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Abstract
Given a matrix A and k ≥ 0, we study the problem of finding the k × k submatrix of A with the
maximum determinant in absolute value. This problem is motivated by the question of computing
the determinant-based lower bound of Lovász et al. [11] on hereditary discrepancy, which was later
shown to be an approximate upper bound as well [14]. The special case where k coincides with
one of the dimensions of A has been extensively studied. Nikolov [17] gave a 2O(k)-approximation
algorithm for this special case, matching known lower bounds; he also raised as an open problem
the question of designing approximation algorithms for the general case.

We make progress towards answering this question by giving the first efficient approximation
algorithm for general k× k subdeterminant maximization with an approximation ratio that depends
only on k. Our algorithm finds a kO(k)-approximate solution by performing a simple local search.
Our main technical contribution, enabling the analysis of the approximation ratio, is an extension of
Plücker relations for the Grassmannian, which may be of independent interest; Plücker relations are
quadratic polynomial equations involving the set of k × k subdeterminants of a k × n matrix. We
find an extension of these relations to k × k subdeterminants of general m× n matrices.
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1 Introduction

We consider the problem of finding the k × k submatrix of a given m× n matrix A that has
the largest determinant in absolute value:

maxdetk(A) := max
{
|det(AI,J)|

∣∣∣∣ I ∈ ([m]
k

)
, J ∈

(
[n]
k

)}
.

A well-studied special case of this problem asks to find the maximum absolute determinant of
a maximal submatrix. In other words, k is set to min{m,n}. This special case is known in the
literature as the largest volume simplex problem or simply (sub)determinant maximization
[10, 4, 17], and it was originally framed as the problem of finding a largest simplex in
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56:2 Plücker Relations and Subdeterminant Maximization

a convex body, a simplex-based analog of the John ellipsoid. The best approximation
algorithm for when k = min{m,n} was obtained by Nikolov [17] who gave an efficient
2O(k)-approximation algorithm, improving upon log(k)O(k)-approximation of [4], and the
earlier kO(k)-approximation of [10], and also matching known lower bounds [4].

More recently, a line of work has studied various generalizations of the largest volume
simplex problem, where the returned indices of the submatrix are required to satisfy a
matroid constraint [18, 2, 22, 6, 3, 12]. This line of work led to fruitful applications in several
problems in combinatorial optimization: experimental design, network design, fair allocation,
column subset selection, and more (see [12] for the history and applications).

Despite the extensive study of variants of the special case k = min{m,n}, little has
been done for the general case where k < min{m,n}. A key motivation behind studying
the general case comes from discrepancy theory, namely the problem of computing the
determinant lower bound on hereditary discrepancy, due to Lovász et al. [11]. This quantity
is defined formally as

detlb(A) := max
{

k
√

maxdetk(A)
∣∣∣ k ≥ 0

}
.

Matoušek [14] showed, by completing earlier results of Lovász et al. [11], that detlb(A) is a
polylogarithmic approximation to the hereditary discrepancy of A. This raised the question
of efficiently approximating detlb(A). Nikolov and Talwar [19] showed how to approximately
compute the hereditary discrepancy by bypassing detlb(A) and instead computing a quantity
known as γ2(A); they showed that γ2(A) is a logarithmic approximation of detlb(A) [15] and
a polylogarithmic approximation of hereditary discrepancy. But efficient O(1)-approximation
of detlb remains open. Nikolov [17] who obtained the best approximation algorithm for
the largest volume simplex problem, posed this as an open problem. Such a result has the
potential to improve the approximation factor for hereditary discrepancy, as the worst known
gap between detlb and hereditary discrepancy is only logarithmic [21, 14].

As a step towards answering this question, we show how to approximate maxdetk(A)
efficiently, with an approximation factor that depends only on k.

I Theorem 1. There is a polynomial time algorithm that on input A ∈ Rm×n, outputs sets
of indices I ∈

([m]
k

)
and J ∈

([n]
k

)
guaranteeing

kO(k) · |det(AI,J)| ≥ maxdetk(A).

To the best of our knowledge, this is the first nontrivial approximation algorithm for maxdetk.
Our algorithm is based on a simple local search procedure, where in each iteration indices
of up to two rows and/or columns are replaced by new ones, until an approximate local
maximum is found.

Local search and greedy algorithms have been studied for the related problems of largest
volume simplex, D-optimal design, and maximum a posteriori inference in (constrained)
determinantal point processes [7, 9, 13, 8]. A key difference in our work, compared to prior
works, is that we need to allow two changes per iteration. It is easy to construct examples
where replacing only one row or one column at a time can get us stuck in an arbitrarily bad
local optimum. For example, consider a diagonal matrix:

A :=


d1 0 . . . 0
0 d2 . . . 0
...

...
. . .

...
0 0 . . . dn
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Any principal k × k submatrix is a local optimum. Changing any row or column results in a
0 determinant. But obviously, dis can be planted in a way that some of the local optima
become arbitrarily bad. On the other hand, allowing simultaneous change of a row and a
column lets us move between various subsets of dis, and escape the bad local optima.

