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Abstract
Lykouris and Vassilvitskii (ICML 2018) introduce a model of online caching with machine-learned
advice that marries the predictive power of machine learning with the robustness guarantees of
competitive analysis. In this model, each page request is augmented with a prediction for when
that page will next be requested. The goal is to design algorithms that (1) perform well when the
predictions are accurate and (2) are robust in the sense of worst-case competitive analysis.

We continue the study of algorithms for online caching with machine-learned advice, following
the work of Lykouris and Vassilvitskii as well as Rohatgi (SODA 2020). Our main contribution
is a substantially simpler algorithm that outperforms all existing approaches. This algorithm is a
black-box combination of an algorithm that just naïvely follows the predictions with an optimal
competitive algorithm for online caching. We further show that combining the naïve algorithm with
LRU in a black-box manner is optimal among deterministic algorithms for this problem.
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1 Introduction

The study of online algorithms traditionally focuses on worst-case robustness, where al-
gorithms provide the same competitive guarantee against the offline optimal over all possible
inputs. In recent years, however, there has been a surge of interest in online algorithms for
structured inputs [20, 18, 24, 11, 15, 16, 25, 17, 23]. A principal motivation for these works is
the philosophy of “beyond worst-case analysis” [13, 26]: Many practical settings have inputs
that follow restricted patterns, making worst-case competitive analysis too pessimistic to
inform practice. Algorithms designed with the worst case in mind can be hamstrung by
these considerations, sacrificing performance on “easy” inputs in order to eke out a better
worst-case guarantee.

Learning-augmented online algorithms, introduced by Lykouris and Vassilvitskii [18] and
Purohit et al. [24], is a “beyond worst-case” framework motivated by the powerful predictive
abilities of modern machine learning. In this framework, the classical online algorithm model
is augmented with a machine-learned oracle that predicts future inputs. A concern with
simply relying on the oracle is that machine learning models typically have few worst-case
guarantees. Thus, with learning-augmented online algorithms, we seek to obtain the best of
both worlds. Given a predictor, our objective is to design algorithms that:
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1. Perform well in the optimistic scenario, where the predictor has low error;
2. Remain robust in the classical worst-case sense, when the predictor can be arbitrarily

bad.
In other words, we want our algorithm to be c(η)-competitive against the offline optimal on
all inputs, for c a function of the predictor’s total error η, such that supη c(η) ≤ γ for some
constant γ ≥ 1. This γ is the classical worst-case competitive ratio and is a measure of the
robustness of our algorithm.

This paper focuses on learning-augmented online caching [18, 25]. In the online caching
(a.k.a. online paging) problem, one maintains a cache of size k online while serving requests
for pages that may or may not be in the cache. For simplicity, assume that pages must
always be served from the cache and that bringing a page into the cache has unit cost. (In
particular, if the cache is full, bringing a page into the cache requires also evicting a page
already in the cache.) Thus, one wishes to minimize the number of cache misses, i.e., requests
for which the page is not already in the cache. This is a classical online problem that has
been the subject of extensive study over the past several decades (see [6] for an overview).
From the worst-case perspective, this problem is well-understood for not only the version
stated above [27, 10, 1], but also for weighted generalizations [3, 4].

Online caching in the learning-augmented context was first considered by Lykouris and
Vassilvitskii [18]. They introduce a model of prediction where the predictor, upon the arrival
of each page, predicts the next time that this page will be requested. They show that the
BlindOracle algorithm, which follows the predictor naïvely and evicts the page with the
latest predicted arrival time, can have unbounded competitive ratio (i.e., is non-robust).
They then give a different algorithm, PredictiveMarker, based on the Marker algorithm
of Fiat et al. [10], that achieves a competitive ratio of

2 +O

(
min

(√
η

OPT , log k
))

,

where η is the `1 error of the predictor and OPT is the cost of the offline optimal. (For
precise definitions, refer to Section 2.1.) Notably, this competitive ratio approaches 2 as the
error η goes to 0 and is bounded by O(log k) regardless of how large η gets.

In recent work, Rohatgi [25] introduces the LNonMarker algorithm, which is also based
on randomized marking, and shows that LNonMarker achieves a competitive ratio of

O

(
1 + min

(
log k
k

η

OPT , log k
))

.

This bound is obtained by constructing a non-robust algorithm and then using the black-box
combination technique discussed in [18] to combine this non-robust algorithm with the
Marker algorithm. Rohatgi also shows a lower bound of

1 + Ω
(

min
(

log
(

1
k log k

η

OPT

)
, log k

))
for the competitive ratio of any learning-augmented online algorithm for caching in terms
of k, OPT, and η. The main difference between two bounds is that the former has a linear
dependence on η/OPT, whereas the latter has only a logarithmic dependence on the same.
We will make some progress in closing this gap and also show that deterministic algorithms
fundamentally cannot approach Rohatgi’s lower bound.
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1.1 Our Contribution
We show that the strikingly simple approach of combining BlindOracle with an O(log k)-
competitive online caching algorithm (e.g., Marker) in a black-box fashion achieves state-
of-the-art performance, improving over LNonMarker with a competitive ratio bound of

O

(
1 + min

(
1
k

η

OPT , log k
))

.

