : ỹi · z ≥ 0} and C ′′ ← {i ∈ V : ỹi · z < 0}.
6 Let C1 be a uniform random cluster from C ′ and C ′′, and C the remaining cluster.
7 Set C2 ← {i ∈ C : ỹi · z′ ≥ 0} and C3 ← {i ∈ C : ỹi · z′ < 0}.
8 Return C = {C1, C2, C3}.

from the analysis. Furthermore, this subtle change also makes the analysis more challenging,
compared to Krivine’s original method. The reason is that the separation probability of
two vectors is quadractically dependent on the angle between them, as opposed to linear
dependency in Krivine’s original method. In order to analyze this algorithm, we first calculate
the probability that two vertices will be in the same cluster.

I Lemma 5. Let u, v ∈ V whose corresponding vectors are ỹu, ỹv respectively. Then,

Pr[u, v are in the same cluster] = 1
2

(
1− arccos(ỹu · ỹv)

π

)
+ 1

2

(
1− arccos(ỹu · ỹv)

π

)2
.

Proof. If u and v are in different clusters after splitting V into C ′ and C ′′, then u and v
will remain apart. Otherwise, with probability 1/2 we will choose to split their cluster, and
then the chance of separating u and v is the same as before. That is,

Pr[u, v are in the same cluster]=
(

1− arccos(ỹu · ỹv)
π

)
·
(

1
2 + 1

2

(
1− arccos(ỹu · ỹv)

π

))
.

This concludes the proof. J

Similarly to Lemma 11 we have the following lemma. In what follows, Xu,v is the random
variable denoting the contribution of the edge (u, v) to the value of the output of Algorithm 2.

I Lemma 6. For every edge (u, v) ∈ E:

E[Xu,v] =

wu,v ·
(

1− 3 · arccos(ỹu·ỹv)
π + arccos(ỹu·ỹv)2

π2

)
(u, v) ∈ E+

wu,v ·
(

3 · arccos(ỹu·ỹv)
π − arccos(ỹu·ỹv)2

π2 − 1
)

(u, v) ∈ E−.

Proof. For every edge (u, v) ∈ E+:

E[Xu,v] = wu,v · Pr[u, v are in the same cluster]− wu,v · (1− Pr[u, v are in the same cluster])

= wu,v ·

(
2

(
1
2

(
1− arccos(ỹu · ỹv)

π

)
+ 1

2

(
1− arccos(ỹu · ỹv)

π

)2
)
− 1

)

= wu,v ·
(

1− 3 · arccos(ỹu · ỹv)
π

+ arccos(ỹu · ỹv)2

π2

)
.

For a minus edge, we can simply multiply the above by −1. J
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The following lemma lies at the heart of the argument as it provides the existence of
suitable transformations f and g.

I Lemma 7. There exist functions f, g : R −→ R and a constant c ∈ (0, 1) such that the
matrix Ã obtained in Algorithm 2 can be decomposed into unit vectors {ỹv}v∈V in Rn, and
these vectors satisfy that for all (u, v) ∈ E:

(
1− 3 · arccos(ỹu·ỹv)

π + arccos(ỹu·ỹv)2

π2

)
= c · (2yu · yv − 1) if (u, v) ∈ E+(

3 · arccos(ỹu·ỹv)
π − arccos(ỹu·ỹv)2

π2 − 1
)

= c · (1− 2yu · yv) if (u, v) ∈ E−.

Proof. We wish to find the appropriate functions f, g and the constant c, that will satisfy
the above conditions. That is, we need to solve the equation:(

1− 3 · arccos(ỹu · ỹv)
π

+ arccos(ỹu · ỹv)2

π2

)
= c · (2yu · yv − 1) .

It has two solutions: arccos(ỹu · ỹv) = 1
2 (3π ± π

√
5− 4c+ 8c(yu · yv)). Therefore, we have

two candidates for f : cos( 1
2 (3π − π

√
5− 4c+ 8cx)) and cos( 1

2 (3π + π
√

5− 4c+ 8cx)). We
know that arccos(x) is bounded between 0 and π, and expect that f will satisfy f(1) > f(0),
so we dismiss the latter candidate solution and remain with:

f(x) = cos(1
2(3π − π

√
5− 4c+ 8cx)).

