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Abstract
Given a predicate P : {−1, 1}k → {−1, 1}, let CSP(P ) be the set of constraint satisfaction problems
whose constraints are of the form P . We say that P is approximable if given a nearly satisfiable
instance of CSP(P ), there exists a probabilistic polynomial time algorithm that does better than a
random assignment. Otherwise, we say that P is approximation resistant.

In this paper, we analyze presidential type predicates, which are balanced linear threshold
functions where all of the variables except the first variable (the president) have the same weight.
We show that almost all presidential type predicates P are approximable. More precisely, we prove
the following result: for any δ0 > 0, there exists a k0 such that if k ≥ k0, δ ∈ (δ0, 1 − 2/k], and
δk + k − 1 is an odd integer then the presidential type predicate P (x) = sign(δkx1 +

∑k

i=2 xi) is
approximable. To prove this, we construct a rounding scheme that makes use of biases and pairwise
biases. We also give evidence that using pairwise biases is necessary for such rounding schemes.
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1 Introduction

In constraint satisfaction problems (CSPs), we have a set of constraints and we want to
satisfy as many of them as possible. Many fundamental problems in computer science are
CSPs, including 3-SAT, MAX CUT, k-colorability, and unique games.

One fundamental question about CSPs is as follows. For a given type of CSP, is there a
randomized polynomial time algorithm which is significantly better than randomly guessing
an assignment? More precisely, letting r be the expected proportion of constraints satisfied
by a random assignment, is there an ε > 0 and a randomized polynomial time algorithm A

such that given a CSP instance where at least (1 − ε) of the constraints can be satisfied,
A returns an x which satisfies at least (r + ε) of the constraints in expectation? If so, we
say that this type of CSP is approximable. If not, then we say that this type of CSP is
approximation resistant.

For example, Håstad’s 3-bit PCP theorem [10] proves that 3-XOR instances (where every
constraint is a linear equation modulo 2 over 3 variables) are NP-hard to approximate. A
direct corollary of Håstad’s 3-bit PCP theorem is that 3-SAT is also NP-hard to approximate
and this theorem has served as the basis for numerous other inapproximability results. On
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the other hand, Goemans and Williamson’s [7] breakthrough algorithm for MAX CUT, which
gives an approximation ratio of .878 for MAX CUT, shows that MAX CUT is approximable
as a random cut would only cut half of the edges in expectation.

However, while the approximability or approximation resistance of CSPs has been extens-
ively investigated, there is still much that is unknown. In this paper, we investigate CSPs
where every constraint has the form of some fixed presidential type predicate P . We show
that for almost all presidential type predicates P , this type of CSP is approximable.

1.1 Definitions
In order to better describe our results and their relationship to prior work, we need a few
definitions.

I Definition 1. A Boolean predicate P of arity k is a function P : {−1, 1}k → {−1, 1}.

We remark that in general a predicate can be non-Boolean.

I Definition 2. A presidential type predicate is a Boolean predicate of the form

P (x1, . . . , xk) = sign(a · x1 + x2 + · · ·+ xk),

where a is an integer and a+ k − 1 is odd.

I Remark 3. In the definition above we require that a is an integer. This is not a serious
restriction because if a is not an integer, then we can shift a up or down slightly to find
another predicate with integer coefficient a′ which is equivalent to the original predicate. We
require a+ k − 1 to be odd in order to prevent a tie.

We can think of the predicate as a vote where the vote of x1, the “president”, has weight
a, while the votes of the remaining voters, the “citizens”, have the same weight 1.
I Remark 4. Note that presidential type predicates are balanced linear threshold functions,
i.e. functions of the form sign(

∑k
i=1 cixi) where ∀i, ci ∈ R and ∀x ∈ {−1, 1}k,

∑k
i=1 cixi 6= 0

(so that the function is well-defined). Note that if a predicate P is a balanced linear threshold
function, P (−x) = −P (x) so exactly half of the assignments satisfy the predicate and thus a
uniformly random assignment has expected value 0.

I Definition 5. Given a Boolean predicate P : {−1, 1}k → {−1, 1}, an instance Φ of CSP(P )
consists of a set of n variables x1, . . . , xn and m constraints C1, . . . , Cm where each Ci has
the form

Ci(xi1 , . . . , xik) = P (zi,1xi1 , . . . , zi,kxik)

for some distinct i1, . . . , ik ∈ [n] and zi,1 . . . zi,k ∈ {−1, 1}.

I Definition 6. A Boolean predicate P is approximable if there exists a constant ε > 0
and a polynomial time algorithm, possibly randomized, that on input Φ ∈ CSP(P ) such that
OPT(Φ) ≥ 1− ε, produces an assignment to Φ’s variables that in expectation satisfies rP + ε

fraction of the constraints in Φ, where rP = Ex∈{−1,1}k [(1 +P (x))/2] is the probability that a
constraint in Φ is satisfied by a random assignment. Otherwise, we say P is approximation
resistant.

We say that a Boolean predicate P is weakly approximable if there exists a constant ε > 0
and a polynomial time algorithm, possibly randomized, that on input Φ ∈ CSP(P ) such that
OPT(Φ) ≥ 1− ε, produces an assignment to Φ’s variables that in expectation either satisfies
at least rP + ε fraction of the constraints in Φ or satisfies at most rP − ε fraction of the
constraints in Φ. Otherwise, we say that P is strongly approximation resistant.
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I Remark 7. For presidential type predicates, and in fact any odd predicate P (i.e. a
predicate P where P (−x) = −P (x)), the notions of being approximable and being weakly
approximable are equivalent.

1.2 Our Results
In this paper, we prove the following result.

I Theorem 8. For any δ0 > 0, there exists a k0 ∈ N such that if k ≥ k0, δ ∈ (δ0, 1− 2/k],
and δk + k − 1 is an odd integer then the presidential type predicate

P (x) = sign
(
δkx1 +

k∑
i=2

xi

)

is approximable.

I Remark 9. Informally, this theorem says that if the weight of x1 (the “president”) is at
least a constant times k, then the predicate is approximable for sufficiently large k. We have
the condition δ ≤ 1 − 2/k because if δ > 1 − 2/k and δk + k − 1 is an odd integer, then
δk ≥ k, which means the predicate is a dictator predicate which is trivially approximable.

We will prove this theorem by constructing a rounding scheme that makes use of biases
and pairwise biases, which are given by a standard semi-definite program (see Section 2.2).
Complementarily, we also give evidence that using pairwise biases is necessary for such
rounding schemes. In particular, we show that for any fixed δ > 0 and degreem, for sufficiently
large k there is no rounding scheme for the predicate P (x) = sign

(
δkx1 +

∑k
i=2 xi

)
which

has degree at most m and does not use pairwise biases (see Theorem 40).

1.3 Relationship to Prior Work
We now describe known criteria for determining whether a predicate P is approximable or
approximation resistant and how our techniques compare to these criteria.

In 2008, Raghavendra [14] gave a characterization of which predicates are approximable
and which predicates are approximation resistant. Raghavendra showed that either a standard
semi-definite program (SDP) together with an appropriate rounding scheme gives a better
approximation ratio than a random assignment or it is unique games hard to do so. However,
this characterization leaves much to be desired because for a given predicate, it can be
extremely hard to tell which case holds. In fact, it is not even known to be decidable!