1.1 Techniques
Despite the simplicity of applying local search to combinatorial optimization problems, it
is often difficult to prove approximation guarantees for its performance. We take a page
from the study of matroids and discrete convexity [16], and prove a quantitative exchange
inequality for subdeterminants. We will formally show that if (I, J) and (I∗, J∗) are two
sets of indices determining k × k submatrices, one can swap at most two elements in total
between I and I∗, and J and J∗, and obtain

|det(AI,J)| · |det(AI∗,J∗)| ≤ kO(1) · |det(AI∆dI,J∆dJ)| · |det(AI∗∆dI,J∆dJ)| (1)

for dI ⊆ I∆I∗, dJ ⊆ J∆J∗ of total size |dI|+ |dJ | ∈ {2, 4}. This can be viewed as a form of
discrete log-concavity for the determinant function on submatrices, and allows us to bound
the approximation ratio of a local maximum.

Exchange properties have a long history in the theory of matroids, valuated matroids, and
M-concavity [16]. Besides their use in proving the performance of greedy and local search
algorithms for optimization problems, they have also recently found applications in sampling
problems [1].

In order to prove the exchange inequality, we find an extension of Plücker relations to
k × k subdeterminants of m × n matrices. The relations are in the form of an identity
expressing the l.h.s. of Equation (1) as a linear combination of the possible values, for
different choices of dI, dJ on the r.h.s. Classical Plücker relations establish exactly this
form of identity in the case of k = min{m,n}, and have been known to be connected to
variants of matroids and exchange properties [5], although not quantitative exchanges of the
approximate multiplicative type. Our key technical contribution is the establishment of a
variant of these identities when k < min{m,n}.

Several variants of Plücker relations have been studied in the literature. For example
Dress and Wenzel [5] extended the Plücker relations to Pfaffians of skew-symmetric matrices.
Their extension involves submatrices of varying sizes, and does not immediately yield a
relationship involving just k×k submatrices. Both our approximate exchange inequality, and
our extension of Plücker relations appear to be novel and might be of independent interest.

2 Preliminaries

We use the notation [n] = {1, . . . , n} for integers n. We denote the family of subsets of size
k from [n] by

([n]
k

)
. We use S∆T = (S \ T ) ∪ (T \ S) to denote the symmetric set difference

between S and T . When m,n, k are clear from context, we denote by I the family of valid
submatrix index pairs for k × k submatrices

I :=
(

[m]
k

)
×
(

[n]
k

)
.

For a pair S = (Srow, Scol) ∈ I, and a matrix A ∈ Rm×n, we denote by AS = ASrow,Scol

the submatrix of A with rows and columns indexed by Srow, Scol respectively. We extend set
operations, such as ∆ to pairs of sets denoting row and column indices in the natural way.

APPROX/RANDOM 2020



56:4 Plücker Relations and Subdeterminant Maximization

For example for S = (Srow, Scol) and U = (Urow, Ucol) we let S∆U = (Srow∆Urow, Scol∆Ucol).
Similarly we let |S| = |Srow| + |Scol|. The reader might wish to think of pairs of row and
column index sets as one single set, with the caveat that row indices are distinguished from
column indices.

Throughout the paper, we keep the input matrix A ∈ Rm×n for subdeterminant
maximization fixed. We also assume, w.l.o.g. that m ≤ n. For S = (Srow, Scol) ∈ I,
we use [S] = [Srow, Scol] and [AS ] = [ASrow,Scol ], interchangeably as a shorthand for
det(AS) = det(ASrow,Scol).

In Section 6, we use the following famous formula for determinants of rectangular matrix
products.

I Fact 2 (Cauchy-Binet Formula). Let A ∈ Rm×n and B ∈ Rn×m. Then

det(AB) =
∑

S∈([n]
m )

det(A[m],S) det(BS,[m]).

For indices S = (Srow, Scol), T = (Trow, Tcol) ∈ I, let

d(S, T ) := |S∆T |/2 = |Srow∆Trow|/2 + |Scol∆Tcol|/2

be the distance between S and T .
Armed with this distance, we can define the neighborhoods of a submatrix indexed by

S ∈ I:

I Definition 3. For r ≥ 0 let the r-neighborhood of S ∈ I be

Nr(S) := {T ∈ I | d(S, T ) ≤ r}.

3 Subdeterminant Maximization via Local Search

In this section we prove our main result, Theorem 1. Our strategy is to use a simple local
search that starts with a submatrix indexed by S ∈ I, and myopically finds better and better
solutions by searching 2-neighborhoods until no more improvement can be found.

To make sure that our algorithm terminates within polynomial time, we will only take
improvements that increase the magnitude of the determinant by at least a lower multiplicative
threshold; for our purposes, even a factor 2 improvement works. We will then show how to
find a good start, needed to bound the number of local search steps, by bootstrapping with
the help of a crude approximation algorithm.

We will find a locally approximately maximum solution as defined below.

I Definition 4. For α > 0, we say S ∈ I is an (r, α)-local maximum if

|det(AS)| ≥ α|det(AT )|

for all T ∈ Nr(S).

Algorithm 1 finds this locally approximate maximum. It starts with some arbitrary
solution S0 ∈ I, and iteratively finds α-factor improvements within the 2-neighborhood, until
no more improvement can be found.

It is immediate to see that when Algorithm 1 terminates, the output is a (r, α)-local
maximum.

I Proposition 5. The output of Algorithm 1 is a (2, α)-local maximum.
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Algorithm 1 α-Local Search.
Let S ← S0
while there is T ∈ N2(S) such that α|det(AT )| > |det(AS)| do

Let S ← T

end
Output S = (Srow, Scol)

The most challenging part of local search algorithms is proving that local (approximate)
optimality implies global (approximate) optimality. We appeal to approximate exchange
properties that we prove for k × k subdeterminants, and show the following statement in
Section 4.