Moreover, since yu · yv ≥ 0 and 0 ≤ c ≤ 1, it holds that 5 − 4c + 8c(yu · yv) ≥ 0 for
all u, v and so f is well defined for our case. In fact, we can see that f is well defined
for all x ≥ (4c−5)/(8c). Hence, we consider the Taylor expansion of f at x = 0, defined by
p(x) =

∑∞
k=0(k!)−1f (k)(0)xk. Let fk be the coefficient of xk in p(x). We note that the

coefficients depend on the value of c. Thus, p(x) has the following two properties, described
in two technical lemmas that are given without a proof.

I Lemma 8 (The convergence radius of p). The function f(x) is equal to its Taylor series,
p(x), for all x ∈ ( 4c−5

8c ,− 4c−5
8c ), and in particular, p(x) = f(x) for all x ∈ [−1, 1] if c < 5/12.

I Lemma 9 (The signs of the coefficients of p). For all c ∈ (0.25, 0.4), it holds that f0 < 0,
f1 > 0, f2 < 0 and for all k ≥ 2, f2k > 0 and f2k−1 < 0.

Thus, from now on we assume that c is in the range (0.25, 0.4), and can consider the
function f(−x). It holds that for all x ∈ [−1, 1],

f(−x) = p(−x) =
∞∑
k=0

f2kx
2k −

∞∑
k=0

f2k+1x
2k+1 = f0 − f1x+ f2x

2 +
∞∑
k=3
|fk|xk.

Therefore, we conclude that
∑∞
k=0 |fk|xk = f(−x)− 2f0 + 2f1x− 2f2x

2. Hence, let us define
g(x) = f(−x)− 2f0 + 2f1x− 2f2x

2. We can prove that Ã is positive semi-definite, and can
be decomposed to the above vectors {ỹv}v∈V in a similar way to Lemma 13. Next, we wish
to find the value of c for which the new vectors {ỹv}v∈V will be unit vectors. Plugging x = 1
in the equation g(x) = 1 and then solving for c in the required range, will yield the solution
c ≈ 0.254013. This completes the proof of Lemma 7. J

Proof of Theorem 1. According to Lemma 6 and Lemma 7, it follows that Algorithm 2
achieves an approximation of 0.254 for the problem of MaxCorr on bipartite graphs. J
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As a result from Theorem 1, we obtain an upper bound on α∞, proving the second part of
Theorem 2. Additionally, we note that Algorithm 2 can be slightly improved. If we consider
the probability that two vertices will be in the same cluster, we can notice that it is the
same as if we split the hyper-sphere with one hyper-plane with probability 1/2, or with two
hyper-planes with probability 1/2. Hence, we can find the value of p for which the algorithm
that splits the hyper-sphere with one hyper-plane with probability p or with two hyper-planes
with probability 1− p, achieves the best approximation factor (with the above analysis). It
turns out that the best p is very close to 1/2, i.e., if we set p = 0.49 the approximation factor
will be c ≈ 0.2551. As previously mentioned, allowing the algorithm to produce more than
four clusters is not beneficial (refer to Appendix B for additional details).

4 Restricting the Number of Clusters – Approximating Max-k-Corr

In this section we focus on Max-k-Corr, where the solution is constrained to contain at
most k clusters. We build upon Algorithms 1 and 2 to obtain our results.

4.1 Two Clusters – Adapting Algorithm 1
We start with adapting Algorithm 1 to Max-k-Corr. It is obvious that this algorithm
produces a feasible solution, no matter which transformations f and g we employ, since
k ≥ 2 and it produces at most two clusters. However, since SDPk changes with k, the
original transformations f and g, that were chosen when considering MaxCorr and SDP
(equivalently SDP∞), do not yield a meaningful approximation anymore. Thus, all that
remains is to choose these transformations, given k. This is done by requiring that the
transformed vectors satisfy the following for every edge (u, v) ∈ E:

1− 2arccos(ỹu · ỹv)
π

= c

(
2(k − 1)

k
yu · yv −

k − 2
k

)
.