Khot, Tulsiani, and Worah [12] gave a characterization of which predicates are weakly
approximable which is based on whether there exist certain vanishing measures over a
polytope which we call the KTW polytope (though similar polytopes were analyzed in
some earlier papers, see e.g. [2, 3, 4, 11]). Unfortunately, it is also unknown whether this
characterization is decidable.

Thus, if we want to determine if a given predicate P is approximable or approximation
resistant, it is often better to use more direct criteria. For showing that predicates are hard
to approximate, the following criterion, proved by Austrin and Mossel [5], is extremely useful.

I Definition 10. We say that a Boolean predicate P has a balanced pairwise independent
distribution of solutions if there exists a distribution D on {−1, 1}k such that
1. D is supported on {x ∈ {−1, 1}k : P (x) = 1} (D is a distribution of solutions to P )
2. For all i ∈ [k], Ex∈D[xi] = 0 and for all i < j ∈ [k], Ex∈D[xixj ] = 0

APPROX/RANDOM 2020
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I Theorem 11. If P has a balanced pairwise independent distribution of solutions then P is
unique games hard to approximate.
This criterion captures most but not all predicates which are known to be unique games
hard to approximate. One example of a predicate which is not captured by this criterion is
the predicate which was recently constructed by Potechin [13] which is unique games hard to
approximate and is a balanced linear threshold function. 1

For approximation resistance which does not rely on the hardness of unique games,
Chan [6] gave the following stricter criterion which implies NP-hardness of approximation.

I Theorem 12. If a predicate P has a balanced pairwise independent subgroup of solutions
then P is NP-hard to approximate.

For showing that predicates are approximable, the general technique is as follows:
1. Run Raghavendra’s SDP to obtain biases {bi : i ∈ [n]} and pairwise biases {bij : i < j ∈

[n]} for the variables.
2. Construct a rounding scheme which takes these biases and pairwise biases and gives us a

solution x such that if the SDP “thinks” that almost all of the constraints are satisfiable
then x satisfies significantly more constraints than a random assignment in expectation.

Based on rounding schemes which are essentially linear in the biases and pairwise biases,
Hast [9] obtained the following criterion for when predicates are approximable:

I Theorem 13 (Hast’s criterion). Given a predicate P : {−1,+1}k → {−1,+1},
1. Define P1 : {−1,+1}k → R to be P1(x) =

∑k
i=1 P̂{i}xi

2. Define P2 : {−1,+1}k → R to be P2(x) =
∑k−1
i=1

∑k
j=i+1 P̂{i,j}xixj.

If there are constants c1, c2 such that c2 ≥ 0 and c1P1(x) + c2P2(x) > 0 for all x such that
P (x) = 1 then P is approximable.

Aside from Hast’s criterion, most of the known approximability results are ad-hoc. Some
such results are as follows.
1. Austrin, Benabbas, and Magen [1] showed that the monarchy predicate P (x1, · · · , xk) =

sign((k − 2)x1 +
∑k
i=2 xi) is approximable and that any predicate P which is a balanced

symmetric quadratic threshold function is approximable.
2. Potechin [13] showed that the almost monarchy predicate P (x1, · · · , xk) = sign((k −

4)x1 +
∑k
i=2 xi) is approximable for sufficiently large k.

In this paper, we prove that almost all presidential type predicates are approximable by
generalizing the ideas Potechin [13] used to prove that the almost monarchy predicate is
approximable for sufficiently large k and making these ideas more systematic. Our work
compares to previous criteria as follows.

1. Raghavendra’s criterion and the KTW criterion give a space of rounding schemes which
should be considered but don’t provide an efficient way to search for the best rounding
scheme in this space. For our techniques, we take full advantage of this space of rounding
schemes while also providing a way to systematically construct the rounding scheme
which we need.

1 There were previously known predicates, such as the GLST predicate [8] P (x1, x2, x3, x4) = 1+x1
2 x2x3 +

1−x1
2 x2x4, which are unique games hard (in fact NP-hard) to approximate yet do not have a balanced

pairwise independent distribution of solutions. However, the hardness of these predicates can be reduced
to the hardness of predicates which do have a balanced pairwise independent distribution of solutions,
so Austrin and Mossel’s criterion can still be used for these predicates.
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2. Like Hast’s criterion, we need to check that a certain expression is positive for all x such
that P (x) = 1. However, there are two key differences between our techniques and Hast’s
criterion. First, as noted above, we use a larger space of rounding schemes. In particular,
we use rounding schemes which are very much non-linear in the biases and pairwise biases.
Second, because these rounding schemes are nonlinear in the biases and pairwise biases,
it is not sufficient to check all x such that P (x) = 1. Instead, we need to check over the
entire KTW polytope.

2 Techniques for Analyzing Boolean Predicates

In this section, we recall techniques for analyzing the approximability of boolean predicates.

2.1 Fourier Analysis
In this paper, we will make extensive use of the Fourier expansion of boolean predicates.
The Fourier expansion of a k-ary boolean predicate P is of the form P (x) =

∑
I⊂[k] P̂IxI ,

where xI =
∏
i∈I xi and {P̂I : I ⊆ [k]} are the Fourier coefficients P̂I = Ex∈{−1,1}k [P (x)xI ]

of P . We have the following lemma for the Fourier coefficients of presidential type predicates,
the proof of which can be found in the full version.

I Lemma 14 (Fourier coefficients of presidential type predicates). Let P (x1, . . . , xk) = sign(a ·
x1 + x2 + · · ·+ xk) be a presidential type predicate where a ≤ k − 2 and a+ k − 1 is an odd
integer. Let P̂tC denote the Fourier coefficient of a set of t citizens (indices from 2 to k)
and P̂P+tC denote the Fourier coefficient of a set of t citizens together with the president
(index 1). Let τ = b(k − a− 1)/2c. We have
(1) P̂P = 1− 1

2k−2

∑τ
l=0
(
k−1
l

)
,

(2) P̂tC = 1
2k−2

∑τ
i=0
∑τ−i
j=0(−1)j

(
k−t−1
i

)(
t
j

)
, ∀t(1 ≤ t ≤ k − 1 ∧ t is odd),

(3) P̂P+tC = − 1
2k−2

∑τ
i=0
∑τ−i
j=0(−1)j

(
k−t−1
i

)(
t
j

)
, ∀t(2 ≤ t ≤ k − 1 ∧ t is even).

2.2 Choosing Rounding Schemes
Our approximation algorithms for presidential type predicates work as follows. We first run
the standard SDP given by Raghavendra [14]. This standard SDP gives us biases {bi : i ∈ [n]}
and pairwise biases {bij : i < j ∈ [n]} such that for each constraint, these biases and pariwise
biases give us a point in the KTW polytope for that constraint, which is defined below
and which plays a crucial role in Khot, Tulsiani and Worah’s [12] characterization of which
predicates are weakly approximable. For a more detailed discussion of this standard SDP
and the KTW polytope, see the full version of this paper.