Thus, although BlindOracle was previously shown to be non-robust [18], our result
demonstrates that using BlindOracle appropriately can actually lead to very effective
algorithms for learning-augmented online caching.

In addition to achieving better theoretical bounds, our approach to learning-augmented
online caching is substantially simpler than previous work. The algorithms of Lykouris and
Vassilvitskii [18] and Rohatgi [25] rely on intricate constructions based on randomized marking,
whereas our main ingredient is a careful analysis of perhaps the simplest algorithm possible.
We thus believe that our approach may yield better practical performance and may generalize
more readily to other learning-augmented settings. We note that our optimal deterministic
algorithm is especially simple: For each eviction, “follow” whichever of BlindOracle and
LRU has performed better so far.

The crux of our result is a tight analysis of BlindOracle’s performance as a function of
η. We prove that BlindOracle has excellent performance when η/OPT is small, improving
over O(log k)-competitive online caching algorithms for η up to O(k log k) · OPT. This is in
contrast to the lower bound on BlindOracle given by Lykouris and Vassilvitskii [18], who
rule out BlindOracle due to its poor performance when k = 2. In particular, our bound
has a 1/k dependence on k, meaning BlindOracle obtains drastically better bounds for
larger k. Stated formally, our main theorem is the following:

I Theorem 1.1. For learning-augmented online caching, BlindOracle obtains a competitive
ratio of

min
(

1 + 2 η

OPT , 4 + 4
k − 1

η

OPT

)
,

where η is the `1 loss incurred by the predictor and OPT is the optimal offline cost. (For
precise definitions, see Section 2.1.)

We then obtain robust deterministic and randomized algorithms for learning-augmented
online caching as corollaries, by combining BlindOracle with LRU and Equitable [1].
We apply the algorithms of Fiat et al. [10] and Blum and Burch [5] for combining online
algorithms in a black-box manner online. These algorithms achieve better constants in the
competitive ratio than the approach discussed by Lykouris and Vassilvitskii [18] and applied
by Rohatgi [25]. By composing our analysis of BlindOracle with these “combiners,” we
obtain constants in the competitive ratio that are significantly lower than those of previous
works. Indeed, we have the following corollaries for deterministic and randomized algorithms
for learning-augmented online caching:

I Corollary 1.2. There exists a deterministic algorithm for learning-augmented online caching
that achieves a competitive ratio of

2 min
(

min
(

1 + 2 η

OPT , 4 + 4
k − 1

η

OPT

)
, k

)
.
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I Corollary 1.3. There exists a randomized algorithm for learning-augmented online caching
that achieves a competitive ratio of

(1 + γ) min
(

min
(

1 + 2 η

OPT , 4 + 4
k − 1

η

OPT

)
, Hk

)
for any γ ∈ (0, 1/4).1 (Here, Hk = 1 + 1

2 + 1
3 + · · ·+ 1

k = ln(k) +O(1) is the k-th harmonic
number.)

Finally, we show that combining BlindOracle with a k-competitive deterministic
algorithm (e.g., LRU [27]) is the best one could hope to do among deterministic algorithms
for learning-augmented online caching. In particular, we show that a linear dependence on
η/(k · OPT) in the competitive ratio is necessary. Therefore, if a logarithmic dependence on
η/(k · OPT) is to be achieved, as in Rohatgi’s lower bound, then randomization is needed,
(perhaps surprisingly) even in the regime where η/(k · OPT) is bounded.

I Theorem 1.4. The competitive ratio bound for any deterministic learning-augmented
online caching algorithm must be at least

1 + Ω
(

min
(

1
k

η

OPT , k
))

in terms of k and η/OPT.

1.2 Related Work
In addition to the predecessor works by Lykouris and Vassilvitskii [18] and Rohatgi [25]
on learning-augmented online caching, there have been several other recent papers in the
space of learning-augmented online algorithms: Medina and Vassilvitskii [20] study repeated
posted-price auctions, Purohit et al. [24] and Gollapudi and Panigrahi [11] study the ski
rental problem, and Purohit et al. [24], Lattanzi et al. [17], and Mitzenmacher [23] study
online scheduling. Of these, the scheduling algorithm of Purohit et al. [24] is the most similar
in spirit to this present work: Both algorithms are based on combining a naïve and optimistic
algorithm with a robust algorithm.

Other threads of research falling under beyond worst-case online algorithms include work
on combining multiple algorithms with different performance characteristics [10, 5, 19, 11],
designing online algorithms with distributional assumptions (e.g., stochasticity) on the input
[13, 8, 21], and semi-online algorithms, where the input is assumed to have a predictable
offline component and an adversarial online component [15, 16].

The idea of learning-augmentation has also been explored in many other algorithmic and
data structural settings in recent years. These include learned indices [14], bloom filters [22],
frequency estimation in streams [12], and nearest neighbor search [9], among others.

Finally, advice for online algorithms has also been considered with a more complexity
theoretic spirit through the study of advice complexity of online algorithms; see the survey
of Boyar et al. [7] for an overview.