I Lemma 6. Suppose that S ∈ I is a (2, α)-local maximum. Then S is a (k/α)O(k)-
approximate global optimum:

(k/α)O(k) · |det(AS)| ≥ maxdetk(A).

We prove the remaining part of Theorem 1, that with a suitable choice for S0, Algorithm 1
runs in polynomial time.

I Proposition 7. The number of steps taken by Algorithm 1 starting from S0 is at most

log1/α

(
maxdetk(A)
|det(AS0)|

)
.

Proof. Each iteration improves |det(AS)| by a factor of 1/α. On the other hand, this value
can never exceed maxdetk(A), and it starts as |det(AS0)|. J

In Section 6, we show how to obtain a good S0 by a crude algorithm, that appeals to known
results for the case of k = min{m,n}. We will formally show the following.

I Lemma 8. There is a polynomial time algorithm that returns S0 with

(n+m)O(k) · |det(AS0)| ≥ maxdetk(A).

Having all the ingredients for Theorem 1, we finish its proof.

Proof of Theorem 1. We set α to be some constant below 1, say 1/2. We first apply
Lemma 8 to obtain a good starting point S0. If det(AS0) = 0, then maxdetk(A) = 0, and
there is nothing to be done. Otherwise, we run Algorithm 1 with α = 1/2. The output of
the algorithm, S, is a (2, 1/2)-local maximum, which by Lemma 6, is a (2k)O(k) = kO(k)-
approximate solution.

Each iteration of Algorithm 1 clearly runs in polynomial time, since N2(S) has at most
O(k2(m+n)2) elements. So we just need to bound the number of iterations. But by Lemma 8
and Proposition 7, the number of steps is at most

log
(

(n+m)O(k)
)

= O(k log(m+ n)). J

I Remark 9. The approximation factor of kO(k) is the best possible for local search, even
when we consider (c, α)-local maxima for any constant number of row/column swaps c ∈ Z>0.
This is true even for the special case of k = min{m,n}. To see why, consider the maxdetk(A)
problem on input A ∈ Rk×2k defined by the block form

A =
[
Ik c−

1
2Hk

]

APPROX/RANDOM 2020



56:6 Plücker Relations and Subdeterminant Maximization

where Hk ∈ Rk×k is the Hadamard matrix, a matrix with ±1 entries whose columns are
orthogonal to each other. Observe that A[k],[k] = Ik is a (c, 1)-local maximum, since for any
(I, J) ∈ Nc([k], [k]), after rearranging rows and columns, we can write

|det(AI,J)| =
∣∣∣∣det

[
Ik−c ?

0 c−
1
2D

]∣∣∣∣ = |det(c− 1
2D)| ≤ 1,

where D ∈ {±1}c×c, and |det(D)| ≤ c
c
2 by the Hadamard inequality. However the global

optimum is achieved by the Hadamard matrix part of A. Letting J∗ = {k + 1, · · · , 2k},

∣∣det(A[n],J∗)
∣∣ =

∣∣∣det(c− 1
2Hk)

∣∣∣ =
(
k

c

) k
2 ∣∣det(A[k],[k])

∣∣.
In other words, the local optimum is worse than the global optimum by a factor of (k/c)k/2.

4 Approximate Exchange and Local to Global Optimality

Here we prove Lemma 6. Our main tool will be an exchange property, that we state below.
First we define the notion of an r-exchange.

I Definition 10. Let S, T ∈ I denote two submatrices. We call U = (Urow, Ucol) an
r-exchange between S and T , if S∆U and T∆U are still indices of k × k submatrices,
U ⊆ S∆T , and |U | = 2r. Note that U simply represents the exchange of r pairs of rows
and/or columns between S and T . We denote by E(S, T ), the set of all 1-exchanges and
2-exchanges between S and T .

Now we are ready to state the key ingredient for proving local to global optimality.

I Theorem 11 (Exchange Property). Let S, T ∈ I be indices of two k × k submatrices, and
assume that S 6= T . Then

|det(AS)| · |det(AT )| ≤ O(k2) max{|det(AS∆U )| · |det(AT∆U )| | U ∈ E(S, T )}.

Note that Theorem 11 can be thought of a form of discrete log-concavity for subdeter-
minants. Starting from submatrices S, T , we move to two “nearby” submatrices S∆U and
T∆U that are closer to T and S respectively, and then we get that up to some error terms,
the average log of the determinant goes up.

We will prove Theorem 11 in Section 5 by appealing to a new extension of Plücker
relations, which is an identity between subdeterminants. Here we show how to leverage
Theorem 11 to show global approximate optimality from local approximate optimality. Our
strategy is to start from S being the locally optimal solution and T being the globally optimal
solution, and to gradually move from T to S, accumulating at most a (k/α)O(k) loss.

Proof of Lemma 6 using Theorem 11. Let S ∈ I be a (2, α)-local maximum and let L ∈ I
be the indices of a submatrix that has the highest subdeterminant in magnitude. We first
prove the following claim.

B Claim 12. For any T ∈ I, there exists W ∈ I such that d(S,W ) ≤ max(0, d(S, T ) − 1)
and

|det(AT )| ≤ O(k2/α) · |det(AW )|.
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Proof of Claim 12. If T = S then the claim is trivially true, since we can take W = S.
Assume T 6= S. By Theorem 11, there exists U ∈ E(S, T ) such that

|det(AS)| · |det(AT )| ≤ O(k2) · |det(AS∆U )| · |det(AT∆U )|

≤ O(k2) · |det(AS)|
α

· |det(AT∆U )|

where the last inequality follows from the definition of (2, α)-local maximum.
Setting W = T∆U and dividing both sides by |det(AS)| gives the desired inequality. C

Note that initially d(S,L) ≤ 2k. We can iteratively apply Claim 12 for up to 2k times, and
obtain W ∈ I such that |det(AL)| ≤ O(k2/α)2k|det(AW )| and

d(S,W ) ≤ max(0, d(S,L)− 2k) = 0.