I Definition 15. Given x ∈ {−1, 1}k, let p(x) ∈ {−1, 1}k+(k2) be the vector obtained by
concatenating x and (x1x2, x1x3, . . . , xk−1xk). Define

KTWP = Conv({p(x) | x ∈ {−1, 1}k, P (x) = 1}),

where P : {−1, 1}k → {−1, 1} is a boolean predicate and Conv(S) is the convex hull of S.

Once we have these biases {bi : i ∈ [n]} and pairwise biases {bij : i < j ∈ [n]}, we use a
probabilistic rounding scheme to obtain an actual x ∈ {−1, 1}n. To choose this rounding
scheme, we choose E[xI ] for each monomial xI =

∏
i∈I xi. However, we do not have complete

freedom for these choices. Intuitively, E[xI ] should obey the following constraints:

APPROX/RANDOM 2020
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1. E[xI ] is a function of {bi | i ∈ I} and {bij | i, j ∈ I}.
2. E[xI ] is invariant under permutations of the indices in I.
3. If we flip the sign of any variable xi where i ∈ I (by flipping the signs of bi and
{bij : j ∈ I, j 6= i}), then the sign of E[xI ] should be flipped as well.

It turns out that for determining whether a predicate P is weakly approximable (which is
the same as approximable for presidential type predicates), these are the only constraints on
E[xI ]. More precisely, we have the following theorem from [13], which is also implicit in [12]:

I Theorem 16 (Theorem 5.1 in [13]). Let {bi | i ∈ [k]} and {bij | i, j ∈ [k], i < j} be biases and
pairwise biases produced by the standard SDP. For every a ∈ [k], let fa : [−1, 1]a+(a2) → [−1, 1]
be a continuous function satisfying the following symmetric requirements.
1. For all permutations σ ∈ Sa,

fa(biσ(1) , . . . , biσ(a) , biσ(1)iσ(2) , . . . , biσ(a−1)iσ(a)) = fa(bi1 , . . . , bia , bi1i2 , . . . , bia−1ia)

2. For all signs si1 , . . . , sia ∈ {−1, 1}a,

fa(si1bi1 , . . . , siabia , si1si2bi1i2 , . . . , sia−1siabia−1ia) = fa(bi1 , . . . , bia , bi1i2 , . . . , bia−1ia)·
a∏
j=1

sij

Then there exists a sequence of rounding schemes {Rq} and coefficients {cq} such that for all
subsets I = {i1, . . . , ia} of size at most k,∑

q

cqERq [xI ] = fa(bi1 , . . . , bia , bi1i2 , . . . , bia−1ia),

where ERq [xI ] is the expected value of xI given by rounding scheme Rq. Moreover, this sum
can be taken to be globally convergent.

I Remark 17. This theorem gives us a linear combination of rounding schemes. The
coefficients cq can be thought of as a probability distribution of rounding schemes, but there
are two problems:
1.
∑
q |cq| may not be 1. One fix to this issue is to scale f by an appropriate constant ε.

2. cq may be negative. In general, this can be a real issue but here the predicates we consider
are odd, which means if cq is negative we can simply flip the rounding scheme Rq and
take it with probability −cq.

I Example 18. This theorem says the following about E[xi] and E[xixj ].
1. We can take E[xi] ∼ f1(bi) for any continuous function f1 such that f1(bi) = −f1(−bi)

(i.e. f1 is odd).
2. We can take E[xixj ]∼f2(bi, bj , bij) for any continuous function f2 such that f2(bi, bj , bij)=

f2(bj , bi, bij) = −f2(−bi, bj ,−bij). The first equality corresponds to exchanging i and j
while the second equality corresponds to flipping xi.

I Example 19. Some examples of possible functions f3 are as follows:
1. We can take E[xixjxk] ∼ xixjxk
2. As discussed in the following subsections, we will take E[xixjxk] ∼ (bibjk + bjbik + bkbij)
3. Potechin [13] found a simpler rounding scheme for the monarchy predicate where

E[xixjxk] ∼ sign(xixjxk) max{|xi|, |xj |, |xk|}
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In choosing the rounding scheme, our goal is as follows. For each constraint, the standard
SDP could give us any point in the KTW polytope. We need to show that no matter which
point in the KTW polytope we are given, the probability that the rounding scheme satisfies
the constraint is better than a random guess. Equivalently, we need to show that for all
points in the KTW polytope,

∑
I⊆[k]:I 6=∅ P̂IE[xI ] > 0.

I Example 20. Consider the majority predicate P (x1, . . . , xk) = sign(x1 + . . .+ xk). If we
take E[xi] = f1(bi) = εbi and take fa = 0 whenever a > 1 then

∑
I⊆[k]:I 6=∅

P̂IE[xI ] = εP̂{1}

k∑
i=1

bi

Since
∑k
i=1 xi ≥ 1 for every satisfying assignment, for any point in the KTW polytope,∑k

i=1 bi ≥ 1 and thus
∑
I⊆[k]:I 6=∅ P̂IE[xI ] ≥ εP̂{1} > 0.

3 Techniques for Approximating Presidential Type Predicates

In this section, we describe our techniques for approximating presidential type predicates.
These techniques are a generalization of the techniques used in [13] to show that the almost
monarchy predicate is approximable for sufficiently large k.

3.1 High Level Overview

To approximate the presidential type predicate P (x) = sign
(
δkx1 +

∑k
i=2 xi

)
, we use the

following type of rounding scheme.
1. f1(bi) = c1bi.
2. f2l+1(bi1 , . . . , bi2l+1 , bi1i2 , . . . , bi2li2l+1) = c2l+1

(
bi1bi2i3 · · · bi2li2l+1 + symmetric terms

)
where we need to carefully choose the coefficients c1, c3, . . . so that for all points in the KTW
polytope,∑

I⊆[k]:I 6=∅

P̂IE[xI ] > 0.

Because of the symmetry of presidential type predicates P , we can analyze
∑
I⊆[k]:I 6=∅ P̂IE[xI ]

in terms of a few key functions of the biases and pairwise biases.

I Definition 21. Given biases {bi : i ∈ [k]} and pairwise biases {bij : i < j ∈ [k]}, we make
the following definitions:
1. We define α = b1
2. We define β =

∑k
i=2 bi

3. We define S{{i1,i2}} =
∑

1<i<j∈[k] bij. We then write S{{i1,i2}} = E(1 + ∆) where
E = δ2k2

2 − k
2 + 1 is the value we expect for S{{i1,i2}} and ∆ measures how far S{{i1,i2}}

is from this expected value.
With these definitions, we can approximate

∑
I⊆[k]:I 6=∅ P̂IE[xI ] in terms of α, β, and ∆. Our

strategy is now as follows:
1. We choose a polynomial h(x) =

∑m
l=1 alx

l so that h(1 + ∆) ≈ 1 except near ∆ = −1 as
we must have that h(0) = 0. More precisely, we choose h to satisfy certain properties
(see Lemma 36).

APPROX/RANDOM 2020
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∆

h(1 + ∆) = 1 + ∆3

1

0
0-1

Figure 1 Plot of h(1 + ∆) = 1 + ∆3.