To satisfy the above we choose f as follows:

f(x) = cos
( π

2k (k + c(k − 2)− 2cx(k − 1))
)

= sin
(
cπx

k − 1
k

)
cos
(
cπ

2
k − 2
k

)
− cos

(
cπx

k − 1
k

)
sin
(
cπ

2
k − 2
k

)
.

Hence, the function g will be:

g(x) = sinh
(
cπx

k − 1
k

)
cos
(
cπ

2
k − 2
k

)
+ cosh

(
cπx

k − 1
k

)
sin
(
cπ

2
k − 2
k

)
.

The analysis continues the same as in Algorithm 1, and we require for the transformed
vectors to be unit vectors, i.e., that g(1) = 1. Solving this equation for each value of k, yields
the desired approximation factor c. These appear in Table 2 for some values of k.

Table 2 Approximation factors obtained by adapting Algorithm 1 for Max-k-Corr.

k 2 3 4 5 10 50 1000
c 0.5611 0.3441 0.2901 0.2654 0.2269 0.2034 0.1985

We can see that when k = 2, we have exactly the constant obtained by Krivine. As
k increases the approximation factor gracefully degrades, and when k →∞ it approaches
0.1985 (the approximation we obtained for MaxCorr with Algorithm 1). Additionally, we
note that this result proves the first part of Theorem 2 as it provides upper bounds on αk
for k ≥ 2.
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4.2 More Than Two Clusters – Adapting Algorithm 2
The success of Algorithm 2 implies that allowing more than two clusters in the output
might be beneficial. However, adapting this approach, and specifically Algorithm 2, to
Max-k-Corr requires much care as the value of k will have a considerable influence on the
resulting algorithm and its transformations.

Specifically, given k, we need to choose from the following clustering techniques: (1) two
clusters produced by a random hyperplane (similarly to Algorithm 1); (2) three clusters
produced by a random hyperplane and then further partioning of one of the clusters by an
additional random hyperplane (similarly to Algorithm 2); and (3) four clusters produced by
choosing two random hyperplanes. The exact convex combination of these techniques will
uniquely dictate the transformations f and g that will ensure the success of the algorithm. We
refer the reader to Appendix B for a more detailed discussion of the above, the approximation
guarantees obtained for specific values of k, and additional details, e.g., why not use a larger
number of hyperplanes to construct a clustering.
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A Analysis of Algorithm 1

Lemma 10 is widely known and is given without proof (see, e.g., [3]).

I Lemma 10. Let yu, yv be two unit vectors in Rn and z be a random unit vector chosen
uniformly from Sn−1. Then,

Pr[sign(yu · z) = sign(yv · z)] = 1− arccos(yu · yv)
π

.

I Lemma 11. Let ỹu, ỹv be the vectors representing u and v respectively. Additionally, denote
by Xu,v = wu,v · sign(ỹu · z)sign(ỹv · z) the random variable that represents the contribution
of the edge (u, v) to the value of the solution. Therefore,

E[Xu,v] =

wu,v
(

1− 2 arccos(ỹu·ỹv)
π

)
(u, v) ∈ E+

wu,v

(
2 arccos(ỹu·ỹv)

π − 1
)

(u, v) ∈ E−.

Proof. From Algorithm 1, we can see that that two vertices u, v will be in the same cluster
if and only if sign(ỹu · z) = sign(ỹv · z). Therefore, for every plus edge (u, v) ∈ E+,

E[Xu,v] = wu,v Pr[sign(ỹu · z) = sign(ỹv · z)] + (−1)wu,v(1− Pr[sign(ỹu · z) = sign(ỹv · z)])
= wu,v(2 Pr[sign(ỹu · z) = sign(ỹv · z)]− 1).