1.3 Recent Developments
Recently, in work done independently of and concurrently with this paper, Antoniadis et al. [2]
also study a BlindOracle-like algorithm, which they term FollowThePrediction, in the
more general setting of learning-augmented metrical task systems; they also use the “combiner”

1 The trade-off in γ and the cost is additive; thus, it does not factor into the competitive ratio.
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of Blum and Burch [5] to make this algorithm robust. However, their prediction model,
when specialized to online caching, is incomparable to that of Lykouris and Vassilvitskii [18]
(which we follow).2 Thus, the theoretical results proved in these two models do not imply
each other.

1.4 Outline
The remainder of this paper is organized as follows: In Section 2, we formally describe
our model of learning-augmented online caching and BlindOracle; we also introduce
background results that will later be used in our proofs. In Section 3, we prove our upper
bounds (i.e., Theorem 1.1 and Corollaries 1.2 and 1.3). In Section 4, we prove our lower
bound (Theorem 1.4) for deterministic algorithms. Section 5 concludes.

2 Preliminaries

2.1 Setup and Notation
In the online caching problem, we receive a sequence σ = (σ1, . . . , σn) of page requests online,
and our goal is to serve these requests using a cache of size k while minimizing cost. In
this problem, pages must be served from the cache and can be served at no cost; however,
evicting a page from the cache has unit cost.3

We will establish competitive bounds comparing the performance of two caching algorithms
A and B. More precisely, we will show bounds of the form

ALGB(σ) ≤ γ · ALGA(σ) +O(1),

where ALGA(σ) and ALGB(σ) are the costs of A and B, respectively, as measured in number
of evictions made while serving a sequence σ of page requests. Ultimately, A will be the
optimal offline algorithm and B will be BlindOracle. We will also use OPT(σ) to denote
the optimal offline cost; that is, OPT(σ) is the minimum possible cost of serving the request
sequence σ. We will omit the argument σ when the context is clear (i.e., just writing ALGA
to represent ALGA(σ)).

In our analysis, we use At and Bt to denote the cache states of A and B, respectively,
just before the t-th request. Formally, At and Bt are subsets of {1, . . . , t− 1} of size at most
k, containing for each cached page the index at which it was last served. That is, when
serving the t-th request, we remove some old request index t′ from the cache and insert t.
Thus, if t′ is such that σt = σt′ , this operation is free; otherwise, it has unit cost. In the
sequel, we will also refer to these indices t as page requests.

In the learning-augmented online caching problem, the t-th page request comes with a
prediction ht for the next time page σt is requested. That is, at the time of the t-th request,
our algorithm receives the pair (σt, ht). Let h = (h1, . . . , hn) be the tuple of all n predictions.
To define a notion of loss, let yt denote for each t the next time page t is actually requested,
with yt = n+ 1 if page σt is never requested again. The `1 loss is then defined to be

η(σ, h) =
∑
t

|ht − yt|.

2 Namely, their algorithms expect predictions to be in a different form: They expect predictions to
be cache states (i.e., the set of pages in the cache at time t) rather than next arrival times of pages.
Moreover, there exist sequences of “corresponding” inputs for each of these two models such that the
predictor error approaches infinity in one model while remaining constant in the other.

3 Observe that this formulation is equivalent to the “standard” formulation of online caching, where each
cache miss has unit cost, up to an additive constant of k.

APPROX/RANDOM 2020
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We will omit arguments to η if the context is clear. Note that if η(σ, h) = 0, then the
offline optimal can be obtained, as the optimal algorithm always evicts the page that is next
requested furthest into the future.

In stating our bounds, the essential quantity is often η/OPT. To make this clear, we will
take ε = η/OPT and state our bounds in terms of ε in the sequel.

2.1.1 Inversions
Call a pair (i, j) of page requests an inversion if yi < yj but hi ≥ hj . Let M(σ, h) denote the
total number of inversions between the pair of sequences σ and h. We will omit arguments
to M when the context is clear.

2.1.2 BlindOracle
We formally define the BlindOracle algorithm as follows: For each page request, if the
requested page is already in the cache, do nothing. Otherwise, evict the page request p whose
predicted next arrival time hp is furthest into the future, with ties broken consistently (e.g.,
by always evicting the least recently used page among those with maximal hp).

2.2 Combining Online Algorithms Competitively
To define our algorithms, we will need two classical results on competitively combining online
algorithms online, due to Fiat et al. [10] and Blum and Burch [5], respectively. This type
of “black-box” combination was also considered by Lykouris and Vassilvitskii [18], but their
approach has a worse constant than that of Fiat et al. [10]. We also note that results of a
similar flavor are proven by Purohit et al. [24] and Mahdian et al. [19], but for other online
problems.

The question of combining multiple online algorithms while remaining competitive against
each was first considered in the seminal paper of Fiat et al. [10]. They consider combining n
online algorithms B1, . . . ,Bn for the online caching problem into a single algorithm B such
that B is Ci-competitive against Bi for each i. They show such an B is achievable if and
only if

n∑
i=1

1
Ci
≤ 1.

We will need only the special case of n = 2 and C1 = C2 = 2, which we state below:

I Theorem 2.1 ([10], special case). Given two algorithms B1 and B2 for the online caching
problem, there exists an algorithm B such that

ALGB(σ) ≤ 2 min(ALGB1(σ),ALGB2(σ)) +O(1).