I Remark 22. A reasonably good choice for h is h(1 + ∆) = 1 + ∆3, which was used to
give an approximation algorithm for the almost monarchy predicate for sufficiently large
k [13]. In fact, while we don’t prove it here, for quasi-monarchy predicates of the form
P (x1, . . . , xk) = sign

(
(k − 2c)x1 +

∑k
i=2 xi

)
for a fixed constant c, h(1 + ∆) = 1 + ∆3

is sufficient to give an approximation algorithm for sufficiently large k. However, this h
is not sufficient to give an approximation algorithm for more general presidential type
predicates because h(1 + ∆) = 1 + ∆3 is far from 1 if ∆ is much larger than 0.

2. We choose the coefficients {c1} ∪ {c2l+1 : l ∈ [m]} so that

∑
I⊆[k]:I 6=∅

P̂IE[xI ] =
(
δk2 + k

δ

)
α+ k

(
β − α

δ

)
h(1 + ∆) +O(k) ·∆ +O(1)

= k(δkα+ β) + k
(
β − α

δ

)
(h(1 + ∆)− 1) +O(k) ·∆ +O(1)

3. Since for every satisfying assignment, δkx1 +
∑k
i=2 xi ≥ 1, for every point in the KTW

polytope,

δkb1 +
k∑
i=2

bi = δkα+ β ≥ 1

and thus k(δkα + β) ≥ k. If we could show that the remaining terms k
(
β − α

δ

)
(h(1 +

∆)− 1) +O(k) ·∆ +O(1) are o(k), then we would be done. Unfortunately, this may not
be true when |∆| is large.

4. To handle this, we show that if |∆| is large then we can obtain a considerably better
bound on δkα+ β More precisely, we proceed as follows:
a. When ∆ ≥ −0.55, we show that δkα + β ≥ (δ2k−1)|∆|

4 + 1
2 (see Lemma 37). As

long as h(1 + ∆) is sufficiently close to 1, this allows us to show that k(δkα + β) +
k
(
β − α

δ

)
(h(1 + ∆)− 1) +O(k) ·∆ +O(1) is positive.

b. When ∆ < −0.55, we show that we must have α > 0. In this case, we rewrite∑
I⊆[k]:I 6=∅ P̂IE[xI ] =

(
δk2 + k

δ

)
α+ k

(
β − α

δ

)
h(1 + ∆) +O(k) ·∆ +O(1) as

k(δkα+ β)h(1 + ∆) +
(
δk2 + k

δ

)
α(1− h(1 + ∆)) +O(k) ·∆ +O(1).

and show that the sum of the first two terms is positive and Ω(k2).
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3.2 Sums of Products of Biases and Pairwise Biases

In order to implement this strategy, we need some notations related to biases and pairwise
biases. Note that similar definitions were also used in [13].

I Definition 23. For E1 ⊆ [k] and E2 ⊆
([k]

2
)
, define

BE1,E2 =
∏
i∈E1

bi
∏

{i,j}∈E2
i<j

bij .

I Definition 24. Let V = {α, i1, i2, . . . , ik−1}. Let H = H1 ∪ H2 where H1 ⊆ V and
H2 ⊆

(
V
2
)
. Define

SH =
∑

E1,E2:∃σ:V→[k] bijective
σ(α)=1,σ(H1)=E1,σ(H2)=E2

BE1,E2 ,

where σ(H1) = {σ(i) | i ∈ H1}, σ(H2) = {{σ(i), σ(j)} | {i, j} ∈ H2}.

Intuitively, SH is the sum of products BE1,E2 where E1 ∪ E2 has the form H. One
particularly important such sum in our algorithms is S{{i1,i2}}, which is the sum of pairwise
biases with indices in [2, k].

I Definition 25. We define the following shorthand notations for some important sums.

S1,l = S{i1,{i2,i3},{i4,i5},...,{i2l,i2l+1}},

S2,l = S{α,{i1,i2},{i3,i4},...,{i2l−1,i2l}},

S3,l = S{i1,{α,i2},{i3,i4},...,{i2l−1,i2l}}.

I Example 26. In the case where k = 4, l = 1, we have

S1,l = b2b34 + b3b24 + b4b23,

S2,l = b1b23 + b1b24 + b1b34,

S3,l = b2b13 + b2b14 + b3b12 + b3b14 + b4b12 + b4b13.

The reason that these sums are important is because they are the main terms which appear
when we evaluate

∑
I⊆[k]:I 6=∅ P̂IE[xI ].

I Proposition 27. If we take

f2l+1(bi1 , . . . , bi2l+1 , bi1i2 , . . . , bi2li2l+1) = c2l+1
(
bi1bi2i3 · · · bi2li2l+1 + symmetric terms

)
then ∑
|I|=2l+1

P̂IE[XI ] = c2l+1

(
P̂(2l+1)CS1,l + P̂P+(2l)C(S2,l + S3,l)

)
.

To approximate these sums, we use the following proposition (recall that we set S{{i1,i2}} =
E(1 + ∆)). The proof of this proposition can be found in the appendix.

APPROX/RANDOM 2020



58:10 On the Approximability of Presidential Type Predicates

I Proposition 28. For every l ≥ 1,

l!
El
S1,l = β(1 + ∆)l −

S{i1,{i1,i2}}

E
l(1 + ∆)l−1 −

βS{{i1,i2},{i1,i3}}

E2 l(l − 1)(1 + ∆)l−2

+O

(
1
k

)
,

l!
El
S2,l = α(1 + ∆)l +O

(
1
k

)
,

l!
El
S3,l =

βS{{α,i1}}

E
l(1 + ∆)l−1 +O

(
1
k

)
,

where the hidden constants in big-O may depend on l.

4 Proof of Theorem 8

In this section, we prove Theorem 8.

I Theorem 8. For any δ0 > 0, there exists a k0 ∈ N such that if k ≥ k0, δ ∈ (δ0, 1− 2/k],
and δk + k − 1 is an odd integer then the presidential type predicate

P (x) = sign
(
δkx1 +

k∑
i=2

xi

)

is approximable.

In particular, we prove that for sufficiently large k and a carefully chosen polynomial
h, the following rounding scheme approximates the presidential type predicate P (x) =
sign

(
δkx1 +

∑k
i=2 xi

)
.

I Definition 29. Given a polynomial h(x) =
∑m
l=1 alx

l, we define Rk,δ,h to be the rounding
scheme such that setting u = 1+δ

2 k, v = 1−δ
2 k, and E = δ2k2

2 − k
2 + 1,

1. f1(bi) =
(
δk2 + k

δ

)
bi

2. For all l ∈ [m],

f2l+1(bi1 , . . . , bi2l+1 , bi1i2 , . . . , bi2li2l+1) = c2l+1
(
bi1bi2i3 · · · bi2li2l+1 + symmetric terms

)
where c2l+1 = al · 2k−2(u−1)!(v−1)!

(k−2l−2)!δ2lk2l−1El
, .