Additionally, for every minus edge (u, v) ∈ E−,

E[Xu,v] = wu,v(1− Pr[sign(ỹu · z) = sign(ỹv · z)]) + (−1)wu,v Pr[sign(ỹu · z) = sign(ỹv · z)]
= wu,v(1− 2 Pr[sign(ỹu · z) = sign(ỹv · z)])

Consequently, we can use Lemma 10 to complete this proof. J

The following corollary is immediate from linearity of expectation.

I Corollary 12. Let XALG be the value of the output of Algorithm 1 . Then

E[XALG] =
∑

(u,v)∈E+

wu,v

(
1− 2arccos(ỹu · ỹv)

π

)
+

∑
(u,v)∈E−

wu,v

(
2arccos(ỹu · ỹv)

π
− 1
)
.

Proof. Follows directly from Lemma 11 and the linearity of expectation. J

The following lemma lies at the heart of the argument as it proves the existence of suitable
transformations f and g.

http://www.cambridge.org/de/knowledge/isbn/item5759340/?site_locale=de_DE
http://www.cambridge.org/de/knowledge/isbn/item5759340/?site_locale=de_DE
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I Lemma 13. There exist functions f, g : R −→ R and a constant c ∈ (0, 1) such that the
matrix Ã obtained in Algorithm 1 can be decomposed into unit vectors {ỹv}v∈V in Rn, and
these vectors satisfy that for all (u, v) ∈ E+,

1− 2arccos(ỹu · ỹv)
π

= c(2yu · yv − 1)

and for all (u, v) ∈ E−,

2arccos(ỹu · ỹv)
π

− 1 = c(1− 2yu · yv).

Proof. First, we want to choose a function f such that

1− 2arccos(f(yu · yv))
π

= c(2yu · yv − 1)

for all (u, v) ∈ E. This will satisfy the condition on plus edges and minus edges as well. The
constant c will be determined later. We choose the function f in the following way:

f(x) , cos
(π

2 (1− c(2x− 1))
)

= sin
(
cπx− cπ

2

)
= sin(cπx) cos(cπ2 )− cos(cπx) sin(cπ2 ),

where the last equality follows from the identity: sin(a− b) = sin(a) cos(b)− cos(a) sin(b) for
all a, b ∈ R. In addition, using the Taylor series expansion of sin(x) and cos(x), f can be
written as follows:

f(x) = cos(cπ2 )
∞∑
k=0

(−1)k(cπx)2k+1

(2k + 1)! − sin(cπ2 )
∞∑
k=0

(−1)k(cπx)2k

(2k)! .

Let fk be the coefficient of xk in the Taylor expansion of f . We define the following functions:

g(x) =
∞∑
k=0
|fk|xk, a(x) =

∞∑
k=0

√
|fk|xk, b(x) =

∞∑
k=0

sign(fk)
√
|fk|xk.

Let ak and bk be the coefficients of xk in the above series expansions of a and b. Recall that
our goal is to show that there exist vectors {ỹv}v∈V such that ỹu · ỹv = Ãu,v for all u, v ∈ V .
Given the set of vectors {yv}v∈V , we define the following vectors: if u ∈ V1 then

y′u = (a0, a1yu, a2(yu ⊗ yu), a3(yu ⊗ yu ⊗ yu), . . . )

and if u ∈ V2 then

y′u = (b0, b1yu, b2(yu ⊗ yu), b3(yu ⊗ yu ⊗ yu), . . . ).

We note that the k-times tensor product yu ⊗ yu ⊗ · · · ⊗ yu are in fact nk coordinates in
the vector y′u, as n is the dimension of the vector yu. For every vector v and integer k, we
denote by v⊗k the k-times tensor product of v with itself. It is a known fact, that for every
two vectors u, v and integer k, it holds that u⊗k · v⊗k = (u · v)k.

Thus, we can see that if u, v are not both in V1 or V2, that is, not in the same side of the
bipartite graph, then

y′u · y′v =
∞∑
k=0

akbk(y⊗ku · y⊗kv ) =
∞∑
k=0

akbk(yu · yv)k =
∞∑
k=0

fk(yu · yv)k = f(yu · yv).
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Otherwise, if u and v are in the same side of the graph, without loss of generality, let it be
V1, then:

y′u · y′v =
∞∑
k=0

a2
k(y⊗ku · y⊗kv ) =

∞∑
k=0
|fk|(yu · yv)k = g(yu · yv).