Moreover, if B1 and B2 are deterministic, then so is B.

We note that this can be done deterministically with a “follow-the-leader” approach,
where we simulate both algorithms and at each step evict any page that is not in the cache
of the better performing algorithm (as measured by total number of evictions after serving
the current request).



A. Wei 60:7

Blum and Burch [5] show that one can obtain a better approximation factor using a
randomized scheme, namely multiplicative weights.4 That is, at each point in time, the
probability that the combined algorithm is following one of the n algorithms is given by a
probability distribution over the n algorithms governed by the multiplicative weights update
rule. For n = 2, their result can be stated as follows:

I Theorem 2.2 ([5], special case). Given two algorithms B1 and B2 for the online caching
problem and any γ such that 0 < γ < 1/4, there exists an algorithm B such that

ALGB(σ) ≤ (1 + γ) min(ALGB1(σ),ALGB2(σ)) +O(γ−1k).

I Remark. Although we do not state the versions of these results for combining several
algorithms, one can imagine that they could be useful if one wishes to ensemble multiple
machine-learned predictors.

2.3 From `1 Loss to Inversions
We now state a lemma of Rohatgi [25] that relates `1 loss to the number of inversions, letting
us lower bound the `1 loss η(σ, h) by lower bounding the number of inversions M(σ, h). Thus,
instead of reasoning in terms of `1 loss, we will reason in terms of inversions.

I Lemma 2.3 ([25, Lemma 11]). For any σ and h, η(σ, h) ≥ 1
2M(σ, h).

With this lemma, it suffices (up to a factor of 2) to give our competitive ratio upper
bounds in terms of the number of inversions M .

3 Upper Bounds

3.1 A First Analysis of BlindOracle
In this section, we give a first analysis of BlindOracle, showing that it gets very good
performance when the ratio ε = η/OPT is very small. In particular, our analysis shows that
as ε→ 0, the competitive ratio achieved approaches 1.

Let A be the offline optimal algorithm (i.e., such that ALGA = OPT). Let B be
BlindOracle. Note that we can think of each of ALGA, ALGB, and M as functions of the
time t, i.e., they are the cost of A, the cost of B, and the number of inversions, respectively,
on the prefix consisting of the first t − 1 requests.5 We use the ∆ operator to denote the
change (in a function of t) from time t to time t + 1. For example, ∆ALGA = 1 if ALGA
evicts an element upon the t-th request.

In our analysis, we maintain a matching Xt between At and Bt at all times t. Call a
matching valid if it consists only of pairs (a, b) ∈ At ×Bt such that the next arrival of b is
no later than the next arrival of a. Our matching Xt ⊆ At ×Bt will be valid throughout the
execution of the algorithm.

We now proceed with a potential function analysis, taking our potential Φ (as a function
of At, Bt, and Xt) to be the number of unmatched pages in Bt. For notational simplicity,
we denote Φ(At, Bt, Xt) by Φ(t). Given this setup, we show:

4 The result of Blum and Burch [5] in fact holds more generally for all metrical task systems.
5 This indexing is to be consistent with the definitions of At and Bt.

APPROX/RANDOM 2020
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I Proposition 3.1. There exists a valid matching Xn such that

ALGB + Φ(n) ≤ OPT +M.

Proof. We induct on the length n of the input and perform a case analysis to show that we
can maintain a valid matching Xt such that at each time step, the right-hand side increases
at least as much as the left-hand side, i.e., ∆ALGB + ∆Φ ≤ ∆OPT + ∆M .

For our base case, note that A1 = B1, so we may take X1 to be the identity matching.
Now, upon a request at time t, we update Xt according to the following cases (and with

the consequences listed for each case):
1. The requested page p is in both At and Bt.

a. The cached pages are matched to each other.
Do nothing.

b. Otherwise:
i. Both cached pages are matched.

Remove the pairs (c, p) and (p, d) from Xt.
Add the pairs (p, p) and (c, d) to Xt.
As a result:

Nothing changes. (For conciseness, we omit obviously unchanged quantities
here and for the remainder of this proof.)

ii. Otherwise:
Remove any pairs involving p from Xt. (There is at most one such pair.)
Add the pair (p, p) to Xt.
As a result:

∆Φ ≤ 0.
2. The requested page p is in Bt only.

Remove any pairs involving the evicted page a from Xt. (There is at most one such
pair.)
Remove any pairs involving the requested page p from Xt. (There is at most one such
pair.)
Add the pair (p, p) to Xt.
As a result:

∆OPT = 1.
∆Φ ≤ 1.

3. The requested page p is in At only.
a. The evicted page b ∈ Bt is unmatched.

Add the pair (p, p) to Xt. (The arriving page p ∈ At cannot be in any valid
matching.)
As a result:

∆ALGB = 1.
∆Φ = −1.

b. The evicted page b ∈ Bt is matched.
i. b arrives later than all unmatched pages in Bt.