I Theorem 30. For all δ0 > 0, if h =
∑m
l=1 alx

l is a polynomial such that
1. h′(1) = h′′(1) = 0,
2. For all ∆ ∈ [−0.55, 1

δ2
0
], |h(1 + ∆)− 1| ≤ δ2

0 |∆|
5 ,

3. For all ∆ ∈ [−1,−0.55], 0 ≤ h(1 + ∆) ≤ 1,
then there exists a k0 ∈ N such that for all δ ≥ δ0 and k ≥ k0 where δk + k − 1 is an odd
integer, Rk,δ,h approximates the presidential type predicate P(x) = sign

(
δkx1 +

∑k
i=2 xi

)
.

I Remark 31. As described in Section 3.1, our proof contains a case analysis of ∆. The value
−0.55 is chosen because when ∆ < −0.55, the bias α of the president is always positive.

This section is organized as follows. We first compute the expected value of the rounding
scheme in terms of h. Then, we show that if h has the required properties, then the expected
value is positive over the entire polytope, which implies that our predicate is approximable.
Finally, we find such a polynomial with the desired properties.
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4.1 Evaluating the Rounding Scheme
In this subsection, we analyze

∑
I⊆[k]:I 6=∅ P̂IE[xI ] in terms of h. We have the following lemma

for the Fourier coefficients, the proof of which can be found in the full version.

I Lemma 32. Let δ0 > 0 be a constant. Let P (x1, . . . , xk) = sign(δ · kx1 + x2 + · · · + xk)
where δ ∈ [δ0, 1) such that δk+ k− 1 is an odd integer. Let u = 1+δ

2 k and v = 1−δ
2 k. Let P̂tC

denote the Fourier coefficient of a set of t citizens and P̂P+tC denote the Fourier coefficient
of a set of t citizens together with the president. We have the following:
1. P̂P = 1− 1

2k−2

∑v−1
l=0

(
k−1
l

)
.

2. If t is an odd integer, then

P̂tC = 1
2k−2 ·

(k − t− 1)!
(u− 1)!(v − 1)!

(
δt−1kt−1 − (t− 1)(t− 2)

2 δt−3kt−2 +O(kt−3)
)
.

3. If t is an even integer, then

P̂P+tC = − 1
2k−2 ·

(k − t− 1)!
(u− 1)!(v − 1)!

(
δt−1kt−1 − (t− 1)(t− 2)

2 δt−3kt−2 +O(kt−3)
)
.

Here, the constants inside the big Os grows with t but not with δ.

I Remark 33. The lemma allows δ to depend on k as long as δ = Ω(1). In particular, we can
take δ = 1− 2c

k for any constant c ≥ 1. Also, when δ is at least a constant we have that P̂P
is exponentially larger than P̂C .
Recall that we set S{{i1,i2}} = E(1 + ∆) where E = δ2k2

2 − k
2 + 1 (see Definition 21). The

reason for this choice for E is as follows. We expect that the cases which are most difficult
to round are the two cases where δkα+ b = 1:
1. The president and 1−δ

2 k citizens vote 1, others vote −1. In this case,∑
i<j∈[2,k]

xixj =
(
k − 1

2

)
− 2(1− δ)k

2

(
(1 + δ)k

2 − 1
)

2. The president and 1+δ
2 k citizens vote −1, others vote 1. In this case,∑

i<j∈[2,k]

xixj =
(
k − 1

2

)
− 2(1 + δ)k

2

(
(1− δ)k

2 − 1
)

For both of these cases,
∑
i<j∈[2,k] xixj is approximately δ2k2

2 . Taking the average of these
two cases we have E = δ2k2

2 − k
2 + 1. Note that since δ > δ0 is at least a constant, we have

E = Ω(k2).
The following lemma analyzes

∑
I⊆[k]:|I|≥3 P̂IE[xI ] in terms of h. Its proof can be found

in the appendix.

I Lemma 34. Assume that we have h(x) =
∑m
l=1 alx

l and coefficients

c2l+1 = al ·
2k−2(u− 1)!(v − 1)!

(k − 2l − 2)!δ2lk2l−1El

where u = 1+δ
2 k, v = 1−δ

2 k, and E = δ2k2

2 − k
2 + 1. The contribution of degree ≥ 3 terms is

k
(
β − α

δ

)
h(1 + ∆)− 2(1 + ∆)2βh′′(1 + ∆)

δ2 + (1 + ∆)βh′(1 + ∆)
δ2

− k
(
S{i1,{i1,i2}}

E
h′(1 + ∆) +

βS{{i1,i2},{i1,i3}}

E2 h′′(1 + ∆) +
βS{{α,i1}}

Eδ
h′(1 + ∆)

)
+O(1)
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I Corollary 35. If we have h(x) =
∑m
l=1 alx

l such that h′(1) = h′′(1) = 0 and choose
coefficients

c2l+1 = al ·
2k−2(u− 1)!(v − 1)!

(k − 2l − 2)!δ2lk2l−1El

then the contribution of degree ≥ 3 terms is

k
(
β − α

δ

)
h(1 + ∆) +O(k) ·∆ +O(1).

Proof. This follows from the fact that E = Ω(k2), β = O(k), S{i1,{i1,i2}} = O(k2),
S{{i1,i2},{i1,i3}} = O(k3) and S{{α,i1}} = O(k). J

4.2 Conditions on the Rounding Polynomial
I Lemma 36. For all δ0 > 0, if h =

∑m
l=1 alx

l is a polynomial such that
1. h′(1) = h′′(1) = 0
2. For all ∆ ∈ [−0.55, 1

δ2
0
], |h(1 + ∆)− 1| ≤ δ2

0 |∆|
5

3. For all ∆ ∈ [−1,−0.55], 0 ≤ h(1 + ∆) ≤ 1
then there exists k0 ∈ N such that for all k ≥ k0 and all δ ≥ δ0, the rounding scheme Rk,δ,h
has positive expected value over the entire KTW polytope.

To prove this, we need the following lemma about points in the KTW polytope for P :

I Lemma 37. For sufficiently large k we have

δkα+ β ≥ (δ2k − 1)|∆|
4 + 1

2 .

The proof of Lemma 37 can be found in the appendix.

Proof of Lemma 36. Since h′(1) = h′′(1) = 0, by Corollary 35 the contribution of degree
≥ 3 terms becomes

k
(
β − α

δ

)
h(1 + ∆) +O(k) ·∆ +O(1).

Now we add in the contribution of degree 1 terms. Since P̂P is extremely close to 1
and P̂C is exponentially small, the contribution of degree 1 terms is extremely close to
c1α = (δk2 + k/δ)α. Adding this to the contribution from the higher degree terms, we get
that ∑

I⊆[k]:I 6=∅

P̂IE[xI ] = k
(
β − α

δ

)
h(1 + ∆) +

(
δk2 + k

δ

)
α+O(k) ·∆ +O(1). (∗)

To establish the theorem, we need to show that (∗) is positive over the entire KTW polytope.
We proceed with a case analysis on ∆. Note that the range of ∆ is approximately (−1−
O(1/k), 1/δ2). We have the following cases.
1. ∆ ≥ −0.55. In this case we have

(∗) = k
(
β − α

δ

)
h(1 + ∆) +

(
δk2 + k

δ

)
α+O(k) ·∆ +O(1)

= k(δkα+ β) + k
(
β − α

δ

)
(h(1 + ∆)− 1) +O(k) ·∆ +O(1)

≥ k
(

(δ2k − 1)|∆|
4 + 1

2

)
+ k

(
β − α

δ

)
(h(1 + ∆)− 1) +O(k) ·∆ +O(1)
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The last inequality is due to Lemma 37. Here the two terms which are quadratic in k are
δ2k2|∆|/4 (note that δ > δ0 is at least a constant) and kβ(h(1 + ∆)− 1). Since |β| < k

and |h(1 + ∆)− 1| ≤ δ2
0 |∆|
5 , the above quantity is positive when k is sufficiently large.