The latter condition implies S = W , and we are done. J

5 An Extension of Plücker Relations

In this section, we prove Theorem 11 by proving an extension of the Plücker relations. These
are identities relating the k × k subdeterminants of a matrix. Theorem 11 will be derived
from applying the triangle inequality to these identities.

To give some intuition, let us demonstrate why the regular Plücker relations, imply an
exchange property when k = min{m,n};

5.1 Regular Plücker Relations and Exchange
W.l.o.g., let us take k = m and assume n ≥ m. Given any subsets S, T ∈

([n]
m

)
, the classical

Plücker relation (see, e.g., [5]) states that, for any fixed j ∈ T \ S

det(A[m],S) det(A[m],T ) =
∑
i∈S\T

δij det(A[m],S∆{i,j}) · det(A[m],T∆{i,j}),

where δij ∈ {±1} is a sign determined by the indices i and j. The triangle inequality then
implies the following exchange property

|det(A[m],S)| · |det(A[m],T )| ≤
k ·max

{
|det(A[m],S∆{i,j})| · |det(A[m],T∆{i,j})|

∣∣ i ∈ S \ T, j ∈ T \ S}.
This is an analog of Theorem 11, but with just one exchange between S and T . As we saw
before, we cannot hope for just one exchange in the general case of k < min{m,n}. But we
manage to prove an extended form of Plücker relations and, by appealing to the triangle
inequality, prove Theorem 11.

5.2 Extended Plücker Relations
In this subsection, we state and prove a “two-dimensional” extension of Plücker relations. In
trying to find this relationship, we did a bit of guesswork; we knew we were looking for an
identity involving only neighbors of the submatrices S and T , to make sure we can extract
an exchange inequality. By running computer algebra systems on small values of k, we
discovered the correct form of the identity, and then proceeded to prove it.

APPROX/RANDOM 2020



56:8 Plücker Relations and Subdeterminant Maximization

Consider S = (Srow, Scol), T = (Trow, Tcol) ∈ I. Note that only the entries in AS∪T
matter and that permuting the rows and/or columns in S ∪ T will preserve determinants of
k × k minors up to sign.

We first show a Plücker relation for the case when S and T are disjoint, i.e., Srow∩Trow =
Scol ∩ Tcol = ∅. W.l.o.g., we can assume that

Srow = Scol = {1, . . . , k} and Trow = Tcol = {k + 1, · · · , 2k}, (2)

and that A has the following block form:

A =
[
C V

U D
.

]
Note that AS = C and AT = D.

We adopt a few notations for this section.
We use [Urow, Ucol] to denote det(AUrow,Ucol).
Matrix entries are denoted by lowercase letter. Submatrices are denoted by uppercase
letter. For example, we denote entries of submatrix C by ci,j for i ∈ Srow, j ∈ Scol.
For a set L and i ∈ L we use L− i and L−i as short hand for L \ {i}. Let rL(i) denote
the rank of i in L, i.e., the number of i′ ∈ L that are smaller than i.
For Urow ⊆ Srow∆Trow, Ucol ⊆ Scol∆Tcol, let δU = (−1)

∑
i∈Urow

r∗(i)+
∑

j∈Ucol
r∗(j)

, where,
with some abuse of notation we use r∗ for both row indices and column indices, and let

r∗(i) =
{
rSrow(i) if i ∈ Srow

rTrow(i) if i ∈ Trow
, r∗(j) =

{
rScol(j) if j ∈ Scol

rTcol(j) if j ∈ Tcol
.

I Lemma 13 (Extended Plücker Relation in the Disjoint Case). Consider S = (Srow, Scol), T =
(Trow, Tcol) as in Equation (2).

Let Ω := (S, T ). Define

s1(Ω) =
∑

i,j,i′,j′

δ{i,i
′},{j,j′}[Srow∆{i, i′}, Scol∆{j, j′}]× [Trow∆{i, i′}, Tcol∆{j, j′}]

s2(Ω) = (−1)k
∑
i,i′

δ{i,i
′},∅[Srow∆{i, i′}, Scol]× [Trow∆{i, i′}, Tcol]

s3(Ω) =
∑

i<h,i′<h′

δ{i,i
′,h,h′},∅[Srow∆{i, h, i′, h′}, Scol]× [Trow∆{i, h, i′, h′}, Tcol], (3)

where in above summations, i, h ∈ Srow, i
′, h′ ∈ Trow, j ∈ Scol, j

′ ∈ Tcol.

Let si := si(Ω). Then, we have the following relation

s1 − 2(k − 1)s2 − 4s3 − k2[Srow, Scol][Trow, Tcol] = 0 (4)

The proof is elementary; we only use well-known identities about the determinant and
perform some algebraic manipulation.

Proof of Lemma 13. Expanding [Srow∆{i, i′}, Scol∆{j, j′}] along row i′, we get:

[Srow∆{i, i′}, Scol∆{j, j′}] =

di′,j′ [Srow − i, Scol − j] +
∑

`∈Scol\{j}

(−1)
k+r

S
−j
col

(`)
ui′,`[Srow − i, Scol − j − `+ j′].
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Expanding [Srow − i, Scol − j − `+ j′] along column j′, we get:

[Srow − i, Scol − j − `+ j′] =
∑

h∈Srow\{i}

(−1)k−1+r
S
−i
row

(h)
vk,j′ [Srow − i− h, Scol − j − `].