Remove the pair (c, b) involving the evicted page b from Xt.
Add the pair (c, b′) to Xt, where b′ ∈ Bt is any unmatched page.
Add the pair (p, p) to Xt. (The arriving page p ∈ At cannot be in any valid
matching.)
As a result:

∆ALGB = 1.
∆Φ = −1.
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ii. There is an unmatched page b′ ∈ Bt arriving later than b.
Remove the pair (c, b) involving the evicted page b from Xt.
Add the pair (p, p) to Xt. (The arriving page p ∈ At cannot be in any valid
matching.)
As a result:

∆ALGB = 1.
∆Φ = 0.
∆M = 1, as there is an inversion between b and b′. (Note that we do not
count this inversion ever again, as b gets evicted.)

4. The requested page p is in neither At nor Bt.
a. A evicts an unmatched page a ∈ At.

i. B evicts an unmatched page b ∈ Bt.
Add the pair (p, p) to Xt.
As a result:

∆OPT = 1.
∆ALGB = 1.
∆Φ = 1.

ii. B evicts a matched page b ∈ Bt.
Remove the pair (c, b) involving b from Xt.
Add the pair (p, p) to Xt.
As a result:

∆OPT = 1.
∆ALGB = 1.

b. A evicts a matched page a ∈ At.
i. B evicts an unmatched page b ∈ Bt.

Remove the pair (a, d) involving a from Xt.
Add the pair (p, p) to Xt.
As a result:

∆OPT = 1.
∆ALGB = 1.

ii. B evicts a matched page b ∈ Bt.
Remove the pair (a, d) involving a from Xt.
Remove the pair (c, b) involving b from Xt.
Add the pair (p, p) to Xt.
As a result:

∆OPT = 1.
∆ALGB = 1.
Note that either b arrives after d, in which case we can add (c, d) to Xt and
∆Φ = 0, or the pair (b, d) forms an inversion, in which case ∆Φ = 1 and
∆M = 1. (As before, since b is getting evicted, we will not count this pair
twice.)

It is not hard to verify that the change in the left-hand side of the bound is no more than the
change in the right-hand side in each of the cases listed above, from which the proposition
follows. J

I Proposition 3.2. The competitive ratio of algorithm B is at most 1 + 2ε.

Proof. Note that 2η is bounded below by the number of inversionsM of (σ, h) by Lemma 2.3.
By Proposition 3.1, ALGA ≤ OPT +M , so ALGA/OPT ≤ 1 +M/OPT ≤ 1 + 2ε. J

APPROX/RANDOM 2020
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3.2 A More Careful Analysis
We now give an asymptotically better (in k) bound for the performance of BlindOracle.
A more careful analysis is needed to show an upper bound with a 1/k coefficient on the
ratio ε = η/OPT. We use the same high-level approach for the proof as before, but with a
more complicated potential function. Again, A is the offline optimal algorithm and B is the
BlindOracle algorithm, and also as before, we use ∆ to denote change (in functions of t)
from request t to request t+ 1.

We maintain in this proof a matching Xt over pairs of page requests (a, b) ∈ At × Bt
such that ha ≥ hb for each time step t. (Recall that ha is the prediction for the next time
that page σa is requested.) We also require that Xt restricts to the identity matching on
At ∩Bt. That is, if a page p is in both caches at time t, then it is matched to itself in Xt. If
Xt satisfies both of these properties, we say that it is allowable. Our potential function Φ –
which will really be a sum of three separate potential functions – will be a function of At, Bt,
and an allowable matching Xt. For notational simplicity, we denote Φ(At, Bt, Xt) by Φ(t).

Given At, Bt, and Xt at time t, define Φ0(t) to be the number of b ∈ Bt that are
unmatched. Define Φ1(t) to be the number of b ∈ Bt such that (b, b) 6∈ Xt. In other words,
Φ1 counts how many page requests in Bt are not matched to the same page request in At.
For a page request p, let zp(t) be the number of pages in Bt predicted to appear before hp
(with pages predicted to appear at the same time tie-broken in a consistent manner, e.g., by
the last time each page was requested6). Next, define

Φ2(t) =
∑

(a,b)∈Xt

(
zb(t)− za(t)

)
.

With these “sub”-potential functions defined, we take

Φ(t) = (k − 1)Φ0(t) + (k − 1)Φ1(t) + Φ2(t)

as our overall potential function. This completes our setup for the analysis. But before we
give the details of the proof, we make a few observations about these definitions and discuss
some intuition.

First, observe that for any p, we have 0 ≤ zp(t) ≤ k. And if p ∈ Bt, then zp(t) ≤ k − 1
because there are only k − 1 other pages that could be predicted to appear before. Next,
if (a, b) ∈ Xt, then za(t) ≥ zb(t) as ha ≥ hb. Hence Φ2(t) ≤ 0 always. As a result, Φ may
sometimes be negative, but it satisfies |Φ(t)| ≤ 3k2 for all t. Finally, we note that Φ2 is
equivalently a sum over the (a, b) ∈ Xt such that a 6= b.