2. ∆ < −0.55. Note that if x1 = −1 then the minimum value of ∆ is about 0. If x1 = 1,
then the minimum value of ∆ is about −1. This means that when ∆ < −0.55, with
probability > 0.5 we have x1 = 1, which implies α > 0 and is Ω(1). We can write (∗) as

(∗) = k(δkα+ β)h(1 + ∆) +
(
δk2 + k

δ

)
α(1− h(1 + ∆)) +O(k) ·∆ +O(1).

If ∆ ≥ −1, then h(1 + ∆) ∈ [0, 1] and both the first two terms are positive and at least
one of the two terms is Ω(k2). If ∆ ≤ −1 then since ∆ ≥ −1 − O(1/k) we know that
the first term is O(k) and the second term is Ω(k2) and positive. Either way, we get a
positive value when k is sufficiently large. J

4.3 Choosing the Rounding Polynomial
To finish the proof of our main theorem, we need to construct a polynomial that satisfies
the conditions in Lemma 36. We claim that h(x) = 1− (1− x)3 exp(−Bx) works for some
constant B except that it’s not a polynomial. However, by truncating the Taylor expansion
of this function, we can get a polynomial which also works. See full version for the proof of
these claims.

∆

multiple of β

h = 1 + ∆3 exp(−B(1 + ∆))

1

0
0-1

Figure 2 Plot of h = 1 + ∆3 exp(−B(1 + ∆)).

5 Evidence for the Necessity of Pairwise Biases

We have now given rounding schemes for almost all presidential predicates. These rounding
schemes crucially use the pairwise biases {bij : i < j ∈ [k]}. A natural question is whether
this is necessary or it is possible to only use the biases {bi : i ∈ [k]}. If there is a rounding
scheme which only uses the biases, then instead of using a semidefinite program, it is sufficient
to use a linear program, which is much faster. Indeed, such rounding schemes exist for
predicates which are close to the majority function [9] and for the monarchy predicate [5, 13].

In this section, we give evidence that this is not possible for more general presidential
type predicates and it is necessary to use the pairwise biases. In particular, we prove the
following theorem.

Recall that we choose a rounding scheme by specifying fa(bi1 , . . . , bia , bi1i2 , . . . , bia−1ia)
for each a ∈ [k].
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I Definition 38. We say that a rounding scheme has degree m if fm 6= 0 and fa = 0 for all
a > m.

I Definition 39. We say that a rounding scheme does not use pairwise biases if for all
a ∈ [k], fa(bi1 , . . . , bia , bi1i2 , . . . , bia−1ia) only depends on {bi1 , . . . , bia}.

I Theorem 40. For all δ0 > 0 and all m ∈ N, there exists a k0 such that for all k ≥ k0
and δ ∈ (δ0, 1 − 4/k] where δk + k − 1 is an odd integer, the presidential type predicate
P (x) = sign

(
δkx1 +

∑k
i=2 xi

)
cannot be approximated by any rounding scheme of degree at

most m which does not use pairwise biases.

Proof. Let us consider a two-player zero-sum game where Alice chooses a point b ∈ [−1, 1]k
in the KTW polytope2 of P and Bob chooses a rounding scheme R of degree at most m.
The objective of Alice is to minimize R(b) =

∑
I⊆[k]:I 6=∅ P̂IE[xI ], the expected value of P (x)

if we are given the point b in the KTW polytope and apply the rounding scheme R.
The lemma will follow if we can show a mixed strategy for Alice, which is a distribution

µ over points in KTW polytope, such that for any rounding scheme R, Eb∼µ[R(b)] = 0.
Recalling that for each a ∈ [m] and monomial xi1xi2 . . . xia of degree a, E[xi1xi2 . . . xia ] =
fa(bi1 , . . . , bia), it suffices to have the sum of degree a terms be zero for every a ∈ [m], i.e.,

Eb∼µ

 ∑
I⊂[k],|I|=a
I={i1,...,ia}

P̂Ifa(bi1 , . . . , bia)

 = 0, ∀a ∈ [m].

Now let us construct such a distribution µ. By Lemma 14, P̂P , the Fourier coefficient
of the president x1, is exponentially larger than P̂C , and limk→∞ P̂P+(t−1)C/P̂tC = −1 for
every odd integer t ≤ m. For concreteness, let us assume that m = 5. Then we will have the
following distribution for µ:

Probability x1 x2 x3 x4 x5 x6 x7 · · · xk

p1 0 1 0 0 0 0 0 · · · 0
p2 0 1 1 -1 0 0 0 · · · 0
p3 0 1 1 1 0 0 0 · · · 0
p4 0 1 1 1 1 -1 0 · · · 0
p5 -1 1 1 1 1 1 1 · · · 1

First of all, it is easy to check that all these points are inside the KTW polytope for P (x).
The following is a table of contribution of each degree from each of these points.

Degrees
Points 1st type 2nd type 3rd type 4th type 5th type

f1(1) p1P̂C p2P̂C 3p3P̂C 3p4P̂C p5(−P̂P + (k − 1)P̂C)
f3(1, 1, 1) 0 −p2P̂3C p3P̂3C −2p4P̂3C p5(

(
k−1

2

)
P̂P+2C +

(
k−1

3

)
P̂3C)

f5(1, 1, 1, 1, 1) 0 0 0 −p4P̂5C p5(
(
k−1

4

)
P̂P+4C +

(
k−1

5

)
P̂5C)

To balance degree 1 terms, we need

p1 · P̂C + p2 · P̂C + p3 · 3P̂C + p4 · 3P̂C + p5 · (−P̂P + (k − 1)P̂C) = 0.

2 The KTW polytope of P actually has dimension k+
(
k
2

)
, but since pairwise biases play no role here, we

omit those coordinates for simplicity.
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Notice that every point in this distribution has a positive contribution from citizens (i.e.,
variables x2, . . . , xk), so we need a negative contribution from x1. Since P̂P is exponentially
larger than P̂C , we can achieve the balance by having p5 be exponentially small in k. Then
we balance degree 5 terms, for which we need

−p4 · P̂5C + p5 ·
((

k − 1
4

)
P̂P+4C +

(
k − 1

5

)
P̂5C

)
= 0.