Thus

[Srow∆{i, i′}, Scol∆{j, j′}] =

di′,j′ [Srow − i, Scol − j]−
∑
h,`

(−1)
r

S
−i
row

(h)+r
S
−j
col

(`)
ui′,`vk,j′ [Srow − i− h, Scol − j − `].

Similarly,

[Trow∆{i, i′}, Tcol∆{j, j′}] =

ci,j [Trow− i′, Tcol− j′]−
∑
h′,`′

(−1)
r

T
−i′
row

(h′)+r
T
−j′
col

(`′)
vi,`′uh′,j [Trow− i′− h′, Tcol− j′− `′]

Now, consider [Srow∆{i, i′}, Scol∆{j, j′}]× [Trow∆{i, i′}, Tcol∆{j, j′}] as a multivariate poly-
nomial p in variables ~u = {u·,·}, ~v = {v·,·}. For s ∈ {0, 1, 2} let pi,i′,j,j′s denote the sum
over monomials of p which have degree s in ~u and in ~v. We will omit the superscript when
appropriate.

We further decompose p1 into p1 = −(p1A + p1B), where

p1A =
∑
h,`

(−1)
r

S
−i
row

(h)+r
S
−j
col

(`)
ci,j [Trow − i′, Tcol − j′]ui′,`vh,j′ [Srow − i− h, Scol − j − `],

and

p1B =
∑
h′,`′

(−1)
r

T
−i′
row

(h′)+r
T
−j′
col

(`′)
di′,j′ [Srow− i, Scol− j]vi,`′uh′,j [Trow− i′−h′, Tcol− j′− `′].

B Claim 14. We have∑
δ{i,i

′},{j,j′}pi,i
′,j,j′

1 = 2(k−1)(−1)k
∑
h,i′

(−1)h+i′ [Srow−h+i′, Scol]·[Trow−i′+h, Tcol] (5)

Proof. In
∑
i,j δ
{i,i′},{j,j′}pi,i

′,j,j′

1A we consider the sum of all terms with the same i′, j′, h, l.
Note that rS−j

col
(`) + rScol(j) = rScol(`) + rS−`

col
(j) + 1 mod 2. This is because,

rS−j
col

(`) =
{
rScol(`) if ` < j

rScol(`)− 1 if ` > j
and rS−`

col
(j) =

{
rScol(j)− 1 if ` < j

rScol(j) if ` > j
.

Similarly, rS−i
row

(h) + rSrow(i) = rSrow(h) + rS−h
row

(i) + 1 mod 2. Thus, this sum is exactly,

δ{i
′,h},{j′,`}ui′,`vh,j′ [Trow − i′, Tcol − j′]×∑

i 6=h,j 6=`
(−1)

r
S
−`
col

(j)+r
S
−h
row

(i)
ci,j [Srow − i− h, Scol − j − `] =

(k − 1)δ{i
′,h},{j′,`}ui′,`vh,j′ [Trow − i′, Tcol − j′][Srow − h, Scol − `],

Indeed, for each i ∈ Srow − h, expanding [Srow − h, Scol − `] along row i gives∑
j 6=`

(−1)
r

S
−`
col

(j)+r
S
−h
row

(i)
ci,j [Srow − i− h, Scol − j − `].
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Taking sum over i ∈ Srow − h gives the above equality.
Thus∑

δ{i,i
′},{j,j′}pi,i

′,j,j′

1A

= (k − 1)
∑

i′,j′,h,`

δ{i
′,h},{j′,`}ui′,`vh,j′ [Trow − i′, Tcol − j′][Srow − h, Scol − `]

= −(k − 1)(−1)k
∑
h,i′

δ{i
′,h},∅

(
(
∑
`

(−1)h+rScol (`)ui′,`[Srow − h, Scol − `])×

(
∑
j′

(−1)1+rTcol (j
′)vh,j′ [Trow − i′, Tcol − j′])

)
= −(k − 1)(−1)k

∑
h,i′

δ{i
′,h},∅[Srow − h+ i′, Scol][Trow − i′ + h, Tcol]

Similarly,∑
p1B = −(k − 1)(−1)k

∑
i,h′

δ{i
′,h}[Srow − i+ h′, Scol][Trow − h′ + i, Tcol] C

Next, we show

B Claim 15.∑
i,j,i′,j′

δ{i,i
′},{j,j′}pi,i

′,j,j′

2 = 4
∑

i<h,i′<h′

[Srow−i−h+i′+h′, Scol][Trow−i′−h′+i+h, Tcol] (6)

Proof. Recall that pi,i
′,j,j′

2 equals∑
h,`,h′,`′

(−1)ω(h,h′,`,`′)ui′,`vi,`′vh,j′uh′,j [Srow \{i, h}, Scol \{j, `}][Trow \{i′, h′}, Tcol \{j′, `′}],

where ω(h, h′, `, `′) = rS−i
row

(h) + rS−j
col

(`) + r
T−i′

row
(h′) + r

T−j′
col

(`′). Taking sum and rearranging
terms, we have∑

i,j,i′,j′

δ{i,i
′},{j,j′}pi,i

′,j,j′

2 =

∑
i,i′,h,h′

(−1)
rSrow (i)+rTrow (i′)+r

S
−i
row

(h)+r
T
−i′
row

(h′)
Xi,i′,h,h′ × Yi,i′,h,h′

where

Xi,i′,h,h′ =
∑
j,`

(−1)
r

S
−j
col

(`)+rScol (j)
ui′,`uh′,j [Srow − i− h, Scol − j − `]