In terms of intuition for these definitions, the main substance perhaps lies in Φ2: Suppose
(a, b) ∈ Xt and a 6= b; in particular, a 6∈ Bt. The quantity za(t)− zb(t) is the future number
of inversions that we are “guaranteed” from this pair (a, b). If we request σp for any p such
that hb < hp < ha, then we have an inversion (p, b). On the other hand, if σp is not requested
before the next time σa is requested, then the request for σa forms an inversion (a, p). Thus,
the quantity M − Φ2 accounts not only for the inversions already encountered, but also
for future inversions. The matching of a and b also serves another purpose: We couple the
decrease of za to the decrease of zb whenever za decreases without generating an inversion.
Therefore, if za is small when σa is next requested, then zb ≤ za is also small. It follows that
if we form a new pair (a′, b), then za′ − zb will be comparatively large, i.e., we get many
future inversions.

6 Alternatively, one can simply perturb all predictions by infinitesimal amounts so that there are no ties.
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We execute on this intuition to prove the following proposition:

I Proposition 3.3. For any input (σ, h), there exists a matching Xn ⊆ An ×Bn consisting
only of pairs (a, b) satisfying ha ≥ hb such that

(k − 1)ALGB + Φ(n) ≤ 2k · OPT + 2M.

Proof. Like in the proof of Proposition 3.1, we induct on the length of the input and perform
a case analysis to show that we can maintain a allowable matching Xt such that the right-hand
side increases at least as much as the left-hand side for each page request.

We split the serving of each page request into two phases:
1. Matching. Update Xt so that the page requests in At and Bt that are to be removed

are unmatched. (Note that page requests are removed either because the corresponding
page was requested again or because the corresponding page was evicted.)

2. Updating. Replace a page request from each of At and Bt with the new request and
add the new page request pair (t, t) into Xt.

In doing so, we ensure that the pages to be removed are unmatched by the time updating
occurs, so they do not contribute to Φ2.

We first analyze how updating affects the overall potential Φ. This operation decreases
each of Φ0 and Φ1 by 1, since we remove an unmatched pair and replace it with the matched
pair (t, t). For Φ2, observe that for a matched pair (a, b), the difference zb − za increases on
the t-th request only if a page predicted to arrive between b and p is removed. This occurs if
and only if there is a p ∈ Bt such that σp = σt and hb < hp < ha. In this case, the pair (p, b)
forms an inversion, i.e., it increases M by 1. Any inversion (p, b) is counted at most once
this way because p is getting removed from Bt. Thus ∆Φ2 ≤ ∆M . In summary, updating
leaves us with an extra 2(k − 1) in potential due to the changes in Φ0 and Φ1; the change in
potential of Φ2 is offset by the change in one of the two M terms on the right-hand side.

We now specify the matching phase in greater detail and analyze it using a case analysis.
We will show

(k − 1)∆ALGB + ∆Φ ≤ 2k ·∆OPT + ∆M + 2(k − 1),

with the extra 2(k− 1) being covered by the updating step. The analysis proceeds as follows:

1. The requested page is in both At and Bt.
The previous page requests for σt in At and Bt are matched to each other by assumption,
so we can just unmatch them.
As a result:

(k − 1)∆Φ0 = k − 1.
(k − 1)∆Φ1 = k − 1.

2. The requested page is in At only.
a. The previous request p ∈ At for the requested page is matched as (p, d) and the page

request b ∈ Bt evicted by B is matched as (c, b).
Unmatch (p, d) and (c, b) and match (c, d). The latter is allowable because hc ≥
hb ≥ hd.
As a result:

(k − 1)∆ALGB = k − 1.
(k − 1)∆Φ0 = k − 1.
(k − 1)∆Φ1 ≤ k − 1, since p 6= d.
∆Φ2 = zp − (k − 1), since zb = k − 1.
∆M ≥ zp, since the arrival of σp generates zp inversions of the form (p, b′) for all
b′ ∈ Bt such that hp > hb′ .
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b. The previous request p ∈ At for the requested page is matched as (p, d) and the page
request b ∈ Bt evicted by B is unmatched.

Unmatch (p, d).
As a result:

(k − 1)∆ALGB = k − 1.
(k − 1)∆Φ0 = k − 1.
(k − 1)∆Φ1 = 0, since p 6= d.
∆Φ2 = zp − zb ≤ zp.
∆M ≥ zp, since the arrival of σp generates zp inversions of the form (p, b′) for all
b′ ∈ Bt such that hp ≥ hb′ .

c. The previous request p ∈ At for the requested page is unmatched and the page request
b ∈ Bt evicted by B is matched as (c, b).

Unmatch (c, b) and match (c, d) for an arbitrary unmatched d ∈ Bt \ {b}. This is
allowable because hc ≥ hb ≥ hd.
As a result:

(k − 1)∆ALGB = k − 1.
(k − 1)∆Φ0 = 0.
(k − 1)∆Φ1 ≤ k − 1.
∆Φ2 = zd − (k − 1) ≤ 0, since zb = k − 1.

d. The previous request p ∈ At for the requested page is unmatched and the page request
b ∈ Bt evicted by B is unmatched.

Do nothing.
As a result:

(k − 1)∆ALGB = k − 1.
3. The requested page is in Bt only.

a. The previous request p ∈ Bt for the requested page is matched as (c, p) and the page
request a ∈ At evicted by A is matched as (a, d).