Recall that limk→∞ P̂P+4C/P̂5C = −1, so we can achieve the balance by having p4 =
poly(k) · p5, where poly(k) is a polynomial in k. For degree 3 terms, we need

−p2 · P̂3C + p3 · P̂3C − 2p4 · P̂3C + p5 ·
((

k − 1
2

)
P̂P+2C +

(
k − 1

3

)
P̂3C

)
= 0.

We can then use either the second type or the third type to balance degree 3 terms. Again we
will only use poly(k)·p5 amount of probability. When k is sufficiently large, p2+p3+p4+p5 ≤ 1
and we let the first type of points take up the remaining probability. This method can be
easily extended to handle the case where m is any fixed positive integer. J

I Remark 41. For the monarchy predicate P (x) = sign
(

(k − 2)x1 +
∑k
i=2 xi

)
, this argument

fails for the following reason. The only satisfying assignment to the monarchy predicate
where x1 = −1 is when all of the other xi are 1. This implies that for all i ∈ [2, k], bi ≥ −b1,
which means that the point b = (0, 1, 1,−1, 0, . . . , 0) and similar points are not in the KTW
polytope.

I Remark 42. This theorem rules out any fixed degree rounding schemes that use only biases,
but it does not rule out the possibility that a rounding scheme might be able to succeed with
just biases if its degree grows with k.

6 Conclusions

In this paper, we showed that almost all presidential type predicates are approximable. To
do this, we carefully constructed rounding schemes which have positive expected value over
the entire KTW polytope. These rounding schemes use both the biases {bi : i ∈ [k]} and the
pairwise biases {bij : i < j ∈ [k]} and have relatively high (but still constant) degree.

This work raises a number of open questions, including the following:
1. Which other types of predicates can this technique be applied to? For example, can we

show that almost all oligarchy-type predicates are approximable, where oligarchy-type
predicates are balanced LTFs where all but a few of the inputs have the same weight?
As another example, can we extend the result of Austrin, Bennabas, and Magen that all
symmetric quadratic threshold functions with no constant term are approximable to show
that almost all quadratic threshold functions with no constant term which are symmetric
with respect to all but one variable are approximable or at least weakly approximable?

2. Can we show that for almost all presidential type predicates, there is no rounding scheme
which only uses the biases {bi : i ∈ [k]}? Note that by Theorem 40, such rounding
schemes would have to have degree which increases with k.

3. Our results only hold if k is sufficiently large. Is it true that all presidential type predicates
are approximable? Less ambitiously, can we either extend our techniques or develop new
techniques to handle presidential type predicates where k is relatively small?
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E
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k
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l!
El
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(
1
k

)
,

l!
El
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E
l(1 + ∆)l−1 +O

(
1
k

)
,
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Proof. Here we only prove the first equality since the other two can be proved similarly.
Recall that S{{i1,i2}} = E(1 + ∆) and E = Θ(k2). The first equality is equivalent to

l!S1,l =β(S{{i1,i2}})
l − S{i1,{i1,i2}}l(S{{i1,i2}})

l−1 − βS{{i1,i2},{i1,i3}}l(l − 1)(S{{i1,i2}})
l−2

+O
(
k2l−1) .

Let’s analyze the term β(S{{i1,i2}})l, by definition, it’s equal to∑
i≥2

bi

 ∑
2≤i<j

bij

l

=
∑

j1,j2,...,j2l+1∈{2,3,...,k}
j2<j3,j4<j5,··· ,j2l<j2l+1

bj1bj2j3bj4j5 · · · bj2lj2l+1 .

Let’s call the sum on the right hand side T . We classify the terms in T according to number
of repetitions in indices. If there is no repetition, then the term bj1bj2j3bj4j5 · · · bj2lj2l+1 is
also in S1,l. Note that in S1,l the order of the l pairwise biases can be arbitrary, so the sum
of terms with no repeated indices is equal to l!S1,l. If there are two or more repetitions,
then the number of distinct indices is at most 2l − 1, and the contribution of such terms is
O(k2l−1). If there is exact one repetition, then there are two cases.
1. j1 is equal to some jt for t ≥ 2. Without loss of generality consider the terms where the

only repetition is j1 = j2 or j1 = j3 (note that j2 < j3). The contribution of these terms
are ∑

j1,j2,...,j2l+1∈{2,3,...,k}
j2<j3,j4<j5,··· ,j2l<j2l+1

j1=j2 or j1=j3
j2,j3,...,j2l+1 distinct

bj1bj2j3bj4j5 · · · bj2lj2l+1

=
∑

j1,j2,...,j2l+1∈{2,3,...,k}
j2<j3,j4<j5,··· ,j2l<j2l+1

j1=j2 or j1=j3

bj1bj2j3bj4j5 · · · bj2lj2l+1 +O(k2l−1)

=S{i1,{i1,i2}}(S{{i1,i2}})
l−1 +O(k2l−1).

This is because the terms where j2, j3, . . . , j2l+1 are not distinct have at most 2l − 1
distinct indices and contribute O(k2l−1). So the contribution of this case is

lS{i1,{i1,i2}}(S{{i1,i2}})
l−1 +O(k2l−1).

2. js = jt for some s, t ≥ 2. Note that in this case s and t cannot appear in the same
pairwise bias. Without loss of generality assume s ∈ {2, 3} and t ∈ {4, 5}. We have∑

j1,j2,...,j2l+1∈{2,3,...,k}
j2<j3,j4<j5,··· ,j2l<j2l+1
one repetition in j2,j3,j4,j5

other indices distinct

bj1bj2j3bj4j5 · · · bj2lj2l+1

=
∑

j1,j2,...,j2l+1∈{2,3,...,k}
j2<j3,j4<j5,··· ,j2l<j2l+1
one repetition in j2,j3,j4,j5

bj1bj2j3bj4j5 · · · bj2lj2l+1 +O(k2l−1)

= 2βS{{i1,i2},{i1,i3}}(S{{i1,i2}})
l−2 +O(k2l−1).

So the contribution of this case is(
l

2

)
·
(
2βS{{i1,i2},{i1,i3}}(S{{i1,i2}})

l−2 +O(k2l−1)
)

= βS{{i1,i2},{i1,i3}}l(l − 1)(S{{i1,i2}})
l−2 +O

(
k2l−1) .
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We conclude that

β(S{{i1,i2}})
l = l!S1,l + lS{i1,{i1,i2}}(S{{i1,i2}})

l−1

+ βS{{i1,i2},{i1,i3}}l(l − 1)(S{{i1,i2}})
l−2 +O

(
k2l−1) .

We get the desired equality by shifting the terms. J

B Proof of Lemma 34

I Lemma 34. Assume that we have h(x) =
∑m
l=1 alx

l and coefficients

c2l+1 = al ·
2k−2(u− 1)!(v − 1)!