Yi,i′,h,h′ =
∑
j′,`′

(−1)
r

T
−j′
col

(`′)+rTcol (j
′)
vi,`′vh,j′ [Trow − i′ − h′, Tcol − j′ − `′]

Expanding [Srow−i−h+i′+h′, Scol] along row h′ then i′, we get that [Srow∆{i, i′, h, h′}, Scol]

=
∑
j

(−1)rScol (j)+k+1{i′>h′}uh′,j [Srow − i− h+ i′, Scol − j]

=
∑
j,`

(−1)rScol (j)+k+1{i′>h′}(−1)
r

S
−j
col

(`)+k−1
ui′,`uh′,j [Srow − i− h, Scol − j − `]

= (−1)1{i
′<h′}Xi,i′,h,h′
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Similarly, Yi,i′,h,h′ = (−1)1{i<h}[Trow∆{i, i′, h, h′}, Tcol]. Note that 1{i < h} + rSrow(i) +
rS−i

row
(h) ≡ 0 (mod 2). A similar equation holds for i′, h′. Substituting back in we get the

desired equation∑
i,j,i′,j′

δ{i,i
′},{j,j′}pi,i

′,j,j′

2 = 4
∑

i<h,i′<h′

[Srow∆{i, i′, h, h′}, Scol][Trow∆{i, i′, h, h′}, Tcol] C

Lastly, we compute
∑
i,j,i′,j′ δ

{i,i′},{j,j′}pi,j,i
′,j′

0 . By rearranging terms and using the determi-
nant expansion for [Srow, Scol] and [Trow, Tcol], we get:∑

i,j,i′,j′

δ{i,i
′},{j,j′}pi,j,i

′,j′

0

=
∑

δ{i,i
′},{j,j′}(di′,j′ [Srow − i, Scol − j]ci,j [Trow − i′, Tcol − j′])

=

∑
i,j

(−1)rSrow (i)+rScol (j)ci,j [Srow − i, Scol − j]

×
∑
i′,j′

(−1)rTrow (i′)+rTcol (j
′)di′,j′ [Trow − i′, Tcol − j′]


= (t[Srow, Scol])(t[Trow, Tcol]) (7)

Substituting equations Equations (5) to (7) back into s1 we get Equation (4). J

Now consider the general case when Srow, Trow and Scol, Tcol are not necessarily disjoint.
We will create a new larger matrix A with a new set of row and column indices. In particular
we create new disjoint subsets S∗row, T

∗
row and S∗col, T

∗
col with copied versions of common rows

and columns. We use Lemma 13 for S∗row, T
∗
row, S

∗
col, T

∗
col, then argue that any nonzero terms

in Equation (4) must be equal to [Srow∆Urow, Scol∆Ucol][Trow∆Urow, Tcol∆Ucol] for some
U ⊆ Srow∆Trow, Ucol ⊆ Scol∆Tcol.

Let r := |Srow ∩ Trow|, c := |Scol ∩ Tcol|. W.l.o.g., we can assume

Srow = {1, · · · , r, r + 1, · · · , k}, Trow = {1, · · · , r, k + (r + 1), · · · , 2k},
Scol = {1, · · · , c, c+ 1, · · · , k}, Tcol = {1, · · · , c, k + (c+ 1), · · · , 2k}. (8)

For i ∈ [r], set row k+ i to be identical to row i. For j ∈ [c], set column k+ j to be identical
to row j.

Let S∗row := Srow, S
∗
col := Scol, T

∗
row = {k + 1, · · · , 2k}, T ∗col = {k + 1, · · · , 2k}. Clearly,

S∗row ∩ T ∗row = S∗col ∩ T ∗col = ∅.
Let Ω∗ = (S∗, T ∗) and s∗i := si(Ω∗) as in Equation (3). We first prove the following

claims on the structure of nonzero terms in s∗1, s∗2, s∗3.

B Claim 16. Consider Urow ⊆ S∗row, U
′
row ⊆ T ∗row of the same cardinality. Let U row =

Urow ∪ U ′row. Consider sets V,W of the same cardinality t that partition S∗col ∪ T ∗col.

1. If there exists i ∈ Urow ∩ [r] such that k + i 6∈ U ′row then

[S∗row∆U row, V ][T ∗row∆U row,W ] = 0.

2. If there exists k + i ∈ U ′row ∩ {k + 1, · · · , k + r} such that i 6∈ Urow then

[S∗row∆U row, V ][T ∗row∆U row,W ] = 0.
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B Claim 17. Consider Ucol ⊆ S∗col, U
′
col ⊆ T ∗col of the same cardinality. Let U col = Ucol∪U ′col.

Consider sets V,W of the same cardinality t that partition S∗row ∪ T ∗row.

1. If there exists i ∈ Ucol ∩ [c] such that k + i 6∈ U ′col then

[V, S∗col∆U col][W,T ∗col∆U col] = 0.

2. If there exists k + i ∈ U ′col ∩ {k + 1, · · · , k + c} such that i 6∈ Ucol then

[V, S∗col∆U col][W,T ∗col∆U col] = 0.

We prove Claim 16. The argument for Claim 17 is similar.