That is, it holds that Ãi,j = y′i ·y′j for all i, j ∈ V . Consequently, the matrix Ãi,j ∈ Rn×n is
the symmetric Gramian matrix of the vectors {y′v}v∈V , and can be decomposed in polynomial
time with Cholesky decomposition into Ã = Ỹ Ỹ T . The rows of Ỹ will be the desired vectors
{ỹv}v∈V .

To complete the proof we need to show that these vectors are unit vectors. That is, we
want to show that y′u · y′u = 1 for all u ∈ V . Since yu is a unit vector, we have that

y′u · y′u =
∞∑
k=0
|fk|(yu · yv)k = g(1).

Since c ∈ (0, 1), we have that cos( cπ2 ) ≥ 0 and sin( cπ2 ) ≥ 0. Therefore, we can write g in the
form:

g(x) =
∞∑
k=0
|ak|xk = sinh(cπx) cos(cπ2 ) + cosh(cπx) sin(cπ2 ).

Hence, we can choose c to be the solution of the equation
∞∑
k=0
|fk| = sinh(cπ) cos(cπ2 ) + cosh(cπ) sin(cπ2 ) = 1

in the range (0, 1), and the vectors {ỹv}v∈V will be unit vectors. The constant c turns out
to be at least 0.19829. J

Finally, we are ready to complete the analysis of Algorithm 1, which is given in the
following theorem.

I Theorem 14. There exists a polynomial-time 0.198-approximation algorithm for the
problem of MaxCorr on bipartite graphs that clusters the graph to at most 2 clusters.

Proof of Theorem 14. From Corollary 12, Lemma 13 and Lemma 3, it follows that:

E[XALG] =
∑

(u,v)∈E+

wu,v

(
1− 2arccos(ỹu · ỹv)

π

)
+

∑
(u,v)∈E−

wu,v

(
2arccos(ỹu · ỹv)

π
− 1
)

=
∑

(u,v)∈E+

wu,vc(2yu · yv − 1) +
∑

(u,v)∈E−
wu,vc(1− 2yu · yv)

= c ·OPTSDP ≥ c ·OPT,

where c is at least 0.19828. J

B Max-k-Corr: Adapting Algorithm 2

As previously mentioned, given k, we need to present the combination of clustering techniques
that will be used to approximate Max-k-Corr. Let us start by doing exactly this. In what
follows, it is important to note that given k: (1) the mixing probability p appearing below
depends on k; and (2) the transformations f and g also depend on k.



D. Katzelnick and R. Schwartz 49:17

First, when k = 3, with a probability of p we produce two clusters by a single random
hyperplane and with the remaining probability of 1−p we produce three clusters as described
in Algorithm 2 (use one random hyperplane to produce two clusters, choose uniformly at
random one of the two clusters, and further partition it using the second random hyperplane).
Second, when k ≥ 4, with a probability of p we produce two clusters by a single random
hyperplane and with the remaining probability of 1− p we produce four clusters by using
two random hyperplanes.

Let focus now on the analysis, specifically, how the transformations f and g are chosen.
First, when k = 3, the probability that two vertices u and v are in the same cluster equals:

p

(
1− arccos(ỹu · ỹv)

π

)
+ (1− p)

(
1
2

(
1− arccos(ỹu · ỹv)

π

)
+ 1

2

(
1− arccos(ỹu · ỹv)

π

)2
)

= 1
2(1 + p)

(
1− arccos(ỹu · ỹv)

π

)
+ 1

2(1− p)
(

1− arccos(ỹu · ỹv)
π

)2

.