(k − 2l − 2)!δ2lk2l−1El

where u = 1+δ
2 k, v = 1−δ

2 k, and E = δ2k2

2 − k
2 + 1. The contribution of degree ≥ 3 terms is

k
(
β − α

δ

)
h(1 + ∆)− 2(1 + ∆)2βh′′(1 + ∆)

δ2 + (1 + ∆)βh′(1 + ∆)
δ2

− k
(
S{i1,{i1,i2}}

E
h′(1 + ∆) +

βS{{i1,i2},{i1,i3}}

E2 h′′(1 + ∆) +
βS{{α,i1}}

Eδ
h′(1 + ∆)

)
+O(1)

Proof. We have the following computation:
m∑
l=1

∑
|I|=2l+1

P̂IE[XI ]

=
m∑
l=1

c2l+1
(
P̂(2l+1)CS1,l + P̂P+(2l)C(S2,l + S3,l)

)
=

m∑
l=1

al

((
k − l(2l − 1)δ−2 +O

( 1
k

))
·(

β(1 + ∆)l −
S{i1,{i1,i2}}

E
l(1 + ∆)l−1 −

βS{{i1,i2},{i1,i3}}

E2 l(l − 1)(1 + ∆)l−2 +O
( 1
k

))
−(

1− 2l + 1
k

)
·
(
k

δ
− (l − 1)(2l − 1)

δ3 +O
( 1
k

))
·(

α(1 + ∆)l +
βS{{α,i1}}

E
l(1 + ∆)l−1 +O

( 1
k

)))

=
m∑
l=1

al

(
k
(
β − α

δ

)
(1 + ∆)l − l(2l − 1)β(1 + ∆)l

δ2

− kl(1 + ∆)l−1
(
S{i1,{i1,i2}}

E
+
βS{{i1,i2},{i1,i3}}

E2(1 + ∆) (l − 1) +
βS{{α,i1}}

Eδ

)
+O(1)

)

= k
(
β − α

δ

)
h(1 + ∆)− 2(1 + ∆)2βh′′(1 + ∆)

δ2 + (1 + ∆)βh′(1 + ∆)
δ2

− k
(
S{i1,{i1,i2}}

E
h′(1 + ∆) +

βS{{i1,i2},{i1,i3}}

E2 h′′(1 + ∆) +
βS{{α,i1}}

Eδ
h′(1 + ∆)

)
+O(1). J

C Proof of Lemma 37

I Lemma 37. For sufficiently large k we have

δkα+ β ≥ (δ2k − 1)|∆|
4 + 1

2 .
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Proof. Since |∆| is a convex function on the KTW polytope, it suffices to check that for each
satisfying assignment, δkα+ β ≥ δk|∆|

4 + 1
2 . Letting t be the number of ones in x2, . . . , xk,

we have that β = t− (k − 1− t) = 2t− k + 1 and

∑
2≤i<j

xixj =
(
t

2

)
+
(
k − 1− t

2

)
− t(k − 1− t) = 2t2 − 2(k − 1)t+

(
k − 1

2

)
,

Recalling that E = δ2k2

2 − k
2 + 1, this implies that

∆ =
∑

2≤i<j xixj − E
E

= 1
E

(
2t2 − 2(k − 1)t+

(
k − 1

2

)
− δ2k2

2 + k

2 − 1
)

= 1
E

(
2t2 − 2(k − 1)t+ (1− δ2)k2

2 − k
)

Since E > δ2k2

2 − k
2 , we have

δ2k − 1
4 |∆| = δ2k − 1

4E

∣∣∣∣2t2 − 2(k − 1)t+ (1− δ2)k2

2 − k
∣∣∣∣

<
1
2k

∣∣∣∣2t2 − 2(k − 1)t+ (1− δ2)k2

2 − k
∣∣∣∣

=
∣∣∣∣ t2k − (k − 1)t

k
+ (1− δ2)k

4 − 1
2

∣∣∣∣
We will show that δkα + β ≥

∣∣∣ t2k − (k−1)t
k + (1−δ2)k

4 − 1
2

∣∣∣ + 1
2 , from which our lemma

will follow. To this end, we show that δkα + β ≥
(
t2

k −
(k−1)t
k + (1−δ2)k

4 − 1
2

)
+ 1

2 and

δkα+ β ≥ −
(
t2

k −
(k−1)t
k + (1−δ2)k

4 − 1
2

)
+ 1

2 .

1. δkα+ β ≥
(
t2

k −
(k−1)t
k + (1−δ2)k

4 − 1
2

)
+ 1

2 .
We have two cases, α = 1 or α = −1. If α = 1, then δkα+ β = δk + 2t− k + 1 and since
it’s a satisfying assignment we have t ≥ 1−δ

2 k. The inequality becomes

t2

k
− (k − 1)t

k
− 2t+ (1− δ2)k

4 − δk + k − 1 ≤ 0.

The left hand side is a quadratic function on t with positive leading coefficient, and to
check it’s non-positive we simply need to check its values on t = 1−δ

2 k and t = k − 1, the
boundary points of t’s domain. When t = 1−δ

2 k,

t2

k
− (k − 1)t

k
− 2t+ (1− δ2)k

4 − δk + k − 1 =(
t2

k
− t+ (1− δ2)k

4

)
+ (−2t− δk + k) +

(
t

k
− 1
)

=(
(1− δ)2k

4 − (1− δ)k
2 + (1− δ2)k

4

)
+ 0 +

(
1− δ

2 − 1
)

=

1− δ
2 − 1 < 0
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When t = k − 1,

t2

k
− (k − 1)t

k
− 2t+ (1− δ2)k

4 − δk + k − 1 =(
t2

k
− (k − 1)t

k

)
+ (−t+ k − 1) +

(
−t− δk + (1− δ2)k

4

)
=

− 3− 4δ + δ2

4 k + 1

which is negative when k is sufficiently large (note that δ ≤ 1− 3
k ).

If α = −1, then δkα+ β = −δk + 2t− k + 1 and we have that t ≥ 1+δ
2 k. The inequality

becomes

t2

k
− (k − 1)t

k
− 2t+ (1− δ2)k

4 + δk + k − 1 ≤ 0.

We check the value of LHS on t = 1+δ
k and t = k−1. Following exactly the same argument

we used for α = 1 except that δ is replaced by −δ, when t = 1+δ
2 k,

t2

k
− (k − 1)t

k
− 2t+ (1− δ2)k

4 + δk + k − 1 = 1 + δ

2 − 1 < 0

and when t = k − 1,

t2

k
− (k − 1)t

k
− 2t+ (1− δ2)k

4 + δk + k − 1 = −3− 4δ + δ2

4 k + 1 < 0

2. δkα+ β ≥ −
(
t2

k −
(k−1)t
k + (1−δ2)k

4 − 1
2

)
+ 1

2 .
We again have two cases, α = 1 or α = −1. If α = 1, we have δkα+ β = δk + 2t− k + 1
and the inequality becomes

t2

k
+
(

2− k − 1
k

)
t+ (1− δ2)k

4 + δk − k ≥ 0.

The left hand side is a quadratic function that achieves minimum when t is negative, so
we simply need the inequality to hold when t = 1−δ

2 k, at which point the value of LHS is
1−δ

2 ≥ 0.
If α = −1, the inequality becomes

t2

k
+
(

2− k − 1
k

)
t+ (1− δ2)k

4 − δk − k ≥ 0.

Again, we simply need it to hold when t = 1+δ
2 k, at which point the value of LHS is

1+δ
2 ≥ 0.

This completes our proof. J
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