Proof of Claim 16. We prove the first statement. The second one follows by a similar argu-
ment, since the role of Urow, U

′
row are symmetric.

Suppose there exists i ∈ Urow ∩ [c] such that k+ i 6∈ U ′row. Then T ∗row∆U row contains both
rows i and k + i, which are identical by our construction, thus [T ∗row∆U row,W ] = 0. C

I Lemma 18. Consider S = (Srow, Scol), T = (Trow, Tcol) as in Equation (8).
Let Ω := (S, T ), r := |Srow ∩ Trow|, c := |Scol ∩ Tcol|.
Define

s1(Ω) = (−1)r+c
∑

i,j,i′,j′

δ{i,i
′},{j,j′}[Srow∆{i, i′}, Scol∆{j, j′}]× [Trow∆{i, i′}, Tcol∆{j, j′}]

s2(Ω) = (−1)k−r
∑
i,i′

δ{i,i
′},∅[Srow∆{i, i′}, Scol][Trow∆{i, i′}, Tcol]

ŝ2(Ω) = (−1)k−c
∑
j,j′

δ∅,{j,j
′}[Srow, Scol∆{j, j′}][Trow, Tcol∆{j, j′}]

s3(Ω) =
∑

i<h,i′<h′

δ{i,h,i
′,h′},∅[Srow∆{i, h, i′, h′}, Scol][Trow∆{i, h, i′, h′}, Tcol]

ŝ3(Ω) =
∑

j<`,j′<`′

δ∅,{j,`,j
′,`′}[Srow, Scol∆{j, `, j′, `′}][Trow, Tcol∆{j, `, j′, `′}],

(9)

where in above summations, j, ` ∈ Scol \ Tcol; j′, `′ ∈ Tcol \ Scol; i, h ∈ Srow \ Trow; i′, h′ ∈
Trow \ Srow.

Let si := si(Ω). we have the following relations.

(k2 − 2(k − 1)r + 4
(
r

2

)
− rc)[Srow, Scol][Trow, Tcol] = s1 − rŝ2 − (2(k − 1) + c− 4r)s2 − 4s3

(k2 − 2(k − 1)c+ 4
(
c

2

)
− rc)[Srow, Scol][Trow, Tcol] = s1 − cs2 − (2(k − 1) + r − 4c)ŝ2 − 4ŝ3

(10)

Summing the two equations above, we get:

((k − r)2 + (k − c)2 + (r − c)2)[Srow, Scol][Trow, Tcol] =
2s1 − 2(k − 1 + r − 2c)ŝ2 − 2(k − 1 + c− 2r)s2 − 4(s3 + ŝ3) (11)

Proof. We prove the first statement. The second one can be obtained by switching the role
of columns and rows. Consider s∗1, and let

Xi,i′,j,j′ := δ{i,i
′},{j,j′}[S∗row∆{i, i′}, S∗col∆{j, j′}][T ∗row∆{i, i′}, T ∗col∆{j, j′}].
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By Claim 16 and Claim 17, any nonzero term Xi,i′,j,j′ in s∗1 must belong to one of the
following cases:
1. i ∈ [r], i′ = k+ i, j 6∈ [c], j′ 6∈ {k+ 1, · · · , k+ c} : Note that j ∈ Scol \ Tcol, j

′ ∈ Tcol \ Scol.

Obviously δ{i,i′},{j,j′} = δ∅,{j,j
′}.

Since rows k + i and i are identical,

[S∗row∆{i, i′}, S∗col∆{j, j′}] = (−1)k+i[S∗row, S
∗
col∆{j, j′}] = (−1)k+i[Srow, Scol∆{j, j′}],

and

[T ∗row∆{i, i′}, T ∗col∆{j, j′}] = (−1)1+i[T ∗row, T
∗
col∆{j, j′}] = (−1)1+i+c[Trow, Tcol∆{j, j′}].

Therefore,

Xi,i′,j,j′ = (−1)k−c+1δ∅,{j,j
′}[Srow, Scol∆{j, j′}][Trow, Tcol{j, j′}].

2. j ∈ [c], j′ = k + j, i 6∈ [r], i′ 6∈ {k + 1, · · · , k + r} : similarly,

Xi,i′,j,j′ = (−1)k−r+1δ{i,i
′},∅[Srow∆{i, i′}, Scol][Trow∆{i, i′}, Tcol].

3. i ∈ [r], j ∈ [c], i′ = k + i, j′ = k + j: Xi,i′,j,j′ = [Srow, Scol][Trow, Tcol].
4. i ∈ Srow \ Trow, i

′ ∈ Trow \ Srow, j ∈ j ∈ Scol \ Tcol, j
′ ∈ Tcol \ Scol, then

Xi,i′,j,j′ = δ{i,i
′},{j,j′}[S∗row∆{i, i′}, S∗col∆{j, j′}][T ∗row∆{i, i′}, T ∗col∆{j, j′}]

= (−1)r+cδ{i,i
′},{j,j′}[Srow∆{i, i′}, Scol∆{j, j′}][Trow∆{i, i′}, Tcol∆{j, j′}]

We can rewrite

s∗1 = s1 + rc[Srow, Scol][Trow, Tcol]− (r ŝ2 + c s2)

By a similar argument

s∗2 = s2 − r[Srow, Scol][Trow, Tcol]

s∗3 = s3 +
(
r

2

)
[Srow, Scol][Trow, Tcol]− rs2

Substitute into Equation (4) we get:

(k2 − 2(k − 1)r + 4
(
r

2

)
− rc)[Srow, Scol][Trow, Tcol] =

s1 − rŝ2 − (2(k − 1) + c− 4r)s2 − 4s3 J

5.3 From the Extended Plücker Relations to Exchange
Armed with the extended Plücker relations, we are now ready to prove Theorem 11.