Unmatch (c, p) and (a, d).
As a result:

2k ·∆OPT = 2k.
(k − 1)∆Φ0 = 2(k − 1).
If a = d:
∗ (k − 1)∆Φ1 = k − 1, since c 6= p.
∗ ∆Φ2 = zc − zp ≤ k, since zc ≤ k.
Otherwise, if a 6= d:
∗ (k − 1)∆Φ1 = 0, since c 6= p.
∗ ∆Φ2 = (zc − zp) + (za − zd) ≤ 2k, since zc, za ≤ k.

b. The previous request p ∈ Bt for the requested page is matched as (c, p) and the page
request a ∈ At evicted by A is unmatched.

Unmatch (c, p).
As a result:

2k ·∆OPT = 2k.
(k − 1)∆Φ0 = k − 1.
(k − 1)∆Φ1 = 0, since c 6= p.
∆Φ2 ≤ zc − zp ≤ k, since zc ≤ k.

c. The previous request p ∈ Bt for the requested page is unmatched and the page request
a ∈ At evicted by A is matched as (a, d).

Unmatch (a, d).



A. Wei 60:13

As a result:
2k ·∆OPT = 2k.
(k − 1)∆Φ0 = k − 1.
(k − 1)∆Φ1 ≤ k − 1.
∆Φ2 ≤ za − zd ≤ k, since za ≤ k.

d. The previous request p ∈ Bt for the requested page is unmatched and the page request
a ∈ At evicted by A is unmatched.

Do nothing.
As a result:

2k ·∆OPT = 2k.
4. The requested page is in neither At nor Bt.

a. The previous request a ∈ At evicted by A is matched as (a, d) and the page request
b ∈ Bt evicted by B is matched as (c, b).

If (a, d) = (c, b), simply unmatch (a, d) (and thus (c, b)). Otherwise, unmatch (a, d)
and (c, b) and match (c, d). The latter is allowable because hc ≥ hb ≥ hd.
As a result:

2k ·∆OPT = 2k.
(k − 1)∆ALGB = k − 1.
(k − 1)∆Φ0 = k − 1.
(k − 1)∆Φ1 ≤ 2(k − 1).
∆Φ2 = za − (k − 1) ≤ 0, since zb = k − 1.

b. The previous request a ∈ At evicted by A is matched as (a, d) and the page request
b ∈ Bt evicted by B is unmatched.

Unmatch (a, d).
As a result:

2k ·∆OPT = 2k.
(k − 1)∆ALGB = k − 1.
(k − 1)∆Φ0 = k − 1.
(k − 1)∆Φ1 ≤ k − 1.
∆Φ2 = za − zd ≤ k, since za ≤ k.

c. The previous request a ∈ At evicted by A is unmatched and the page request b ∈ Bt
evicted by B is matched as (c, b).

Unmatch (c, b) and match (c, d) for an arbitrary unmatched d ∈ Bt \ {b}. This is
allowable because hc ≥ hb ≥ hd.
As a result:

2k ·∆OPT = 2k.
(k − 1)∆ALGB = k − 1.
(k − 1)∆Φ0 = 0.
(k − 1)∆Φ1 ≤ k − 1.
∆Φ2 = zd − (k − 1) ≤ 0, since zb = k − 1.

d. The previous request a ∈ At evicted by A is unmatched and the page request b ∈ Bt
evicted by B is unmatched.

Do nothing.
As a result:

2k ·∆OPT = 2k.
(k − 1)∆ALGB = k − 1.
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Recall that we have an extra 2(k − 1) in potential from the updating phase that we can
use to defray the costs of the matching phase. One can verify that this is sufficient for all
of the cases described above – the “tight” cases are 1, 2(a), 2(b), 2(c), 3(a), and 4(a). The
proposition now follows. J

I Proposition 3.4. The competitive ratio of algorithm B is at most 2+2/(k−1)+4ε/(k−1).

Proof. Compose Proposition 3.3 with Lemma 2.3. In particular, we have

ALGB
OPT + O(k)

OPT ≤
2k
k − 1 + 2M

(k − 1)OPT ≤ 2 + 2
k − 1 + 4

k − 1
η

OPT . J

3.3 Finishing Up
The results stated in Section 1 now follow easily from what we have already shown:

I Theorem 1.1. For learning-augmented online caching, BlindOracle obtains a competitive
ratio of

min
(

1 + 2 η

OPT , 4 + 4
k − 1

η

OPT

)
,

where η is the `1 loss incurred by the predictor and OPT is the optimal offline cost. (For
precise definitions, see Section 2.1.)

Proof. From the analysis of the previous two sections, the desired bound immediately follows
from taking the minimum of the bounds in Propositions 3.2 and 3.4, noting that 2/(k−1) ≤ 2
when k ≥ 2. J

I Corollary 1.2. There exists a deterministic algorithm for learning-augmented online caching
that achieves a competitive ratio of

2 min
(

min
(

1 + 2 η

OPT , 4 + 4
k − 1

η

OPT

)
, k

)
.