Thus, we wish to find the optimal parameters p and c that will satisfy that:

2 Pr[u, v are in the same cluster]− 1 = c

(
4
3yu · yv −

1
3

)
and the transformed vectors remain unit vectors. Hence, the function f is chosen to be:

f(x) = cos

π
(√

9 (p2 − 2p+ 5)− 12c(p− 1)(4x− 1) + 3p− 9
)

6(p− 1)

 ,

and g is chosen accordingly. Performing the computation of the parameters, similarly to the
previous sections of the paper, we obtain that p ≈ 0.47 and c ≈ 0.397.

Second, when k ≥ 4, the probability that two vertices u and v are in the same cluster
equals:

p ·
(

1− arccos(ỹu · ỹv)
π

)
+ (1− p) ·

(
1− arccos(ỹu · ỹv)

π

)2
.

Thus, following the same footsteps as before we can conclude that f is chosen to be:

f(x) = cos

π
(√
− 2c(p−1)(2kx−k−2x+2)

k + p2 − 2p+ 2 + p− 2
)

2(p− 1)

 ,

and g is chosen accordingly. For every k ≥ 4 we can repeat the process and find the best
parameters p and c. Summarizing, we present these parameters (optimized numerically) for
several values of k (refer to Table 3).

Table 3 Approximation factors obtained by adapting Algorithm 1 and Algorithm 2 for Max-k-
Corr.

k 3 4 5 6 10

p 0.47 0.655 0.648 0.595 0.541
approximation 0.397 0.348 0.32 0.309 0.285

APPROX/RANDOM 2020
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We note that when k is large it is not clear why one should not use more than two
hyperplanes and obtain a clustering that might contain a large number of clusters. An
interesting phenomenon arises when we want to split the hypersphere to m slices. If
m ∈ (2t, 2t+1) for some integer t, then we can sample t random hyperplanes and split the
hypersphere into 2t slices. Then, we randomly choose m − 2t of the slices, and split each
one of them with a random hyperplane. The result is m slices, and the probability that two
vertices will be in the same cluster equals:

2t+1 −m
2t ·

(
1− arccos(ỹu · ỹv)

π

)t
+ m− 2t

2t ·
(

1− arccos(ỹu · ỹv)
π

)t+1
.

That is, this probability is a convex combination of the probabilities that two vertices will
be in the same cluster when we randomly chose t or t+ 1 hyperplanes. Since the analysis of
the algorithm is edge-wise, we can simply consider a distribution {pt}t>0,

∑∞
t=1 pt = 1, where

pt is the probability that we split the hypersphere into 2t slices using t random independent
hyperplanes. However, numeric calculations of splitting into more than four clusters did
not yield better approximation factors. Thus, for a fixed k, the behavior of the value of c
is unimodal, and reaches a peak when p1 + p2 = 1. Therefore, we focus on on algorithms
that pick one hyperplane with a probability of p and two hyperplanes with the remaining
probability of 1− p.

C The Integrality Gap of (1)

In this section, we wish to discuss the integrality gap of the relaxation presented in (1). We
consider the following simple example: a 4-cycle graph that has 3 plus edges and 1 minus
edge. We denote it by V = {1, 2, 3, 4} and E+ = {(1, 2), (2, 3), (3, 4)}, E− = {(1, 4)}. Clearly,
this graph is bipartite and the value of the optimal solution is 2. However, the optimum of
(1) is obtained when the vectors y1, y4 are orthogonal, and y1 · y2 = y2 · y3 = y3 · y4 =

√
3/2.

One possible solution will be y1 = (1, 0), y2 = (
√

3/2, 1/2), y3 = (1/2,
√

3/2), y4 = (0, 1), and
the value of this solution is 3

√
3 − 2. Therefore, (1) admits an integrality gap of at most

2
3
√

3−2 ≈ 0.62575.
In addition, we can give better bound on the integrality gap for general graphs. We

consider the simple 3-cycle graph, that has two plus edges, (1, 2), (2, 3), and one minus edge,
(1, 3). One can see that the value of the optimal integral solution is 1, whereas the fractional
optimum is obtained when y1 · y3 = 0 and y1 · y2 = y2 · y3 =

√
2/2. Therefore, the integrality

gap on general graphs is at most 1
2
√

2−1 ≈ 0.54691.
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