Proof of Theorem 11. We can permute the rows and columns of A so that Srow, Scol, Trow,
and Tcol are as in Equation (8), while preserving the absolute value of determinant of minors.
W.l.o.g., we can assume the permutation has already been applied; thus Equation (11) holds.

Let r = |Srow ∩ Trow|, c = |Scol ∩ Tcol|.
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With Ω = (S, T ), we define

EΩ
1 : = {({i, i′}, {j, j′}) | i ∈ Srow \ Trow, i

′ ∈ Trow \ Srow, j ∈ Scol \ Tcol, j
′ ∈ Tcol \ Scol}

EΩ
2 : = {({i, i′}, ∅) | i ∈ Srow \ Trow, i

′ ∈ Trow \ Srow}

ÊΩ
2 : = {(∅, {j, j′}) | j ∈ Scol \ Tcol, j

′ ∈ Tcol \ Scol}
EΩ

3 : = {({i, h, i′, h′}, ∅) | i, h ∈ Srow \ Trow; i′, h′ ∈ Trow \ Srow}

ÊΩ
3 : = {(∅, {j, `, j′, `′}) | j, ` ∈ Scol \ Tcol; j′, `′ ∈ Tcol \ Scol} (12)

then E(S, T ) = EΩ
1 ∪ EΩ

2 ∪ ÊΩ
2 ∪ EΩ

3 ∪ ÊΩ
3 , where E(Ω) is as defined in Definition 10.

Note that

|E1| = (k − r)2(k − c)2, |E2| = (k − r)2, |Ê2| = (k − c)2, |E3| =
(
k − r

2

)2
, |Ê3| =

(
k − c

2

)2
.

Let γ := max{|det(AS∆U )| · |det(AT∆U )| | U ∈ E(S, T )}. By the triangle inequality,

|s1| ≤ |E1|γ.

A similar inequality holds for s2, ŝ2, s3, ŝ3.

Consider Equation (11). Let M := (k−r)2 +(k−c)2 +(r−c)2. By the triangle inequality
and the above observation,

M · [Srow, Scol] · [Trow, Tcol]

≤ γ(2|E1|+ |k − 1 + c− 2r| · |E2|+ |k − 1 + r − 2c| · |Ê2|+ 4(|E3|+ |Ê3|))
≤ γ

(
((k − r)2 + (k − c)2)2 + 8k((k − r)2 + (k − c)2)

)
≤M(2k2 + 8k).

Since S 6= T so M > 0. Dividing both sides by M gives the desired inequality. J

6 A Crude Approximation Algorithm

In this section we describe a crude approximation algorithm that can be used to provide the
starting point for Algorithm 1. We will formally prove Lemma 8. Our strategy is to appeal
to prior results on simpler variants of determinant maximization. Specifically we use the
following result of Nikolov [17]:1

I Theorem 19 ([17]). There is a polynomial time algorithm that given a positive semidefinite
matrix B ∈ Rn×n and k ≥ 0, outputs a set S ∈

([n]
k

)
that approximately maximizes det(BS,S).

The approximation factor of this algorithm is guaranteed to be 2O(k).

Using Theorem 19, we will provide an algorithm that constructs S0, a (n + m)O(k)-
approximation to maxdetk(A) in the general case where k < min{m,n}.

Proof of Lemma 8. Consider the following procedure that outputs S = (Srow, Scol) ∈ I:
1. Let B := AAᵀ ∈ Rm×m. Note that B is positive semidefinite. Use Theorem 19 to pick

Srow ∈
([m]
k

)
that approximately maximizes |det(BSrow,Srow)|.

1 We remark that the approximation factor of 2O(k) is not very important, and one can use simpler and
cruder algorithms, such as [20], instead of [17].
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2. Let C := ASrow,[n] ∈ Rk×n, D := CᵀC ∈ Rn×n. Use Theorem 19 to pick Scol ∈
([n]
k

)
that

approximately maximizes |det(DScol,Scol)|.

We claim that for S = (Srow, Scol):

(n+m)O(k) · |det(AS)| ≥ max{|det(AT )| | T ∈ I}.

Let T ∈ I denote the indices of the submatrix with the maximum k × k subdeterminant.
Note that BSrow,Srow = CCᵀ. Thus, by the Cauchy-Binet formula,

det(BSrow,Srow) =
∑

Wcol∈([n]
k )

det(C[k],Wcol) det(Cᵀ
Wcol,[k]) =

∑
Wcol∈([n]

k )
det(C[k],Wcol)

2

=
∑

Wcol∈([n]
k )

det(ASrow,Wcol)2 ≤
∑

Wcol∈([n]
k )

2O(k) · det(ASrow,Scol)2

= nO(k) · det(ASrow,Scol)2. (13)

Similarly, the Cauchy-Binet formula applied to BTrow,Trow = ATrow,[n](ATrow,[n])ᵀ gives

det(BTrow,Trow) =
∑

Wcol∈([n]
k )

det(ATrow,Wcol)2 ≥ det(ATrow,Tcol)2 (14)

Thus,

nO(k) det(ASrow,Scol)2 ≥ 2O(k) det(BSrow,Srow) ≥ det(BTrow,Trow) ≥ det(ATrow,Tcol)2,

where the first inequality follows from (13) and the second from definition of Srow. J
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