Proof. Combine BlindOracle with LRU using the “combiner” from Theorem 2.1, with
the performance of BlindOracle being bounded by Theorem 1.1. J

I Corollary 1.3. There exists a randomized algorithm for learning-augmented online caching
that achieves a competitive ratio of

(1 + γ) min
(

min
(

1 + 2 η

OPT , 4 + 4
k − 1

η

OPT

)
, Hk

)
for any γ ∈ (0, 1/4).7 (Here, Hk = 1 + 1

2 + 1
3 + · · ·+ 1

k = ln(k) +O(1) is the k-th harmonic
number.)

Proof. Like in the proof above, combine BlindOracle with algorithm Equitable of
Achlioptas et al. [1]8, this time using the “combiner” from Theorem 2.2. J

7 The trade-off in γ and the cost is additive; thus, it does not factor into the competitive ratio.
8 We use Equitable because it achieves the optimal worst-case competitive ratio of Hk for online caching;

Marker has a competitive ratio of 2Hk − 1 [1].
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4 Lower Bound for Deterministic Algorithms

We now show that combining BlindOracle with LRU achieves an optimal competitive
ratio bound (in terms of k and ε = η/OPT) among all deterministic algorithms for learning-
augmented online caching by proving Theorem 1.4:

I Theorem 1.4. The competitive ratio bound for any deterministic learning-augmented
online caching algorithm must be at least

1 + Ω
(

min
(

1
k

η

OPT , k
))

in terms of k and η/OPT.

Proof. Fix a k > 2, and let A be any deterministic algorithm for learning-augmented online
caching. We show that for any even integer 2j such that 1 < 2j < k, there exists a sequence
of inputs with OPT(σ) growing arbitrarily large that satisfies ε/k = 2j and

ALGA(σ, h)
OPT(σ) ≥ 1 + ε

4k

for all (σ, h) in the sequence. As 2j nears k, this lower bound on competitive ratio approaches
1 + k/4, so this lower bound binds up to a competitive ratio of Ω(k), thus yielding the stated
result.

We spend the remainder of this proof constructing such inputs (σ, h). Let P1, . . . , Pk, Q

be k + 1 distinct pages. We make the following sequence of requests, which we call a phase:
1. For i = 1, . . . , k − 1:

a. Request pages P1, . . . , Pk in order, predicting each page to next appear k requests
from now.

2. Request pages P1, . . . , Pk in order, predicting each page to next appear k+ j + 2 requests
from now.

3. Request page Q and predict that it will next appear j + 1 requests from now.
4. For i = 1, . . . , j:

a. Request the page evicted by A during the previous request if it exists. Otherwise,
request an arbitrary page. For each page, provide the same prediction as the last time
this page was requested.

5. Request page Q and predict that it will next appear k2 + 1 + z requests from now, for
some z ≥ 0 that we will specify below.

As an outer loop, we can repeat the above “phase” as many times as needed.
In a single phase, observe that OPT makes at most two evictions: One to evict Q if it is

in the cache at the beginning of the phase and one upon the arrival of Q in step (3). For the
latter, it suffices to evict a page that does not appear among the at most j + 1 ≤ k pages
requested in steps (4) and (5). Note also that OPT makes at least one eviction in any phase,
since each phase involves serving k + 1 distinct pages.

On the other hand, I claim A makes at least j + 1 evictions. First, if the cache of A at
the end of step (2) does not consist of pages P1, . . . , Pk, then A must have incurred cost
at least k ≥ j + 1 during steps (1) and (2). Thus, we may assume that A’s cache consists
exactly of pages P1, . . . , Pk at the end of step (2). If so, A has to evict a page for each of the
j + 1 requests made in steps (3) and (4).

Finally, observe that all the predictions are accurate except those made for the pages
that arrive in step (4) and the prediction in step (5). I claim that each prediction for a
page arriving in step (4) is off by at most k + j < 2k. Indeed, a request to Q will be off by
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at most j, as Q is requested again in step (5). And a request to P` will be off by at most
k + j, as either page P` appears in step (1) of the next phase or the sequence of requests
terminates. To bound the error for the former, note that P` will appear at most k requests
into step (1) of the next phase, which starts j requests after the first request of step (4). For
the prediction made in step (5), note that it is off from the ground truth by exactly z.

Putting everything together, we have that 1 ≤ OPT ≤ 2 and η ≤ j · 2k + z. In fact, we
can set z so that η = 2jk · OPT exactly. In this case,

ALGA ≥ j + 1 = 2 + 1
2

(
1− 1

j

)
· 2j ≥ OPT + 1

4
η

k
,

with ε/k = 2j. To finish, notice that we can make OPT arbitrarily large by repeating the
“phase” defined above multiple times in sequence; the same analysis holds. J

5 Conclusion

In this paper, we show that the simple approach of combining BlindOracle with competitive
algorithms for online caching surprisingly achieves state-of-the-art performance for learning-
augmented online caching. We additionally show that combining BlindOracle with LRU
is optimal among deterministic algorithms for learning-augmented online caching. An open
question is whether the bounds we achieve can be improved using randomization to match
the lower bound of Rohatgi [25].
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